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Abstract 18 

To a large extent cancer conforms to evolutionary rules defined by the rates at which clones 19 

mutate, adapt and grow. Compared to species evolution however, cancer is a particular 20 

case, due to the vast population size, chromosomal instability, and the potential for 21 

phenotypic plasticity. Nevertheless, an evolutionary framework is a powerful aid in our 22 

understanding of cancer progression and therapy failure, and could be applied to predict 23 

individual tumour behaviour and aid treatment strategies. 24 

 25 

Introduction 26 

Tumours are composed of subpopulations of cells (subclones) that may be distinguished by 27 

a variety of features impacting their phenotype, including genetic alterations. Genetic 28 

intratumour heterogeneity (ITH) has been documented across most cancers (reviewed in1) 29 

and acts as a substrate for clonal evolution.  The fundamental biological mechanisms 30 

underlying clonal evolution [G] in cancer are similar to those that underpin the evolution of 31 

asexually-reproducing species: replication, heritable variation, genetic drift [G], selection [G] 32 

and environmental changes. Central to the neo-Darwinian synthesis of evolutionary biology 33 

is the paradigm of molecular evolution [G], which links Mendelian genetics to Darwinian 34 

adaptation. Molecular evolution is relevant to cancer because the use of genomic 35 

sequencing is a key technology to understand temporal and spatial patterns of somatic 36 

evolution [G]. At the core of molecular evolution, in turn, is theoretical population genetics, 37 

which has been the fundamental mathematical formalism to describe evolution for the past 38 

90 years 2,3 The same theoretical framework has been used to understand clonal evolution 39 

in cancer 4 5 6 7 8 9 10 11. The study of the evolutionary dynamics of cancer clones is 40 

fundamentally concerned with the relative frequencies of cancer subpopulations over space 41 
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and time.  Although some peculiarities of cancer evolution distinguish it from classic species 42 

evolution (Box 1), classical evolutionary theory can nevertheless be readily applied to 43 

understand cancer development. 44 

Over the past 5 years, a number of next generation sequencing studies have 45 

captured cancer evolution in space and time, illuminating the variety of evolutionary 46 

patterns that shape cancer, and showing their clinical relevance. Here, we provide an 47 

overview of the theoretical models of tumour evolution and the caveats around correctly 48 

interpreting genomic data and inferring evolutionary dynamics. We discuss the relevance of 49 

chromosome instability [G] (CIN) as a driver of cancer evolution and, in particular, 50 

metastases; the clinical value of evolutionary classification of cancer; and finally, the role of 51 

clonal evolution in treatment failure.  52 

 53 

Current models of tumour evolution 54 

 55 

Cancer as a system is characterized by an astonishing complexity and emergent behaviour. 56 

Nevertheless, this complexity arises from the relatively simple, underlying evolutionary rules 57 

of mutation, genetic drift and selection, involving a large number of interacting agents (for 58 

example, the millions of cancer cells within a single lesion and the surrounding tumour 59 

microenvironment). The emergent behaviour gives rise to different observed ‘modes’ of 60 

evolution (Figure 1), which result from different combinations of the aforementioned 61 

fundamental rules in distinct contexts. In other words, since selective pressures change over 62 

time, so can the ‘modes’ of evolution. Here we discuss the principles of selection and 63 

different modes of evolution.  64 

 65 

Selection 66 

 67 

Selection, whereby one lineage is ‘favoured’ over another, and produces more surviving 68 

offspring, is arguably the most interesting force in evolution, as it leads to adaptation. In 69 

general, positive selection drives tumour progression, but negative selection (e.g. against 70 

potent neoantigens 12,13) also contributes to tumour evolution. However, selection is not be 71 

operative at all times. Whereas mutation and drift are continuously occurring, and their rate 72 

depends on cell division and population dynamics, selection is dependent on the 73 

environmental context. For example, if there is no differential survival within a population, 74 

the lack of positive selection would mean that the population evolves neutrally (only 75 

mutation and drift are at play). Consequently, branching (see below) of a tumour 76 

phylogenetic tree [G] does not always imply clonal selection, as branching is the natural 77 

product of mutational processes 14 15. Selection has the effect of ‘pruning’ the tumour tree, 78 

for example, favouring the expansion of some lineages (branches) over others. The 79 

mutation rate itself could also be subject to selection.  A higher mutation rate allows for 80 

diversification but also carries the ‘risk’ of increasing the rate at which deleterious 81 

mutations, which perturb cancer growth, are acquired16,17. For example, excessive 82 



 

 

chromosomal instability (CIN) can result in cell autonomous lethality, however a “just-right” 83 

threshold of CIN may be evolutionary advantageous.  Mutations in the APC/C subunits may 84 

be selected during the evolution of chromosomally unstable tumour cell populations 85 

resulting in lengthening of mitosis, suppression of chromosome missegregation and 86 

attenuation of excessive CIN18. 87 

 88 

Mathematical models suggests that, in a growing population, mutator phenotypes are 89 

selected, because the cells that stochastically acquire positively selected mutations in effect 90 

‘doubly benefit’ from their own increased fitness and the negative fitness effect of  91 

deleterious mutations on the rest of the population19. Relatedly, modelling also suggests 92 

that a mutator phenotype increases the ‘efficiency’ of carcinogenesis by making it more 93 

likely that a necessary set of mutations are acquired for transformation and cancer 94 

progression17.  95 

 96 

Branching evolution  97 

Evolution is always branched, because cell division and mutation continuously produce 98 

divergence at the level of genotypes. This fact is particularly true for cancer genomes, as 99 

cancers often have a mutator phenotype [G] 20. Hence, in principle, at any given time point a 100 

tumour cell population consists of different cell lineages. Random fluctuations in the birth 101 

and death rates of these distinct lineages can lead to genetic drift, whereby one lineage 102 

produces more surviving offspring than another lineage, and expands by chance. Genetic 103 

drift is referred to as a form of neutral evolution [G],  as all lineages are neutral other with 104 

respect to their chance of producing surviving offspring 21,22. Similar patterns of branching 105 

are also apparent in healthy tissue 23,24, emphasising branching as a necessary by-product of 106 

proliferation tissues. However, when multiple cancer subclones have increased fitness they 107 

will expand (assuming no other limitations to growth) simultaneously due to selection, as 108 

evidenced by the finding of subclonal cancer driver mutations and their impact upon cancer 109 

progression25,26.  Selection is also evident in the finding of parallel evolution within the same 110 

tumour where distinct lineages acquire mutations in the same cancer driver gene, leading to 111 

parallel subclonal expansions.  112 

 113 

Linear evolution  114 

Linear evolution model posits that only one of the lineages survive over time. However, as 115 

with the fossil record, it does not imply that there was only ever a single lineage that 116 

evolved in a step-wise fashion. Any conclusions regarding linear evolution from cancer 117 

genomic data are likely false owing to limited sampling applied to the cancer in question 118 

and limits of resolution by next-generation sequencing technologies.  119 

 120 

Neutral evolution  121 

Neutral evolution can be regarded as the evolution that occurs in between selection events. 122 

