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Multimodal Classification of Stressful
Environments in Visually Impaired Mobility

Using EEG and Peripheral Biosignals
Charalampos Saitis and Kyriaki Kalimeri, Member, IEEE

Abstract—In this study, we aim to better understand the cognitive-emotional experience of visually impaired people when navigating in
unfamiliar urban environments, both outdoor and indoor. We propose a multimodal framework based on random forest classifiers, which
predict the actual environment among predefined generic classes of urban settings, inferring on real-time, non-invasive, ambulatory
monitoring of brain and peripheral biosignals. Model performance reached 93% for the outdoor and 87% for the indoor environments
(expressed in weighted AUROC), demonstrating the potential of the approach. Estimating the density distributions of the most predictive
biomarkers, we present a series of geographic and temporal visualizations depicting the environmental contexts in which the most intense
affective and cognitive reactions take place. A linear mixed model analysis revealed significant differences between categories of vision
impairment, but not between normal and impaired vision. Despite the limited size of our cohort, these findings pave the way to
emotionally intelligent mobility-enhancing systems, capable of implicit adaptation not only to changing environments but also to shifts in
the affective state of the user in relation to different environmental and situational factors.

Index Terms—Visual impairment, mobility, affective state, cognitive load, multimodal recognition, data fusion
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1 INTRODUCTION

MOBILITY in indoor and outdoor environments can
be a challenging and emotionally stressful task for

visually impaired people (VIP), especially when navigating
in unfamiliar sites. Despite an increasing number of assistive
technologies that help individuals with sight loss to augment
their spatial awareness and wayfinding abilities when in
move, very few systems provide a high degree of indepen-
dence beyond known environments that would allow VIP
to significantly achieve mobility and integrate into everyday
active life [1], [2]. Placing the visually impaired in the center
of attention and exploiting recent developments in pervasive
physiological sensing for affective computing, two mobility
“in the wild” studies were designed to better understand
how people with sight loss perceive and interact with the
urban and indoor space as manifested in their management
of cognitive load and stress.

Orientation and mobility (O&M) in humans heavily relies
on sight, which provides instantaneous, effortless access to
anticipatory (e.g., stairs, turns, signs) and proactive (e.g.,
moving people, poles) information at various distances
simultaneously [3]. Visually impaired pedestrians learn to
obtain critical environmental information primarily through
touch (sensing the ground surface with a white cane) and
hearing (identifying and localizing events and landmarks
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through sound). Mobility challenges can be summarized in
four main problems: avoiding obstacles (e.g., people moving
or standing in the way, pillars, tree branches, doors opening
outwards, improperly parked cars); detecting ground level
changes (e.g., stairs, ramps, pavement edge); negotiating
street crossings (e.g., lack of curbs, traffic lights, or sound
signaling); finding entrance/exit points (e.g., automated
doors, elevators); and adapting to light variation (e.g., abrupt
changes between different environments) [4], [5].

Although these problems generally diminish with in-
creased experience of an environment (e.g., own living or
working space, route from home to work), they still make
traveling in unfamiliar settings particularly challenging,
often preventing VIP from going outdoors or visiting new
sites altogether. The limitations and dependence on others in
daily living and mobility often have profound consequences
for the psychological health of VIP, generating increased
anxiety and motivating social isolation and depression [6], [7].
An increasing number of navigation and access technologies
has removed many barriers to independent wayfinding
for VIP, greatly advancing their personal and social well-
being. However, the degree of independence offered by
these technologies can be limited when the user encounters
unfamiliar situations that stress and inhibit them [1]. A
less than optimal presentation of information may cause
unnecessary mental burden, increasing emotional stress
through imposing cognitive load on working memory [8].

Despite a significant amount of research on understand-
ing the perceptual and neurocognitive mechanisms by which
people with sight loss access and process wayfinding infor-
mation [9], there is still little practical knowledge of how
the management of cognitive load and psychological stress
relates to the wayfinding process itself. This is a critical
aspect of human-computer interaction that has only recently
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Fig. 1. Multimodal data analysis framework for detecting stress during mobility tasks with visually impaired people. Adapted from Fig. 1 in [11].

been considered essential in designing emotionally intelligent
mobility-enhancing systems that are capable of implicitly
adapting not only to changing environments but also to shifts
in the user’s affective experience in relation to environmental
factors [10]. For example, to activate additional information
if a visually impaired traveler feels unsafe and stressed due
to an insufficient representation of the surroundings of the
system without increasing the mental workload of the user,
or to reduce the amount of channeled information if a VIP
feels relaxed and confident in a certain environment, or to
evaluate changing priorities.

One way of detecting emotion and psychological stress
is through identifying patterns in the central and peripheral
physiological modalities, the most common being electroder-
mal activity (EDA), cardiovascular activity, and electroen-
cephalography (EEG). Electrodermal activity is a well-known
indicator of physiological arousal and stress activation in
affective computing [12], [13]. It is more sensitive to emotion-
related variations in arousal as opposed to physical stressors,
which can be better reflected in measurements of heart
rate (HR). Blood volume pulse (BVP) patterns can also
reflect transient processes in arousal and cognitions [14].
Two outdoor mobility studies in the early 1970s suggested
that some form of psychological rather than physical stress
is responsible for increased HR in visually impaired versus
sighted pedestrians [15], [16]. However, certain mobility tasks
(e.g., stair climbing) may result in an interactive effect of
psychological stress and momentary physical workload, thus
cardiovascular measures may be less suitable than EDA.

Electroencephalography, on the other hand, can provide
neurophysiological markers of cognitive-emotional processes
induced by stress due to imposed cognitive load, indicated
by changes in brain activity. The latter is characterized
by rhythmic patterns across distinct frequency bands, the
definition of which can vary somewhat among studies.
Hereafter we consider six EEG bands, namely delta (0.5–
4 Hz), theta (4–7 Hz), alpha-1 (7–10 Hz), alpha-2 (10–13 Hz),
beta (13–30 Hz), and gamma (30–60 Hz). Gamma waves
are thought to be involved in higher cognitive functions
such as multimodal processing or object representation [17].
Beta waves are associated with psychological and physical
stress [18], whereas theta and alpha-1 frequencies reflect
response inhibition and attentional demands such as phasic

alertness [19]. Alpha-2 is related to task performance in
terms of speed, relevance, and difficulty [20], [21]. Reduced
activity at alpha frequencies has been repeatedly associated
with increasing cognitive load in a variety of task demands
(see [22] for a review). Further evidence suggests that
asymmetry in frontal alpha band power varies dependent
on affective disposition and engagement, with more activity
in left alpha indicating positive approach/motivation and
emotions, whereas increased right frontal alpha showed
withdrawal/avoidance and negative emotions [23]. EEG
delta activity has been reported to indicate attention to
internal processing during performance of mental tasks [24].

In recent years, the advent of ubiquitous mobile and
sensing technologies, consumer brain-computer interfaces
(BCI), and the quantified self movement has driven the
development of wireless wearable multi-sensor systems
(from devices to smartphone apps) for easy and reliable
automatic collection of brain and peripheral biosignal data
streams, making it possible to monitor human affective states
in virtually any real-world situation [11], [25]. Massot and
colleagues [26] used a custom mobile biosensor to collect
EDA from 27 blind pedestrians as they walked through urban
environments of varying complexity. Examination of arousal-
relevant EDA features showed that VIP experience increased
psychological stress when walking on busy shopping streets,
passing through large open areas, and crossing junctions. In
another study [27], analyses of EEG signals recorded from 12
VIP during outdoor travel using a commercial BCI headset
[27] further indicated that busy streets, open spaces, and
street crossings induce larger cognitive engagement than
quieter and less complex urban settings.

