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Abstract. We examine the implementation of Buchert’s and Green & Wald’s

averaging formalisms in exact spherically symmetric and plane symmetric dust-filled

cosmological models. We find that, given a cosmological space-time, Buchert’s

averaging scheme gives a faithful way of interpreting the large-scale expansion of space,

and explicit terms that precisely quantify deviations from the behaviour expected

from the Friedmann equations of homogeneous and isotropic cosmological models.

The Green & Wald formalism, on the other hand, does not appear to yield any

information about the large-scale properties of a given inhomogeneous space-time.

Instead, this formalism is designed to calculate the back-reaction effects of short-

wavelength fluctuations around a given “background” geometry. We find that the

inferred expansion of space in this approach is entirely dependent on the choice of this

background, which is not uniquely specified for any given inhomogeneous space-time,

and that the “back-reaction” from small-scale structures vanishes in every case we

study. This would appear to limit the applicability of Green & Wald’s formalism to

the study of large-scale expansion in the real Universe, which also has no pre-defined

background. Further study is required to enhance the evaluation and comparison of

these averaging formalisms, and determine whether the same difficulties exist, in less

idealized space-time geometries.

1. Introduction

Despite much work over the past decade, it remains an open question in cosmology

as to whether small-scale inhomogeneities can have a sizable influence on the large-

scale expansion of the Universe, or whether the expansion is always well described

by the Friedmann solutions of Einstein’s equations (with a suitably averaged energy-

momentum content). Answering this question is of crucial importance for interpreting

cosmological observations, and establishing the foundations of the cosmological models

that are routinely used by observational cosmologists. However, despite this importance,

there is as yet no universally accepted framework for determining either the large-scale

expansion of the Universe, or the “back-reaction” effect that small-scale inhomogeneities

have on that large-scale expansion.
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Two leading contenders for how to average and calculate back-reaction in cosmology

are those of Buchert [1], and Green & Wald [2]. The two approaches prescribed in these

two formalisms are quite different from each other, and it is of some interest to apply

them to specific space-times in order to understand the degree to which they agree, or

disagree. The Buchert formalism is based on a 1+3-decomposition of the space-time,

and an averaging of the scalar quantities involved in the Hamiltonian constraint and

Raychaudhuri Equations over the 3-spaces that result. The formalism developed by

Green & Wald, on the other hand, splits the metric of space-time into a “background”

part and a “perturbation”, and takes a limit in which the spatial scale and amplitude

of the perturbations both reduce to zero at the same rate.

In this paper we will apply both the Buchert and Green & Wald formalisms to a

wide array of exact spherically symmetric and plane symmetric dust-filled space-times.

These space-times will take the form of models that have locally homogeneous vacuum

regions sandwiched between regions of locally homogeneous dust, as well as models in

which the energy density of dust oscillates around a smooth background value. We

will show that the two formalisms under investigation produce quite different results

in a number of different models. This exemplifies the fact that these two formalisms

are quantifying two quite different aspects of inhomogeneity. The precise aspects of

back-reaction that they involve therefore need to be properly identified if the general

back-reaction problem is to be fully understood, and we expect our treatment of this

problem in the context of exact solutions to contribute to this understanding. This is a

particularly interesting problem, given the controversy on the different interpretations

of cosmological back-reaction that follow from the formalisms by Green & Wald and

Buchert (see References [3–8]).

The cosmological solutions we wish to study here are those that contain dust with

T ab = ρuaub, and which exhibit spherical or plane symmetry. These space-times have a

line-element that can be written in the form [9]

ds2 = −e2ν(t)dt2 + e2λ(r,t)dr2 +R2(r, t)
[
dθ2 + Σ2(θ, k)dφ2

]
(1)

where

Σ(θ, k) = {sin θ, θ} for k = {1, 0} . (2)

This line-element contains all of the solutions we will study in this paper. It corresponds

to spherical symmetry when k = 1, and plane symmetry when k = 0. We will start in

Section 3 by considering space-times that admit regions of vacuum sandwiched between

regions of homogeneous dust, before proceeding to consider models in which the energy

density of the dust is allowed to be inhomogeneous in Section 4.

There are two classes of solutions that take the form of Equation (1); those with

R′ = 0, and those with R′ 6= 0, where ′ denotes ∂/∂r. Let us now consider each of these

two classes in turn:
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(i) Models with R′ = 0: The vacuum space-times with R′ = 0 are either the T -region

of Schwarzschild if k = 1, or the degenerate Kasner solution if k = 0. These can be

written together with all non-vacuum dust solutions in this class if we first define the

time coordinate such that R(t) = t, and then write the metric coefficients as

e2ν(t) =
(a
t
− k
)−1

and eλ(r,t) = [A(r) +B(r)V (t)] e−ν(t) , (3)

where a is an arbitrary constant, A(r) and B(r) are arbitrary functions or r, and where

V (t) can be written as

V (t) =

∫ eν 2x2dx

1 + kx2
. (4)

The energy density of dust in this class is then given by

4πρ(r, t) =
λ̇(r, t) + ν̇(t)

t eν(t)
, (5)

where an over-dot denotes ∂/∂t. It can be seen from this equation that the vacuum

solutions will be recovered when B(r) = 0, and that homogeneous solutions are recov-

ered when A(r) = 0. When ρ 6= 0 and k = 1 these solutions are often thought of as

generalizations of the homogeneous Kantowski-Sachs solution, while ρ 6= 0 and k = 0

can be thought of as generalizations of Bianchi I space-times. This is the family of

solutions that will be studied in Section 3.

(ii) Models with R′ 6= 0: In the case the vacuum solutions are either given by the R-

region of Schwarzschild if k = 1, or by the vacuum Taub solution if k = 0. They can

be written together with all dust-filled solutions in this class if we choose a comoving

frame with ua = δat , so that the metric coefficients in Equation (1) take the form

eν(t) = 1 and e2λ(r,t) =
R′2

k −K(r)
, (6)

where K = K(r) is an arbitary function, and where R(r, t) must satisfy the following

differential Equation:

Ṙ2 =
2M

R
−K(r) , (7)

where M = M(r) is a second arbitrary function that can be used to write the energy

density in dust in the form

4πGρ =
M ′

R2R′
. (8)

The solutions of Equation (7) are well known, and on integration they introduce an

additional free function t0(r), which is often referred to as the “bang time” (though

the freedom to relabel the radial coordinate implies that only two free functions of r

are needed to specify a model). The vacuum solutions can be seen to be recovered

in the case where M is a constant. These solutions are often used as inhomogeneous

generalizations and “exact” perturbations [10,11] of the dust-filled FLRW models. This

is the family of solutions that will be studied in Section 4.
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2. Two approaches to backreaction

In this section we will introduce the Buchert formalism for scalar averaging and back-

reaction, and then the Green & Wald formalism for calculating the gravitational effects

of short-wavelength, high-frequency perturbations. These two formalisms will then be

applied to the exact solutions discussed above.

2.1. The Buchert averaging prescription

Buchert’s equations are found by determining the expansion rate of a region of space, D,

and by averaging the energy density, scalar spatial curvature, and kinematic quantities

over this domain. The results are [1]

3
ȧ2
D
a2
D

= 8πGN〈ρ〉D −
1

2

〈
(3)R

〉
D −

1

2
QD (9)

3
äD
aD

= −4πGN〈ρ〉D +QD (10)

∂t〈ρ〉D + 3
ȧD
aD
〈ρ〉D = 0, (11)

where

aD(t) =

( ∫
D d

3X
√

(3)g(t,X i)∫
D d

3X
√

(3)g(t0, X i)

) 1
3

(12)

〈ψ〉D =

∫
D d

3Xψ(t,X i)
√

(3)g(t,X i)∫
D d

3X
√

(3)g(t,X i)
(13)

QD =
2

3

(〈
Θ2
〉
D − 〈Θ〉

2
D
)
− 2

〈
σ2
〉
D , (14)

and where the term QD above is the kinematic backreaction. The scalar QD gives us

the back-reaction in the averaged Raychaudhuri equation (10), and is the quantity that

we will calculate in the models that follow.

2.2. The Green–Wald formalism

In a series of articles, Green & Wald (GW) developed a formalism to examine the back–

reaction effect of small-scale (short-wavelength) inhomogeneities on the large-scale Uni-

verse. Their formalism is based on a series of four postulates [2], which we will now

summarize:

Postulate 1: Let gab = gab(x
c, λ), with λ > 0 be a one–parameter family of metrics that

satisfies Einstein’s field equations for all λ > 0, such that

Gab[gcd(x
e, λ)] + 8πgab(x

e, λ)Λ = 8πTab(x
e, λ) , (15)

where Tab satisfies the weak energy condition.
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Postulate 2: There exist a bounded scalar function C1(xa) such that for all xc we have

|γab(xc, λ)| ≤ λC1, γab ≡ gab(x
c, λ)− g(0)

ab (xc), (16)

where g
(0)
ab (xc) = limλ→0 gab(x

c, λ), and such that g
(0)
ab need not satisfy Einstein’s equa-

tions for the same Tab in Equation (15).

Postulate 3: There exist a bounded scalar function C2(xa) such that for all xc we have

|∇cγab| ≤ C2, (17)

where ∇c is the covariant differential operator for the metric g
(0)
ab .

Postulate 4: For hab and ∇chab there exists a smooth tensor field µabcdef such that for

all smooth tensor fields fabcdef we have

w- lim
λ→0
∇aγcd∇bγef = µabcdef , (18)

where “w- lim” denotes a weak limit.

If these postulates are valid, then Green & Wald show that the “averaged” field equations

can be written as

Gab[g
(0)
cd ] + 8πg

(0)
ab Λ = 8πT

(0)
ab + 8πt

(0)
ab , (19)

where T
(0)
ab = w- limλ→0 Tab(λ), and where

t
(0)
ab =

1

8

[
−µc cde de − µc cd de e + 2µcd c

e
de

]
g

(0)
ab +

1

2
µcd acbd −

1

2
µc ca

d
bd

+
1

4
µab

cd
cd −

1

2
µc (ab)c

d
d +

3

4
µc cab

d
d −

1

2
µcd abcd, (20)

with the tensor t
(0)
ab satisfying [t(0)]a a = 0 and 8πt

(0)
ab t

atb ≥ 0 for all timelike fields ta.

