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Abstract 

The variational technique has been extended to calculate the dynamic stress intensity 

factors with the meshless finite block method in this paper. The Lagrange series is utilized to 

formulate the meshless approach in the normalized domain with coordinate mapping technique 

for practical problems. The stress intensity factors are evaluated by a variation of crack length 

for a mixed-mode fracture problem. Based on a static reference, the stress intensity factors in 

the Laplace space are determined with a boundary integral and domain integral. The Durbin 

inversion method is utilised to determine the time-dependent stress intensity factors. The 

applications of the proposed technique to two-dimensional fracture mechanics are demonstrated 

with three examples. Comparisons are made with the boundary element method and the 

meshless method in order to demonstrate the efficiency and accuracy of the proposed method. 
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1. Introduction 

In linear fracture mechanics, the focus is on the ability to determine the stress intensity 

factors at the crack tip under either static or dynamic loads. In 1976, Professor D.P. Rooke and 

D.J. Cartwright [1] for the first time documented several hundred analytical and numerical 

solutions in “A Compendium of Stress Intensity Factors”. This documentation is considered as 

a significant handbook and database in the application of fracture mechanics. As the analytical 

solutions of the stress intensity factor are very rear in literature and publications, the 

development of numerical method is therefore important. Several numerical methods have been 

well developed to calculate the stress intensity factors for two- and three-dimensional problems, 

which include the finite element method (FEM, see Zienkiewicz [2]) and the boundary element 

method (BEM) by Brebbia [3], Balas et al [4]. One of the most successful numerical technique 

in fracture mechanics is the dual boundary element method (DBEM). This is due to its unique 

ability to deal with crack growth and fatigue life evaluation (see Aliabadi and Rooke [5]). 

Portela et al [6] demonstrated that DBEM for two-dimensional problems is efficient and 

accurate for the analysis of cracked structures. Mi and Aliabadi [7] developed the discontinuous 

quadrilateral quadratic elements for three-dimensional problems. A comprehensive review of 

the DBEM is given by Aliabadi [8]. Wen et al [9,10] proposed a contour integral technique and 

variational technique to determine two- and three-dimensional stress intensity factors using the 

indirect boundary element method (combination of the fictitious load method and displacement 

discontinuous method). The references were chosen as a crack embedded in an infinite plate 

and the derivatives of the traction and displacement on the boundary were determined 

numerically with a variation of crack area.  

Although FEM and BEM have become very successful tools applied in engineering, the 

development of new advanced methods nowadays is still attractive in computational mechanics. 

Meshless approximations have received much interest since Nayroles et al [11] proposed the 

diffuse element method. Later, Belyschko et al [12] proposed element-free Galerkin method 

(EFGM) and Liu et al [13] developed the reproducing kernel particle methods. Recently, Atluri 

et al presented a family of Meshless methods, based on the Local weak Petrov-Galerkin 

formulation (MLPGs) for arbitrary partial differential equations [14-16] with moving least-

square (MLS) approximation. MLPG is reported to provide a rational basis for constructing 

meshless methods with a greater degree of flexibility. Local Boundary Integral Equation (LBIE) 
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with moving least square and polynomial radial basis function (RBF) was developed by Sladek 

et al [17,18] for the boundary value problems in anisotropic non-homogeneous media, i.e. 

functionally graded materials. Both methods (MLPG and LBIE) are meshless due to the fact 

that no domain/boundary meshes are required. Based on the point collocation method, the 

meshless Finite Block Method (FBM) with mapping technique was proposed for elasticity 

problem by Wen and Cao [19]. One unique characteristic of the FBM is that the displacements 

and stresses are continuous along the interface between two blocks. Thereafter, Li and Wen [20] 

and Li et al [21,22] applied FBM to non-linear elasticity including heat conduction and contact 

problems in engineering successfully.  

Wen et al [9,10] developed the contour integral method and the variational technique firstly 

with the use of the boundary element method to evaluate stress intensity factors. In this paper, 

we present the numerical implementation of variational technique with the use of meshless 

finite block method for solving fracture dynamic problems. The accuracy has been illustrated 

by a rectangular sheet containing central/edge cracks subjected to static and dynamic loads. 

Excellent agreements with dual boundary element method and element free Galerkin method 

are achieved. 