Expanding on previous work by the authors and col-
leagues [28], [29], [30], this paper presents a multimodal
framework to automatic inference of stressful environmental
conditions affecting visually impaired mobility based on
ambulatory monitoring and multimodal fusion of EEG,
EDA, and BVP signals, taking advantage of their inherent
and complementary properties (Fig. 1). The goal of the
research was twofold: to discover biomarkers that can be
used to detect shifts in emotional stress and cognitive load
between different settings and situations, and to develop
and understanding of which environmental factors increase
cognitive load and stress during visually impaired mobility.
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TABLE 1
Descriptions of Mobility Environments

ID Description Challenges

Outdoor Route
A Shopping street People, ads, chairs, tables, poles, ramps
B Small street People, poles, ads, ramps, blocked passageway
C Narrow alley People, chairs, tables, street ads, trash bins, flower planters, stairs going down, parked cars
D Urban park People, tree branches, poles, flower planters, blocked passageway
E Open space People, flower planters, stairs going up, blocked passageway
F Crossing main road with traffic lights People
G Crossing small street without traffic lights People, uneven pavement, detecting edges
H Construction alley People, ramps, construction

Indoor Route
A Entering through automated doors (two

hinged and one rotating)
Finding the pushbutton (hinged doors only), finding where and when to enter the rotating
door, other people going through the door at the same time

B Using an elevator to move between floors Finding the pushbuttons (calling the elevator, selecting floor), other people exiting/entering
C Walking along a narrow corridor Moving people, noise, classroom doors opening suddenly
D Moving across an open space Moving people, standing people, tables, chairs, trash bins, pillars, people talking, loud noises
E Using stairs to move between floors People using the stairs in the opposite direction, walk down a large spiral flight of stairs

Such knowledge can help design emotionally intelligent O&M
systems, which are capable of implicitly adapting not only
to changing environments but also to shifts in the internal
experience of the user in relation to environmental factors.
The proposed framework thus differs fundamentally from
context-based approaches to environment recognition, for
example, GPS-based geolocation. While the latter allow a
certain degree of independence for VIP, identifying dynamic
stressors in different or the same environments can lead
to even more independent mobility systems that recognize,
interpret, and adapt to the affective states of the user.

Using state-of-the-art portable sensor devices, EEG, EDA,
and BVP signals were collected from a group of VIP and
from two normally sighted individuals and as they walked
through outdoor and indoor environments of varying com-
plexity and difficulties. A number of multimodal features
ranging from low-level signal descriptors to indexes of higher
cognitive and emotional functions were extracted and used in
unimodal and multimodal classification experiments. While
the relationship between unimodal biosignals and psycho-
logical arousal has been studied extensively, the detection
of stress from fusing multimodal biosignal streams has not
been comparatively investigated. To better understand the
relationship of stress biomarkers with the environmental
and situational factors that evoke them, the most predictive
features were examined in relation to variables such as
type of environment/situation, amount of vision loss, and
impaired versus normal sight with a linear mixed model
analysis. A technique for visualizing geographical and
temporal density distributions of biomarkers using weighted
kernel density estimation [31] and dynamic time warping
[32] was developed.

2 MATERIALS AND METHODS

2.1 Participants

A total of ten healthy visually impaired adults with different
degrees of sight loss participated in the two mobility studies
(6 female; average age = 41 yrs, range = 22–53 yrs). One
participant was fully blind, three had visual acuity less than

2%, four had visual acuity less than 5%, and two had visual
acuity between 5% and 10%. Eight of them were congenitally
or early blind (first 2–3 yrs of life) and two had become
blind later in life (generally after the age of 3). To help make
the VIP feel comfortable and safe, they were encouraged
to walk as usual using their white canes if they wished so,
and were accompanied by their familiar O&M instructor.
Participants were instructed to avoid smoking normal or
e-cigarettes and consuming caffeine or sugar (e.g., coffee,
cola, chocolate) approximately one hour prior to the walk.
Recruitment was based on volunteering and all VIP were
capable of giving free and informed consent. The study was
approved by the National Bioethics Committee of Iceland.
All data was anonymized before analysis.

All visually impaired participants actively experience
indoor environments other than where they reside on a daily
basis: four work full-time, three are part-time employees,
and three attend educational or vocational establishments.
All VIP reported traveling alone outdoors on an “almost
daily” basis, but six of them would not feel confident enough
to do so in unfamiliar spaces and routes. Two participants,
who reported regular use of a white cane when mobile,
felt safe enough to walk without any aid. When asked to
describe their feelings regarding the ease of mobility over
the previous year, four VIP believed that it has not changed,
an equal number thought that it has become easier, while
two considered it to have become less easy. Eight of the
participants walked both the outdoor and indoor routes, one
took part only in the outdoor study, and two completed only
the indoor task.

Two healthy normally sighted individuals (1 female; age
= 31 and 40 yrs) were further recruited. They walked only
the outdoor route and their data were used only in the linear
mixed model analysis (Sec. 2.8).

2.2 Mobility Environments
The outdoor and indoor routes were planned with the
assistance of caretakers and O&M instructors to take the VIP
through circumstances of varying complexity and difficulty,
where different levels of stress were likely to occur.
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The outdoor route was charted in Reykjavik’s city center
between the City Hall and the port, which consists of smaller
and larger streets, narrower and wider sidewalks, street
crossings with and without traffic lights, as well a number
of open spaces. Accordingly, the route was divided into
seventeen parts grouped in eight distinct urban environments
(see Fig. 1 in [28]). These were defined so as to cluster
environmental and situational factors expected to elicit
similar affective reactions (Table 1). For example, participants
had to walk on a busy shopping street (environment A1),
pass through an urban park-square (D1), and cross a major
junction (F1). The route was approximately 1 km long and
took on average 13 min 44 sec to walk (range = 9–19 min).

The Háskólatorg building of the University of Iceland
campus in Reykjavik houses various service units for
students, a bookstore, two restaurants, classrooms, and
reading rooms. As such, it provided both uncomplicated and
sufficiently complex indoor scenes for the purposes of our
study. The charted route linked the entrance at the back of
the building (START) to the main entrance at its front (END)
and comprised five distinct environments representable of
a variety of indoor mobility challenges (see Fig. 2 in [29]
and Table 1). Indicatively, participants had to enter through
automated doors (scenes A2 and A2∗), use an elevator (B2),
move across a busy open space (D2—main entrance hall),
and walk down a large spiral staircase (E2∗). The route was
approximately 200 meters in length and took on average 5
minutes to walk (range = 4–8 minutes).

2.3 Multimodal Biosignals
Brain electrical signals were recorded using the Emotiv
EPOC+ mobile headset (http://emotiv.com/epoc/), which
provides 14+2 dry electrodes registering over the 10-20
system locations AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6,
F4, F8, FC4, P3, and P4 (sampling rate fs = 128 Hz). The last
two locations are used for CMS (Common Mode Sense) and
DRL (Driven Right Leg) reference electrodes, respectively.
Given the practical constraints involved in monitoring brain
electrical activity in the wild, EPOC+ was chosen because
it provides a good compromise between performance (i.e.,
number of channels and scientific validity of the acquired
EEG signals) and usability (i.e., portability, preparation time
and user comfort) with respect to other commercial wireless
EEG systems [25], [33], [34], [35].

Along with the Emotiv headset, participants were asked
to wear the Empatica E4 wristband (https://www.empatica.
com/e4-wristband) [36]. E4 measures EDA as skin conduc-
tance through 2 ventral (inner) wrist electrodes (fs = 4
Hz) and BVP through a dorsal (outer) wrist photoplethys-
mography (PPG) sensor (fs = 64 Hz). E4 further reports
HR, extracted on board from BVP interbeat intervals. The
wristband also includes an infrared thermopile sensor and
a 3-axis accelerometer. E4 is currently the only commercial
multi-sensor device developed based on extended scientific
research in the areas of psychophysiology and affective
computing. Additionally, it has a cable-free, watch-like
design, which makes it easier and more aesthetically pleasing
to wear, and thus better fitted to use in the wild compared to
other wearable biosignal devices. Participants were asked to
wear the wristband on the non-dominant hand to minimize
motion artifacts related to handling the white cane [37].
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Fig. 2. Features extracted from the EEG, EDA, and BVP modalities.