Prior to adaptive mutation occurring, the population evolves neutrally, and when the 123 



 

 

mutation arises it initiates a rapid clonal sweep [G] which can be complete or incomplete. If 124 

the sweep is complete and all the cells in the population carry the adaptive mutation the 125 

dynamics revert to neutral again.  126 

 127 

Punctuated evolution 128 

Punctuated evolution is the opposite of gradual evolution and presents more rapid bursts of 129 

adaptive evolution. If the adaptive mutation is a large-scale alteration of the genome (for 130 

example, loss or gain, translocation or fusion of a chromosome) the adaptive clone has been 131 

referred to as a “hopeful monster” 27,28 . Compared to a small-scale mutation, its genome is 132 

significantly altered, with the ‘hopeful’ referring to the likelihood that the mutation is 133 

adaptive. Punctuated equilibrium [G] is a model first proposed by Eldridge and Gould in the 134 

early 1970s for species evolution 29 whereby adaptation occurs in a small spatially-isolated 135 

niche, until the newly-adapted individuals rapidly expand out of the niche and through the 136 

wider population. Because the niche is small, the gradually-adapting population is unlikely 137 

to be sampled before it expands, and so the evolutionary dynamics of the population at 138 

large are ‘punctuated’ by the expansion of the adapted clone. Equilibrium refers to long 139 

periods of clonal stasis during which the adapted clone persists without detectable change.  140 
  141 
Inferring evolutionary mode from genomic data  142 

Although adaptation occurs at the phenotypic level, measuring the tumour cell phenotype 143 

within its original environment is challenging. Surrogate measurements such as gene 144 

expression are informative, but given the complexity and plasticity of the cancer 145 

transcriptome, and the contribution to gene expression signals from cells within the tumour 146 

microenvironment, these are often difficult to interpret in light of evolution. This is why to 147 

date genome profiling has been the preferred tool to study cancer evolution. However, 148 

there are several major caveats when we try to understand the phenotypes from studying 149 

the genotypes, a problem that has been tackled over decades in the field of molecular 150 

evolution. The key issue is that the cancer genotype–phenotype map [G], bar some notable 151 

exceptions, such as treatment resistance mutations, is largely unknown.  Therefore, 152 

mapping the tumour phylogenetic tree and the underlying adaptive traits remains difficult. 153 

 154 

Bulk sequencing  155 

The commonly used bulk sequencing, that is profiling of a sample comprised of many cells, 156 

imposes a major limitation on inferences about tumour evolution dynamics. Because the 157 

standard depth of sequencing is many orders of magnitude smaller (100–1000X) than the 158 

number of cells in the sample (10 million – 1 billion), bulk sequencing only recovers 159 

mutations that are either present in all, or the majority of cancer cells in the given sample. 160 

Each doubling of the cancer cell population halves the frequency of new mutations arising in 161 

the population, and hence after just 7 doublings new mutations are undetectable with 100X 162 

sequencing, and after 10 doublings new mutations are undetectable at 1000X sequencing 163 

depth. Thus, detecting selection that resulted in a limited clonal expansion (100s-1000s 164 



 

 

cells) is problematic. Contamination by stromal cells imposes an additional challenge as it 165 

dilutes out the frequency of variant alleles. Thus, bulk sequencing mostly informs on the 166 

most recent common ancestor (MRCA) of the cells in the sample, but the ‘node’ in the 167 

phylogenetic tree is extinct in the current malignancy. The more cells in the bulk sample, the 168 

older the MRCA and shorter the ‘apparent’ branches in the tree. Consequently, different-169 

sized samples can generate very different portraits of the clonal structure of a tumour. 170 

 171 

Choice of sequencing assay  172 

The relative abundance of passenger mutations [G] (evolutionary neutral; non-adaptive) 173 

over driver mutations [G] (positively selected) makes the passengers that hitchhike to a 174 

driver event, very informative vis a vis clonal dynamics. Passenger mutations provide a 175 

genetic mark to distinguish different functional clones, and more specifically the number of 176 

passenger mutations unique to a lineage is a measure of the molecular age of that clone. 177 

The variant allele frequency [G] (VAF) determines clone abundance, and the proportion of 178 

passenger mutations shared between clones reveals their ancestry 8,30. The choice of 179 

sequencing assay (high-depth targeted panel, moderate-depth exome, or lower-depth 180 

whole-genome sequencing) represents a trade-off between the need for high-depth 181 

sequencing to accurate recover clone frequency (or even detect the clone at all) versus 182 

genome-wide detection of passenger mutations that uniquely identify distinct clones. 183 

Moreover, since deeper sequencing provides a broader temporal window on cancer 184 

evolution, the choice of sequencing assays is a compromise between genome sequencing 185 

providing detail on the clonal architecture in only a short and early time window versus 186 

deep targeted sequencing that provides limited clonal information but greater temporal 187 

range. Here, deeper and broader (for example, more of the genome covered) sequencing is 188 

always preferred.  189 

 190 

Allelic copy-number correction  191 

The study of evolutionary dynamics of cancer clones is fundamentally concerned with the 192 

relative frequencies of cancer clones over space and time. Many bioinformatics tools have 193 

been created to infer clonal frequencies from ‘bulk’ sequencing data, such as PyClone31, 194 