The tensor t
(0)
ab , in this approach, quantifies the back-reaction effect that the small-

scale inhomogeneities have on the large-scale expansion of space. This approach is a

generalization of the Isaacson averaging scheme [12, 13], which was originally intended

to quantify the gravitational field of short-wavelength gravitational waves, and which

was formulated in terms of weak limits by Burnett [14].

3. Homogeneous dust and vacuum models

The first class of models we wish to consider are those in which regions of homogeneous

vacuum are sandwiched between regions of homogeneous dust, as depicted in Figure 1.

This can be achieved by considering the solutions with R′ = 0, and will be done first of

all for plane-symmetric space-times (where k = 0), and then for spherically symmetric

space-times (where k = 1).



Backreaction in Spherical and Plane Symmetric Dust-Filled Space-Times 6

Figure 1. An illustration of the situation studied in Section 3. Shaded regions

represent the homogeneous dust-filled regions, which sandwich regions of homogeneous

vacuum. The configuration is intended to be extended in each spatial dimension ad

infinitum.

3.1. Plane symmetry

If R′ = 0 and k = 0 then the integration in Equation (4) can be performed

straighforwardly, and the time coordinate can be re-defined so that the line-element

in Equation (1) becomes

ds2 = −dt2 +

[
c1

(
t

t0

) 2
3

+ c2

(
t0
t

) 1
3

]2

dr2 +

(
t

t0

) 4
3 (

dθ2 + θ2dφ2
)
, (21)

where c1 = c1(r) and c2 = c2(r) are arbitrary functions of r, and t0 is a constant. In

this case, the energy density can be written

ρ =
c1

6πt(c1 t+ c2 t0)
. (22)

This is the general plane-symmetric dust filled solution with R′ = 0 and Ṙ 6= 0, and

can be seen to reduce to the Einstein-de Sitter (EdS) when c2 = 0, and the degenerate

Kasner solution when c1 = 0. In what follows, we choose units such that t0 = 1.

We now wish to consider situations in which we have slices of Einstein-de Sitter

geometry sandwiched between regions of Kasner vacuum, repeated over and over again

forever. This is a special case of the geometry in Equation (21), which can be shown to

explicitly satisfy the required junction conditions between neighbouring regions of dust

and vacuum, and hence constitute a viable family of cosmological solution to Einstein’s

equations [15–17]. Although they are too symmetric to describe any realistic astro-

physical structures, they do provide an interesting framework to explore ideas about

inhomogeneity and anisotropy in the context of exact solutions. More specifically, they

have been shown to have interesting, non-trivial properties when averaged [18].
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Buchert Averages:

In the regions of Kasner space (where c1 = 0) the expansion and shear scalars are given

by the following expressions:

ΘK =
1

t
and σ2

K =
1

3t2
, (23)

where Θ ≡ Dau
a is the expansion rate of the time-like geodesics with tangent vector ua

that stay at fixed values of the spatial coordinates {r, θ, φ}, and where σ2 ≡ 1
2
σabσ

ab is

the magnitude of the shear tensor σab ≡ D(aub) − 1
3
habDcu

c. The projection tensor in

these expressions is defined as hab ≡ gab +uaub, and the derivative operator is projected

so that (for example) Daub = h c
a h

d
b ∇cud.

Correspondingly, the expansion and shear scalars in the region of Einstein-de Sitter

space (where c2 = 0) are given by

ΘEdS = 3H =
2

t
and σ2

EdS = 0 , (24)

where H = ȧ/a is the Hubble expansion rate of these regions, and where we have

again chosen the time-like geodesics curves at constant values of {r, θ, φ} to define these

kinematic variables. The result σ2
EdS = 0 follows immediately from the fact that these

regions of space are locally isotropic. The same time coordinate can be used in both

Equations (23) and (24), as the union of the sets of geodesic curves at constant values

of {r, θ, φ} in both types of regions together form a congruence that threads the entire

cosmology.

If we now choose an averaging domain that is larger than the homogeneity scale of

this space-time, such that it encompasses exactly one region of EdS and one region of

Kasner space, then we can calculate the consequences of the inhomogeneity and isotropy

of these models on the large-scale course-grained expansion. Taking the spatial extent

of the Kasner region to be given by the coordinate separation ∆rK, and the extent of

the EdS regions to be ∆rEdS, we find that the Buchert averaged expansion and shear of

our domains to be given by Equation (13) as

〈Θ〉 =
2t+ η

t(t+ η)
(25)

〈Θ2〉 =
4t+ η

t2(t+ η)
(26)

〈σ2〉 =
η

3t2(t+ η)
, (27)

where η ≡ ∆rK/∆rEdS. Subsituting these values into the expression for the back-

reaction scalar in Equation (14) gives the simple result

Q = − 2η2

3t2(t+ η)2
, (28)

which can be seen have the following early and late-time limits:

lim
t→0

Q = − lim
t→0

2

3t2
= −∞ and lim

t→∞
Q = − lim

t→∞

2η2

3t4
= 0− . (29)



Backreaction in Spherical and Plane Symmetric Dust-Filled Space-Times 8

This result makes sense physically as the early-time behaviour is dominated by the

anisotropic vacuum Kasner regions, while the late-time behaviour is dominated by the

isotropic dust-filled EdS regions. The anisotropic early stage to these space-times should

therefore be expected to give a large deviation from any naive expectations obtained

from using the Friedmann equation, which is verified in this case by the divergence of

the back-reaction scalar in the limit t→ 0.

The Buchert averaging and back-reaction scheme appears to give simple results

with direct physical interpretation: The averaged expansion and shear scalars express

the behaviour of the integration domain we have chosen, and the back-reaction scalar

Q gives the extra term that should be included in an effective Friedmann equation for

this domain if we are to correctly calculate the evolution of its spatial volume.

Green & Wald Averages:

We now wish to analyse the behaviour of these exact same space-times within the

framework developed by Green & Wald. This requires us to split our metric into two

parts, so that

gab = g
(0)
ab + γab , (30)

where there is no approximation or perturbation scheme involved, but where g
(0)
ab is con-

sidered as a “background” about which γab fluctuates. This presents a problem in the

present case, as there does not appear to be a unique presciption for performing this

split. We will therefore consider several different possibilities.

Case I: An Einstein-de Sitter background. The first possibility we wish to study is

one in which the EdS geometry is taken as the background, and the vacuum regions

are considered as fluctuations around this background. The background can then be

specified by choosing c1 = 1 and c2 = 0 in Equation (21), which gives the expected

geometry:

g
(0)
ab dx

adxb = −dt2 + t
4
3dx2 , (31)

where dx2 is the line-element of flat three-dimensional Euclidean space. The regions

of Kasner space, which are treated as fluctuations around this background, are then

considered to be exact metric perturbations.

We choose the Einstein-de Sitter regions and Kasner regions to both have width r∗,

such that ∆rK = ∆rEdS = r∗. We will do this, without loss of generality, by taking the

region 0 < r < r∗ to be Kasner space, and the region r∗ < r < 2r∗ to be EdS. These two

regions will then be followed by alternating regions of Kasner and EdS that continue

forever, to create a global cosmological model. In the Kasner region (0 < r < r∗) we

can then take the values of c1 and c2 to be c1 = 0 and c2 = 1
2

[
cos
{

2π
(
r
r∗
− 1

2

)}
+ 1
]
,

while in the EdS region (r∗ < r < 2r∗) we can take c1 = 1
2

[
cos
{

2π
(
r
r∗
− 1

2

)}
+ 1
]

and

c2 = 0.
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Figure 2. The values of c1 (solid lines) and c2 (dashed lines) for models with an EdS

background.

We must now choose a way to parameterize this geometry with λ such that when

λ → 0 we recover the “background” geometry given in Equation (31). There is no

unique prescription for doing this provided by Green & Wald, so we make the following

choices: In the regions of Kasner space we choose

cK1 = 1− λ (32)

cK2 =
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
+ 1

]
, (33)

while in the regions of EdS we choose

cEdS1 = 1 +
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
− 1

]
(34)

cEdS2 = 0 . (35)

We have in mind here that the width of the regions that are initially Kasner space

are also parameterized to be ∆rK = λr∗, while the regions that are initially EdS have

width ∆rEdS = λr∗. These choices are shown graphically in Figure 2, and can be seen

to interpolate between the inhomogeneous macroscopic space-time when λ = 1, and

the pure EdS background in the limit λ → 0. This paramaterization has been chosen

to explicitly satisfy Green & Wald’s postulates, while keeping ∇cγab 6= 0 in the limit

λ→ 0, and hence allowing for the possibility of a non-zero µabcdef .

The presciption set out above is an exact perturbation of EdS, with γab = gab− g(0)
ab

given by the following expression in the Kasner region (0 < r < λr∗):

γKabdx
adxb =

[(
1− λ+

λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
+ 1

]
1

t

)2

− 1

]
t
4
3dr2 , (36)

and the following expression in the EdS region (λr∗ < r < 2λr∗):

γEdSab dxadxb =

[(
1 +

λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
− 1

])2

− 1

]
t
4
3dr2 . (37)



Backreaction in Spherical and Plane Symmetric Dust-Filled Space-Times 10

The amplitude of these perturbations can be seen to reduce to zero in the limit λ→ 0,

while the first derivative does not. This is the so-called “high-frequency limit”, where

the amplitude and spatial scale of the perturbations both shrink to zero simultaneously.

The fluctuation above can be seen to satisfy Einstein’s equations, as it gives a geometry

that is of exactly the form of Equation (21) for all 0 < λ < 1. One can trivially arrange

for this to be true for all positive values of some new parameter λ′ if we define, for

example, λ′ = tanh−1 λ. Our fluctuation therefore obeys G&W’s Postulate 1. The

form of Equations (36)-(37) can also be seen to obey Postulate 2, as every term in each

expression is proportional to either λ or λ2. Finally, explicit calculation shows that

every component of ∇cγab is proportional to λ or λ2, except ∇rγrr which is given by

∇rγ
K
rr = −2πt

1
3

r∗
sin

{
2π

(
r

λr∗
− 1

2

)}
+O(λ) , (38)

and

∇rγ
EdS
rr = −2πt

4
3

r∗
sin

{
2π

(
r

λr∗
− 1

2

)}
+O(λ) . (39)

This shows that Postulate 3 is also satisfied. Substituting this result into the definition

of µabcdef then gives

µabcdef =
2π2t

2
3

r2
∗

δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f in the Kasner regions (40)

µabcdef =
2π2t

8
3

r2
∗

δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f in the EdS regions . (41)

In both cases it can be seen, from the definition of t
(0)
ab in Equation (20), that

t
(0)
ab = 0 for all r . (42)

The Kasner-EdS space-time can therefore be modelled, within the approach of G&W,

as an EdS background with zero back-reaction from the Kasner underdensities. Let us

now consider other choices we could have made for the background part of the geometry.