2.4 General Procedure

Participants walked the outdoor route twice and the indoor
route three times for training purposes. In both studies
directions were only provided during the first walk to help
the VIP familiarize with the route. They were instructed to
avoid unnecessary head movements and hand gestures as
well as talking to their O&M instructor unless there was an
emergency. Video and audio were registered by means of a
smartphone camera to facilitate data annotation (observing
behaviors across the different environments and situations)
and synchronization (start/end of walk, environments, and
obstacles). In the outdoor study, GPS coordinates were
additionally logged using a Garmin GPSMAP-64s unit at
a rate of 1 registration per second. Upon completing the last
walk, participants were asked to describe stressful moments
they experienced along the route.

http://emotiv.com/epoc/
https://www.empatica.com/e4-wristband
https://www.empatica.com/e4-wristband
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2.5 EEG Feature Extraction
The Emotiv EPOC+ system involves a number of internal
signal conditioning steps. Analogue signals are first high-
pass filtered with a 0.16 Hz cut-off, pre-amplified, low-pass
filtered with an 83 Hz cut-off, and sampled at 2048 Hz.
Digital signals are then notch-filtered at 50/60 Hz and down-
sampled to 128 Hz prior to transmission. For approximately
half of the participants, EEG data obtained from the headset
was first time-domain interpolated using the Fast Fourier
Transform (FFT) to account for missing samples due to
connectivity issues. Subsequently, all signals were baseline-
normalized. For visually impaired participants, this involved
subtracting for each individual and for each channel the
mean of resting state registrations obtained during a series
of laboratory studies with the same participants [38], [39].
For normally sighted participants, for whom no resting state
EEG data were available due to technical issues, the mean
signal value was instead subtracted for each individual and
for each channel. Finally, min-max scaling was applied to
reduce inter-individual variance.

A number of features related to signal power and com-
plexity were extracted using the PyEEG open source Python
module [40]. As before [29], we computed for each of the 14
EEG channels relative spectral power in the delta (0.5–4 Hz),
theta (4–7 Hz), alpha-1 (7–10 Hz), alpha-2 (10–13 Hz), beta
(13–30 Hz), and gamma (30–60 Hz) bands, and the entropy
of the power spectrum across bands:

PSIk =

|N(fk+1/fs)|∑
i=|N(fk/fs)|

|Xi|

RIRk =
PSIk∑K−1

j=1 PSIj
, k = 1, 2, . . . ,K − 1

H = − 1

log (K)

K∑
i=1

RIRi log (RIRi)

where fs is the sampling rate, N is the time series length,
|X1, X2, . . . , XN | is the FFT of the series, and K is the total
number of bands.

For this paper we also computed SVD Entropy, which
measures entropy over the spectrum of eigenvalues in a
singular value decomposition (SVD) of an embedding matrix
formed by consecutive delay vectors extracted from the
signal [41]:

HSVD = −
M∑
i=1

σilog2σi

whereM is the number of singular values and σ1, σ2, . . . , σM
are normalized singular values such that σi = σi/

∑M
j=1 σj .

PyEEG uses 20 embedding dimensions and 2-point delay.
We further computed, for each electrode and for each

frequency band, the event-related (de-) synchronization
(ERD/ERS), which reflects the decrease (event-related desyn-
chronization; ERD) or increase (event-related synchroniza-
tion; ERS) in band power while performing a task relative
to a reference baseline without any task demands, in our
case the resting state [42]. Using the RIR function of PyEEG
(relative band power) the ERD/ERS index is defined as

ERD/ERSk =
resting RIRk − RIRk

resting RIRk

∗ 100

TABLE 2
Classification Schemes

Exp. Description

I Single-class classification using as predictors the unimodal
features extracted from the EEG signals (N = 198).

II Single-class classification using as predictors the unimodal
features extracted from the EDA signals (N = 6).

III Single-class classification using feature-level multimodal
fusion of raw EDA, BVP, and HR signals (N = 3).

IV Single-class classification using feature-level multimodal
fusion of EEG and EDA features (N = 204).

V Single-class classification using feature-level multimodal
fusion of EEG, EDA, BVP, and HR features (N = 206).

VI Multi-class classification using as predictors the unimodal
features extracted from the EEG signals (N = 198)

VII Multi-class classification using as predictors the unimodal
features extracted from the EDA signals (N = 6)

VIII Multi-class classification using feature-level multimodal
fusion of raw EDA, BVP, and HR signals (N = 3)

IX Multi-class classification using feature-level multi-modal
fusion of EEG and EDA features (N = 204).

X Multi-class classification using feature-level multimodal
fusion of EEG, EDA, BVP, and HR features (N = 206)

where RIR and k = 1, 2, . . . ,K are as previously. Positive
ERD/ERS values indicate a decrease in band power (ERD),
while negative values indicate an increase (ERS).

Lastly, a Frontal Asymmetry Index (FAI) was computed
by subtracting the log-transformed relative alpha power in
the F3 channel (left frontal) from the log-transformed relative
alpha power in the F4 channel (right frontal) [43].

FAI = log

(
RIR(F4)alpha
RIR(F3)alpha

)
Because increased brain activity suppresses alpha waves,
higher values on this index reflect relatively higher left
activity (i.e., lower left alpha power) and thus positive
feelings and higher engagement. The FAI index was calcu-
lated for both the alpha-1 (lower alpha) and alpha-2 (upper
alpha) bands. In total 198 features were extracted from each
individual EEG recording, using time windows equal to one
second of the continuous signal.

2.6 EDA and BVP Feature Extraction

A measurement of skin conductance is traditionally character-
ized by two types of behavior: short-lasting phasic responses
(can be thought of as rapidly changing peaks in EDA) and
long-term tonic level in the absence of phasic responses (can
be thought of as the underlying slow-changing level of EDA).
In terms of physiology, a skin conductance response (SCR) is
a sudden rise in the electrical conductance of the skin due
to secretion from the skin’s sweat glands (sweat contains
electrolytes) in response to sympathetic nervous activation.
Another characteristic of the signal is the superposition
of subsequent SCRs (i.e., one SCR emerges on top of the
preceding one), typically observed in states of high arousal.

Skin conductance data obtained from the E4 was first
low-pass filtered (1st order Butterworth, fc = 0.6 Hz)
to remove steep peaks stemming from artifacts and sub-
sequently min-max normalized to reduce inter-individual
variance [44]. Using Ledalab (http://www.ledalab.de/),

http://www.ledalab.de/
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TABLE 3
Outdoor Scene Classification Average Weighted AUROC and Standard Deviation Over 5-Fold Cross-Validation

Scene EEG EDA {EDA,BVP} {EEG,EDA} {EEG,EDA,BVP}

Single-Class Classification Exp. I Exp. II Exp. III Exp. IV Exp. V

Construction alley (H) 92 (1.0) 91 (1.4) 96 (0.8) 95 (0.6) 97 (0.5)
Crossing main road (F) 93 (1.0) 90 (0.8) 94 (1.0) 95 (1.4) 97 (0.5)
Crossing small street (G) 72 (2.2) 76 (2.1) 88 (3.1) 74 (2.0) 78 (2.3)
Narrow alley (C) 81 (1.3) 88 (0.5) 93 (0.9) 88 (1.2) 93 (0.6)
Open space (E) 85 (1.0) 86 (0.4) 93 (0.9) 89 (0.9) 94 (0.5)
Shopping street (A) 89 (0.6) 88 (0.9) 95 (0.3) 94 (0.4) 98 (0.4)
Small street (B) 82 (1.2) 84 (0.7) 91 (0.7) 86 (1.2) 91 (0.8)
Urban park (D) 85 (1.8) 89 (0.8) 95 (0.5) 91 (1.3) 95 (1.0)

Multi-Class Classification Exp. VI Exp. VII Exp. VIII Exp. IX Exp. X

All outdoor 83 (0.5) 85 (0.7) 93 (0.2 ) 86 (0.7) 92 (0.1)

conditioned SC signals were then decomposed into two
continuous components of phasic and tonic EDA by means
of deconvolution using the biexponential function as impulse
response and estimating tonic activity, and implicitly phasic
activity, through inter-impulse fitting of the deconvolved
SC data [45]. As in our previous work [28], [29], six features
were extracted: number of SCRs and sum of their amplitudes;
average, maximum, and cumulative phasic EDA; and mean
tonic EDA. Here we further used the EDA signal directly
as reported from the E4 wristband, applying only min-max
scaling to lessen inter-individual variation [44].