SciClone32 and PhyloWGS33. Broadly, these tools attempt to identify sets of mutations that 195 

are all at the same frequency, and assign them to clones. These tools have been 196 

instrumental to study cancer evolution from cancer bulk data. However, this task requires 197 

many prior inference steps, each one risking introduction of errors, which are then 198 

propagated through the analysis. Structural alterations (loss, gain and rearrangements of 199 

genetic material) are common in cancer genomes and confound the interpretation of 200 

mutation frequency. Because structural alterations typically alter the copy number of a 201 

locus, they also have an impact on the relative frequency of any single nucleotide variant 202 

(SNV) mutations at that locus. Thus, to assign SNVs to clones, it is necessary to ‘correct’ for 203 

the impact of copy number alteration (CNA), to turn the allelic frequency of an SNV into a 204 

clone frequency. In theory, this is straightforward: the cellular abundance of any individual 205 



 

 

mutation is simply a product of its frequency and copy number. However, if the allelic copy 206 

number is incorrectly inferred, then the SNVs in that CNA will be scaled to the wrong 207 

frequency, and so potentially erroneously appear as a new clone. In a tumour composed of 208 

50% cancer cells, the difference in frequency of an SNV present on 1 of 3 copies versus 1 of 209 

4 copies is only about 3%, which is a level of accuracy that is rarely achievable with 210 

moderate-depth sequencing (~100X). Moreover, errors can stem from in the initial 211 

inference of the copy number of the locus. Consequently, errors in the allelic copy number 212 

inference propagate to produce an erroneous clone phylogenetic tree, and give a misleading 213 

picture of the clonal structure of a tumour. Considering only SNVs located in diploid regions, 214 

and exploiting the hitchhiking principle 34 helps, but in a highly aneuploid [G] genome risks 215 

discarding the majority of SNVs for downstream evolutionary analysis,  and  potentially 216 

important driver mutations that define a clone may be missed. There remains a need for 217 

higher resolution data (>100x depth at whole-genome resolution) and improved clonal 218 

decomposition methods that effectively handle error propagation from copy number 219 

assignments. Emerging long-read sequencing technology also offers the hope of 220 

circumventing this issue, as long reads intrinsically ‘phase’ mutations and so directly reveal 221 

their allelic identity. 222 

 223 

Single-cell sequencing  224 

Single-cell sequencing is an exciting emerging alternative to bulk sequencing for exploring 225 

tumour evolution 35-39 36,38,40-42. In theory, sequencing individual cells removes the time bias 226 

inherent to bulk sequencing as all the genetic mutations within the sequenced cell, 227 

irrespective of when the mutations arose, should be detectable. Clonal identity also 228 

becomes evident, removing the need for allelic copy-number correction. However, calling 229 

SNVs in single-cell sequencing remains challenging, as it is not possible to distinguish 230 

mutational signal from noise by aggregating information across multiple sequencing reads 231 

(as is the case for bulk sequencing). Combining information from multiple cells addresses 232 

this issue43. By contrast, CNAs can be reliably identified 44 but because the background CNA 233 

rate is still not well understood 45 drawing inferences about temporal evolutionary dynamics 234 

from these data is not straightforward. Nevertheless, single-cell sequencing offers a 235 

powerful route to learning how CNAs accrue (since sequencing individual cells means that 236 

some newly born cells can be analysed prior to the effects of selection, informing the 237 

‘background’ CNA mutation rate45). Single-cell sequencing of cells from a large cancer risks 238 

sequencing many cells that are evolutionary ‘dead ends’ and would not contribute to the 239 

future disease progression.  Simply sequencing large numbers of cells would abrogate this 240 

issue, and moreover, gives a direct means to detect and characterize negative selection46, 241 

which cannot be identified by bulk sequencing. We expect single-cell sequencing to become 242 

the tool of choice in the future as sequencing costs continue to fall. 243 

 244 

Detecting selection 245 



 

 

Clonal selection drives cancer evolution, and so naturally there is much interest in 246 

identifying the cause of a clone’s selective advantage, but detecting selection comes with 247 

several challenges (Figure 2). There are two broad approaches for detecting selection: (1) 248 

clone frequency methods and (2) sequence-based methods, and the two approaches are 249 

often used concurrently. 250 

 251 

Using clone frequency to detect selection  252 

Broadly, frequency-based methods detect selection by looking for lineages that are more 253 

abundant than is expected in the absence of selection under neutral evolution. Frequency-254 

based methods have been developed that use the clone size distribution, also referred to as 255 

the site frequency spectrum (SFS), which can be measured by the VAF distribution, after 256 

correction for tumour purity and copy number. The appeal of this approach is that the 257 

shape of the clone size distribution under neutral evolution in a well-mixed population is 258 

well known 47 48 6 49 7. Multi-region sampling can also be used to measure clone frequency: 259 

selection for an ancestral clone causes it to have a disproportionate number of offspring in 260 

the phylogenetic tree constructed from these data50. Hybrid methods that simultaneously 261 

consider the VAF distributions from multi-region sampling also exist 51.  262 

Longitudinal sampling of clone abundance provides a particularly powerful method to 263 

detect selection: clones that grow disproportionately faster than others are likely under 264 

selection 52. However, longitudinal tissue collection and temporal analyses of solid tumours 265 

is rendered challenging by accessibility to tumour tissue. In due course, as sequencing 266 

technologies improve and costs decline, we anticipate circulating free tumour DNA analyses 267 

will help to circumvent some of these challenges53,54. 268 

Frequency-based methods are limited by the power to detect deviations from the null 269 

neutral model 8. Weak selection (e.g. a relative selective advantage ~1%) causes only slow 270 

and slight shifts in clone frequency that may go undetected in moderate-depth sequencing. 271 

The spatial architecture of a tumour presents a complication too — selection is invisible if all 272 

the samples are taken within the selected clone. Moreover, frequency-based methods can 273 

only detect selection if the selected clone is sampled when expanding; once the clone has 274 

taken over the population, the new (fitter) population of tumour cells is homogenous with 275 

respect to the selective alteration, and so the within-tumour evolution reverts to neutral. If 276 

clones are very strongly selected then clonal expansion to fixation [G] in the tumour will be 277 

very quick and so unlikely to be detected. In this case, dense longitudinal sampling is 278 

necessary to accurately detect selection. There are therefore multiple caveats in inferring a 279 

neutral evolution model from single low sequencing depth samples. 280 

 281 

Using mutational patterns to detect selection 282 

Alternative methods use the burden and type of mutations across the genome to detect 283 

selection (collectively we refer to these as “mutational pattern” methods ). These methods 284 

exploit the fact that selection causes an over-representation of the mutations that increase 285 

fitness, but do not necessarily increase the frequency of neutral mutations. Indeed, 286 



