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Abstract 

 The nonlinear large deformation analysis for a tapered cantilever beam subjected to a 

concentrated force and a bending moment at free end is presented using the finite integration 

method (FIM) in this paper. The bending stiffness of the beam is assumed to be  a function of 

natural coordinate. The nonlinear ordinary differential equation is numerically solved with the 

iterative technique. The numerical examples demonstrate that FIM is of high accuracy and 

excellent convergence.  
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1. Introduction 

 In the traditional beam bending theories including thin and moderate thick beam bending, the 

coupling between the shear/axial forces and deformation known as geometric nonlinearity is 

ignored. However, the geometric nonlinearity of the beam must be taken into account in the case 

of the post-buckling and large deformations in the Euler–Bernoulli beam theory. In the early 

study, the analytical solutions for simple geometry (uniform cross-section) and loading 

conditions with forces at the free end were derived in [1] in terms of elliptic integrals of the first 

and second kind. Numerical schemes were proposed in [2] for non-linear differential equations 

with concentrated force and moment. With the use of the elliptic integrals, Kimball and Tsai [3] 

solved the large deflection problem under combined loadings. More recently, Wang et al [4] 

applied the homotopy analysis method for the large deformation of cantilever beam under a point 

load at the free tip with the explicit analytic formulas in terms of the rotation angle at the free tip, 

which provided a convenient and straightforward approach to calculate the vertical and 

horizontal displacements of the cantilever beam with large deformation.  

 In engineering, the non-prismatic beams with variable cross-section such as tapered beam are 

widely used due to their ability in reducing the weight of structures. In this case, it is difficult to 

obtain analytical solutions due to the complicity of nonlinear differential equations. By using the 

finite element method, Wood and Zienkiewicz [5] studied the large deformation of a non-uniform 

column subjected to an eccentric axial compressive force. The weight residual method was 

proposed to solve a slender tapered cantilever beam under arbitrarily distributed loads by Baker 

[6]. Different numerical approaches can be found in [7,8,9,10] to solve the nonlinear differential 

equations for a tapered beam with large deformation under different loading conditions.  

 The finite integration method (FIM) was proposed by Wen et al [11] to solve partial 

differential equation with higher accuracy and efficiency. The idea of FIM is to apply definite 

integration over the original PDEs directly and transfer PDEs into algebraic equations in terms 

of the nodal values. Thereafter, Li et al [12] extended this method to solve a nonlocal elasticity 

for static and dynamic problems. Subsequently, FIM was applied to multi-dimensional partial 

differential equations for practical problems in engineering by Li et al [13]. With higher order 

numerical quadratic formula by Simpson’s algorithm and Chebyshev polynomial, the higher 

accurate solutions for general PDEs can be obtained, see [13,14] by Li et al and [15] by 

Boonklurb et al. More recently, Yun et al [16], Li et al [17] and Li and Hon [18] have 
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demonstrated the applications of FIM to solve various kinds of stiff PDEs problems with its 

unconditional stability and distinct advantage in smoothing stiffness in terms of singularities, 

discontinuities and stiff boundary layers. 

 Based on the idea of direct integration scheme, FIM is demonstrated to solve the large 

deformation problems for the tapered beam under arbitrary loading conditions in this paper. In 

section 2, the brief introduction of FIM is given with Lagrange series interpolation. In section 3 

the large deformation is discussed and FIM is demonstrated to solve the ordinary differential 

equation in Cartesians coordinate system. In section 4, the integration matrix is applied to the 

nonlinear problem in deformed axis. In section 5, the post-buckling analysis under compressive 

eccentric force is carried out for the uniform cross-section and tapered beams under different 

loading conditions. It has been demonstrated numerically that the nonlinear large deformation 

can be solved accurately with FIM. The degree of accuracy and convergence of FIM with the 

iterative technique have been observed and compared with analytical solutions.  

