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ABSTRACT

There is an increasing number of consumers of broadcast audio
who suffer from a degree of hearing impairment. One of the meth-
ods developed for tackling this issue consists of creating customiz-
able object-based audio mixes where users can attenuate parts of
the mix using a simple complexity parameter. The method relies
on the mixing engineer classifying audio objects in the mix ac-
cording to their narrative importance.

This paper focuses on automating this process. Individual
tracks are classified based on their music, speech, or sound effect
content. Then the decisions for assigning narrative importance to
each segment of a radio drama mix are modelled using mixture
distributions. Finally, the learned decisions and resultant mixes are
evaluated using the Short Term Objective Intelligibility, with ref-
erence to the narrative importance selections made by the original
producer. This approach has applications for providing customiz-
able mixes for legacy content, or automatically generated media
content where the engineer is not able to intervene.

1. INTRODUCTION

Hearing loss is estimated to affect one in six people in the United
Kingdom (UK) and North America [1, 2]. This figure is likely to
rise given an aging demographic and the prevalence of age-related
hearing loss [3]. Further to this, 2017 audience statistics indicate
that those over 50 years old in the United States of America and
those over 55 in the UK watch more television on average than any
other age demographic [4, 5]. Therefore listeners with some de-
gree of hearing loss make up an increasing proportion of television
audiences.

Object-based audio offers the potential for personalizable con-
tent, and may significantly improve the broadcast experience for
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this segment of television audiences. Complex auditory scenes,
such as those found in television, radio dramas and other genres,
contain some objects that are essential to narrative comprehension
(e.g., dialogue and certain sound effects), and others that facilitate
increased immersion (e.g., background sounds and reverberation).
For people with some hearing loss, the latter sounds can impair
their comprehension of the narrative [6].

In order to mitigate the issue, an approach to accesible audio
has been developed which allows users to control the complexity
of those scenes based on their listening needs, using a single dial
control [7, 8, 9]. This is achieved by the mix engineer assigning
each audio object a rank based on its narrative importance (NI) so
that each track can then be amplified or attenuated according to
those assignments, as well as the user’s desired complexity. This
method is currently limited to newly-authored object-based con-
tent or old content remixed into an object-based format. For legacy
content, this manual process is arduous and prohibitively costly.

This paper investigates an approach to alleviate the issue. It
first models the decision processes of mixing engineers when as-
signing narrative importances to a track in a radio programme mix,
then recreates those decisions in unseen tracks and mixes. To do
this, features that inform decisions are identified, methods for ex-
tracting those features are developed and mixture models for as-
signing narrative importances are used together with the audio ef-
fect developed in [7, 8, 9]. The efficacy of this model is then eval-
uated using an automatic speech intelligibility metric, the Short
Term Objective Intelligibility (STOI) criterion [10]. This provides
a first indication of the method’s merit. The main contributions
of this paper are twofold: we provide a model for discriminating
between music/speech and sound effects, and we demonstrate a
method for learning to automatically assign narrative importances
to older mixes without such metadata. The latter may underpin fu-
ture tools which enable hard of hearing users greater access to the
large amount of legacy content.

2. PREVIOUS WORK

Personalising the balance of audio elements at the user end util-
ising object-based audio methods has been explored for both nor-
mal hearing listeners in noise [11, 12] and hard of hearing listeners
[13, 14]. At its most simple, this personalisation provides the end-
user with the ability to control the balance between background
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and foreground elements [11, 12]. A more nuanced approach ex-
plored for hard of hearing listeners gives end-users the ability to
control four categories of sound: dialogue, foreground sound ef-
fects, background sound effects, and music [13]. Whilst feedback
for such an approach was overwhelmingly positive, it lacked the
ease of use required for large scale adoption.

A single dial control based on narrative importance metadata
has been developed to combine powerful user personalisation with
ease of access [7, 8, 9]. NI metadata categorises the audio objects
within a soundtrack hierarchially, based on the role each sound
plays in conveying the narrative. Each object is assigned an NI
value in metadata between 0 (essential) and 3 (least important).
Metadata is currently generated and auditioned by the producer in
an audio effect plugin [9], in order to ensure that the producer’s
intent for the content is maintained. Gain adjustments are then
applied to each sound category based on the level selected by the
user on a single dial control. The control transitions smoothly be-
tween a fully immersive mix and a mix containing only the narra-
tively important elements. This effectively allows users to adjust
the complexity of the reproduced audio mix based on their needs,
whilst ensuring comprehension of the narrative is always main-
tained. Full details of this implementation can be found in [7].
Early work on this has shown qualitative improvements in intelli-
gibility for hard of hearing listeners whilst maintaining the creative
integrity of the producer’s work.