To index cardiovascular activity, we used the BVP and
HR data as streamed by the Empatica E4 wristband. HR
is derived from BVP interbeat intervals. The raw BVP
signal is preprocessed on board using a proprietary motion
artifact removal technique [36]. No further conditioning was
implemented to either of the signals. However, given that
cardiovascular markers can be highly dependent on physical
activity (e.g., when climbing stairs), BVP and HR were min-
max normalized prior to analysis.

2.7 Classification Analysis

In order to identify automatically the affective meaning
of an urban space based on biosignals recorded from VIP
walking through it, we postulated the study as a supervised
classification process. A widely-used ensemble learning
method for classification was employed, namely Random
Forest (RF) classifier [46], selected due to its ability to deal
with imbalanced classes as well as because it provides a
straightforward assessment of the variable importances. For
each of the distinct environments described in Table 1, each
time point of the corresponding biosignal data was annotated
based on a binary schema per second, where “1” signaled
the presence of the participant in the given environment at
the given time point and “0” otherwise.

Generally, multimodal information can be fused at three
levels: (raw) data, extracted features, and decision based
on separate unimodal classifiers. Decision-level fusion is
more appropriate when there are time scale differences
between modalities. For different biosignals measured in
synchronized time scale as in this paper, feature-level fusion
offers a more convincing way to build a single multimodal
classifier [47], [48]. A series of experiments were thus

designed to assess and compare the predictive power of
each modality (EEG, EDA or BVP) as well as of their feature-
level fusion in both single-class and multi-class scenarios
(Table 2). By means of grid search parameter estimation with
5-fold cross-validation, the optimum number of estimators
was 300 and the maximum number of features was set equal
to the total number of features for each experiment. The Gini
impurity function was used to assess the relative importance
of each feature to the predictability of the target variable [46].

All data from all times each participant walked a route
were used. While overall familiarity might have gradually
increased, individual environments still retained a dynamic
complexity due to “new” stressors such as people coming
from the opposite direction (outdoor) or out of the elevator
(indoor), classroom doors opening (indoor), bicycles or cars
being parked in different spots (outdoor), or chairs and
tables being displaced (indoor). With regard to the outdoor
collected dataset, there were 10,340 data points in total; the
eight classes were significantly imbalanced, ranging from
3,278 (most frequent) to 460 (least frequent) data points. The
indoor dataset comprised 6,412 data points in total; again
the five classes were imbalanced ranging from 1,964 (most
frequent) to 570 (less frequent) data points.

Sequential data points were split randomly in training
and testing subsets (which, as a result, no longer contain
sequential points). We trained one model for each of the
single-class cases and one for the multi-class experiment
following a 5-fold cross-validation scheme, where the 80%
of the data points were used for training and the 20% for
testing, with data shuffling in order to avoid dependencies in
consecutive data points. The best model is chosen as the one
that maximized the weighted area under receiver operating
characteristic (AUROC) statistic, taking into account the lack
of balance between the class labels.

2.8 Linear Mixed Model Analysis

We examined the role of vision impairment in the perception
of environmental and situational stressors with a statistical
analysis of features that emerged as the most predictive in
the multimodal classification experiments. A linear mixed
model method was used, which performs a regression-like
analysis while controlling for random variance caused by
differences in factors such as participant and electrode [49].
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TABLE 4
Indoor Scene Classification Average Weighted AUROC and Standard Deviation Over 5-Fold Cross-Validation

Environment EEG EDA {EDA,BVP} {EEG,EDA} {EEG,EDA,BVP}

Single-Class Classification Exp. I Exp. II Exp. III Exp. IV Exp. V

Door (A) 76 (0.6) 76 (1.2) 86 (1.1) 79 (0.9) 86 (1.0)
Elevator (B) 87 (0.8) 79 (0.3) 88 (0.8) 89 (0.8) 93 (0.8)
Corridor (C) 72 (1.6) 66 (1.9) 79 (1.3) 75 (0.9) 76 (0.8)
Open space (D) 76 (0.8) 67 (1.0) 85 (0.9) 77 (1.2) 85 (0.7)
Stairs (E) 78 (1.2) 69 (1.1) 84 (1.0) 82 (1.2) 92 (0.4)

Multi-Class Classification Exp. VI Exp. VII Exp. VIII Exp. IX Exp. X

All indoor 78 (0.4) 71 (0.6) 87 (1.2) 81 (0.5) 84 (0.5)

Fixed factors examined in the analyses included environment
and vision. For the latter, three categories were considered:
normal (visual acuity greater than 30%), severe impairment
(visual acuity less than 10% but greater than 2%), and blind
(visual acuity less than 2%). When fitting EDA and BVP data,
a random intercept for each participant was added. When
fitting EEG data, a further random intercept for electrode
was included. Type III Wald F -tests were used to test the
significance of the fixed factors and their interaction. Pairwise
comparisons of group means were carried out with t-tests,
using Bonferroni-adjusted p-values where appropriate.

We previously described that EEG signals collected from
visually impaired participants were baseline-normalized by
subtracting the mean of resting state registrations obtained
in a series of laboratory experiments, whereas for those
of normally sighted participants the mean signal value was
subtracted instead (Sec. 2.5). To facilitate comparison between
the two groups, we re-baseline-normalized the EEG data of
the VIP that walked the outdoor route to match those of the
normally sighted.

3 RESULTS AND DISCUSSION

Due to temporary dysfunctions of the equipment, incomplete
data recorded from two VIP during the first walk of the
outdoor route and from two other participants during the
first walk of the indoor route were discarded.

3.1 Stressful Environment Prediction
The average weighted AUROC and standard deviation over
five folds for all outdoor scene classification experiments are
reported in Table 3. In the one-versus-all scenario (Exp. I–V),
the EEG and EDA modalities (Exp. I and II, respectively)
were both predictive of the distinct scenes (classes) and
with highly similar performance. Fusing the two modalities
(Exp. IV) gave marginally improved results. The fusion of the
EDA and BVP modalities (Exp. III) boosted the performance
of the classifier compared to using only EDA or EEG features
or, to a lesser extent, both modalities. Combining features
from all three modalities achieved almost perfect accuracy
across all scenes. Similar trends were observed for the multi-
class classification experiments (Exp. VI–X). Including BVP
(Exp. VIII and X) considerably improved performance over
considering only EEG, EDA, or their fusion.

Table 4 summarizes the mean weighted AUROC and
standard deviation over five folds for all indoor scene clas-
sification experiments. Overall performance for the indoor

scenes was quite satisfactory, but not as high as for the
outdoor scenes. In the one-versus-all scenario (Exp. I–V), the
EEG and EDA modalities (Exp. I and II, respectively) were
both predictive of the distinct scenes, with EEG performing
considerably better than EDA. Fusing the two modalities
(Exp. IV) resulted in considerably better results, particularly
of the elevator class, the detection of which improved
substantially compared to when using only EDA features.
Combining EDA with BVP (Exp. III) achieved substantially
better accuracy than using only EDA. Adding EEG (Exp. V)
only improved results for two classes (elevator and stairs).
In the multi-class scenario, EEG (Exp. VI) performed better
than EDA (Exp. VIII). Their fusion (Exp. IX) marginally
increased accuracy. Combining EDA with BVP gave the
best outcome, softly outperforming the fusion of all three
modalities (Exp. X).