 

2. Lagrange interpolation and mapping technique 

Based on the mapping technique, the meshless finite block method with Lagrange series 

interpolation was proposed in [22]. It is necessary to be introduced briefly in this section. For 

two dimensional problems, we use a set of nodes in the normalized domain at ),( kkP  , 

iNjk  )1( , Ni ,...,2,1 and Nj ,...,2,1 , where N indicates the number of nodes 

along either   or   axis. Function )(Qu at ),( Q can be approximated as 
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and the number of nodes in total is  NNM 
 
for one block. We define the shape function as  
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Therefore, we can derive the first order partial differential of shape function )(Qk  
easily with 

respects to Q  
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Let us arrange the nodal value of the first order partial differentials in vector form, in terms 

of the nodal value of function u, as 

uDu  , ,  
MMkl 
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Therefore, the L-th order partial differentials 
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can be approximated by  
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Similar as the finite element method, a quadratic block with 8 seeds [19] is mapped into a 

normalized domain ),(   by the following shape functions, as shown in Figure 1(a), as 
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where ,8,...,2,1  ),,( iii   are seed coordinates as shown in Figure 1(b). Then, we can transfer 

coordinate (mapping) for the real coordinate system into the normalized coordinate by 
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 Figure 1. Mapping technique: (a) real domain; (b) normalized domain. 
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,,...,2,1,/ )()( MkJ kk

ij   at each collocation point ),( kkP  . It is clear that the nodal values of 

the first order partial differentials in a real block can be determined in terms of the first order 

partial differential matrix in the normalized domain 1 ;1   . 

 

3. Finite block method in dynamic elasticity 

For two-dimensional dynamic elasticity, the governing equations, in terms of the stress, are 
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where u and v are displacements,   indicates the mass density. For plane-strain case, we hold 

the relationship between stress and strain, by Hook's law, as 
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in which E  and  are Yong's modulus and Poisson ratio respectively. The accelerations in 

(15)(16) should be omitted for the static case (or 0 ). The boundary conditions are given, 

for 0t , by 

uyxtvtvtutu  ),(             )()(    ),()( 00 ,       (18) 

for displacement boundary u , and 
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for traction boundary t . In addition, the initial conditions are specified in domain 
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Application of the Laplace transform over both sides of the equilibrium equations gives 
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where the Laplace transform of function )(tf  is defined  
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From (18)(19), the displacements and tractions in the Laplace domain satisfy: 
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Introducing the mapping technique with differential matrices in (13a) and (13b) gives 
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where the diagonal matrices:  diagρ  ,   Ux diagφ  ,  Vy diagφ  ,  tx Udiagθ  , 

 ty Vdiagθ  and coefficients  

)21)(1(2
,

)1(2
,

)21)(1(

)1(
321
















E
c

E
c

E
c .     (25) 

Therefore, we can write the governing equations for each node in each block, in matrix form, as  
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Considering the governing equation in the domain for each block, connect conditions along the 

interface between two blocks, displacement boundary condition (23a) and traction boundary 

condition in (27), we may obtain the system equation as  

   TT ~
,

~~,~)( yxs ffvuA            (29) 

where vectors  yx ff
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~

 consist the body forces in (26), tractions in (27) and displacements in 

(23a). Therefore, we are able to determine the nodal values of the displacement by solving 

algebraic system equations (29) in Laplace space. 

         Among several Laplace inverse algorithms, one of the simplest methods was proposed by 

Durbin [23] in 1975. By Durbin's method, the time-dependent function )(tf  can be 

approximated, with (K+1) samples )(
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where   Tiksk /2  , Kk ,...,1,0 . Again, the solution of the static case can be obtained 

simply by letting 0  in the above numerical procedure. 

     

4. Variational technique in fracture mechanics  

Let us consider a variation a  of crack length at crack tip ) ,( ccc yxx  along the 

extension of crack surface with slant angle (see Figure 2), the variation of crack tip coordinate  
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       Figure 2. Blocks surround the crack tip with variation of crack length. 

in which L

nN  denotes shape function from (9),  n is the seed number corresponding to the crack 

tip in block L. In order to determine the stress intensity factors, we need the variations of 

displacement and traction need. Let us consider a static problem as a reference ),( vu
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same configuration of a cracked plate and zero body forces. Apply the reciprocal theory gives 
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Therefore, we have 
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Therefore, the mixed-mode transformed stress intensity factors, for a plane strain problem, 

yields from (38) 
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in which 
nu

u
~

~
*




  , u~  and nu~  are transformed tangential and normal discontinuous 

displacements (COD) near crack tip. We can use (40) directly to determine static stress 

intensity factors 

 

,

,
1)21)(1(2

)1(

static

I

static

II

2/1

0000

2

static

I

KK

dv
a

t
u

a

t
dt

a

v
t

a

uE
K

ut

yx
yx











































































 


  (41) 

where 
nu

u




  , u and nu are static tangential and normal discontinuous displacements near 

crack tip. 