Ranking an object according to its NI can be seen as a type
of automatic mixing based on gain adjustment, where a gain func-
tion of the user’s preferences is chosen for each track based on its
NI. Automatic gain adjustment works have existed since 1975, ini-
tially just for speech [15], and more recently in the generic context
of music production [16, 17]. Here the authors optimized gains
for ratios of loudness between different tracks in a multitrack live
music mix. Our work differs in that we consider that individual
track gains have been chosen, e.g. by one of the cited methods
or a mixing engineer, and then we apply an additional post-fader
gain which is a function of an individual user’s preference. A simi-
lar approach, which takes individual preference into consideration
can be seen in [18] where the proposed method allowed users to
adapt the behaviour of a dynamic range compressor to their listen-
ing conditions.

Our method learns and models the choices of mixing engi-
neers when ranking an audio object based on importance, as well
as important features that can characterize such decisions. The lat-
ter is similar to work in [19] where the authors included important
musical features as well as domain expert rules for guiding music
production decisions using a probabilistic expert system. Finally,
we evaluate using the Short Term Objective Intelligibility crite-
rion [10].This metric only indicates objective intelligibility of the
resulting mix, rather than the subjective comprehension of the con-
tent. However it yields an initial indication of the efficacy of the
approach and whether subsequent subjective testing is warranted.
A relevant work which used the same criterion to control a dy-
namic range compressor can be found in [20].

3. METHODOLOGY

Our goal is to assign a narrative importance d to an object based on
various features extracted from the object and its role in the mix.
We approached the issue as a classification task where the train-
ing data comes from a web audio listening experiment where mix-
ing experts assigned NI values to audio objects in a radio drama.

Object

Figure 1: The outline of the process. An object from a radio mix is
split into segments and each segment is classified as music/speech
or sound effects. The duration of the object and its loudness char-
acteristics are also extracted. Data coming from experiments is
used to train a mixture model classifier to assign importances to
similar objects. Finally, an audio plugin assigns this importance’s
gain level based on narrative complexity chosen by the user.

Given similar content, the goal is to make similar decisions. Be-
low we describe each session in developing of the effect an outline
of which can be seen in Figure 1.

3.1. Data Acquisition

The data used in this experiment was collected from 34 individuals
who identified as audio production or mixing professionals. The
majority of participants worked in television production (44%) fol-
lowed by radio (35%) and film (27%). Most participants work
freelance (53%) or for a national broadcaster (35%). Documen-
tary, drama and music were the most common genres they worked
in and most identified as a dubbing mixer or sound mixer (58%).
41% of respondents had worked on an object-based production be-
fore, and a further 32% were familiar with the concept of object-
based audio. On average they had 22.7 years experience (median
21.5 years).

They completed the online task over their own headphones.
First they were asked to listen to the radio drama The Turning For-
est in its entirety [21]. Then they were given a segment of the
drama (100s in duration) for which they were asked to assign nar-
rative importance for its constituent 23 audio objects. The web au-
dio interface allowed them to audition their choices at the extremes
of the complexity control (fully immersive and narrative only) as
well as at the 50% point to ensure their decisions produced mixes
they were happy with.

In addition to this, a workshop was undertaken with the origi-
nal sound designer using an early iteration of the narrative impor-
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Layer Type Layer Shape Activation function
Convolutional 64× 96× 64 relu
Max pooling 64× 48× 32 –

Convolutional 128× 48× 32 relu
Max pooling 128× 24× 16 –

Convolutional 256× 24× 16 relu
Convolutional 256× 24× 16 relu
Max pooling 256× 12× 8 –

Convolutional 512× 12× 8 relu
Convolutional 512× 12× 8 relu
Max pooling 512× 6× 4 –

Fully-connected 256 relu
Fully-connected 3 softmax

Table 1: Shapes of the layers of the network. The network is rep-
resented with the top layer being the input layers and the bottom
giving the output. The first dimension of the convolutional layers
refers to the number of extracted features from that layer, and the
next two to the shape of those filters. With softmax we denote
the softmax function which converts the output of the layer to a
discrete probability distribution and with relu the rectified linear
unit which allows the network to model non-linearities. Since we
do transfer learning, we only train the last two layers.

tance metadata acquisition tool. The sound designer was encour-
aged to develop her own workflow for authoring the metadata for
the entirety of the The Turning Forest. Metadata changes could be
auditioned by the sound designer in real-time using the full range
of the NI control interface. Whilst an objective ground truth for
the narrative importance assignments is not possible as it is inher-
ently subjective, the assignments by the original producer provide
the point of reference for this investigation.