As a means of assessing the qualitative performance of the
multi-class multimodal fusion model (Exp. X), Fig. 3 shows
the weighted ROC curves for each outdoor and indoor scene
in a one-against-all binary scenario. In both cases, the trained
model was able to learn all different scenes equally well,
providing proof of the stability of the multimodal approach.

Feature importances were estimated for all multi-class
experiments. The most predictive ones appeared always
with the highest ranks. In the outdoor scene classification,
mean tonic EDA emerged as the most predictive feature
in Exp. VII (EDA features only), Exp. IX (fusion of EEG
and EDA features), and Exp. X (fusion of EEG, EDA, and
BVP features). The same results were obtained for the
indoor scene experiments, except for Exp. X where HR
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(a) (b) (c)

Fig. 4. Spatial density distributions of (a) mean tonic EDA and (b) number of SCRs (the darker the color, the higher the density of the distribution). (c)
Annotated obstacles and situations along the route. Reprinted with permission from Springer. Map image: https://www.openstreetmap.org/.

performed marginally better than mean tonic EDA. The
emergence of the latter as the most predictive feature in
the present experiments confirms previous findings showing
skin conductance tonic level to be a highly relevant index of
stress-induced physiological arousal.

Among the eight most predictive features resulting from
the {EEG,EDA,BVP} fusion models were the EDA and HR
signals registered by the Empatica E4 wristband, which were
used “as is” (but min-max scaled to reduce inter-individual
variation, see Sec. 2.5). This result illustrates the big potential
of using existing state-of-the-art sensors such as the E4 for
real-time prediction of human affective states from peripheral
physiological signals during less controlled experimental
conditions, which could be employed to design emotionally
intelligent mobility aids for visually impaired travelers.

Predictions involving EEG features, alone or fused with
other modalities, were dominated by changes in relative
spectral power (i.e., ERD/ERS, see Sec. 2.5) in the delta
band of the F3/4, T7/8, P7/8, and, to a lesser extent, FC5/6
and O1/2 channels. Although real-time EEG acquisition
may be subject to very noisy signals, this finding is in
line with previous evidence (a) reporting increased delta
activity during mental tasks as a result of attention to internal
processing [24] and (b) suggesting that the 10-20 system
locations F3/4, F7/8 and T7/8 may be suitable enough to
monitor brain activity under cognitive-emotional stress [50].

EDA and BVP features were generally better in predicting
stressful urban scenes, whereas the EEG modality performed
better in indoor scene classification. This might have resulted
from differences in the how the outdoor and indoor routes
were designed. Whereas the former focused mainly on
passive walking, the latter involved active wayfinding, for
example, turning and going towards the door, finding where
stairs begin, negotiating orientation while climbing down
the spiral stairs and after exiting the elevator. Therefore,
whereas EDA and BVP features reflected the more general
stressful situations across urban settings, EEG features traced
changes in cognitive load during specific indoor wayfinding
tasks. This difference between the two studies proves further
evidence of the complementary nature of the three modalities
in assessing human affective states and thus supports the
need for multimodal approaches to stress detection in
visually impaired mobility.

To assess person-specific effects on the performance of the
unimodal and multimodal classifiers, we further performed

leave-one-participant-out cross-validation. The complete
results are reported in Appendix A (Tables 7 and 8). Overall,
average weighted AUROC values were greatly affected, drop-
ping in some cases as much as 50%. Indoor scene classifiers
performed generally better than their outdoor counterparts,
with the {EEG,EDA} and {EEG,EDA,BVP} fusion models
performing as good as the unimodal EEG classifier. These
results are not surprising and individual reactions should
be considered when using biosignals for automatic affective
state recognition in navigation aid systems. Nevertheless, the
proposed models are a viable fit for personalized systems,
where after a short period of user-specific training almost
perfect accuracies can be achieved.

3.2 Visualizing Biomarker Density Distributions

To better understand how mean tonic EDA relates to envi-
ronmental and situational factors, as well as the intensity
of the cognitive and emotional response it expresses, its
geographical (outdoor route) and temporal (indoor route)
density distributions were assessed by means of weighted
kernel density estimation [28], [29] and contrasted with that
of the number of SCRs, the least predictive EDA feature.

Let {x1,x2, . . . ,xn} be an independent random sample
drawn from some distribution with density function f(x)
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TABLE 5
Linear Mixed Model Type III Wald Tests Comparing Categories of Visual Impairment

df F p df F p

Outdoor Indoor

Mean tonic EDA

Intercept (I) 1, 6.00 24.47 0.003 1, 7.03 29.27 < 0.001
Vision (V) 1, 6.00 0.72 0.430 1, 7.03 0.96 0.360
Scene (S) 7, 89.01 0.76 0.621 4, 108.00 1.25 0.294
V × S 7, 89.01 0.33 0.937 4, 108.00 0.02 0.999

HR

I 1, 6.00 33.22 0.001 1, 7.06 76.41 < 0.001
V 1, 6.00 1.16 0.323 1, 7.06 0.04 0.848
S 7, 89.01 4.83 < 0.001 4, 108.01 0.79 0.533
V × S 7, 89.01 2.58 0.018 4, 108.01 0.24 0.914

ERD/ERS, delta

I 1, 6.06 23.55 0.003 1, 9.55 100.24 < 0.001
V 1, 6.08 0.66 0.447 1, 7.51 2.48 0.157
S 7, 639.20 3.92 < 0.001 4, 832.31 16.87 < 0.001
V × S 7, 639.77 5.63 < 0.001 4, 831.92 0.52 0.719

ERD/ERS, alpha-2

I 1, 7.97 1027.09 < 0.001 1, 9.74 903.41 < 0.001
V 1, 6.05 7.38 0.035 1, 7.37 1.23 0.302
S 7, 833.86 5.39 < 0.001 4, 888.74 20.92 < 0.001
V × S 7, 833.90 7.30 < 0.001 4, 887.90 1.16 0.325

FAI

I 1, 6.00 0.17 0.699 1, 7.04 0.12 0.741
V 1, 6.00 1.45 0.274 1, 7.04 3.97 0.087
S 7, 89.01 0.07 0.999 4, 108.00 1.15 0.335
V × S 7, 89.01 0.10 0.998 4, 108.00 0.15 0.964

defined on Rd. The weighted kernel density estimate of f is
defined as

f̂H(x) =
1

n

n∑
i=1

w(xi,w)KH(x− xi)

where K is a kernel function, H > 0 is a symmetric d × d
matrix which controls the bandwidth (or smoothing) of the
estimate, KH(x) = |H| − 1/2K(H

− 1/2 x), and w is a function
weighting each data point in the sample with a value from
w ∈ Rm, m ≤ d. A popular choice for K is the Gaussian (or
normal) kernel, which was also applied here.

For the outdoor scenes, feature values were assigned to
pairs of latitude and longitude coordinates based on recorded
timestamps. Using values as weights (w with m = 1) for GPS
points (x with d = 2) and a bandwidth of H(x) = 0.0008
helped estimate the feature-weighted density of GPS points
on a 500 × 500 grid and thus obtain a density distribution
contour plot for each participant (VIP only). Figure 4 shows
the resulting contours aggregated for all participants and
walks and plotted on top of a map.

Increased stress-elicited arousal along the different urban
scenes of the route is immediately observed when the VIP
had to cross a main road (scene F), pass along parked cars
in a narrow alley after the urban park (C), walk up and
down stairs (E), or pass through a narrow area between
construction works (H). These arousal “hotspots” are in
full agreement with the scenes reported as stressful by the

participants themselves at the end of the study. Furthermore,
they coincide with the presence of certain obstacles and
situations that can be less or more stressful in visually
impaired mobility, and which were taken into account when
designing the outdoor route.