 

2. Finite integration method for one dimension  

 The integration matrix of the first order can be obtained by direct integration with Trapezoidal 

rule, Simpson rules, Cotes formula and Lagrange formula introduced in [13]. It has been 

demonstrated that the Lagrange formula gives the highest accuracy results. By Lagrange 

interpolation, the function )(xu  is approximated, in terms of the nodal values, as 
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where iu is the nodal value at node j . If the nodes are uniformly distributed in the region, we 

have NiNixi ,...,2,1 ),1/()1(  , where N denotes the number of nodes in the region. For 

convenience of integration, Lagrange interpolation can be written in terms of a polynomial as 

follows 
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where the coefficients  N

kkc
1
 are unknown which can be determined by 



Large deformation of tapered beam with  finite integration method                                                                   Huang, Yuan, Zheng, Avital, Wen                                                            

 - 4 - 

uBc
1                                                                                   (3) 

where 









































































NN
N

NNN

N

N

u

u

u

c

c

c

xxx

xxx

xxx

...
  ,

...
  ,

...1

...............

...1

...1

2

1

2

1

12

1

2

2

22

1

1

2

11

ucB .          (4) 

The definite integration of function )(xu  at each node,  )1( jx j  and )1/(1  N for 

uniformly distributed nodes, gives 
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Considering the vector of the coefficient in Equation (3), we can arrange nodal value of definite 

integration in Equation (5) )( ixU

 

in a matrix form as 

AuU  ,  
1 BBA                  (6) 

where  TNi UUUU ,...,, 2  and 
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This integration can be extended to the multi-layer integral of one-dimensional problem and it is 

defined as 
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Therefore, one has the numerical integration )()2( xU  as 
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From Equation (6),  above multi-integral can also be written in a matrix form as 

uAuAU
2)2()2(                    (9) 

For m-th multi-layer integration of function )(xu  at each node, we obtain 

uAuAU
mmm  )()(

                  (10) 
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In the same way, the first order derivative respect to coordinate x is defined 
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Therefore, it is easy to arrange the first order derivative in a matrix form to be used in finite 

difference method as 

DuE                       (12) 

where 
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Considering higher order derivates, we obtain  
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Thus, the m-th order of derivates can be written in terms of nodal values as 

 uDE
mm )(
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These differential matrices can be used in the point collocation method (PCM) in order to solve 

both linear and nonlinear ordinary differential equations. In this case, all differential equations 

are satisfied exactly in the domain and boundary conditions on the boundaries for the collocation 

points, which is called a memthod in strong form. 

 

3. Finite integration method in Cartesians coordinate system   

 Consider a beam of length L and bending stiffness EI  subjected to a concentrated bending 

moment M and a axial compressive force P  at the free end shown in Figure 1. The curvature of 
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Figure 1. Cantilever beam in Cartesians coordinates under concentrated forces at the end.  

 

with two constrain boundary conditions of the cantilever beam 

 0      when 0   and   0  x
dx

dw
w               (16) 

where   is the radius of beam deflection, w is deflection, 
Bw is deflection at the free end and 

)(xEI  is bending stiffness. Equation (15) can be rewritten in the normalized form as 
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where  
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For convenience of analysis, in the following section, the tilde "~" is removed and all 

displacements are normalized. Applying integration once on both sides of Equation (17), we 

obtain nonlinear equation in matrix form 

IAFIAFIAFww 0' cwB                 (19) 

where 0c  is an arbitrary integral constant, and vectors  TNwww ..., ,, 21w ,  T
1 ..., ,1 ,1I , 

NB ww 
 
and 
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Applying the integration again to Equation (17) results 

IxFIAFIAFwAw 10

222 ccwB               (21) 

where 
1c  is the second integral constant and  T

Nxxx ..., ,, 21x . The boundary conditions in 

Equation (16) result 010  cc  for a cantilever beam. Due to the coefficient matrix in Equation 