3.2. Features informing decisions

Observing the decisions made by the mixing engineers, an initial
hypothesis could be formed based on the type of content of the in-
dividual objects. We mainly deal with 3 classes of content; speech,
music, and sound effects [22]. We developed a Convolutional Neu-
ral Network (CNN) for classification to the above three classes.
CNNs have been successfully used for fast classification of im-
ages, video, or spectral representations of audio since they have
many fewer parameters than fully connected neural networks and
can thus be trained much faster [23]. For the task of classification,
they are usually constructed using building blocks called “Convo-
lutional Layers” which extract useful features from an image-like
input, “pooling” layers which select part of the resulting features,
“fully-connected” layers which combine those features, and a fi-
nal classification layer [23, 24]. Such networks have previously
been used to successfully distinguish between speech and music
[25]. To develop our network, we used VGGish [26] as a starting
point and we applied transfer learning to make it classify between
speech, music, and sound effects. Transfer learning is a technique
where a network trained for a task can be trained for a different task
with minimal computational effort [24]. VGGish is a CNN origi-
nally trained to distinguish between 632 classes found in AudioSet
[27] which is a dataset consisting of the soundtracks of 8 million
Youtube videos. Since speech, music, and sound effects are among
those tracks, we can achieve good performance in discriminating
between those three “superclasses” by retraining the model to only

discriminate between those. We therefore train the model by keep-
ing its convolutional layers with their AudioSet-trained weights
intact, since this is the part of the network that does feature ex-
traction, and replacing the fully connected layers with a layer of
size 256. Finally, we add a classification fully connected layer of
3 classes with the softmax activation function which converts the
output of that layer to probabilities of the input being in one of
the three classes. The shapes of the individual layers are listed in
Table 1.

Inputs to the CNN are fed into the top convolutional layer in
Table 1. Each audio object’s track is split into non-overlapping
segments of 960ms where each segment consists of the magni-
tudes of 64 bands of the mel cepstrum computed using a frame
size of 25ms and a hop size of 10ms. Training was done by freez-
ing the weights of the convolutional layers and only training the
last two feed-forward layers. We used the GTZAN music/speech
discrimination dataset1 which contains 120 tracks with 30 minutes
of speech, and 30 minutes of music as 22kHz 16bit audio files to
adapt the new model to our task. In addition, we added 30 min-
utes of randomly sampled sound effects from the recently released
online BBC SFx library2 reformatted to match the examples in the
other two classes. To make sure a specific class of sound effects
is not over-represented, we used stratified sampling to select the
sound effects by sampling first the class of sound effects, and then
the sound effect audio file. After training using the augmented
dataset we have a model that can classify the content of the object
into music, speech, or sound effects and use this classification as a
feature which informs the NI assignment.

Track loudness and duration is also measured. We expect that
important sound effects which require the attention of the listener
to have a high peak-to-integrated loudness ratio [22] as well as
short duration. For example the clinking sound of two glasses
toasting will signify a more important effect than the sound of
frogs croaking repeatedly in the background. For this reason we
use both peak-to-integrated-loudness ratio and total duration as
features.

3.3. Decision Modeling

Our goal was to create a model based on the decisions from Sec-
tion 3.1. An inherent challenge in the data described in Section 3.1
is that the practitioners would disagree quite a lot when ranking
objects according to their importances. To quantify this disagree-
ment, we can use Fleiss’ kappa [28]:

κ =
P̂ − P̂c
1− P̂c

(1)

P̂ is the degree of agreement between raters and P̂c the degree of
agreement attributed to chance. It is defined in the interval [0, 1]
where κ = 1 signifies total agreement. We found κ = 0.008
which denotes a low degree of agreement. Despite the low level of
agreement, from Figure 3 we observe that for most objects, impor-
tance assignments are concentrated around 2 neighbouring values.
This can be particularly observed for non-narration objects con-
taining speech (Girl Voice, Boy Voice)). We decided to use a mix-
ture model to treat this uncertainty as stochasticity in the model’s
decisions. In order to use such a model, we need to determine ap-
propriate features that can give correct decisions and define their