To visualize density distribution along the indoor route,
feature values were assigned to 1-second steps from the
start point based on recorded timestamps. Due to differ-
ent walking speeds and behaviors, individual walk times
varied between participants and trials, ranging from 4 to 8
minutes with an average length of 5 minutes. To temporary
align all features so that same times corresponded to same
environments we performed dynamic time warping [32],
postulating that a certain environment induced similar
biomarker patterns. Each feature vector was warped to a
reference vector that was 300 seconds (5 minutes) long.
Using warped feature values as weights (w with m = 1)
for 1-second time steps (x with d = 1) and a bandwidth of
H(x) = 5.59 helped estimate the feature-weighted density
of time points (temporal distances) on a 400-point grid across
all participants and walks.

Figure 5 shows the resulting density distributions for
the mean tonic EDA and number of SCRs features plotted
together and annotated with the different indoor scenes.
Tonic EDA appears to gradually increase towards the second
half of the walk, which is where the most stressful parts of
the route were according to reports from all participants at
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the end of the study. As expected, the estimated density of
SCRs generally followed the same trend while allowing to
observe localized rises in arousal. These suggest the presence
of a higher number of instantaneous stressors, for example,
when safely entering/exiting an elevator or passing through
a rotating door or walking up/down stairs while others try
to do the same, or maintaining direction amidst loud noises
and people moving in an open space indoors.

3.3 Linear Mixed Model Analysis
Mean tonic EDA and HR, the two most predictive biomark-
ers, were first analyzed. We then examined ERD/ERS in
delta frequencies, an EEG feature that further dominated
predictions. In addition, because higher alpha desynchro-
nization has been consistently associated with increased
cognitive load [22] and asymmetry in frontal alpha activity
has been found to relate to the positive/negative disposition
and engagement [23], ERD/ERS and FAI values in the upper
alpha band were also analyzed. Before averaging across
conditions, a logarithmic transformation of single-condition
feature values was applied to improve their distributional
characteristics, except for FAI as its definition involves such
a transformation already. Average biomarker values for each
scene and vision group are provided in Appendix B (Fig. 6).

Type III Wald F -tests comparing two categories of visual
impairment (severe versus blind, see Sec. 2.8) are displayed
in Table 5. Vision alone was only a significant predictor of
upper alpha ERD/ERS in the outdoor route and a marginally
significant predictor of FAI in the indoor route, although the
interaction of vision and scene was significantly influential
for both delta and upper alpha ERD/ERS as well as for HR
in the outdoor route. The scene alone had a significant effect
on delta and alpha ERD/ERS in both outdoor and indoor
models, as well as on HR in the outdoor model.

Post-hoc paired samples t-tests showed that HR was
significantly lower for severely impaired than for blind
individuals when crossing a major intersection [t(13.21) =
−2.45, p = 0.029] and when walking in a shopping street
[t(13.21) = −2.39, p = 0.033]. ERD/ERS in the delta band
varied significantly between the two VIP groups during cross-
ing traffic lights [Severe > Blind, t(31.29) = 2.43, p = 0.021],
a small street [Severe < Blind, t(13.54) = −2.99, p = 0.010],
and an open space [Severe < Blind, t(26.80) = −2.20, p =
0.037]; and marginally significantly when crossing a construc-
tion alley [Severe < Blind, t(14.14) = −1.80, p = 0.094].
For the indoor environments, delta EDR/ERS was only
marginally significantly higher for blind than for severely im-
paired individuals when navigating through automated mov-
ing doors [t(28.00) = 1.95, p = 0.062]. ERD/ERS in the up-
per alpha band was significantly lower for severely impaired
than for blind individuals for the outdoor environments A
[t(13.52) = −2.35, p = 0.035], B [t(20.51) = −4.13, p =
0.001], E [t(15.85) = −2.14, p = 0.048], G [t(25.92) =
−4.20, p < 0.001], and H [t(24.07) = −2.47, p = 0.021].
No significant within-scene differences emerged between
the two VIP groups in indoor environments. FAI was only
marginally significantly higher for severely impaired than
for blind individuals when walking along a narrow corridor
indoors [t(15.63) = 1.95, p = 0.069].

When averaging across the two VIP groups, HR was
significantly lower when crossing a main traffic junction

TABLE 6
Linear Mixed Model Type III Wald Tests Comparing Impaired to Normal

Vision (Outdoor Study Only)

df F p

Mean tonic EDA

Intercept (I) 1, 6.95 27.58 0.001
Vision (V) 2, 6.99 0.56 0.594
Scene (S) 7, 112.00 4.92 < 0.001
V × S 14, 112.00 1.63 0.082

HR
I 1, 6.91 31.51 < 0.001
V 2, 6.93 1.49 0.291
S 7, 112.01 5.64 < 0.001
V × S 14, 112.01 1.42 0.154

ERD/ERS, delta

I 1, 7.08 13.32 0.008
V 2, 7.01 0.53 0.610
S 7, 831.65 6.35 < 0.001
V × S 14, 831.47 4.17 < 0.001

ERD/ERS, alpha-2
I 1, 7.46 514.59 < 0.001
V 2, 7.00 1.53 0.281
S 7, 1069.18 5.88 < 0.001
V × S 14, 1069.05 5.03 < 0.001

FAI

I 1, 6.92 0.42 0.540
V 12, 6.94 0.87 0.460
S 7, 112.01 0.14 0.995
V × S 7, 112.01 0.10 1.000

than in any other outdoor environment [−4.21 < t(89.00) <
−3.27, p < 0.045], except for when walking in a shopping
street. The latter resulted in significantly lower HR than when
walking across an open space [t(89.00) = 3.49, p = 0.021]
and in marginally significantly lower HR when passing a con-
struction alley [t(89.00) = 3.08, p = 0.078]. Delta ERD/ERS
in the shopping street, narrow alley, and small street crossing
environments was significantly lower than when passing a
construction alley [−4.36 < t(646.41–649.18) < −3.54, p <
0.018]. Upper alpha ERD/ERS was significantly higher when
crossing a main traffic junction [3.68 < t(833.64–834.56) <
4.44, p < 0.007] and marginally significantly higher when
walking along a narrow alley [2.99 < t(830.96–834.45) <
3.64, p < 0.079] than when passing through the shop-
ping street, small street, and small street crossing scenes.
Significantly higher upper alpha ERD/ERS was also ob-
served for the urban park scene compared to the small
street environment [t(833.74) = 3.31, p = 0.027]. For
the indoor route, delta ERD/ERS was significantly lower
when entering through moving doors, using an elevator,
and using stairs than when walking along a narrow cor-
ridor [−6.89 < t(830.64–838.12) < −4.12, p < 0.001]
and across an open space [−5.40 < t(831.39–837.41) <
−2.91, p < 0.038]. Upper alpha ERD/ERS was signifi-
cantly higher when using automated moving doors and
when taking the elevator than in the other indoor envi-
ronments [3.19 < t(887.33–893.52) < 7.13, p < 0.015 and
3.22 < t(886.08–893.01) < 7.27, p < 0.014, respectively].

Table 6 reports type III Wald F -tests comparing impaired
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to normal vision (outdoor route only), specifically normal
vision to severe visual impairment on the one hand, and
normal vision to blindness on the other. No significant
differences emerged between the three categories of vision for
the examined biomarkers. Scene was a significant predictor
in all models but FAI. The two factors appeared to influence
each other significantly for delta and alpha ERD/ERS, and
nearly significantly for mean tonic EDA.