(20) depends on the slop of the beam, the iterative algorithm is introduced with the following 

flow chat 

Step 1: Set 0m  and initialize transverse load 
)0(

w  to be zero; 

Step 2: Determine derivate vector using the differential matrix 
)(m

DwE  ; 

Step 3: Determine matrix mF ; 

Step 4: Solve the linear algebraic equation to determine 
)1( m

w by 

  IFAIFAwFAw )(2)(2)1()1()(2)1( mmm

B
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Step 5: Check the relative error of the deflection at the tip 
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 if 610 go to Step 8; 

Step 6: To speed up the iterative process in the next step, the deflection is modified by 

 
)1()()1( )1(   mmm www  ,                (24) 

where   is the speed factor in the iterative process ( 0.10   ); 

Step 7: set 1mm  and go to Step 2; 

Step 8: Print results and terminate iteration.  

 

 For small deflection theory, the governing equation becomes 
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For a constant cross-section beam, the bending stiffness EI is constant and the analytical solution 

can be derived easily as 

  xxw 
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In order to evaluate the degree of accuracy, we define 
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Computational results of deflection at the tip versus the number of node N and factor   are 

shown in Table 1 with 2  and 5.0 .  Figure 2 shows the deflection at the tip varying with 

normalised compressive force  . Obviously, when 2.2 , the difference between numerical 

results by FIM and analytical solutions in Equation (26) is insignificant. When horizontal force 

is close to the critical buckling load 4674.24/2  cr of elasticity, the gap between these two 

solutions increases significantly. However, the deflection by FIM is larger than that by elasticity 

solution. This observation is inaccurate as the effect of horizontal displacement is not taken into 

account in the governing equation. To obtain the accurate solutions of large deformation, we will 

introduce natural coordinate system (s) to deal with the large deflection of the beam in the 

following examples. 

  Table 1. Relative errors (ε) for different number of nodes. 

N 5.0  0.1  5.1  0.2  

2 6.3023×10-3 8.4716×10-3 1.280510-2 2.5798×10-2 

4 6.3076×10-3 8.5092×10-3 1.2994×10-2 2.7168×10-2 

6 6.3076×10-3 8.5092×10-3 1.2994×10-2 2.7163×10-2 

8 6.3076×10-3 8.5092×10-3 1.2994×10-2 2.7163×10-2 

Exact 6.3073×10-3 8.5082×10-3 1.2988×10-2 2.7063×10-2 
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Figure 2. Deflection by FIM and analytical solution at the end versus the compressive loads 

with imperfect factor by a concentrated moment 01.0  

 

4. Analytical and FIM solution in natural coordinate system  

4.1 Analytical solution under a transverse force P. 

 Consider a tapered beam under a concentrated transverse force P  at free end shown in Figure 

3. The equilibrium equation under bending load gives  
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where  denotes the rotation or slop, s is the distance normalised to the length of beam L and 

is defined in Equation (18). Considering a uniform cross-section beam with a constant , the 

derivative of Equation (27) respect to s gives 
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 Figure 3. Cantilever beam in natural coordinate under concentrated forces at the end.  
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and the integration with the second boundary condition in Equation (28) at the free end ( 1s ) 
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where B is the slop at the free end B as shown in Figure 3. Therefore, the relationship between 

the slop and the transverse load can be obtained 
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Thus, the normalized load factor   can be written in terms of the rotation 
B  analytically. In 

addition, the displacements at the free end along y-axis (vertical) and along x-axis (horizontal) 

can be obtained by 

 
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Therefore, the normalized horizontal displacement at the tip is Bl1 . These integrals can be 

written in terms of the first kind elliptic integral [1]. However, it is easy to calculate those regular 

integrals numerically in order to determine factor   with specified rotation 
B . The variations 

of the rotation B , normalized deflection Bw  and normalized displacement   at the tip versus 

the normalized applied load )/( 2

BEIPl  are shown in Figures 4, 5 and 6. As it is expected, the 

limits of rotation B and deflection Bw  are 2/  and one unit respectively shown in these figures. 