Case II: A Kasner background. We could equally well have chosen the background

geometry g
(0)
ab to be Kasner, such that c1 = 0 and c2 = 1 in Equation (21), in which case

the background line-element reads

g
(0)
ab dx

adxb = −dt2 +
dr2

t
2
3

+ t
4
3 (dθ2 + θ2dφ2) . (43)

The regions of EdS space can now be treated as fluctuations around this Kasner

background, with c1 and c2 given by

cK1 = 0 (44)

cK2 = 1 +
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
− 1

]
, (45)
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Figure 3. The values of c1 (solid lines) and c2 (dashed lines) for models with a Kasner

background.

while in the regions of EdS we choose

cEdS1 =
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
+ 1

]
(46)

cEdS2 = 1− λ . (47)

We have again chosen to take the Kasner region to occupy 0 < r < λr∗, and the EdS

region to occupy λr∗ < r < 2λr∗, with alternate such regions following on forever.

These choices of c1 and c2 are illustrated in Figure 3, and lead to the following

exact perturbations to the “background” geometry specified in Equation (43):

γKabdx
adxb =

[(
1 +

λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
− 1

])2

− 1

]
1

t
2
3

dr2 (48)

and

γEdSab dxadxb =

[(
1− λ+

λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
+ 1

]
t

)2

− 1

]
1

t
2
3

dr2 (49)

where λ ∈ (0, 1) is again the parameter used to take the high-frequency limit.

We now have that the perfect Kasner and EdS geometries are approached as λ→ 1,

and that the fluctuation around the Kasner background is entirely removed in the limit

λ→ 0. The fluctuation above can be seen to satisfy G&W’s Postulates 1, 2 and 3, with

every component of ∇cγab being proportional to λ or λ2 except ∇rγrr, which is now

given by

∇rγ
K
rr = − 2π

r∗t
2
3

sin

{
2π

(
r

λr∗
− 1

2

)}
+O(λ) , (50)

and

∇rγ
EdS
rr = −2πt

1
3

r∗
sin

{
2π

(
r

λr∗
− 1

2

)}
+O(λ) . (51)
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The values of µabcdef and t
(0)
ab are then found to be

µabcdef =
2π2

r2
∗t

4
3

δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f in the Kasner regions (52)

µabcdef =
2π2t

2
3

r2
∗

δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f in the EdS regions , (53)

and

t
(0)
ab = 0 for all r , (54)

which is exactly the same as when EdS was taken as the background, and again gives

zero back-reaction. This is somewhat puzzling, as it appears that the Kasner-EdS ge-

ometry can equally well be described with either Kasner or EdS as the background,

and that in both cases there is zero effect from inhomogeneities on the expansion of

that background. This appears to be the case even though Kasner and EdS space-times

expand quite differently from each other.

Case III: A dust-filled Bianchi I background. Finally, we could take the background of

the Kasner-EdS model to be a dust-filled space-time of Bianchi type I. This is closer to

what would we expect most people would naively consider to be an averaged version of

this space-time. In this case we can choose c1 = c2 = 1/2 in Equation (21), to get the

following background:

g
(0)
ab dx

adxb = −dt2 +

(
t
2
3

2
+

1

2t
1
3

)2

dr2 + t
4
3 (dθ2 + θ2dφ2) . (55)

We now need to treat both the Kasner regions and the EdS regions as fluctuations

around this Bianchi type I space-time. Starting with c1 and c2, we can write

cK1 =
1− λ

2
(56)

cK2 =
1

2
+
λ

2
cos

{
2π

(
r

λr∗
− 1

2

)}
(57)

while in the regions of EdS we choose

cEdS1 =
1

2
+
λ

2
cos

{
2π

(
r

λr∗
− 1

2

)}
(58)

cEdS2 =
1− λ

2
(59)

where once more the Kasner region has been chosen to occupy 0 < r < λr∗, and the

EdS region λr∗ < r < 2λr∗. These choices are displayed graphically in Figure 4.

Calculating the derivatives of γab = g
(0)
ab − gab we find that the only component

containing any terms that are not directly proportional to either λ or λ2 is

∇rγ
K
rr = −π(1 + t)

r∗t
2
3

sin

{
2π

(
r

λr∗
− 1

2

)}
+O(λ) , (60)
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Figure 4. The values of c1 (solid lines) and c2 (dashed lines) for models with a Bianchi

type I dust-filled background.

and

∇rγ
EdS
rr = −−π(1 + t)t

1
3

r∗
sin

{
2π

(
r

λr∗
− 1

2

)}
+O(λ) . (61)

Correspondingly we then find

µabcdef =
π2(1 + t)2

2r2
∗t

4
3

δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f in the Kasner regions (62)

µabcdef =
π2t

2
3 (1 + t)2

2r2
∗

δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f in the EdS regions , (63)

and

t
(0)
ab = 0 for all r . (64)

Again, there is no back-reaction. And again it appears that the background dust-filled

Bianchi type I geometry is another acceptable background.

3.2. Spherical symmetry

If R′ = 0 and k = 1 then the integration in Equation (4) can still be performed, and is

given parametrically by

V = K +N(Ψ + cot Ψ) (65)

t = a cos2 Ψ (66)

where K, N and a are constants. The metric in Equation (1) can then be written

ds2 = − dt2(
a
t
− 1
) + (A(r) +B(r)V (t))

(a
t
− 1
)

dr2 + t2
(
dθ2 + sin2 θ dφ2

)
, (67)

where A(r) and B(r) are arbitrary functions of r. This is the general spherically-

symmetric dust-filled solution with R′ = 0 and Ṙ 6= 0. It reduces to the homogeneous
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Kantowski-Sachs solution when A = 0, and is isometric to the T-region of Schwarzschild

when B = 0.

As in the previous section we wish to consider regions of vacuum sandwiched be-

tween regions of homogeneous dust. In the present case the vacuum will correspond

to the Schwarzschild T-region, and the dust will correspond to the Kantowski-Sachs

solution. As we move through space-time in the r direction, we will alternate between

these two geometries, and one can imagine a universe constructed from infinitely many

of these regions joined together at suitable boundaries (again, as illustated in Figure 1).

In the rest of this section we will investigate what the Buchert averaging scheme and

the Green & Wald averaging scheme can tell us about back-reaction and the large-scale

properties of such a set up.

Buchert Averages:

Let us first consider the Buchert average of the space-times constructed from

sandwiching together vacuum Schwarzschild T-regions of coordinate width ∆rST and

homogeneous dust-filled Kantowski-Sachs regions of width ∆rKS. The expansion and

shear scalars for a set of geodesic observers, with constant r, θ and φ coordinates, can

be calculated in each of these two regions.

In the vacuum Schwarzschild T-regions, where B = 0, we find these to be given by

ΘST =
3a− 4t

2
√
a− t t 32

and σ2
ST =

(3a− 2t)2

12(a− t)t3
. (68)

On the other hand, in the Kantowski-Sachs dust-filled regions, where we can take A = 0,

we find

ΘKS =
(3a− 4t)V + 2(a− t)V ′

2
√
a− t t 32 V

(69)

and

σ2
KS =

((3a− 2t)V − 2t(a− t)V ′)2

12(a− t)t3V 2
. (70)

From these two sets of scalars it is now straightforward to calculate their spatial average

over a domain that contains one vacuum region and one dust-filled region, and that we

therefore expect to give the global average expansion and shear of the entire space-

time (as the space-time can be constructed from reproducing such regions over and over

again, forever).

The average of the expansion scalar over such a domain is given by

〈Θ〉 =
(3a− 4t)(η + V ) + 2(a− t)tV ′

2
√
a− t t 32 (η + V )

, (71)

while the average of the expansion scalar squared is given by

〈Θ2〉 =
(3a− 4t)2

4(a− t)t3
+
V ′((3a− 4t)V + (a− t)tV ′)

V (η + V )t2
. (72)
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Finally, the average of the shear scalar can be found to be

〈σ2〉 =
(3a− 2t)2

12(a− t)t3
− V ′((3a− 2t)V − (a− t)tV ′)

3V (η + V )t2
, (73)

where η = ∆rST/∆rKS. These quantities can be combined, as in Equation (14), to find

the back-reaction scalar to be

Q = −((3a− 2t)(η + V )− 2(a− t)tV ′)2

6(a− t)t3(η + V )2
. (74)

This scalar is clearly non-zero, and gives the contribution to the effective Friedmann

equation that is required to reproduce the average expansion of the spatial domain under

consideration. When η → 0 this gives the back-reaction scalar in a purely Kantowski-

Sachs space-time, and when η →∞ it gives the corresponding quantity in the T-region

of Schwarzschild. Both of these limits result in non-zero Q, as each of the two different

regions in this case are anisotropic, and therefore have a different global expansion rate

from that which would be prescribed by the Friedmann equation.

Green & Wald Averages:

In trying to apply the Green & Wald formalism to this class of space-times we are

again forced to separate the metric into a “background” part and a “perturbation”. As

before, there is no prescription provided for how to do this, and so we are forced to

make a choice as to what we consider the background to be. We will consider three

such backgrounds: One given by the homogeneous dust-filled regions, a second given by

the vacuum Schwarzschild T-regions, and a third given by a homogeneous intermediate

geometry.