1http://marsyas.info/downloads/datasets.html
2http://bbcsfx.acropolis.org.uk/
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Figure 2: Estimated densities for four different narrative importance levels. In parentheses are the 95% lowest and highest respectively
confidence intervals.

probability densities. From the features selected in Section 3.2,
we found that ratio of speech (p� 0.05) and music (p < 0.05) in
an object, true-peak-to-integrated-loudness ratio (p � 0.05) and
total duration (p � 0.05) are good features. If we represent the
values of the features above as xsr , xmr , xtpti, and xdur , the goal
of decision modelling is to decide an importance d given those val-
ues. If we furthermore assume that each feature is a sample from
a respective independent feature distribution, this decision can be
given as:

d = arg max
i

Pr (I = i|xsr,i, ..., xdur,i,θsr,i, ...,θdur,i)

= arg max
i

Pr (I = i)
∏

µ∈{sr,mr,tpti,dur}

Pr (xµ,i,θµ,i|I = i)

= arg max
i

Pr (I = i)
∏

µ∈{sr,mr,tpti,dur}

Pr (xµ,i|I = i,θµ,i)

·Pr (θµ,i|I = i)

(2)

Where θµ is the parameter vector for the distribution that corre-
sponds to xµ,i and i is a level of narrative importance (essential,
high, medium, low). Music xmr , speech xsr , and true-peak-
to-loudness xtpti ratios are defined in the interval [0, 1] and thus
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Figure 3: Heatmap of importance assignment decisions made by the experts for The Turning Forest radio drama. Horizontal axis shows
the object names and vertical axis the assigned importances. The numbers inside individual cells correspond to the frequency of each
importance value assigned to each object where darker cells correspond to higher frequencies. We observe that for most objects, there are
1 or 2 “most preferred” importance assignments.

make Beta distributions suitable for modelling their values. On
the other hand the Gamma distribution is suitable for modelling
total duration xdur since it is defined in positive numbers. Both
Beta and Gamma distributions are defined by two parameters α
and β. Finally, the prior distribution of importances Pr (I = i)
can be modelled as a categorical distribution, since it can take one
of 4 distinct values:

xν,i ∼ Beta (αν,i, βν,i) , ν ∈ {sr,mr, tpti} (3)
xdur,i ∼ Gamma (αdur,i, βdur,i) (4)

i ∼ Categorical(4) (5)

Figure 4: The mixture model used. In the diagram above, circles
represent random variables, squares parameters of those variables.
Shaded shapes represent observed variables. K = 4 represents the
number of mixtures which is the same as the assigned importances,
and N is the number of samples in the training data. The goal of
the estimation process is to estimate the parameters represented
in the non-shaded boxes (parameters of feature densities) given
the observations represented in the shaded boxes and given from a
training dataset (importance assignment and feature values).

The model for each feature can be seen as a diagram in Figure
4 and its distributions in Figure 2. Finally, the Beta and Gamma
distributions in Eq. 3 are defined according to:

Gamma (α, β) = βα

Γ(α)
xα−1e−βx, x > 0 (6)

Beta (α, β) = xα−1(1−x)β−1Γ(α+β)
Γ(α)·Γ(β)

, 0 ≤ x ≤ 1 (7)

Γ(t) =
∫ +∞

0
dx · xt−1e−x (8)

What the above essentially mean is that when we know the impor-
tance of an object (differently stylized lines in Figure 2) we expect
the values of the features given in Section3.2 to be samples from
the distributions given in Eqs. 6, and 7. What is left is to decide
on the exact shapes of those distributions, which are defined by
parameters α and β above. We estimate those by using a training
set of observations of importances and corresponding features and
using Stochastic Variational Inference [29]. After having defined
the model that model the values of the object features, the decision
can be taken as in Eq. 2 where in this case:

θµ,i =

[
αµ,i
βµ,i

]
(9)

In this case, Eq. 2 gives a decision on an importance level d that
maximizes the probability that an object belongs to that impor-
tance level given the values of its features.

3.4. Applying gains

The importance assignment process in the previous sections con-
trols the audio effect described in [7]. This is a mixing effect with
4 stereo inputs and 2 stereo outputs:

yn =

[
1 . . . 0
0 . . . 1

]
︸ ︷︷ ︸

Downmixes to 2 channels


I3(c) . . . 0

... 1
...