 

             

 

   Figure 4. Rotation at the end B against normalized transverse force  . 
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   Figure 5. Deflection at the end Bw against normalized transverse force  . 

               

  Figure 6. Displacement at the end  against normalized transverse force  . 
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4.2 Numerical solution by FIM with transverse force P. 

 In this subsection, the second order ordinary differential equation in Equation (28) will be 

solved by using the finite integration method. Considering the general case in Equation (28) with 

a tapered beam using FIM, we have 

 0' c Ahθ
 
 and  IshAθ 10

2 cc                (35)

 

in which  TNhhh ,...,21,h , iiih  cos .and 
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 . Two boundary conditions become 
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By solving these nonlinear equations, we can determine all rotations at each node. Then the 

deflection and horizontal coordinate are obtained by 

 sAhw    and cx Ahl                   (37) 

in which the vectors are isih sin  and iih cosc  . Same as the nonlinear numerical procedure 

described in Section 3, the flow chart of the iterative algorithm is given as 

Step 1: Set 0m  and the initialize 
)0(

θ as zero; 

Step 2: Determine vectors 
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sh  and 
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ch ; 

Step 3: Solve equations to determine the rotations and constant coefficients 
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Step 4: Determine displacements
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w  and 
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xl  from Equation (37) 

Step 5: Check the relative error at the free end 
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 if 510 go to Step 8; 

Step 6: To speed up the iterative process with speed factor  , the deflection for next step is 

modified by 
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)1()()1( )1(   mmm θθθ  ,                (41) 

Step 7: set 1mm  and go to Step 2;` 

Step 8: Print results and the computation is terminated. 

 In order to observe the degree of accuracy of FIM, we consider a uniform cross-section beam 

with uniformly distributed nodes, load factor 01447.2  (in the case of 4/ B ) and speed 

factor 8.0  in Equation (41). The numerical results of deflection, rotation and displacement 

at the free end are presented in Table 2 versus the node density N. It is clear that the relative 

errors are less than %3  for all variables with only 3 nodes (2 segments). To observe the 

convergence of FIM, we present the numerical solutions in Table 3 for different iterations with 

node density 11N . It is illustrated from the table that the relative errors are less than %2  with 

5 iterations only. The deformed shapes corresponding to the different iteration steps are shown 

in Figure 7 in order to demonstrate the speed of convergence. In addition, we select the slop as 

zero 0)()0( s . However, we find that this selection does not affect the degrees of accuracy and 

convergence. The configurations shown in Figure 8 are deformed beams for different transverse 

load factors   with node density 11N . 

4.3 FIM for tapered beam under transverse force and moment 

 Consider a tapered cantilever beam with transverse force and moment at the free end. The 

boundary conditions yield 

 01 c   and 0

1

cha k

N

k

Nk 


 .                (42) 

where BEIML /
 
and BEI  denotes the bending stiffness at the free end. The bending stiffness 

is assumed to be a linear type variation with the deformed axis s 

 BEIssEI )23()(  .                  (43) 

The numerical result of the problem obtained by Lee et al. [7] and Nguyen and Buntara [8] are 

used to verify the accuracy of the FIM. The values of the displacements and rotation at the free 

end by different sources are presented in Table 4 for comparison, where BEIPL /2 , the 

number of nodes is 11 and the speed factor 6.0 . The table shows the excellent agreement 

between those results. 
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 To demonstrate the efficiency to solve large deformation problems by FIM, cantilever beam 

with large bending moment at the free end is observed. Figure 9 shows the configurations of the 

tapered beam with load factor   while the transverse force factor  is fixed to 5. Comparison of 

deformation under either pure bending or combination of transverse force and moment ),( 

has been made in Figure 10. Because of the effect of bending stiffness, the deformed beam under 

pure bending is not part of a circle anymore. It can be seen that the transverse load makes the 

configuration move upward as shown in Figure 10 with dash line. 