Case IV: A Kantowski-Sachs background. In this case we consider the dust regions to be

the “background” geometry, and the vacuum regions to be exact perturbations about

this background. This can be achieved by making the following choice for A(r) and

B(r) in the vacuum region:

AST =
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
+ 1

]
(75)

BST = 1− λ , (76)

while choosing the values of these functions in the dust-filled regions to be

AKS = 0 (77)

BKS = 1 +
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
− 1

]
. (78)

These functions are the same as the ones depicted in Figure 2, with A↔ c2 and B ↔ c1,

such that the Schwarzschild T-region is given by 0 < r < λr∗ and the Kantowsi-Sachs

region is in the interval λr∗ < r < 2λr∗ (repeated over and over again, forever).
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In each of the two regions the perturbation to the Kantowski-Sachs background

(with λ→ 0) can then be written as

γabdx
adxb =

(√a− t
t

(A+B V )

)2

−

(√
a− t
t

V

)2
 dr2 (79)

which gives the only components of ∇aγbc that are not proportional to λ or λ2 as being

∇rγ
ST
rr =

2π(t− a)V

r∗ t
sin

{
2π

(
r

λr∗
− 1

2

)}
(80)

and

∇rγ
KS
rr =

2π(t− a)V 2

r∗ t
sin

{
2π

(
r

λr∗
− 1

2

)}
. (81)

These result in the non-zero components of µabcdef being given by

µSTabcdef =
2π2(t− a)2V 2

r2
∗ t

2
δraδ

r
bδ
r
cδ
r
dδ
r
eδ
r
f in the vacuum regions (82)

µKSabcdef =
2π2(t− a)2V 4

r2
∗ t

2
δraδ

r
bδ
r
cδ
r
dδ
r
eδ
r
f in the dust regions , (83)

which gives the back-reaction tensor in Equation (19) as

t
(0)
ab = 0 (84)

for all values of r. Once more, there appears to be no back-reaction from the vacuum

regions on the homogeneous dust-filled background space-time in the Green & Wald for-

malism. This is despite the fact that the back-reaction scalar in the Buchert formalism,

for the exact same space-time, is always non-zero. This indicates that the measures of

back-reaction in the two diffferent formalisms are quantifying quite different phenomena.

Case V: A Schwarzschild T-region background. We can consider exactly the same set-

up, still within the Green & Wald formalim, but this time choose our “background” to

be given by the vacuum Schwarzschild T-region. In this case the dust-filled regions are

treated as pertubations of the vacuum background. In this case, in the vacuum regions

we choose our parameterization of A(r) and B(r) such that

AST = 1 +
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
− 1

]
(85)

BST = 0 , (86)

while in the dust-filled regions we choose

AKS = 1− λ (87)

BKS =
λ

2

[
cos

{
2π

(
r

λr∗
− 1

2

)}
+ 1

]
. (88)

These two functions have the same form as given in Figure 3, again with A ↔ c2 and

B ↔ c1 so that the Schwarzschild T-region is in 0 < r < λr∗ and the Kantowsi-Sachs

region is in λr∗ < r < 2λr∗.
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In each of the two regions the perturbation can then again be written as in Equation

(79), which gives the only components of ∇aγbc that are not proportional to λ or λ2 as

being

∇rγ
ST
rr =

2π(t− a)

r∗ t
sin

{
2π

(
r

λr∗
− 1

2

)}
(89)

and

∇rγ
KS
rr =

2π(t− a)V

r∗ t
sin

{
2π

(
r

λr∗
− 1

2

)}
. (90)

The non-zero components of µabcdef can then all be written as

µSTabcdef =
2π2(t− a)2

r2
∗ t

2
δraδ

r
bδ
r
cδ
r
dδ
r
eδ
r
f in the vacuum regions (91)

and

µKSabcdef =
2π2(t− a)2V 2

r2
∗ t

2
δraδ

r
bδ
r
cδ
r
dδ
r
eδ
r
f in the dust regions , (92)

and the back-reaction tensor is

t
(0)
ab = 0 (93)

at all values of r. Once more, there is no back-reaction with this choice of background,

even though the large-scale expansion of the Schwarzschild T-region is quite different to

that of the dust-filled Kantowski-Sachs solution.

Case VI: An intermediate background. In this case we choose the background to have

A = B = 1/2, so that the background is a Kantowski-Sachs solution with a density of

matter that is somewhere between the original vacuum and dust-filled regions. In this

case, in the vacuum regions we choose

AST =
1

2
+
λ

2
cos

{
2π

(
r

λr∗
− 1

2

)}
(94)

BST =
1− λ

2
, (95)

while in the dust-filled regions we choose

AKS =
1− λ

2
(96)

BKS =
1

2
+
λ

2
cos

{
2π

(
r

λr∗
− 1

2

)}
. (97)

These are the functions displayed in Figure 4, again with A↔ c2 and B ↔ c1.

In each of the two regions the perturbation can then again be written as in Equation

(79), which gives the only components of ∇aγbc that are not proportional to λ or λ2 as

being

∇rγ
ST
rr =

π(t− a)(1 + V )

r∗ t
sin

{
2π

(
r

λr∗
− 1

2

)}
(98)
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and

∇rγ
KS
rr =

π(t− a)V (1 + V )

r∗ t
sin

{
2π

(
r

λr∗
− 1

2

)}
(99)

the non-zero components of µabcdef can then all be written as

µSTabcdef =
π2(t− a)2(1 + V )2

2r2
∗ t

2
δraδ

r
bδ
r
cδ
r
dδ
r
eδ
r
f in the vacuum regions (100)

µKSabcdef =
π2(t− a)2V 2(1 + V )2

2r2
∗ t

2
δraδ

r
bδ
r
cδ
r
dδ
r
eδ
r
f in the dust regions . (101)

This gives

t
(0)
ab = 0 (102)

at all values of r. As in all previous cases, there is no back-reaction within the Green

& Wald formalism. This result is true for all of the plane and spherically symmetric

space-times with R′ = 0 that we have studied in this section.

At this point we note that there do not appear to be any solutions with R′ 6= 0 that

allow the same physical set-up to be considered (i.e. where we have alternating regions of

homogeneous dust and vacuum sandwiched between each other in a repeated periodic

way forever). This is not to say that homogeneous dust and vacuum regions cannot

be matched together when R′ 6= 0. Indeed it is quite possible to match Friedmann

and Schwarzschild R-regions when k = 1, and to match vacuum Taub and Friedmann

solutions when k = 0. The difficulty is that when one matches multiple successive bands

of dust-dominated and vacuum regions together, one finds that the density of the dust

in each region cannot be identical in every region unless the foliation is associated with

the rest spaces of non-geodesic obbservers. Such a foliation would be most unnatural, in

terms of its expansion, as it would mix together contributions from both the expansion

of space and the acceleration of the observers. This is not what is usually meant by the

term “expansion” in cosmology, and so we omit such solutions from this section.

4. Inhomogeneous dust models

In this section we will examine the possibility of an inhomogeneous energy density that

oscillates around a smooth “background” value, as illustrated in Figure (5). For this we

will use the class of solutions with R′ 6= 0 and k = 1, which constitute the well-known

Lemâıtre–Tolman–Bondi (LTB) models. These models exhibit radial dependence in

the dust density and other physical and geometric variables, and we will consider how

Buchert’s and Green & Wald’s averaging formalisms can be applied and compared within

them. For a perturbative treatment of inhomogeneous dust sources see Ref. [19].

The spherically symmetric LTB models, with R′ 6= 0 and k = 1 in Equation (6),

are characterized by the LTB metric:

ds2 = −dt2 +
R′2

1−K
+R2

(
dθ2 + sin2 θ d φ2

)
, (103)
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Figure 5. An illustration of the situation studied in Section 4. The height of the

surface is intended to signify the magnitude of the energy density, which is assumed

to oscillate around a homogeneous background.

where R = R(t, r) is the “curvature area distance” that satisfies the Friedman–like

Equation (7), ρ is given by Equation (8), and K = K(r) determines the spatial

curvature. For our current purposes, it turns out to be more convenient to rewrite

Equation (103) as the following FLRW–like metric:

ds2 = −dt2 + a2

[
Γ2R′0

2 dr2

1− H̄2
0 Ω

(k)
q0 R

2
0

+R2
0

(
dθ2 + sin2 θ d φ2

)]
, (104)

where

a ≡ R

R0

and Γ ≡ R′/R

R′0/R0

= 1 +
a′/a

R′0/R0

, (105)

with Equations (7) and (8) becoming

ȧ2

H̄2
0

=
Ω

(m)
q0

a
− Ω

(k)
q0 and ρ =

ρ0

a3 Γ
, (106)

where the subscript 0 denotes evaluation at some “initial” time t = t0. This means

that the constant H̄0 can be identified with the FLRW Hubble constant, and that the

“quasilocal” functions Ω
(m)
q0 (r) and Ω

(k)
q0 (r) can be given in terms of the initial density

ρ0(r) and the Ricci scalar of the hypersurface t = t0 (i.e. (3)R0(r)) by

Ω
(m)
q0 =

2M

H̄2
0r

3
=

3

r3

∫ r

0

Ω
(m)
0 r2 dr and Ω

(k)
q0 =

K

H̄2
0r

2
=

3

r3

∫ r

0

Ω
(k)
0 r2 dr, (107)

where we have introduced the following dimensionless forms for the density and spatial

curvature scalars:

Ω
(m)
0 ≡ 8πρ0

3H̄2
0

= Ω
(m)
q0 +

r [Ω
(m)
q0 ]′

3
, Ω

(k)
0 ≡

(3)R0

6H̄2
0

= Ω
(k)
q0 +

r [Ω
(k)
q0 ]′

3
, (108)

and where we have assumed (as a radial coordinate choice) that R0 = r, so that

a0 = Γ0 = 1. We note that the functions Ω
(m)
q0 and Ω

(k)
q0 can be identified with “quasi–

local” averages of the initial density and spatial curvature (see References [10,11,20,21]

for comprehensive discussion on these variables).
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The Friedman–like equation (106) admits analytic solutions for a, which we give in

Appendix A. The remaining metric function Γ = 1 + ra′/a can be found by implicit

differentiation of these solutions, and can be written as

Γ = 1 + 3Gm δ(m)
0 − 3Gk δ(k)

0 , (109)

where Gm, Gk are given in Appendix A, and where

δ
(m)
0 =

r [Ω
(m)
q0 ]′

3Ω
(m)
q0

=
Ω

(m)
0 − Ω

(m)
q0

Ω
(m)
q0

and δ
(k)
0 =

r [Ω
(k)
q0 ]′

3Ω
(k)
q0

=
Ω

(k)
0 − Ω

(k)
q0

Ω
(k)
q0

, (110)

with (Ω
(m)
0 , Ω

(k)
0 ) related to (ρ0,

(3)R0) by Equations (107)–(108). The reader may notice

that in this formalism any LTB model becomes completely determined by specifying

Ω
(m)
0 and Ω

(k)
0 as dimensionless initial conditions. The time dependent metric function a

then depends on r only through Ω
(m)
q0 and Ω

(k)
q0 , while the radial dependence of Γ involves

these initial functions and their gradients, [Ω
(m)
q0 ]′ and [Ω

(k)
q0 ]′.