 

 

statistical tools to identify cancer driver mutations across tumours work by considering the 287 

frequency at which a gene is found to be mutated across cancers compared to background 288 

expectation 55. The dN/dS ratio — the ratio of non-synonymous mutations (N mutations) to 289 

synonymous mutations (S mutations) normalized by their respective likelihood of 290 

occurrence — is a popular sequence-based method for detecting selection. The logic of the 291 

method is that non-synonymous mutations will tend to experience selection, whereas 292 

synonymous mutations will be evolutionary neutral, and so positive selection will cause an 293 

over-representation of NS mutations (dN/dS>1) whereas negative selection will cause an 294 

under-representation of NS mutations (dN/dS<1) 56. Driver mutations have positive dN/dS 295 

values 23 and newly refined powerful methods for dN/dS calculation have been developed 296 

specifically for cancer data13,57. 297 

For the dN/dS method to work, there has to be a sufficient number of mutations under 298 

selection in the gene or locus to cause a significant deviation of the ratio away from 1. 299 

Hence, a minimum mutation burden is required to calculate the ratio at all, and so the 300 

method is challenging to apply to individual genes that will carry no more than a few 301 

mutations in a single tumour. Whereas dN/dS methods are suitable for looking across 302 

cohorts, they are hard to apply to individual tumour evolutionary dynamics. Population 303 

demographics also influence the dN/dS ratio in a complex manner and potentially confound 304 

its interpretation 58,59. Moreover, there is evidence that certain synonymous mutations can 305 

be under purifying selection which can impact dN/dS estimates and inference of selection.  306 

 307 

Stochasticity versus determinism  308 

In small populations, both in cancer and species, stochasticity can dominate the evolution of 309 

even strongly selected mutations3, but a large clone in a large population can behave more 310 

deterministically60. The threshold between stochastic and becoming deterministic is 311 

inversely proportional to the selective advantage of the mutant 52,61 22. This ‘evolutionary 312 

rule’ about the transition from stochasticity to determinism has implications for the 313 

predictability of cancer evolution: small, stochastically evolving clones have unpredictable 314 

evolution, whereas large clones evolve more predictably. In other words, we are likely to be 315 

able to accurately predict the evolution of clones that have already grown large enough to 316 

be detected, but an accurate prediction about the emergence of specific minor clones will 317 

be more challenging.   318 

 319 

Chromosome instability in cancer evolution 320 

 321 

CIN and clonal fitness 322 

Alterations in copy number affect a greater proportion of the cancer genome than any other 323 

mutations 62, and can act as “hopeful monsters”63, offering potentially high adaptive 324 

advantage to evolving cancers. They result from CIN, a consequence of ongoing errors in 325 

chromosome segregation during mitosis and errors of DNA replication and repair64 65. The 326 

end result is aneuploidy (an unbalanced chromosome complement) involving entire 327 



 

 

chromosomes (whole-chromosome aneuploidy) or parts of chromosomes (partial or 328 

segmental aneuploidy). Aneuploidy can also occur independently of CIN if a single event of 329 

chromosome missegregation leads to expansion of the aneuploid clone followed by clonal 330 

stasis, that is, without detectable ongoing CIN. Such tumours are homogeneously or clonally 331 

aneuploid, whereas tumours with ongoing CIN are heterogeneously or subclonally 332 

aneuploid 66,67. In addition, aneuploidy can result from single catastrophic events, termed 333 

chromoplexy [G] (if affecting multiple chromosomes) or chromothripsis [G] (affecting 1–2 334 

chromosomes), the relevance of which has become increasingly evident across different 335 

cancer types 68. Whatever the mechanism, aneuploidy can alter the somatic copy number, 336 

and therefore expression, of many genes at the same time. Although the background 337 

alteration rate varies substantially across chromosomes 45 it does not account for evidence 338 

of recurrent chromosomal level or arm level aberrations in tumours69, which can best be 339 

explained by selection (positive or purifying). Location of tumour suppressor genes and 340 

oncogenes re-capitulates the patterns of aneuploidy observed across different cancers 70,71 341 

also shows the adaptive potential provided by CIN. In a mouse model of acute lymphoblastic 342 

leukaemia and hepatocellular carcinoma, induction of CIN in T cells and hepatocytes 343 

resulted in tumour-specific patterns of chromosome copy alterations, suggesting that 344 

selective pressure is tissue context-dependent72. CIN can also provide means of disease 345 

escape following curative treatment with surgery or disease control with targeted therapy.  346 

Induction of CIN in the KRAS model of lung cancer resulted in rapid relapse, with recurrent 347 

tumours showing high levels of aneuploidy 73, with emergent independence from the 348 

original oncogenic stimulus. In chronic myeloid leukaemia patients who developed 349 

resistance to BCR-ABL targeting imatinib developed additional chromosomal alterations74. 350 

 351 

Some effects of CIN are independent of gene-specific alterations, including reduced 352 

proliferation, proteotoxic stress, metabolic changes, upregulation of the stress response and 353 

further genome instability. The latter in particular has a profound impact as aneuploid cells 354 

continue to create more genetic diversity 75,76. The fact that aneuploidy (or CIN) can be both 355 

detrimental and advantageous highlights the importance of determining the selective 356 

landscape. This is well illustrated in yeast where aneuploidy provides a fitness advantage 357 

under severe environmental conditions, acting as “a first evolutionary line of defence”77, but 358 

does not persist upon reversion to normal conditions. In a systematic study of the oncogenic 359 

potential of aneuploidy in mouse embryonic fibroblasts (MEFs), trisomy failed to induce 360 

transformation under any conditions and the cells grew poorly compared to matched 361 

euploid cells, consistent with a fitness penalty. However, during long-term growth, triploid 362 

cells acquired other aneuploidies that conferred improved fitness 78. The authors suggest 363 

that low levels of aneuploidy may be tumour-protective, but that the genome-destabilizing 364 

effects of aneuploidy are tumour-promoting under certain growth conditions. Thus, the rare 365 

growth-promoting aneuploidies expand and rise to clonal levels, whilst growth-inhibitory 366 

aneuploidies are selected against. Consistent with this notion, aneuploid cells grew better 367 

than euploid cells under conditions of environmental stress such as hypoxia and 368 