 

Table 2. Numerical results of FIM with different node densities. 

N 
Deflection Rotation Movement 

bw    
b        

3 0.49705 3.10×10-3 0.78911 4.70×10-3 0.167298 3.19×10-2 

5 0.49559 1.52×10-4 0.78554 1.86×10-4 0.162125 3.31×10-5 

7 0.49551 2.38×10-6 0.78540 3.83×10-6 0.162125 3.18×10-5 

9 0.49551 2.45×10-7 0.78540 2.23×10-7 0.162129 9.16×10-6 

11 0.49551 1.13×10-8 0.78540 1.10×10-8 0.162129 9.05×10-7 

Exact 0.49551 --- 0.78540 --- 0.162130 --- 

Table 3. Numerical results of FIM with different iterations m. 

m 
Deflection Rotation Movement 

bw    
b        

5 0.48644 1.83×10-2 0.76701 2.34×10-2 0.15536 4.18×10-2 

10 0.49406 2.92×10-3 0.78245 3.76×10-3 0.16103 6.77×10-3 

15 0.49527 4.78×10-4 0.78492 6.13×10-4 0.16195 1.12×10-3 

20 0.49547 7.84×10-5 0.78532 1.00×10-5 0.16210 1.90×10-4 

25 0.49550 1.28×10-5 0.78539 1.63×10-6 0.16212 3.88×10-5 

100 0.49551 1.13×10-8 0.78540 1.10×10-8 0.16213 9.05×10-6 

Exact 0.49551 --- 0.78540 --- 0.16213 000 

 

 

Table 4. Numerical results of tip displacements and rotation. 

),(   
FIM [8] [7] 

w  )2//(    w  )2//(    w  )2//(    

(5,0) 0.4918  0.5407  0.1671  0.4919  0.5407  0.1671  0.4926  0.5428  0.1678  

(0,2) 0.4136  0.6994  0.1411  0.4135  0.6993  0.1414  0.4136  0.6994  0.1411  

(5,2) 0.6429  1.0085  0.3635  0.6402  0.9962  0.3578  0.6433  0.9969  0.3640  
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    Figure 7. Deformation of the beam under transverse force at different iterations. 

 

 

           

  Figure 8. Deformation of beam under transverse force versus the transverse load  . 
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   Figure 9. Deformation of the tapered beam under transverse force versus the 

transverse load  and bending moment  . 

 

                        

 Figure 10. Comparison of deformation of tapered beam subjected to pure bending and 

combination of transverse force and moment ),(  . 
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5. Post buckling analysis by FIM   

 Consider a cantilever beam under a moment M and compressive force P  at the free end as 

shown in Figure 11, we have the expression of curvature 

 )(
)(

1
wwPM

sEIds

d
B 


.                (44) 

 

 

 

 

 

 

 

Figure 11. Cantilever beam under concentrated compressive force and moment at the free end. 

 

Integrating directly and considering the boundary condition of a clamped beam, we obtain 

 

 dsww

s

B 
0

)( .                 (45)  

By using the integration matrix in FIM, we have   

 Ahθ  , )( iBiii wwh  
  
.               (46)  

in which  

 
)(

  ,
)(

  ),1(  ,sin)(
2

0 i

i

i

iB

s

ii
sEI

PL

sEI

ML
wwdssw

i

            (47)  

To solve the nonlinear differential equation, we still follow the iterative procedure below 

Step 1: Set 0m  and specify the initial rotation 
)0(

θ as zero; 

Step 2: Determine vector 
)(m

h ; 

Step 3: Determine the rotations at each node 

  
)()1( mm

Ahθ 
 ,  Tm

N

mmm )()(

2

)(

1

)( sin,...,sin,sin Aw            (48) 

Step 4: Check the relative error of the deflection at the tip 

  

P 

w 

x 

lB 

EI 

s 

w(s) 

x 

M 

A 

B 

wB 
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m

B

m

B

m

B

w

ww 


1

                    (49) 

 if 510 go to Step 7; 

Step 5: Introduce the speed up iterative factor  and modify the deflection for the next iteration 

 
)1()()1( )1(   mmm θθθ  ,                (50) 

Step 6: set 1mm  and go to Step 2; 

Step 7: Print results and terminate the computation. 