4.1. Buchert Averages

Let us first consider the Buchert average of these models. A sufficient condition for a

non-zero backreaction term QD, in arbitrary spherical comoving domains D of generic

LTB models, is known to be given by [22]

QD = 〈Q〉D 6= 0, (111)

where Q ≡ [H−Hp]
2 − [H−Hq]

2 6= 0, and where H ≡ Θ/3 = ȧ/a + Γ̇/(3Γ) is the

Hubble scalar and Hq, Hp are the averaged functions

Hq(t, r) =

∫
DHdVq
Vq

, Hp(t, r) =

∫
DHdVp
Vp

and dVq = FdVp, (112)

where F = [1−K]1/2 and dVp =
√

det(hab)dr dθ dφ is the proper spatial volume

element associated with the LTB metric (hab = uaub + gab). It is known that

Q = 0 ⇒ QD = 0 for all spatially flat (“parabolic”) LTB models with Ω
(k)
q0 = 0.

Hence, we will only consider open (“hyperbolic”) and closed (“elliptic”) models with

Ω
(k)
q0 6= 0, which are introduced in Appendix B.

Open LTB models:

We consider spherical comoving domains D bounded by arbitrary fixed r. For the metric

in Equation (104), with R0 = r, the integrals in Equation (112) have spatial volumes

that can be found to be

Vq =

∫
D
F dVp = 4π

∫ r

0

a3Γdx =
4π

3
R3, (113)

Vp =

∫
D

dVp = 4π

∫ r

0

a3Γdx

F
, (114)

where dVp = a3ΓF−1dr dθ dφ with F =
[
1− H̄2

0 Ωk
q0r

2
]1/2

and R = a r. In general, the

back-reaction scalar calculated in such domains will be non-zero, such that Q(r) 6= 0
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for finite r, and will have a magnitude that is a complicated function of both r and the

radial profile of the inhomogeneities.

This complexity is an inevitable consequence of the symmetry and topology of

space in such situations, which can no longer be broken up into repeated regions that

are identical to each other up to spatial translations. This in turn means that, unlike the

locally-homogeneous cases studied in Section 3, there is no simple closed form expression

that can be presented for the back-reaction of the global space-time. However, if one

were to consider models that converge to FLRW with Ωk
q0 6= 0, then there are simple

solutions for back-reaction within averaging domains that encompass the whole time

slice (i.e. that have r →∞). In this case Hq/Hp → 1 holds as for all open, as shown in

Reference [22]. We then have then that backreaction vanishes for such domains in these

models, as Q(r)→ 0 and thus QD(r)→ 0 as r →∞.

Closed LTB models:

These models are all elliptic, with Ω
(k)
q0 > 0 converging to Ω̄

(k)
0 > 0 (see Appendix B

for a discussion of how to avoid thin surface layers in this case). While Hq and Hp are

also defined by Equation (112), the individual integrals are qualitatively different. The

volume element dVp for the metric in this case takes the form

dVp =
a3Γ | cos(

√
k0r)|dr dθ dφ

F
, where F =

[
1−

Ω
(k)
q0

Ω̄
(k)
0

sin2(
√
k0r)

]1/2

, (115)

with k0 given by Equation (B.1), and the integrals being evaluated from the first

symmetry centre at r = 0 to the second one at r = rc = π/
√
k0. The absolute value of

the cosine in this volume element is needed to keep dVp ≥ 0. The integrals equivalent

to Equations (113) and (114) are then

Vq =
4π a3R3

0

3
=

4π a3

3

sin3(
√
k0r)

k
3/2
0

and Vp = 4π

∫ r

0

a3Γ| cos(
√
k0r)|dr

F
. (116)

Thus, while Vq above vanishes at both symmetry centres, Vp does not vanish at

r = rc. The leading term in series expansions around r = rc therefore necessarily

yields Vq ∼ O(r − rc)3, whereas Vp has a constant leading term Vp(t, rc). Likewise, the

leading-order terms of the integrals in the numerators are different, and thus we have

in general Hq 6= Hp when evaluated at r = rc for all t, which implies Q(t, rc) 6= 0 so

that QD 6= 0 for domains D encompassing the whole time slice. Therefore, in this case

Buchert’s formalism yields non-zero backreaction.

4.2. Green & Wald Averages

The Green & Wald formalism is based on expressing the metric coefficients gab as a

one parameter sequence of functions that comply with standard regularity conditions

and that –somehow– converge to a background metric g
(0)
ab when the wavelength of the

fluctuations becomes vanishingly small. In the case of LTB models, the metric functions
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are determined from a given choice of initial density and spatial curvature, Ω
(m)
0 and

Ω
(k)
0 . The short wavelength limit then follows from a one–parameter sequence of LTB

models characterized by a sequence of functions

Ω
(m)
0 (λ, r) and Ω

(k)
0 (λ, r), for λ > 0, (117)

which yields the sequence of initial value functions Ω
(m)
q0 (λ, r) and Ω

(k)
q0 (λ, r) (and their

gradients) as well as δ
(m)
0 (λ, r) and δ

(k)
0 (λ, r)) from Equations (107) and (110). The Green

& Wald formalism requires that in the limit λ→ 0 the metric coefficients associated with

the sequence of models should converge to their (yet unspecified) background values.

The sequence of functions in Equation (117), and thus the auxiliary functions obtained

from Equations (107) and (110), must be constructed in terms of suitable oscillating

functions with periods depending on λ, that keep decreasing with λ and reaching small

values as it tends to zero. For all λ > 0 the functions in the sequence must be smooth

and bounded and must comply with centre and regularity, namely that for all λ the

gradients of Ω
(m)
0 , Ω

(k)
0 , Ω

(m)
q0 , Ω

(k)
q0 vanish at r = 0 and δ

(m)
0 (λ, 0) = δ

(k)
0 (λ, 0) = 0 (see

Appendix C).

The physical interpretation of this type of short wavelength limit is that of a

continuous one–parameter sequence of LTB models in which the radial profiles of the

local density and/or spatial curvature fluctuate in an oscillatory manner around some

(yet unspecified) background value that could, in principle, be a unique FLRW dust

model characterized by the values Ω̄
(m)
0 and Ω̄

(k)
0 (see Appendix D). The wavelength

parameter λ provides the scale of these oscillatory fluctuations in terms of the comoving

radius, and decreasing values denote decreasing wavelengths and increasing frequency.

Demanding that the density and spatial curvature be given by smooth functions that

are everywhere bounded, and also oscillatory and periodic, necessarily requires the

amplitude of the oscillations to converge to zero as λ → 0 at least as fast as the

wavelength λ. In this case the metric of the background model will be smooth in

the limit λ→ 0. If the amplitude decreases slower than the wavelength, then the LTB

metric tends to a distribution in the limit λ→ 0.

Models with this type of oscillatory energy density have been referred to as “onion

models” in the literature [23], and while they do not describe any real astrophysical

structures, they are nonetheless ideal as toy models for investigating the effects of cos-

mological inhomogeneity in a fully relativistic context. Moreover, it is important to

acknowledge that this type of model implies periodic changes of sign of δ(m) and/or δ(k),

and thus are bound to develop shell crossings, especially for elliptic models with Ω
(k)
q0 > 0

for which the conditions to avoid these features are very stringent (see Appendix C and

Reference [21]). In what follows we will now discuss the Green & Wald postulates, as

given in Section 2.2, assuming generic initial value functions for the quantities in Equa-

tion (117). We assume only that these functions are bounded, oscillatory and periodic,

restricted by smoothness (at least C2) and in fulfillment of conditions for centre regu-

larity and the absence of shell crossings (at least for a finite period of their evolution).
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Postulate 1: The fulfilment of this postulate only requires convergence (which we will

assume to be uniform) of the sequence of LTB metrics gab(λ, x
c) to a well defined

and smooth background metric g
(0)
ab , which needs not be an FLRW metric. There

are two relevant metric functions, a(λ, t, r) and its radial gradient Γ(λ, t, r), both of

which are obtained from a given choice of Ω
(m)
0 (λ, r), Ω

(k)
0 (λ, r), the auxiliary functions

Ω
(m)
q0 (λ, r), Ω

(k)
q0 (λ, r) and their gradients δ

(m)
0 (λ, r), δ

(k)
0 (λ, r). The two main metric

coefficients are (under the choice R0 = r),

grr(λ, t, r) =
a2Γ2

1− H̄2
0 Ω

(k)
q0 r

2
=

(a+ ra′)2

1− H̄2
0 Ω

(k)
q0 r

2
, and gθθ(λ, t, r) = a2 r2. (118)

Since the metric convergence we are seeking involves the gradients δ
(m)
0 , δ

(k)
0 of Ω

(m)
q0 , Ω

(k)
q0 ,

we need to assume that the latter functions (and thus the metric coefficients) are at least

C1. The background is then defined generically by the following limits on the sequence

of initial value functions:

lim
λ→0

Ω
(m)
0 (λ, r) = Ω

(m)
b0 ≡ Ω

(m)
0 (0, r), lim

λ→0
Ω

(k)
0 (λ, r) = Ω

(k)
b0 ≡ Ω

(k)
0 (0, r), (119)

lim
λ→0

Ω
(m)
q0 (λ, r) = Ω

(m)
qb0 ≡ Ω

(m)
q0 (0, r), lim

λ→0
Ω

(k)
q0 (λ, r) = Ω

(k)
qb0 ≡ Ω

(k)
q0 (0, r), (120)

lim
λ→0

δ
(m)
0 (λ, r) = δ

(m)
b0 ≡ δ

(m)
0 (0, r), lim

λ→0
δ

(k)
0 (λ, r) = δ

(k)
b0 ≡ δ

(k)
0 (0, r), (121)

which determine the background metric functions ab = a(0, t, r), Γb = Γ(0, t, r). We

have then two cases (we provide specific ansatzes further ahead):

Case I: An FLRW background. Here we have

Ω
(m)
b0 = Ω

(m)
qb0 = Ω̄

(m)
0 = const., Ω

(k)
b0 = Ω

(k)
qb0 = Ω̄

(k)
0 = const., δ

(m)
b0 = δ

(k)
b0 = 0, (122)

which implies ab = ā(t) and Γb = 1.

Case II: An LTB background. Which has

Ω
(m)
b0 = Ω

(m)
b0 (r), Ω

(m)
qb0 = Ω

(m)
qb0 (r), Ω

(k)
b0 = Ω

(k)
b0 (r), Ω

(k)
qb0 = Ω

(k)
qb0(r),

δ
(m)
b0 = δ

(m)
b0 (r), δ

(k)
b0 = δ

(k)
b0 (r), (123)

which implies ab = a(0, t, r) and Γb = Γb(0, t, r).