 

5. Examples 

In the Durbin method, we have two free parameters   and T, which affect the accuracy 

slightly [23]. In the following examples, we take 0/5 t  and 20/ 0 tT , where time unit 

dcwt /0  , w is a characteristic length such as the width of plate and the velocity of the 
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longitudinal wave dc )21)(1(/)1(  E . The number of samples in Laplace space is 

1K  and K  is taken to 25. Apart from a boundary integral in (40), a domain integral needs to 

be calculated. As there is no singularity in these integrals, we evaluate all integrals by any 

regular integral scheme. In the following examples, the square domain integration in the 

normalized domain ),(  is performed by dividing the square into 10×10 cells with 4×4 Gauss 

points for each cell. The location of the node along the two axes in the normalized domain is 

selected as 


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     (42) 

and the number of nodes in total  NNM  for each block. To determine the tangential and 

normal discontinuous displacements near the crack tip, we consider the third node from the 

crack tip in all examples by use of COD. 

5.1. Central/edge cracks in a rectangular sheet under uniform static load 0  

For the sake of simplicity, to validate the degrees of accuracy and efficiency by the use of 

the variational technique, we observe an embedded crack in a rectangular sheet under static 

load firstly shown in Figure 3(a). Let us suppose a rectangular plate of width 2w and height 2h 

with a centred crack of 2a is subjected to a uniform load 0  on the top and bottom. Due to the 

symmetry of the problem, a quarter of the plate is modelled as shown in Figure 3(b) with only 

two blocks. Yong's modulus is taken as a unit and Poisson’s ratio 3.0 . The normalize static 

Stress Intensity Factors (SIFs) aK  0

static

I /  by both variational technique and COD are listed 

in Table 1 versus ratios wa /  and wh / . We take the node density 13  NN  and define the 

average relative errors as 

%)( 



0

1

0

I

0

I

static

I

0

)(/)()(
1 N

i

iii aKaKaK
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.        (43) 

where 0N is the number of crack length ia , )(0

I iaK  is from handbook [1]. It is clear that the 

average relative errors are 1.1% and 0.7% by using the variational method and 1.3% and 4.8% 

by COD method when 1/ wh  and 0.5 respectively. The same conclusion can be found for a 

double edge cracked sheet from Table 2. To study the convergence, we present normalized 
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SIFs in Table 3 with different node densities for a central crack, where NNN   , 

5.0/ wa  and 5.0/ wh . Excellent convergence can be obtained for both the variational 

method and COD method.   

 

 

 

 

 

 

 

 

  

   

  

 

                                            (a)                                                            (b) 

Figure 3. Plate with a central crack: (a) geometry; (b) quarter of the plate with two blocks.  

 

 

                Table 1. Normalised stress intensity factors aK 0I /  for central crack. 

wa /  
1/ wh  5.0/ wh  

Variation COD [1] Variation COD [1] 

0.2 1.1554  1.0570  1.10  1.1665  1.1949  1.17  

0.3 1.1169  1.1108  1.12  1.3598  1.3794  1.35  

0.4 1.2057  1.1928  1.20  1.6160  1.6497  1.60  

0.5 1.3218  1.3060  1.32  1.9520  2.0227  1.93  

0.6 1.4671  1.4541  1.46  2.4082  2.5522  2.40  

0.7 1.6602  1.6552  1.67  3.0248  3.3235  3.00  

0.8 1.9686  1.9673  ---- 3.7611  4.4009  ---- 

%  1.1% 1.3% 
 

0.7% 4.8% 
 

 

 

 

 

2h 
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                         Table 2. Normalised stress intensity factors aK 0I /  for edge crack. 

wa /  
1/ wh  5.0/ wh  

Variation COD [1] Variation COD 

0.2 1.1841  1.2101  1.15  1.4677  1.5409  

0.3 1.2234  1.2483  1.19  1.7800  1.8536  

0.4 1.2758  1.2907  1.23  2.1145  2.2153  

0.5 1.3241  1.3346  1.28  2.4157  2.5644  

0.6 1.3755  1.3832  1.33  2.5952  2.8083  

0.7 1.4552  1.4575  1.41  2.5629  2.8416  

0.8 1.6268  1.6119  ---- 2.3684  2.6756  

%  3.2% 4.4% 
   

 

 

             Table 3. SIFs versus node density 

N  Variation COD 

5 1.67071 1.95372 

9 1.92801 2.04998 

13 1.95203 2.02266 

17 1.95906 2.00611 

 