Post-hoc paired samples t-tests showed no significant
within-scene differences between pairs of the three vision
groups for neither of the tested biomarkers. The signifi-
cant interaction between vision and scene in the TM and
ERD/ERS models was a result of differences between
severely impaired and blind individuals rather than between
these and normally sighted persons. Accordingly, we merged
the Severe and Blind participants into a single VIP group and
run new t-tests against the group of normally sighted. Still,
no significant within-scene differences emerged between
normal and impaired vision. When averaging across scenes,
no significant differences emerged between normal and
impaired vision either. This result could have two different
origins considering the circumstances related to the particular
study. First, the VIP who took part are super-achievers: they
have a job or attend college, and travel alone outdoors on an
almost daily basis. Second, they were accompanied by their
familiar O&M instructor to help make them feel comfortable
and safe. These experimental factors may have prevented the
elicitation of increased psychological stress.

4 CONCLUSIONS

Mobility aids for visually impaired people should be capable
of implicitly adapting not only to changing environments
but also to shifts in the affective state of the user in relation
to different environmental and situational factors. To this
end, this paper presents a framework for real-time automatic
assessment of the cognitive-emotional experience of VIP
while navigating in unfamiliar outdoor and indoor environ-
ments, based on ambulatory monitoring and fusion of brain
and peripheral biosignal data. Different multimodal fusion
scenarios were compared, aiming to address the robustness
of the model as well as emerging differences in the perception
and interaction of VIP with their surroundings.

The consistently high prediction rates in the multimodal
classification experiments (81–93% weighted AUROC) are
very encouraging of the proposed approach. Even if the
chosen city and building sites did not represent all possible
different outdoor and indoor environments and situations in
terms of complexity and difficulty, the charted routes were
designed so as to combine most of the mobility challenges
faced by VIP. Indeed, the most predictive biomarkers in-
dicated spaces and situations as stressful and cognitively
demanding ”hotspots” in perfect agreement with the self-
reported experience of the visually impaired participants.

Reported findings, despite being promising, should be
considered with caution due to the limited number of partici-
pants, which did not allow for an in-depth analysis of specific
stressors in each category of vision impairment. Furthermore,
the well-established Emotiv EPOC+ EEG headset has certain
limitations with respect to the quality of the recorded signal
during experiments involving physical activity “in the wild”

such as those presented in this paper. The number of the
provided electrodes is limited and hence the EEG markers
discussed in this paper are meant to provide only insights on
the most predictive features and their connection to specific
tasks and conditions.

A rich multimodal dataset has been collected, which will
be made openly available in order to maximize the impact of
the work and encourage further investigations. Future steps
of the present study include refining the predictive model
through exploring novel multimodal biosignal features and
comparing different classifiers. Such findings hopefully pave
the way to emotionally intelligent mobile technologies that
take the concept of navigation one step further, accounting
not only for the shortest path but also for the most effortless,
least stressful and safest one.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 Research and
Innovation program under grant agreement No 643636
”Sound of Vision” and the Alexander von Humboldt Foun-
dation through a Humboldt Fellowship awarded to CS. KK
acknowledges support through the “Lagrange Project” of
Fondazione ISI and Fondazione CRT. The authors wish
to thank the VIP, O&M instructors, and administration at
the National Institute for the Blind, Visually Impaired, and
Deafblind in Iceland for helping realize this study.

REFERENCES

[1] N. A. Giudice and G. E. Legge, “Blind navigation and the role
of technology,” in The Engineering Handbook of Smart Technology
for Aging, Disability, and Independence, A. Helal, M. Mokhtari, and
B. Abdulrazak, Eds. John Willey & Sons, 2008, pp. 479–500.

[2] J. R. Marston and R. G. Golledge, “The hidden demand for
participation in activities and travel by persons who are visually
impaired,” J. Vis. Imp. Blind., vol. 97, pp. 475–488, 2003.

[3] S. Millar, Understanding and Representing Space: Theory and Evidence
from Studies with Blind and Sighted Children. New York: Oxford:
Clarendon, 1994.

[4] D. R. Geruschat and A. J. Smith, “Low vision for orientation and
mobility,” in Foundations of Orientation and Mobility, 3rd ed., W. R.
Wiener, R. L. Welsh, and B. B. Blasch, Eds. New York: AFB Press,
2010, vol. I: History and Theory.

[5] P.-A. Quiñones, T. C. Greece, R. Yang, and M. W. Newman,
“Supporting visually impaired navigation: A needs-finding study,”
in Proc. ACM CHI, Vancouver, BC, 2011, pp. 1645–1650.

[6] M. I. Wallhagen, W. J. Strawbridge, S. J. Shema, J. Kurata, and G. A.
Kaplan, “Comparative impact of hearing and vision impairment on
subsequent functioning,” J. Am. Geriatr. Soc., vol. 49, pp. 1086–1092,
2001.

[7] G. Rees, H. W. Tee, M. Marella, E. Fenwick, M. Dirani, and E. L.
Lamoureux, “Vision-specific distress and depressive symptoms in
people with vision impairment,” Invest. Ophthalmol. Vis. Sci., vol. 51,
pp. 2891–2896, 2010.

[8] J. Sweller, “Cognitive load theory, learning difficulty, and instruc-
tional design,” Learn Instr., vol. 4, pp. 295–312, 1994.

[9] Z. Cattaneo, T. Vecchi, C. Cornoldi, I. Mammarella, D. Bonino,
E. Ricciardi, and P. Pietrini, “Imagery and spatial processes in
blindness and visual impairement,” Neurosci. Biobehav. Rev., vol. 32,
pp. 1346–1360, 2008.

[10] R. L. Welsh, “Improving psychosocial functioning for orientation
and mobility,” in Foundations of Orientation and Mobility, 3rd ed.,
W. R. Wiener, R. L. Welsh, and B. B. Blasch, Eds. New York: AFB
Press, 2010, vol. 2.

[11] E. Kanjo, L. Al-Husain, and A. Chamberlain, “Emotions in context:
examining pervasive affective sensing systems, applications, and
analyses,” Pers. Ubiquit. Comput., vol. 19, pp. 1197–1212, 2015.



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2018.2866865, IEEE
Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. X, MONTH YEAR 12

[12] J. Healey, R. W. Picard et al., “Detecting stress during real-world
driving tasks using physiological sensors,” IEEE Trans. Intell. Transp.
Syst., vol. 6, pp. 156–166, 2005.

[13] C. Setz, B. Arnrich, J. Schumm, R. L. Marca, and G. Tröster,
“Discriminating stress from cognitive load using a wearable EDA
device,” IEEE Trans. Inf. Technol. Biomed., vol. 14, pp. 410–417, 2010.

[14] E. Peper, R. Harvey, I.-M. Lin, H. Tylova, and D. Moss, “Is there
more to blood volume pulse than heart rate variability, respiratory
sinus arrhythmia, and cardiorespiratory synchrony?” Biofeedback,
vol. 35, pp. 54–61, 2007.

[15] P. Peake and J. A. Leonard, “The use of heart rate as an index of
stress in blind pedestrians,” Ergonomics, vol. 14, pp. 189–204, 1971.

[16] R. J. Wycherley and B. H. Nicklin, “The heart rate of blind and
sighted pedestrians on a town route,” Ergonomics, vol. 13, pp. 181–
192, 1970.

[17] A. Keil, M. M. Müller, W. J. Ray, T. Gruber, and T. Elbert, “Human
gamma band activity and perception of a gestalt,” J. Neurosci.,
vol. 19, pp. 7152–7161, 1999.

[18] S. K. Jena, “Examination stress and its effect on EEG,” Int. J. Med.
Sci. Public Health, vol. 11, pp. 1493–1497, 2015.

[19] W. J. Ray and H. W. Cole, “EEG alpha activity reflects attentional
demands, and beta activity reflects emotional and cognitive pro-
cesses,” Science, vol. 228, pp. 750–752, 1985.