As shown by the ansätze we provide further ahead, there are many ways to define a se-

quence of LTB models in the short wavelength regime that exhibit uniform convergence

to these two backgrounds as λ→ 0.

Postulate 2: If we start by defining the (exact) metric perturbation γab = gab(λ)− g(0)
ab ,

then this postulate requires the existence of a smooth positive function C1(xa) such that

|γθθ| = |a2 − a2
b |r2 < λC1 (124)

and

|γrr| =

∣∣∣∣∣ a2Γ2

1− H̄2
0 Ω

(k)
q0 r

2
− a2

bΓ
2
b

1− H̄2
0 Ω̄

(k)
qb0 r

2

∣∣∣∣∣ < λC1, (125)
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where ab, Γb and Ωk
qb0 are the limits of a(λ), Γ(λ), Ω

(k)
q0 (λ) as λ → 0, given by either

Equation (122) or (123). The functional form of a(λ) follows from the solutions

in Equations (A.1)–(A.2), whereas ab follows from the same solutions but replacing

Ω
(m)
q0 (λ), Ω

(k)
q0 (λ) with their background values Ω

(m)
qb0 , Ω

(k)
qb0, defined by the limits in

Equations (119)–(120). As we are assuming uniform convergence as λ → 0 through

these limits, then |Ω(m)
q0 −Ω

(m)
qb0 | and |Ω(k)

q0 − Ω̄
(k)
qb0| are O(λ2) quantities, and thus |a2− ā2|

is at least an O(λ2) quantity, and thus there always exists a function C1 (in fact, a

bounded function) that fulfills the inequality in Equation (124). To prove the inequality

in Equation (125) we note that Γ in Equations (109) and (A.6)–(A.8) has the form of

a linear combination of two terms that are products of a quantity (either Gm or Gk)
that depends only on a, Ω

(m)
q0 and Ω

(k)
q0 (see Equation (A.5)). As we are assuming that

the limit in Equation (121) holds, which requires uniform convergence of the gradients

[Ω
(m)
q0 ]′ and [Ω

(k)
q0 ]′, then using the same arguments as in the previous paragraph it is

evident that the inequality holds.

Some remarks are necessary for the convergence of the sequence of LTB models

to a spatially flat Einstein-de Sitter background. Since for any FLRW background we

have Ω̄
(m)
0 > 0, then it is straightforward to show that δ

(m)
0 , δ

(k)
0 → 0 implies Γ → 1

holds as λ → 0, and thus both inequalities in Equations (124)–(125) hold for LTB

models converging to both open (Ω̄
(k)
0 < 0) and closed (Ω̄

(k)
0 > 0) FLRW backgrounds.

However, the limit of the fluctuation δ
(k)
0 is undefined as λ → 0 for LTB models that

converge to an EdS background. In this case, Γ takes the following form for λH̄0 � 1:

Γ ≈ 1 + 3Gk δ(k)
0 ≈ 1∓

(ā5/2 − 1) r[Ωk
q0]′

5ā3/2 Ωm
q0

, (126)

where Gk is given by Equation (A.5), the ∓ corresponds to the sign of −Ω
(k)
q0 , and we

have used the fact that a→ ā as λ→ 0 holds because of Equations (119)–(120). If we

consider the form of Equations (134)-(136) in the ansatz that we propose further ahead,

we see that in this case we also have Γ → 1 as λ → 0, and thus that there exists a

smooth function C1 such that Equations (124)–(125) hold.

Postulate 3: To continue with the Green & Wald formalism we require the components

of the tensor (0)∇c γab, where (0)∇c is the covariant derivative defined for the background

metric g
(0)
ab . Hence

(0)∇c γab = (0)∇c gab(λ) =
∂gab(λ)

∂xc
− (0)Γdacgdb(λ)− (0)Γdbcgda(λ), (127)

where we used the fact that (0)∇c g
(0)
ab = 0 and (0)Γdac are the Christoffel symbols for the

background metric g
(0)
ab . All of these components are given explicitly in Appendix E. As

the derivatives of a are either related to Γ = 1 + ra′/a or can be eliminated in terms of

a by means of Equation (106), the only non–trivial derivatives contained in ∂gab(λ)/∂xc

are the derivatives Γ′ and Γ̇ which are second derivatives of a:
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Γ′ =
3a

r

[
∂Gm
∂a

δ
(m)
0 +

∂Gk
∂a

δ
(k)
0

]
(Γ− 1) +

9

r

[
Ωm
q0

∂Gm
∂Ωm

q0

(
δ

(m)
0

)2

+ Ωk
q0

∂Gk
∂Ωk

q0

(
δ

(k)
0

)2
]

+
9

r

[
Ωm
q0

∂Gk
∂Ωm

q0

+ Ωk
q0

∂Gm
∂Ωk

q0

]
δ

(m)
0 δ

(k)
0 + 3Gm

(
δ

(m)
0

)′
+ 3Gk

(
δ

(k)
0

)′
, (128)

Γ̇ = 3

[
∂Gm
∂a

δ
(m)
0 +

∂Gk
∂a

δ
(k)
0

]
ȧ, (129)

where Gm, Gk are given by Equation (A.5). So far we have assumed in Postulates 1 and

2 that Ω
(m)
q0 , Ω

(k)
q0 , δ

(m)
0 , δ

(k)
0 are at least C1 functions converging to their background

values as λ→ 0, hence all terms involving Gm, Gk and their derivatives are C1 functions

of {a,Ωm
q0,Ω

k
q0} that converge to smooth functions of {ā, Ω̄m

0 , Ω̄
k
0} in this limit. However,

we have not made any assumption on the gradients [δ
(m)
0 ]′ and [δ

(k)
0 ]′ that appear in Γ′

above. As Postulate 3 does not require that the limit of (0)∇c γab to be well defined as

λ → 0 (only that it can be bounded by a positive smooth function C2), we have then

the following two possibilities:

(i) The trivial case: If [δ
(m)
0 ]′ and [δ

(k)
0 ]′ (which appear in Γ′ in Equation (128)) converge

to their smooth background values as λ→ 0, then it is straightforward to show that

the fulfillment of the previous postulates (uniform convergence of gab(λ) to g
(0)
ab ) is

a sufficient condition for

lim
λ→0

(0)∇c γab = 0. (130)

To prove this result we show that ∂gab(λ)/∂xc uniformly converges to ∂g
(0)
ab /∂x

c:

∂g
(0)
ab

∂xc
= lim

λ→0

∂gab(λ)

∂xc
= lim

λ→0

[
lim
h→0

gab(λ, x
c + h)− gab(λ, xc)

h

]
(131)

= lim
h→0

[
lim
λ→0

gab(λ, x
c + h)− gab(λ, xc)

h

]
= lim

h→0

[
gab(0, x

c + h)− gab(0, xc)
h

]
which implies

lim
λ→0

(0)∇c γab = lim
λ→0

(0)∇c g
(0)
ab = 0. (132)

In order to probe this result with the LTB models as a background, we consider

the fact that the procedure is wholly analogous to that of an FLRW background.

For the latter background we have [δ
(m)
0 ]′, [δ

(k)
0 ]′ → 0 as λ → 0, and thus from the

non-zero components of (0)∇c γab provided explicitly in Equations (E.1)-(E.8), we

obtain (component by component) (0)∇c γab = 0 in the limit λ→ 0.

(ii) The non-trivial case: Convergence of gab(λ) to a smooth background g
(0)
ab (0) as

λ → 0 only requires convergence of Ω
(m)
0 , Ω

(k)
0 , Ω

(m)
q0 , Ω

(k)
q0 , δ

(m)
0 , δ

(k)
0 in this limit,

but not of the radial gradients [δ
(m)
0 ]′ and [δ

(k)
0 ]′. If the latter do not converge to

a smooth background value as λ→ 0, then at least one component of ∂gab(λ)/∂xc

must not be trivially zero in this limit. From Equations (E.1)-(E.8) we then have

lim
λ→0

(0)∇c γab = K δraδrbδrc , where K = lim
λ→0

[
(0)∇c γab

]
rrr
, (133)
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and where the rrr component above is bounded but (we assume) is not a smooth

function as λ → 0. We note that this is not necessarily a crucial impediment for

the Green & Wald formalism, as Postulate 3 only requires boundedness, and the

limit λ→ 0 in Postulate 4 is a weak limit.

Postulate 4: The tensor (0)∇aγcd
(0)∇bγef that is used to construct µabcedef in Equation

(18) is (by construction) a purely algebraic extension of the tensor (0)∇c γab(x
d, λ)

examined in Postulate 3. Its components are quadratic combinations of the components

of this latter tensor. In case (i), the trivial case discussed above, the function inside

the limit in Equation (18) trivially tends to zero as λ → 0, which yields as λ → 0 for

every smooth tensor field fabcbde a trivially vanishing µabcedef (as a strong limit implies a

weak limit, though the converse is not true). As a consequence, Postulate 4 holds with

t
(0)
ab = 0 and Tab = T

(0)
ab = ρ̄uaub, with ρ = ρ̄(t) if we assume an FLRW background. This

is consistent with the findings in Ref. [7], who considered the consequences of uniform

boundedness of (0)∇aγcd
(0)∇bγef , and concluded that µabcedef vanishes in such cases.