 

 

chemotherapy 79. Addition of a single chromosome increased the tolerance to 369 

environmental stresses and was not chromosome-specific, suggesting that overexpression 370 

of particular genes is not the only contributor to adaptive potential.  371 

 372 

CIN and metastases 373 

Complex processes of metastatic spread, which require a multitude of cellular phenotypes 374 

could be well served by the karyotypic and phenotypic heterogeneity generated by CIN. 375 

Comparative studies of matched primary tumour–metastasis pairs have reported 376 

enrichment for aneuploidy in metastatic lesions from prostate, pancreatic, breast and colon 377 

cancers (reviewed in 80). Through a detailed clonal resolution of matched clear cell renal cell 378 

cancer (ccRCC) primary and metastatic tumours, we recently reported that a critical 379 

difference between tumour clones that are metastasis-competent compared to those that 380 

fail to metastasize is the degree of aneuploidy and chromosome complexity (measured by 381 

fluorescence-activated cell sorting (FACS) and weighted genome instability index 81 82). 382 

Furthermore, we observed that specific somatic CNAs, loss of 9p and loss of 14q, were 383 

highly enriched within the metastasizing clones, reflecting active selection. We found no 384 

evidence of selection for the smaller scale mutations such as SNVs82. Beyond altering the 385 

expression of many genes simultaneously potential mechanism by which chromosomal 386 

alterations contribute to metastasis include the induction of mesenchymal transition 387 

through changes in expression of intercellular junction proteins83, activation of cGAS–388 

stimulator of interferon genes (STING) pathway by cytosolic DNA from chromosome 389 

missegregation84 85,86 , and immune evasion 87.  390 

 391 

CIN and clinical outcomes 392 

The role of CIN in cancer evolution and progression is evidenced by its association with poor 393 

clinical outcomes in a number of retrospective studies 88,89. More recently, analyses in a 394 

prospective cohort of early stage non-small cell lung cancer (NSCLC) evolution (TRACERx-395 

Lung study) showed that CIN confers an increased risk of recurrence and death 396 

independently of known predictive markers 26. In TRACERx-Renal, a similarly prospective 397 

study of clear cell renal cell carcinoma (ccRCC), increase in aneuploidy was associated with 398 

shorter progression-free and overall survival25. Intriguingly, the level of CIN has a bearing on 399 

its overall impact on prognosis. In a pan-cancer analysis of >2,000 samples, only moderate 400 

levels of CIN (>25% and <75%) were associated with decreased survival, concordant with 401 

previous studies showing that excessive levels of CIN confer an improved prognosis 90,91 92. 402 

These observations are consistent with a fitness cost of CIN, with the selective advantage of 403 

karyoptypic heterogeneity negated by excessive levels of aneuploidy. 404 

  405 

CIN is also linked to resistance to anti-cancer treatment, including chemotherapy 93,94, and 406 

CTLA4 and PD1 immune checkpoint inhibitors 87 95. In NSCLC, CIN can lead to subclonal loss 407 

of heterozygosity (LOH) in the genes encoding the human leukocyte antigen (HLA) 96, with 408 

pervasive evidence of positive selection for this event in tumours. In this context, HLA LOH 409 



 

 

facilitates accumulation of subclonal neoantigens, and further clonal evolution 96. In ccRCC, 410 

we observed increased rates of HLA LOH in primary tumour subclones that were selected in 411 

metastatic sites, highlighting again the role of immune evasion in metastasis82. 412 

 413 

Evolutionary patterns and patient outcomes  414 

A critical question is whether understanding a tumour’s evolutionary trajectory and 415 

evolutionary potential can help to predict patient outcomes. In particular, the presence of 416 

clonal diversity is expected to provide a rich repertoire of alterations that could be adaptive 417 

under selective pressure of therapy, alterations in tumour environment or metastatic 418 

colonisation of distant sites.  In a prospective study of Barrett’s oesophagus, a premalignant 419 

condition, progression to adenocarcinoma correlated with clonal diversity independently of 420 

other genetic risk factors 97. Multiple studies have demonstrated the link between subclonal 421 

diversification and adverse clinical outcomes in chronic lymphocytic leukaemia 98 99, head 422 

and neck cancer 100 ovarian cancer 101 and across other cancer types 102. Subclonal 423 

diversification of somatic CNA and mutational drivers was associated with adverse 424 

prognostic features in ccRCC, and independently associated with reduced progression-425 

free and overall survival 25. In NSCLC, diversity of SCNAs but not SNVs correlated with the 426 

risk of relapse and death 26. In patients with breast cancer, intratumour heterogeneity of 427 

HER2 copy number, detected at single-cell resolution, was associated with shorter 428 

survival 103.  429 

 430 

However, lack of detectable clonal diversity does not always correlate with improved clinical 431 

outcome. In multiple myeloma, detection of neutral evolution dynamics correlated with 432 

progression-free and overall survival106 and associated with the presence of a strong clonal 433 

oncogenic driver, which might explain the lack of ongoing selection.  It is also increasingly 434 

apparent that some tumours acquire multiple and/or strong drivers in a short period of time 435 