[20] A. Gevins, M. E. Smith, L. McEvoy, and D. Yu, “High-resolution
eeg mapping of cortical activation related to working memory:
effects of task difficulty, type of processing, and practice.” Cerebral
Cortex, vol. 7, pp. 374–385, 1997.

[21] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive
and memory performance: a review and analysis,” Brain Res. Rev.,
vol. 29, pp. 169–195, 1999.

[22] P. Antonenko, F. Paas, R. Grabner, and T. Van Gog, “Using
electroencephalography to measure cognitive load,” Educ. Psychol.
Rev., vol. 22, pp. 425–438, 2010.

[23] E. Harmon-Jones, P. A. Gable, and C. K. Peterson, “The role of
asymmetric frontal cortical activity in emotion-related phenomena:
A review and update,” Biol. Psychol., vol. 84, pp. 451–462, 2010.

[24] T. Harmony, T. Fernández, J. Silva, J. Bernal, L. Díaz-Comas,
A. Reyes, E. Marosi, M. Rodríguez, and M. Rodríguez, “EEG delta
activity: an indicator of attention to internal processing during
performance of mental tasks,” Int. J. Psychophysiol., vol. 24, pp.
161–171, 1996.

[25] S. Debener, F. Minow et al., “How about taking a low-cost, small,
and wireless EEG for a walk?” Psychophysiology, vol. 49, pp. 1449–
1453, 2012.

[26] B. Massot, N. Baltenneck, C. Gehin, A. Dittmar, and E. McAdams,
“EmoSense: An ambulatory device for the assessment of ANS
activity—application in the objective evaluation of stress with the
blind,” IEEE Sens. J., vol. 12, pp. 543–551, 2012.

[27] P. Mavros, K. Skroumpelou, and A. H. Smith, “Understanding the
urban experience of people with visual impairments,” in Proc. GIS
Research UK 2015, Leeds, UK, 2015, pp. 401–406.

[28] C. Saitis and K. Kalimeri, “Identifying urban mobility challenges
for the visually impaired with mobile monitoring of multimodal
biosignals,” in Universal Access in Human-Computer Interaction: Users
and Context Diversity, M. Antona and C. Stephanidis, Eds. Cham,
Switzerland: Springer, 2016, pp. 616–627.

[29] K. Kalimeri and C. Saitis, “Exploring multimodal biosignal features
for stress detection during indoor mobility,” in Proc. ACM ICMI,
Tokyo, Japan, 2016, pp. 53–60.

[30] C. Saitis, M. Z. Parvez, and K. Kalimeri, “Cognitive load assessment
from EEG and peripheral biosignals for the design of visually
impaired mobility aids,” Wirel. Commun. Mob. Comput., vol. 2018,
Article ID 8971206, 2018.

[31] M. P. Wand and M. C. Jones, Kernel Smoothing. London: Chapman
& Hall, 1995.

[32] T. Giorgino, “Computing and visualizing dynamic time warping
alignments in R: The dtw package,” J. Stat. Softw., vol. 31, pp. 1–24,
2009.

[33] N. A. Badcock, P. Mousikou, Y. Mahajan, P. de Lissa, J. Thie, and
G. McArthur, “Validation of the Emotiv EPOC EEG gaming system
for measuring research quality auditory ERPs,” PeerJ, vol. 19, 2013.

[34] W. D. Hairston, K. W. Whitaker, A. J. Ries, J. M. Vettel, J. Cortney
Bradford, S. E. Kerick, and K. McDowell, “Usability of four
commercially-oriented EEG systems,” J. Neural Eng., vol. 11, 2014.

[35] J. I. Ekandem, T. A. Davis, I. Alvarez, M. T. James, and J. E.
Gilbert, “Evaluating the ergonomics of BCI devices for research
and experimentation,” Ergonomics, vol. 55, pp. 592–598, 2012.

[36] M. Garbarino, M. Lai, D. Bender, R. W. Picard, and S. Tognetti,
“Empatica E3 - A wearable wireless multi-sensor device for real-
time computerized biofeedback and data acquisition,” in Proc. EAI
Mobihealth, 2014, pp. 39–42.

[37] W. Boucsein, Electrodermal Activity. New York: Springer, 2012.
[38] S. Spagnol, C. Saitis, M. Bujacz, O. I. Johannesson, K. Kalimeri,

A. Moldoveanu, A. Kristjansson, and R. Unnthorsson, “Model-
based obstacle sonification for the navigation of visually impaired
persons,” in Proc. DAFx, Brno, Czech Republic, 2016, pp. 309–316.

[39] S. Spagnol, C. Saitis, K. Kalimeri, O. I. Johannesson, and R. Un-
nthorsson, “Sonificazione di ostacoli come ausilio alla deambu-
lazione di non vedenti (Obstacle sonification as navigation aid
for the visually impaired),” in Proc. XXI Colloquio di Informatica
Musicale (Colloquium on Music Informatics), Cagliari, Italy, 2016.

[40] F. S. Bao, X. Liu, and C. Zhang, “PyEEG: An open source Python
module for EEG/MEG feature extraction,” Comput. Intell. Neurosci.,
vol. 2011, Article ID 406391, 2011.

[41] S. J. Roberts, W. Penny, and I. Rezek, “Temporal and spatial com-
plexity measures for electroencephalogram based brain-computer
interfacing,” Med. Biol. Eng. Comput., vol. 37, pp. 93–98, 1999.

[42] G. Pfurtscheller and F. H. Lopes Da Silva, “Event-related EEG/MEG
synchronization and desynchronization: basic principles,” Clin.
Neurophysiol., vol. 110, pp. 1842–1857, 1999.

[43] J. J. B. Allen, J. A. Coan, and M. Nazarian, “Issues and assumptions
on the road from raw signals to metrics of frontal EEG asymmetry
in emotion,” Biol. Psychol., vol. 67, pp. 183–218, 2004.

[44] J. T. Cacioppo and L. G. Tassinary, “Inferring psychological
significance from physiological signals,” Am. Psychol., vol. 45, pp.
16–28, 1990.

[45] M. Benedek and C. Kaernbach, “A continuous measure of phasic
electrodermal activity,” J. Neurosci. Methods, vol. 190, pp. 80–91,
2010.

[46] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.
[47] J. Kim and E. André, “Emotion-specific dichotomous classification

and feature-level fusion of multichannel biosignals for automatic
emotion recognition,” in Proc. IEEE MFI, Seoul, Korea, 2008, pp.
114–119.

[48] M. Naji, M. Firoozabadi, and P. Azadfallah, “Classification of
music-induced emotions based on information fusion of forehead
biosignals and electrocardiogram,” Cogn. Comput., vol. 6, pp. 241–
252, 2014.

[49] N. M. Laird and J. H. Ware, “Random-effects models for longitudi-
nal data,” Biometrics, vol. 38, pp. 963–974, 1982.

[50] W.-L. Zheng and B.-L. Lu, “Investigating critical frequency bands
and channels for EEG-based emotion recognition with deep neural
networks,” IEEE Trans. Auton. Mental Develop., vol. 7, pp. 162–175,
2015.

Charalampos Saitis holds an MA in Sonic Arts
from Queen’s University Belfast and a PhD in Mu-
sic Technology from McGill University. He is cur-
rently Humboldt Research Fellow at the Technical
University of Berlin. His work focuses on psychoa-
coustics and auditory semantics, particularly on
approaches relating to embodied cognition and
crossmodal processing. Other research interests
include haptics in music and affective biosignal
computing for cognitive load assessment.

Kyriaki Kalimeri holds a PhD in Brain and Cog-
nitive Science from the University of Trento and a
Diploma in Electrical and Computer Engineering
from the Technical University of Crete. She is
currently Researcher at Fondazione ISI. Her
research lies at the intersection of social science
and engineering, employing machine learning
techniques for predicting psychometric and affec-
tive profiles as well as behavioral nudging from
multimodal data such as smartphones, social
media, and biosignals.