For the non–trivial case (ii) above, we can assume for the initial value functions

the following generic functional dependence compatible with a short wavelength regime,

and only restricted by compatibility with Postulates 1, 2 and 3:

Ω
(m)
0 = Ω

(m)
b0 + λ̂αC(m)(u), Ω

(k)
0 = Ω

(k)
b0 + λ̂βC(k)(u), u ≡ r

λ
, (134)

where C(m), C(k) are suitable smooth sinusoidal functions that are bounded in the limit

λ → 0 (to comply with previous postulates), λ̂ = H̄0 λ and α, β > 0. For an FLRW

background so that Ω
(m)
b0 = Ω̄

(m)
0 and Ω

(k)
b0 = Ω̄

(k)
0 (the case of an LTB background is

analogous), we have

Ω
(A)
q0 = Ω̄

(A)
0 +

3λ̂n

r3

∫
C(A) r2dr = Ω

(A)
0 − H̄0λ̂

n−1

r3
I(A), (135)

δ
(A)
0 =

r[Ω
(A)
q0 ]′

3Ω
(A)
q0

=
H̄0λ̂

n−1I(A)

Ω
(A)
0 r3 − H̄0λ̂n−1I(A)

, (136)

[
δ

(A)
0

]′
=
r2H̄0λ̂

n−1
[
(Ω

(A)
0 r3 − H̄0λ̂

n−1I(A)) rC
(A)
,u − 3Ω

(A)
0 I(A)

]
[
Ω

(A)
0 r3 − λ̂n−1I(A)

]2 , (137)

where A and n stand generically for A = m, k and n = α, β, with C
(A)
,u and I(A) defined

by

I(A) =

∫
r3C(A)

,u dr, C(A)
,u =

dC(A)

du
=

1

r3

[
I(A)

]′
. (138)

In order to comply with Postulates 1, 2 and 3, the functions C(A)(u), and the integrals

I(A)(u) must be (at least) bounded in the limit λ → 0. From Equations (134)–(138),

the trivial case follows if n > 1, whereas the non–trivial case follows if n = 1, since

0 < n < 1 violates Postulates 1 and 2. Our non-trivial case extends the findings of

Ref. [7] to a situation in which one of the components (0)∇aγcd becomes a distribution,

in the example space-times we consider.
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For the non–trivial case we need to evaluate the following weak limit:

µabcedef = w- lim
λ→0

[
(0)∇a γcd

(0)∇b γef
]
, (139)

under the assumption that n = 1 in all the variables in Equations (134)–(138). However,

it is worth looking first at the strong limit of the same quantity, component by

component (see Appendix E). Considering Equation (133), we have

lim
λ→0

[
(0)∇a γcd

(0)∇b γef
]

= K2 δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f , (140)

where

K2 = lim
λ→0

[
(0)∇a γcd

(0)∇b γef
]
rrrrrr

= lim
λ→0

[
(0)∇c γab

]
rrr
× lim

λ→0

[
(0)∇b γef

]
rrr
, (141)

as only the (rrrrrr) component contains terms proportional to the gradients [δ
(A)
0 ]′, that

we are assuming not converging to a smooth limit as λ→ 0 (see Equation (E.1)). Since

the strong limit for all components of (0)∇a γcd
(0)∇b γef is zero, save for the (rrrrrr)

component in Equation (141), and as the strong limit implies the weak limit, the

only non-zero components of the weak limit in Equation (139) must be the (rrrrrr)

component. Therefore, for whatever form K2 might take in Equation (141) (and we are

not assuming it to be a smooth function), we can write

µabcedef = w-K2 δraδ
r
bδ
r
cδ
r
dδ
r
eδ
r
f , w-K2 = w- lim

λ→0

[
(0)∇a γcd

(0)∇b γef
]
rrrrrr

(142)

Now, regardless of the form that w-K2 might take, it is straightforward to show that

substitution of Equation (142) into the definition of t
(0)
ab in Equation (20) yields t

(0)
ab = 0.

Hence, Postulate 4 also holds in the non–trivial case with zero backreaction, with

Tcd = T
(0)
cd = ρbucud, and with ρb the background density associated with g

(0)
cd .

A convenient ansatz: It is useful to further explore the Green & Wald formalism by

means of a more concrete forms of the generic ansatz given in Equations (134)–(138) for

the initial value functions and fluctuations around an FLRW background (generalization

to an LTB background is straightforward). Consider the following specific forms for the

sinusoidal functions C(A) and the integrals I(A) in (134)–(138)

C(m) = sin2 u, I(m) =
λ4

4

[
(3− 2u2)u cos 2u− 3

2
(1− 2u2) sin 2u

]
, (143)

C(k) = cos4 u, I(k) = −λ
4

64

[
8u(3− 8u2) cos4 u− 6(1− 8u2) cos3 u sinu

+72u cos2 u− 9(5− 8u2) cosu sinu− 3u(15− 8u2)
]
,(144)

with the parameters in Equation (134) selected as α = β = n and an FLRW background

given by Ω
(m)
b0 = Ω̄

(m)
0 and Ω

(k)
b0 = Ω̄

(k)
0 = Ω̄

(m)
0 −1. Notice that the integrals I(m), I(k) → 0

as λ → 0, but C(m)(u), C(k)(u) and their derivatives behave in this limit like wildly

oscillating sinusoidal function of the form ∼ sin(r/λ), and thus must be treated as

distributions in this limit. Therefore, to have all the initial value functions in Equations

(134)–(138) converging to smooth functions as λ → 0 it is necessary to choose n > 1,

which leads to the trivial case for an FLRW background. For the choice n = 1, we have
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the non–trivial case in which Ω
(A)
0 , Ω

(A)
q0 → Ω̄(A) and δ

(A)
0 → 0 as λ→ 0 (thus complying

with Postulates 1, 2 and 3), with [δ
(A)
0 ]′ in Equation (137) bounded but not converging

to smooth functions because of the terms C
(m)
,u and C

(k)
,u that tend to distributions that

must be evaluated through the weak limit integral in Equation (142). However, as

we shown before, as the only non-zero component of µabcdef is (rrrrrr), we still have

zero backreaction in the Green & Wald formalism regardless of the form of the final

distribution in the weak limit integral.

We depict in Figure 6 the functions Ω
(m)
0 and Ω

(m)
q0 for various values of λ̂ for the

selected functional forms in Equations (143)–(144) of the generic ansatz from Equations

(134)–(138), with α = β = n = 2 and for a negatively curved (hyperbolic) FLRW

background Ω̄
(m)
0 = 0.5, Ω̄

(k)
0 = −0.5. In Figure 7 we display plots of the deviation of

the metric functions a and Γ from their FLRW values and the density ratio ρ/ρ0, all

obtained from the initial value functions plotted in Figure 6, and for various constant

values of time. The initial conditions used in the graphic examples of Figures 6 and

7 depict the oscillations of the initial value functions and metric functions around an

FLRW background that characterize the short-wavelength limit used in the Green &

Wald formalism. For these initial conditions it is impossible to avoid shell crossings

for the entire time evolution (see Reference [21]), though the conditions to avoid

these singularities are much easier to fulfill for hyperbolic models with negative spatial

curvature Ω
(k)
q0 < 0, especially with the choice that curvature is more negative where

density has a local radial maximum. For elliptic models with positive spatial curvature,

Ω
(k)
q0 > 0 (whether open or closed), conditions to avoid shell crossings become too

stringent, and regular evolution is only possible for restricted time ranges. Nevertheless,

for hyperbolic models these initial conditions are sufficient to get regular oscillatory

forms around the FLRW background for the metric coefficients and the density, at least

for cosmic times far from the Big Bang.

5. Discussion

We have studied the consequences of applying Buchert’s averaging formalism, and Green

& Wald’s back-reaction formalism, to a wide array of spherically-symmetric and plane-

symmetric dust-filled cosmological models. In Section 3 these models were constructed

to consist of locally homogeneous dust and vacuum regions sandwiched together, back

to back, and repeated over and over again ad infinitum. In Section 4 we considered the

consequences of applying these two formalisms to generic LTB models that consist of

fluctuations in the energy density of dust around a smooth value.

For the locally homogeneous models of Section 3, we found that Buchert’s formalism

provides a unique and well-defined expression for the kinematical back-reaction of the

inhomogeneities on the expansion of finite regions of space. These results display the

expected behaviour for backreaction in the limits where the space evolves to towards

either homogeneity or strong inhomogeneity, and interpolates smoothly between them.

In order to apply Green & Wald’s formalism, on the other hand, required us to identify
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(a)  

λ H0 = 0.005 λ H0 = 0.002 λ H0 = 0.00075

(b)  (c)  

Figure 6. The initial value functions Ω
(m)
0 (red) and Ω

(m)
q0 (blue) for various values of

λ̂ = λH̄0 for LTB models whose FLRW background is characterised by Ω̄
(m)
0 = 0.5 and

Ω̄
(m)
0 = Ω̄

(m)
0 − 1 = −0.5. These functions are given by Equations (134) and (135) for

α = β = 2 with C(A) specified by Equations (143)–(144). Notice how the amplitude

decreases to zero as the oscillations converge towards the background value 0.5

(a)  (b)  (c)  

a(t,r,λ) - a(t) Γ(t,r,λ) - 1 ρ /ρ0 - ρ / ρ0

Figure 7. The metric functions a and Γ (panels (a) and (b)) and the density ratio

ρ/ρ0 (panel (c)), for LTB models whose FLRW background is that of Figure 6 with

λH̄0 = 0.005. The curves correspond to plots as functions of x = H̄0r for fixed

times t = t0 − δt/H̄0 < t0 for δt = 0.05, 0.25, 0.4 (orange, red, blue). Notice the

oscillatory behavior around the background values (dashed horizontal lines), and how

the amplitude of the fluctuations decreases as t grows.
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a “background”. We first considered the cases in which the dust-filled regions were

the “background”, and the vacuum regions were considered as perturbations. We then

considered the situations in which the vacuum regions were the background, and the

dust-filled regions were the perturbation. Finally, we choose a background that was

somewhere between these two cases, and both the vacuum and dust-filled regions were

treated as perturbations. In every case we found that the perturbations had zero effect

on the evolution of the background, and hence that the Green & Wald formalism found

no back-reaction.

When studying the generic LTB models with smooth fluctations in the energy

density of dust, in Section 4, we found similar results. In this case we chose a suitable set

of initial value functions to study LTB models that contain sinusoidal waves in the energy

density of dust, in the radial direction. We found that global kinematic backreaction

vanishes within the Buchert averaging formalism for parabolic (flat) models, but is

in general non-zero for hyperbolic (open) models and elliptic (closed) models. We then

considered applying the Green & Wald formalism to similar cases, and carefully assessed

the implications of the four postulates of this formalism for the fluctuations. We found,

in every case, that the back-reaction term is identically zero in all situations where the

postulates are obeyed, such that t
(0)
ab = 0. That is, for all LTB models converging to

either an FLRW or LTB background in the short-wavelength limit there is zero effect

from the short-wavelength fluctuations on the background in the formalism of Green &

Wald.