I−12(c)
0 . . . I−48(c)

xn
(10)

where xn is the 8 channel input at time n corresponding to the
inputs at the 4 importance levels, yn the corresponding output, I3,
1, I−12, and I−48 are the mixing coefficients corresponding to
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Figure 5: Results using the Short Term Objective Intelligibility
measure. With lighter colors a complexity of 0 has been selected
and with darker colors a complexity of 50. STOI values of the mix-
ing sessions of the practitioners (Section 3.1) are shown as cyan
colored bars. STOI of automatic assignment of narrative impor-
tances is labeled as ‘auto’, and STOI of the mix done by the author
of the radio drama as ‘original’. STOI values for decisions made
using K-Nearest Neighbour classifiers for K = 3 and 5 are also
included as ‘3nn’ and ‘5nn’.

essential, high, medium, and low respectively (the subscripts are
the gain values for each importance level in dB):

IM =

[
10M( −c

2000
+20)

10M( −c
2000

+20)

]
(11)

where c is a complexity number between 0 and 100 chosen by the
user during playback.

4. RESULTS

For the discriminator model, 70% of the data was used as train-
ing/validation and 30% was kept aside for testing. The split was
performed with a predefined random seed to guarantee reproducibil-
ity. For evaluating the model, we calculated precision p, Recall r,
and f1 on the test set:

p = tp
tp+fp

(12)

r = tp
tp+fn

(13)

f1 = 2 p·r
p+r

(14)

where tp is the number of true positives, fp the number of false
positives and fn the number of false negatives. The calculated
metrics can be seen in Table 2.

We tested how the importance assignment model works com-
pared to the data acquired from practitioners (Section 3.1) as well

class precision recall f1

music 1.00 0.97 0.99
speech 0.98 0.98 0.98
sfx 0.96 0.99 0.98

Table 2: Results on the test set for the music/speech/sfx discrimi-
nator model

as the original radio drama author. We also included a K-Nearest
neighbour classifier with K ∈ {3, 5}. We evaluated according to
the Short Term Intelligibility criterion [10] and more specifically
the PYSTOI implementation3. In Figure 5 we can see that when
fully attenuating non-essential narrative elements our model out-
performed all but one of the mixings done using the online plat-
form (0.959 vs 0.962) and scored close to the mix by the origi-
nal author (0.964). A more interesting result is when choosing a
complexity value of 50, which keeps some less-important narra-
tive elements as well, the STOI is equal to the original author’s
mix (0.937), even if the latter was not included in the training set.
This suggests that our classifier managed to model “good” deci-
sions from the practitioners despite the high level of disagreement.
In comparison, the K-NN classifiers which do not account for un-
certainty performed worse, although the classifier using the 5 near-
est neighbours was still ranked above the third quartile regarding
STOI.

5. DISCUSSION

This paper presented a method for modelling decisions made by
mixing engineers with the goal of allowing the listener to alter the
complexity of a radio drama while retaining speech intelligibility.
The method relies on modelling the mixing engineers’ behaviour
using mixture models even when those have a large degree of dis-
agreement. The model was tested against decisions made by the
original mixing engineer of a radio drama mix and it was found
that it could perform comparatively well when evaluated with an
objective intelligibility metric. In the process we developed a sim-
ple music/speech/sound effects discriminator that works well for
this application and is provided freely to those interested 4 and a
plugin based on the VISR [30] environment is planned in order to
automate the process. The current work is limited however to a
single radio drama and also to a single intelligibility metric. More
metrics should be considered that also measure quality and immer-
sion. We also assume that each object is assigned a single impor-
tance value that does not change for the duration of the drama. This
is an assumption that does not necessarily hold. For example we
expect the footsteps of a monster approaching the main character
to have higher narrative importance than the footsteps of a monster
when it is further away doing something irrelevant to the story.
Using our method however those two different scenarios would
be ranked the same. A simple solution to this issue employed in
the current work is to manually assigns the footsteps in the two
senarios in distinct objects. Further work could also consider char-
acteristics of an object that change throughout the duration of the
drama when ranking them based on importance. In this paper we
also consider gains after the fader stage in the mix. Gain effects

3https://github.com/mpariente/pystoi.git
4The models and other supplementary material can be found at:

https://github.com/bbc/audio-dafx2019-automatic/
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that synergize with our current work in applying appropriate gains
pre-fader can also be examined as well as other automated mixing
techniques such as in EQ [16, 31], Compression [18], or Reverber-
ation [32]. Finally, subjective listening tests should be undertaken
such that the overall quality and comprehension of the automati-
cally assigned mixes can be evaluated by human subjects.
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