(punctuated evolution), whereas others show a more steady rate of driver acquisition (gradual 436 
evolution) 10,107-109. The result of punctuated evolution is a rapid clonal sweep and a fairly 437 

homogenous tumour mass. In ccRCC, these tumours are characterized by low driver 438 

intratumour heterogeneity and high levels of clonal aneuploidy which became fixed early 439 

on in tumour evolution. These tumours proliferated faster, disseminated rapidly to many 440 

different sites (Figure 3a), and had worse outcome, compared to those characterized by 441 

clonal diversity and subclonal aneuploidy25. Metastases from rapidly evolving tumours 442 

were seeded by the same dominant clone found at the primary site resulting in limited 443 

inter-metastatic heterogeneity in untreated patients (Figure 3a). By contrast, tumours 444 

with subclonal aneuploidy, evolving in a Darwinian fashion and gradually accumulating 445 

driver alterations, grew more slowly and over longer periods of time. In some cases 446 

metastases were seeded by multiple clones resulting in inter-metastatic heterogeneity (in 447 

untreated patients).  In line with this, a mathematical model of metastases formation 448 

suggests that the probability of observing inter-metastatic heterogeneity (which results 449 

from distinct clones in the primary tumour seeding different metastatic sites) increases 450 



 

 

when the primary tumour grows slowly110. Intriguingly, gradually evolving tumours were 451 

also associated with a specific pattern of metastatic progression, termed 452 

“oligometastases” 82 (Figure 3b). Oligometastases, defined as a small number of lesions 453 

confined to a single site, are conceptualized as an “intermediate state of metastatic 454 

capacity” 111,112 with an important clinical implication for directed, potentially curative 455 

treatment for such lesions. Reduced metastatic efficiency of clonally diverse tumours 456 

could be a result of clonal interference (inter-clonal competition at the primary tumour 457 

site) or a reflection of weak clonal drivers, with subclonal driver events providing 458 

additional fitness required for metastases.  459 

Pancreatic cancer has traditionally been viewed as following gradual evolution 460 

with sequential acquisition of driver events. However, some pancreatic cancers show 461 

punctuated equilibrium as the principle evolutionary trajectory, whereby multiple driver 462 

events are acquired, sometimes through a single ‘catastrophic’ event results in complex 463 

genomic rearrangements 113. Consistent with our observations in renal cancer, such 464 

evolutionary trajectories result in limited inter-metastatic heterogeneity, as all 465 

metastases are seeded by the dominant primary tumour clone 114. Another example is 466 

uveal melanoma, characterized by aggressive though latent liver metastases in a 467 

proportion of patients, especially those whose primary tumour harbours BAP1 mutations. 468 

BAP1 mutations and chromosomal complexity were shown to arise in a short burst early 469 

on in tumouregensis107, implying that metastatic potential can be acquired at the earliest 470 

stages of cancer evolution. Similar observations have been made in triple-negative breast 471 

cancer 109, while chromoplexy and chromotripsis were shown to fuel rapid evolution in 472 

prostate cancer and colorectal cancer 108,115, respectively.  473 

 474 

Finally, the temporal order in which mutations are acquired during tumour evolution 475 

impacts the clinical phenotype and outcome in myeloproliferative neoplasms104, ccRCC 476 
25 , NSCLC and breast cancer105. These observations are consistent with determinism, and 477 

suggest that evolutionary trajectories could potentially be predicted for patient benefit.  478 

 479 

The observation of the wide spectrum of evolutionary patterns in cancer begins to 480 

reconcile the diverse clinical phenotypes and varied outcomes seen in the clinic. In 481 

particular, the occurrence of punctuated genomic evolution highlights the challenge of 482 

managing cancers that acquire metastatic competency early, cancers that are ‘born to be 483 

bad’. Supporting this notion are pre-clinical models which show metastatic dissemination 484 

before frank malignancy is detected histologically116. These observations are especially 485 

relevant for cancer screening approaches.  As the latency between the emergence of the 486 

invasive clone and metastatic spread can be short the window for early detection could 487 

be very limited 117. Many questions about evolutionary trajectories remain including the 488 

environmental conditions which favour gradual evolution (gradual accumulation of driver 489 

mutations), or punctuated evolution (large-scale rearrangements of the genome leading 490 

to many drivers acquired at once) and how these may be altered for therapeutic benefit.  491 



 

 

 492 

Origin of the treatment-resistant clone  493 

 494 

Resistance to targeted therapies 495 

Targeting oncogenic drivers in both blood and solid malignancies has brought about a 496 

remarkable change in the cancer treatment landscape. Notable examples include BCR/ABL 497 

translocation in chronic myeloid leukaemia (CML), where the use of imatinib has resulted in 498 

10-year survival rates of ~85% 118; KIT mutations in gastrointestinal stromal tumours (GISTs), 499 

HER2 amplification in breast cancer, EGFR mutations in NSCLC, and BRAF mutations in 500 

melanoma. However, with the exception of CML, disease control afforded by targeted 501 

agents is fairly short-lived, and treatment rarely results in long-term survival for the patient. 502 

Mutational complexity of solid cancers may be a contributing factor to inevitability of 503 

resistance, as every additional mutation could provide a pathway to treatment resistance. 504 

Accordingly, higher tumour mutational burden (TMB) correlates with shortened benefit 505 

from EGFR-tyrosine kinase inhibitor (TKI) in metastatic EGFR-mutant NSCLC 119. Although 506 

resistance mutations can arise de-novo 120, they frequently pre-exist as minor subclones 507 

(Figure 4a) 121,122 though the ability to detect them in pre-treatment samples is limited by 508 

the breadth of sampling and depth of sequencing. Modelling of tumour growth suggests 509 

that detectable metastatic lesions can harbour ten or more resistant subclones 123. Although 510 

there are limitations to these models (reviewed in 124), the predictions are consistent with 511 

the observations in clinical and genomic data. In a recent study of patients with chronic 512 

lymphoid leukaemia treated with ibrutinib, resistance was attributable to the emergence 513 

of mutations in BTK and/or PLCG2 which were detected with a high-sensitivity method up 514 

to 15 months prior to clinical progression, with some patients evolving multiple 515 

resistance mutations125. Polyclonal treatment resistance has been described in other 516 

tumour types, with evidence of parallel expansion of clones harbouring distinct mechanisms 517 

of resistance under selective pressure of therapy 126-128. Upfront evaluation of the resistant 518 

clones can also be used to forecast the duration of therapeutic benefit, as recently 519 

demonstrated in metastatic colorectal cancer using frequent time-course liquid biopsies and 520 

mathematical modelling 129.  521 

Thus, a comprehensive catalogue of resistant mutations could inform appropriate 522 

combinatorial strategies, while dynamic monitoring of emerging and resolving alterations 523 

can facilitate adaptive treatment strategies. This approach was well illustrated by the 524 

example of EGFR inhibition in colorectal cancer and the waxing and waning of the resistant 525 