 

5.2. A  central crack embedded in a rectangular plate under dynamic tension 

Let us consider a rectangular plate of width 2w and length 2h with a central crack of length 

2a in Example 5.1. subjected to a dynamic uniform tension load )(0 tH  on the top and bottom, 

here )(tH  is the Heaviside step function. Let Poisson ratio 3.0 , ratio 5.0/ wa  and 

Young’s modulus be one unit. Two ratios of height and width are considered, i.e. 1/ wh , 

5.0/ wh , with node density 13  NN . Figures 4 and 5 show normalized dynamic stress 

intensity factors atK 0I /)(  for different ratios of height and width respectively. The 

achieved results are compared with indirect Boundary Element Method (BEM) [24] and the 

element free Galerkin method (EFM) [25]. In general, the maximum value of dynamic stress 

intensity factor for each case is found to be twice that of the static value [24]. As the solution 

by BEM is assumed to be more accurate, it can be concluded that the degree of accuracy by 
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variational technique is higher than that by EFM [25]. In addition, a comprehensive review on 

the selections of the two free parameters   and T  in Durbin inverse method can be found in 

[23], therefore, it is not necessary to discuss here. 

 

           

 

Figure 4. Normalized dynamic stress intensity factor atK 0I /)(  for a central crack under 

uniform tension load )(0 tH  while 1/ ,5.0/  whwa  and 3.0 . 

 

           

 

Figure 5. Normalized dynamic stress intensity factor atK 0I /)(  for a central crack under 

uniform tension load )(0 tH  while 5.0/ ,5.0/  whwa and 3.0 . 
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5.3. Rectangular plate with an inclined edge crack under dynamic load 

Let us consider a rectangular panel with a slanted edge crack at angle   with three simply 

supported edges loaded by a Heaviside tensile load )(0 tH  on the top surface. Figures 6(a)(b) 

show the geometry of cracked plate with four blocks to construct the computational model. The 

panel is of the following material properties [26]: shear modulus   9104.29  Pa; density 

2450 kgm-3; Poisson’s ratio 286.0 . We observe two cases: (a) 045 , 63.22a mm; 

(b) 16 ,00  a mm. Normalized mixed-mode SIFs atK 0I /)(  and atK 0II /)(  versus 

real time in s  are shown in Figure 7. The solutions by using dual boundary element method 

[26] are also plotted in the same figure for comparison. We can see clearly that these solutions 

by different approaches are matched very well. To observe SIFs with a longer period of time, 

i.e. in the region 10/0  wtcd , we present the time-dependent SIFs for different cases in 

Figures 8 and 9. The results by the meshless method with enriched radial basis functions [27] 

are also presented in the same figures for comparison. As expected, the absolute value of mode 

II SIF )(II tK  is much smaller than )(I tK  when 
00 . The numerical solutions show the 

reasonable agreement between these two methods. 

  

 

 

 

 

 

 

 

 

 

 

            (a)               (b) 

    Figure 6. Slant edge crack in plate: (a) Geometry and dynamic load; (b) modelling 

with four blocks. 
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Figure 7. Normalized dynamic stress intensity factor atK 0I /)(  by variational technique and 

dual boundary element method. 

 

                               

Figure 8. Normalized dynamic stress intensity factor atK 0I /)(  by variational technique and 

meshless method versus normalized time wtcd /  when 
045 . 
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Figure 9. Normalized dynamic stress intensity factor atK 0I /)(  by variational technique and 

meshless method versus normalized time wtcd /  when 
00 . 

 

6. Conclusion 

The variational technique by the use of meshless finite block method in fracture 

mechanics was investigated in this paper. In order to determine the dynamic stress intensity 

factors, a static reference was introduced for different Laplace parameters in the transformed 

space. We evaluated the transformed stress intensity factors by using the reciprocal theory with 

a regular boundary integral and domain integral. The time-dependent variables were obtained 

by Durbin inverse technique. The degree of the accuracy and convergence of the proposed 

technique was demonstrated by three examples. We can make following conclusions can be 

made:  

(1) The computational effort is reduced by using few blocks to discrete the cracked panel 

and convergence of the solution can be achieved;  

(2) The variational technique with FBM is valid to deal with dynamic fracture problem 

with a higher degree of accuracy than COD method and EFM;  
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(3) Reference can be chosen as a static case to save CPU time;  

(4) Reasonable accurate solutions in the real time domain can be achieved by fewer 

samples in the Laplace space;  

(5) The variational technique can be easily extended to three-dimensional elasticity, 

functionally graded material and plate bending crack problems. 
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