The fact that the Green & Wald formalism gives zero back-reaction in all situations

studied, including those in which the Buchert kinematic back-reaction is non-zero,

arises from the fact that the only non-zero component of the tensor µabcdef (used to

construct t
(0)
ab ) is the (rrrrrr) component, which then yields an identically zero t

(0)
ab from

its definition in Equation (20). This result shows that the two approaches we have

compared must be quantifying different phenomena. We interpret this as follows: The

Buchert averaging scheme is designed to pick out the large-scale properties of a space-

time, and provides a set of quantities in which this behaviour can be understood. These

include quantities like the average of the energy density and the expansion rate of a

domain of space, as well as the kinematical back-reaction, which quantifies deviations

from the expected Friedmann behaviour. The Green & Wald formalism, on the other

hand, does something quite different. The large-scale properties of the space-time appear

to be assumed to be readily identifiable as a “background”. There is no prescription

as to how this background should be identified, which suggests that the authors of

this formalism do not consider this to be a question that their approach should be

expected to supply. Instead, once a background is given, the Green & Wald formalism

gives the consequences of small scale fluctuations on the average field equations that

the background must obey. This is a perfectly valid problem to consider, but is quite

different to that which the Buchert formalism appears to be designed to address.

In applying the Green & Wald formalism to known exact space-times, we found that

the lack of a prescription for identifying the “background” was a severe limitation on
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understand how the lack of back-reaction should be understood. Take for example the

universe constructed from slabs of Einstein-de Sitter and Kasner geometries. Treating

the Kasner regions as perturbations to Einstein-de Sitter is quite different to considering

regions of Einstein-de Sitter as perturbations of Kasner. In each case the Green & Wald

formalism tells us there is zero back-reaction from the perturbations, but an Einstein-de

Sitter space-time is certainly very different to a Kasner space-time. So, if we have a

Universe in which both types of geometry exist and cover approximately equal volumes

of space (at some reference time), then how should we describe the large-scale expansion?

Likewise, an LTB model can be chosen to have a background that is either an FLRW

model or another LTB model. These two background cosmologies may be quite different

from each other, yet the back-reaction from the Green & Wald formalism is zero in

both cases. The Green & Wald approach does not seem to have an answer to these

questions, which are surely of fundamental importance to the question of back-reaction

and averaging in cosmology.

Appendix A. LTB models

The metric of LTB models contain two metric functions a and Γ = 1 + ra′/a, which

follow from the solutions of Equation (106). The latter admits analytic solutions given

by the following implicit relations

expanding layers ȧ > 0, ε = ±1 : H̄0(t− t0) = F − F0, (A.1)

collapsing layers ȧ < 0, ε = 1 : H̄0(t− t0) = 2π − (F − F0), (A.2)

where

F =
ε

βq0

[
A(1− εαq0a)−√αq0a

√
2− εαq0a

]
and F0 = F |a=a0=1, (A.3)

and where

αq0 =
2|Ω(k)

q0 |
Ω

(m)
q0

and βq0 =
2|Ω(k)

q0 |3/2

Ω
(m)
q0

, (A.4)

where A = arccos for ε = 1, Ω
(k)
q0 > 0, and A = arccosh for ε− 1, Ω

(k)
q0 < 0. The metric

function Γ is obtained by implicit derivative of (A.1)–(A.2), with the result displayed in

Equation (109). The functions Gm and Gk in this equation are given by

Gm ≡ 1− Hq

Hq0

− Yq, Gk ≡ 1− Hq

Hq0

− 3

2
Yq, (A.5)

with Yq ≡ Hq(t− t0) given explicitly by

Yq =
βq0 (2− εαq0a)1/2 [F − F0]

(αq0 a)3/2
(A.6)

for expanding layers with ε = ±1, Hq > 0, and

Yq = −βq0 (2− αq0a)1/2 [2π − (F − F0)]

(αq0 a)3/2
(A.7)
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for collapsing layers with ε = 1, Hq < 0. The expressions for Hq ≡ ȧ/a are then

Hq =
H̄0

(
Ω

(m)
q0 − Ω

(k)
q0 a

)1/2

a3/2
, Hq0 = Hq|a=1 = H̄0

(
Ω

(m)
q0 − Ω

(k)
q0

)1/2

, (A.8)

where the second expression is being evaluated at t = t0.

Appendix B. Expanding and collapsing, “Open” and “Closed”, LTB models

The LTB models are usually classified in terms of the sign of Ω
(k)
q0 , and therefore the

existence of zeroes of ȧ through Equation (106)), into the following kinematic classes:

ever expanding “hyperbolic” (Ω
(k)
q0 < 0) models, “parabolic” (Ω

(k)
q0 = 0) models, and

re–collapsing “elliptic” models (Ω
(k)
q0 > 0). We can also classify them in terms of

the homeomorphic class (i.e. topology) of the the constant time hypersurfaces. In

“open” models these hypersurfaces are homeomorphic to R3, while in “closed” they are

homeomorphic to 3–spheres S3 (these models admit other topologies as well, but we will

not consider them).

The coordinate choice R0 = r is appropriate for open models that admit a single

symmetry centre (see further below), and in such cases proper length along radial rays

diverges as r →∞. However, “closed” models admit two symmetry centres and proper

length along radial rays is necessarily bounded. For these models a convenient choice of

radial coordinate is

R0 =
sin
√
k0 r√
k0

, where k0 = H̄2
0 Ω̄k

0. (B.1)

This choice transforms the LTB metric into a form that makes it easier to compare with

the metric of a closed FLRW model:

ds2 = −dt2+a2

 Γ2 cos2(
√
k0r)dr

2

1− Ωkq0
Ω̄k0

sin2(
√
k0r)

+
sin2(
√
k0r)

k0

(
dθ2 + sin2 θdφ2

) .(B.2)

Regular closed models must comply with the condition Ω
(m)
q0 > 0 in order to avoid the

existence of a thin shell at the timelike hypersurface
√
k0r = π (the “equator”) where

R′0 = 0 (see comprehensive discussion in [24,25]). Hence, these models are all “elliptic”,

and are characterized by solutions with ε = 1 in Equations (A.1), (A.2), (A.6), (A.7),

and (109).

Appendix C. Regularity conditions

Standard regularity conditions for LTB models are based on the following:

Centre regularity: The models admit (up to two) regular centres. “Open” models admit

a centre, i.e. a worldline (usually marked by r = 0) such that R(t, 0) = Ṙ(t, 0) = 0.

“Closed” models admit 2 centres, and some models exist without any symmetry centres.
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Absence of shell crossings: These singularities occur if R′ = 0 holds for R > 0, or equiv-

alently Γ = 0 for a > 0. Necessary and sufficient conditions to prevent shell crossings

can be derived in terms of initial value functions. These conditions can lead to stringent

restrictions on the radial density profiles of the models (especially for elliptic models

with ε = 1 and Ω
(k)
q0 > 0).

We will consider only models admitting regular centres, whether one (open models) or

two (closed models). Regarding shell crossings, we will assume that the models admit

a significant range of time evolution that is free from them.

Appendix D. FLRW background

Open and closed LTB models may admit a dust FLRW background characterized by

the scale factor ā(t) and dust density ρ̄(t) (we shall denote all FLRW quantities by an

overbar). For open models these are given by

ds2 = −dt2 + ā2

[
dr2

1− H̄2
0 Ω̄

(k)
0 r2

+ r2
(
dθ2 + sin2 θ dφ2

)]
, (D.1)

where

˙̄a
2

H̄2
0

=
Ω̄

(m)
0

ā
− Ω̄

(k)
0 , and ρ̄ =

ρ̄0

ā3
. (D.2)

The constants H̄0, and Ω̄
(m)
0 = 8πρ̄0/(3H̄

2
0 ), and Ω̄

(k)
0 = Ω̄

(m)
0 − 1 = (3)R̄0/(6H̄

2
0 ) are

the present day Hubble and density factors. The necessary and sufficient conditions for

this background to be realised follow by demanding that initial functions be only time

dependent, such that

[Ω
(m)
0 ]′ = [Ω

(m)
q0 ]′ = 0 ⇒ Ω

(m)
0 = Ω

(m)
q0 = Ω̄

(m)
0 ⇒ δ

(m)
0 = 0, (D.3)

[Ω
(k)
0 ]′ = [Ω

(k)
q0 ]′ = 0 ⇒ Ω

(k)
0 = Ω

(k)
q0 = Ω̄

(k)
0 ⇒ δ

(k)
0 = 0. (D.4)

These conditions mean that Equations (106) and (109) yield a = ā(t) and Γ = 1, and

thus Equation (104) tends to (D.1), and Equation (106) tends to (D.2). For closed

models, it is straightforward to show that Equations (D.3)–(D.4) applied to Equation

(B.2) yield the metric of a closed dust-filled FLRW model.

Appendix E. Components of tensors in the Green & Wald formalism

The non-zero components of the tensor ∇̄c γab for the LTB metric in Equation (104) are[
∇̄c γab

]
rrr

= g′rr −
2H̄2

0 Ω̄
(k)
0 r

1− H̄2
0 Ω̄

(k)
0 r2

grr =
2

r

[
rΓ′

Γ

1− H̄2
0 Ω

(k)
q0 r

2

1− H̄2
0 Ω̄

(k)
0 r2

+ (1− H̄2
0 Ω̄

(k)
0 r2)Γ

+H̄2
0 Ω

(k)
q0 r

2

(
1 +

3

2
δ

(k)
0

)
− 1

]
grr, (E.1)
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[
∇̄c γab

]
trr

=
[
∇̄c γab

]
rtr

= −γrr
˙̄a

ā
=

[
a2Γ

1− H̄2
0 Ω

(k)
q0 r

2
− ā2

1− H̄2
0 Ω̄

(k)
0 r2

]
˙̄a

ā
, (E.2)[

∇̄c γab
]
θθr

= 2ra2(Γ− 1),
[
∇̄c γab

]
φφr

= sin2 θ
[
∇̄c γab

]
θθr
, (E.3)[

∇̄c γab
]
θrθ

=
[
∇̄c gab

]
rθθ

= ra2

[
1− (1− H̄2

0 Ω̄
(k)
0 x2) Γ

1− H̄2
0 Ω

(k)
q0 r

2

]
, (E.4)[

∇̄c γab
]
rφφ

= sin2 θ
[
∇̄c γab

]
rθθ
, (E.5)[

∇̄c γab
]
tφφ

=
[
∇̄c γab

]
φtφ

= −γθθ sin2 θ
˙̄a

ā
=
(
ā2 − a2

)
r2 sin2 θ

˙̄a

ā
, (E.6)

[
∇̄c γab

]
rrt

= 2grr

[
˙̄a

ā
− ȧ

a
− Γ̇

Γ

]
, (E.7)

[
∇̄c γab

]
θθt

=
2r2a

ā
(ȧ ā− a ˙̄a) ,

[
∇̄c γab

]
φφt

= sin2 θ
[
∇̄c γab

]
θθt
, (E.8)
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