 It is noticed that in this numerical algorithm, the Gaussian algebraic equation solver is not 

necessary as the rotation can be obtained directly with the solutions from previous iteration step. 

Firstly, in order to demonstrate the efficiency of FIM, the post-buckling is observed for a uniform 

cross-section beam with node density 17N  and the speed factor 8.0 . The deformed shape 

is shown in Figure 12 versus the horizontal load factor   and a small imperfection moment 

001.0 . The configurations presented in Figure 13 are deformed beams subjected to different 

concentrated moments   when the horizontal force factor is fixed ( 2 ). For a uniform cross-

section beam with zero horizontal force 0 , the deformed beam is part of circle with different 

radius. 

 Secondly, consider a tapered cantilever beam with linearly varying bending stiffness shown 

in Equation (43). The deformed curve is shown in Figure 14 subjected to different horizontal 

forces   with a small imperfection 001.0 . Apart from that, the variations of deformed beam 

with different bending moments   are plotted in Figure 15 while the horizontal force is fixed 

2 . The displacements Bw  and   at the free end for both uniform cross-section and tapered 

beams versus the horizontal loads are presented in Figure 16. For a uniform cross-section beam, 

the elastic normalized critical buckling load is 4573.24/2

CR   as shown in dash-line. From 

those post-buckling analysis results in Figure 16, the significant changes of displacements Bw  

and   around the critical buckling load can be observed. 

 Finally, in order to compare with the numerical solution provided by other methods, a 

cantilever tapered beam is considered with the bending stiffness used in [8] as following  

 AEIssEI 3)5.01()(  .                 (51) 

The displacements Bw  and   at the free end versus the horizontal loads are presented in Figure 
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17, where, the factors are defined AEIPL /2  and AEIML / , while imperfection 

001.0 . Excellent agreement with the results given by FEM [8] is achieved.  

              

Figure 12. Deformed curves for uniform cross-section beam under different compressive loads 

 with an imperfection by a concentrated moment 001.0 . 

       

Figure 13. Deformed curves for uniform cross-section beam under different concentrated 

moment   at the end and compressive load 2 . 
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Figure 14. Deformed curves for tapered beam under different compressive loads  and a 

concentrated moment 001.0  as an imperfect factor. 

 

                          

 

Figure 15. Deformed curves for tapered beam under different concentrated moment   at the 

end and compressive load 2 . 
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 Figure 16. Displacements 
Bw  and   at the tip for uniform cross-section and tapered beams 

under compressive load   with a imperfection 001.0 .  

 

                 

Figure 17. Displacements 
Bw  and   at the tip for the tapered beam under compressive load   

with a imperfection 001.0  and comparison with Finite Element Method 
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6. Conclusion 

 FIM with Lagrange series interpolation was extended to deal with nonlinear large 

deformations for both uniform cross-section beam and tapered beam under different loading 

conditions in this paper. The post-buckling analysis was carried out with an imperfection  

presented with a small bending moment. The iterative algorithms have been proposed to solve 

the nonlinear ordinary differential equations. The integration matrix in FIM was applied to obtain 

numerical solutions of the displacement and the rotation. Numerical results show that the 

iteration strategy proposed is convergent and accurate with arbitrary initial values of rotation. 

Compared with the exact solutions, the numerical results are highly accurate with a few 

uniformly distributed nodes and a few iterations. As one of the applications in engineering with 

FIM, the vibration and dynamic response with large deformation analysis of beam subjected to 

dynamic loads can be studied directly.  
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