RAS-mutant alleles in the blood in response to treatment initiation and withdrawal 130. 526 

These observations also highlight the issue of fitness penalty associated with resistant 527 

mutations: KRAS mutations were detected in cell-free DNA from patients who developed 528 

resistance to EGFR inhibition; however, when therapy was withdrawn they remained 529 

undetectable, suggesting that they require ongoing therapy for their maintenance and that 530 

resistance comes at a cost. The higher the fitness cost, the harder it is for the resistant clone 531 

to emerge as modelled in xenografts derived from patients ([G] (PDXs) with BRAF-V600E 532 



 

 

mutant melanoma or NSCLC, who developed resistance to BRAF inhibition. PDXs were 533 

exposed to ERK inhibition (downstream of BRAF), which resulted in multiple BRAF-amplified 534 

clones being selected and propagated. When BRAF, MEK and ERK inhibition were combined 535 

in an intermittent schedule, the fitness disadvantage prevented the emergence of the BRAF-536 

amplified subclones 131. Finally, clonal complexity may impact the drug target itself. 537 

Although frequently clonal by virtue of being founder alterations, drug targets can also be 538 

found in tumour subclones. In a recent clinical trial FGFR inhibitor responders harboured a 539 

clonal FGFR amplification, whereas non-responders harboured subclonal amplifications 132. 540 

 541 

Resistance to immune checkpoint inhibition 542 

Another important development in cancer therapeutics has been the advent of immune 543 

checkpoint blockade [G]. The efficacy of checkpoint inhibitors (CPIs) is contingent on pre-544 

existing recognition of the tumour by the immune system, through presentation of 545 

neoantigens which result from somatic mutations accumulated by the tumour. Accordingly, 546 

the best responses are observed in tumours with an abundance of somatic mutations (that 547 

is, a high TMB), which increases the likelihood of a potent neoantigen being presented to 548 

the immune system. Initially, it was expected that CPIs might circumvent the clonal diversity 549 

faced by targeted therapies; however, it has become apparent that clonal evolution has a 550 

profound impact on immunotherapy success and failure. Subclonal neoantigens do not 551 

stimulate an adequate tumour response, as shown by reduced sensitivity to checkpoint 552 

blockade in melanoma and NSCLC tumours that have a significant proportion of subclonal 553 

mutations 133. This pattern has been confirmed across additional tumour types 134. 554 

Neoantigen evolution, or immune-editing, underlies some aspects of acquired resistance to 555 

CPIs. Both clonal and subclonal neoantigens loss under selective pressure of CPI treatment 556 

have been reported. Clonal neoantigens are lost through deletion of the chromosome 557 

region that harbours the alteration, whereas subclonal neoantigens are lost through 558 

outgrowth of alternative subclones 135. Critically, peptides generated from the lost 559 

neoantigens elicited clonal T-cell expansion in autologous T-cell cultures, suggesting that 560 

they generated functional immune responses 135. Neoantigen immune editing has also been 561 

reported in the context of adoptive transfer of autologous lymphocytes that specifically 562 

target proteins encoded by cancer-specific mutations, another area of active clinical 563 

development which holds much promise 136. T-cell recognized neoantigens were selectively 564 

lost over time in metastatic melanomas treated by adoptive T-cell transfer 137, accompanied 565 

by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes, 566 

indicating immunediting. 567 

Inactivation of antigen presentation is another important mechanism of acquired CPI 568 

resistance. For example, point mutations, deletions or LOH in B2M, which encodes an 569 

essential component of MHC class I antigen presentation, and in the genes encoding 570 

interferon-receptor-associated Janus kinase 1 (JAK1) or JAK2, have all been reported as 571 

common mechanisms 138 37. Just as with the drivers of resistance to targeted therapy, these 572 

alterations were selected and expanded under therapy. Vaccine strategies are also 573 



 

 

vulnerable to these alterations. In a trial of an RNA-based vaccine against a spectrum of 574 

cancer mutations, neo-epitope-specific killing was demonstrated in a patient who initially 575 

responded, but developed resistance owing to the outgrowth of β2-microglobulin-deficient 576 

melanoma cells 139. Another mechanism of immune evasion occurs through selection of 577 

tumour populations where HLA is either mutated or lost. In a recent report of adoptive T 578 

cell transfer in a patient with colorectal cancer, profiling of a progressive lesion revealed loss 579 

of the chromosome 6 haplotype encoding the HLA allele that recognized the targeted 580 

mutant KRAS 140.  581 

 582 

Conclusions and perspective  583 

An understanding of the dynamics of cancer evolution might lead to improvement in clinical 584 

outcomes, as it enables prognoses to be accurately determined and ‘evolution-aware’ 585 

patient management to be applied. Genomic analysis provides a quantitative measurement 586 

of evolutionary dynamics and evolutionary potential. There is tremendous value still to be 587 

gleaned from analyses of the rapidly-growing public repository of cancer genomic data; 588 

particular insight can be gained from the large sample numbers and the inter-comparison of 589 

evolutionary dynamics between cancer types. However, we caution that our inferences are 590 

severely restricted by the limitations of single-biopsy, bulk-sequenced data sets. As 591 

sequencing costs continue to fall, deeper sequencing will allow more accurate 592 

determination of clonal fractions (reducing error on inferences derived from these data) and 593 

enable the resolution of smaller clones. Single-cell sequencing technology promises to 594 

circumvent much of the complexity of ‘bulk’ sequencing data, and this maturing technology 595 

promises the concurrent measurement of genotypes and phenotypes in individual cells 141, 596 

together with a characterization of their in-situ microenvironment 36.  597 

Improving the availability of samples from which to study cancer evolutionary 598 

dynamics also presents a bottleneck: we hope initiatives such as our TRACERx 142 and PEACE 599 
143 studies, which provide infrastructure for longitudinal and post-mortem collection of 600 

tumour samples, will become more common. Even at a single time-point, these studies 601 

provide greater representative tumour sampling relative to single-tumour biopsies, which 602 

under-represent tumour bulk, leading to the risk of clonal illusion. Quantitative genomic 603 

analysis of ‘liquid biopsies’ (the analysis of tumour DNA from peripheral blood samples) may 604 

overcome this issue and provide an amenable route for minimally-invasive longitudinal 605 

disease monitoring as well as predictions on disease course and treatment response 606 
53,129,144-146. In summary, evolutionary genomics provides an ever-improving lens to reveal 607 

the clonal dynamics of cancer and impact patient outcomes.  608 



 

 

Box 1. Is cancer a special case of evolution? 609 

Despite major overlaps between evolutionary biology and cancer biology, there are a few 610 

aspects of cancer evolution that indicate tumours may be a special case of evolutionary 611 

systems. First, tumours are extremely large populations, much larger than most common 612 

ecosystems and more akin to bacteria colonies, with populations in the order of 100s of 613 

billions of cells. This implies that the total diversity is astounding. Another special feature of 614 

cancers is that chromosomal instability, which is central to cancer evolution. Chromosomal 615 

instability allows for the generation of true ‘hopeful monsters’ — grossly altered clones that 616 

may be adaptive — a phenomena thought to be very rare in species evolution. Cancer cell 617 

plasticity, or phenotypic change that does not require underlying heritable variation, is also 618 

a fundamental force that guides tumour adaptation and makes the system rather ‘non-619 

Darwinian’ in some contexts.  620 

 621 

Figure 1. Modes of cancer evolution. Cancers evolve according to Darwinian rules: mutation 622 

and selection of beneficial new mutations drives the expansion of subclones, and between 623 

and within selected clones, the cellular populations experience neutral drift. Different 624 

‘modes’ of evolution appear depending on when and how the evolutionary process is 625 

sampled. 626 

 627 

Figure 2. Challenges in detecting selection. a. Limited sampling in time and space 628 

confounds measurement of evolutionary dynamics. (i) Sampling within a clone shows 629 

neutral dynamics. (ii) Non-uniform spatial sampling can look like selection when it is absent 630 

because of genetic divergence, or vice versa. (iii) If driver mutations accrue rarely but exhibit 631 

a strong effect, most evolutionary time shows only neutral dynamics. (iv) Selection occurs 632 

within a small niche that is below the detection limit, so evolution appears neutral because 633 

selected subclones are undetectable. (v) Using frequency/phylogenetic methods, selection 634 

can only be detected when a clone boundary is sampled. b. Bulk sequencing data has a 635 

profound time bias, allowing only the earliest – and so highest frequency – mutations to be 636 

detected. As a tumour doubles its cell number, new mutations that arise represent an 637 

exponentially smaller fraction of the tumour, and so rapidly fall below detectable frequency. 638 

c. Error in copy-number assignment propagates and confounds the identification of tumour 639 

subclones. Limited depth sequencing (say 100X) causes dispersion in the true VAF of a 640 

variant, and true VAF is determined by clonal abundance and underlying copy-number state 641 

(coloured shapes on plot). This leads to mutations in different clones, or at different copy-642 

number states, being erroneously misassigned clonal identities (red boxes). The 1/f2 tail of 643 

low frequency mutations is an inevitable consequence of tumour growth, and further 644 

complicates clonal inference on VAF data. 645 

 646 

Figure 3. Clonal evolution and metastases. Different modes of evolution in the primary 647 

tumour can impact the mode of metastatic progression25. Metastatic capacity is associated 648 

with increased chromosome complexity82. A. Tumours that evolve in a punctuated fashion 649 



 

 

with early onset of clonal chromosome complexity grow rapidly and metastasise early and 650 

widely. Metastases are monophyletic (single dominant clone seeds all the metastatic sites) 651 

and monoclonal (single clone seeds single site), and there is limited inter-metastatic 652 

heterogeneity.  B. Tumours that evolve in a branched/Darwinian fashion grow more slowly 653 

are composed of distinct subpopulations of cells with differential metastatic capacity and 654 

chromosome complexity is acquired late. They can be associated with solitary or oligo-655 

metastases. When they spread to multiple sites they may do so in a polyphyletic fashion 656 

(different subclones seed different sites), which may include organ-specific patterns and 657 

result in inter-metastatic heterogeneity110. If multiple clones seed the same site the 658 

metastasis is polyclonal. 659 

 660 

Figure 4. Clonal evolution of treatment resistance. A. Resistant mutations can be present in 661 

the tumour population before the start of therapy, usually as a minor subclone123,125. They 662 

may evade detection in the baseline sample if they are present at very low frequency or a 663 

restricted to an unsampled region of the tumour. They may be even neutral or deleterious 664 

before therapy. Under the selective pressure of therapy, the treatment-sensitive population 665 

diminishes leaving the resistant population to expand under positive selection. Multiple 666 

subclones bearing distinct resistant mutations can emerge at the same time, indicating 667 

parallel evolution of resistance126-129. B. Treatment resistance can be a result of a de novo 668 

mutation which carries a selection advantage under therapy and becomes fixed in the 669 

tumour population. In this case resistance takes longer to emerge120.  670 

 671 
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 1034 

Glossary  1035 

 1036 

Clonal evolution 1037 



 

 

A process by which genetic and epigenetic alterations create diversity that acts as substrate 1038 

for natural selection. 1039 

 1040 

Subclone 1041 

A populations of cells in the tumor that harbour the same set of genomic alterations 1042 

 1043 

Genetic drift 1044 

A stochastic random process that changes subclone frequency 1045 

 1046 

Selection 1047 

A non-random process shaped by environmental and tumour properties that changes 1048 

subclone frequency    1049 

 1050 

Molecular evolution 1051 

Evolutionary change at the level of DNA sequence.  1052 

 1053 

Somatic evolution 1054 

Accumulation of genomic alterations in somatic cells 1055 

 1056 

Chromosome instability 1057 

A type of genomic instability that involves parts of or entire chromosomes.  1058 

 1059 

Mutator phenotype  1060 

Increase in mutation rates in cancer 1061 

 1062 

Neutral evolution 1063 

Clonal diversity not caused by selection 1064 

 1065 

Phylogenetic tree  1066 

A branching diagram showing the hierarchy of clones within the tumour 1067 

 1068 

Clonal sweep  1069 

Reduction of diversity due to the fixation of a variant due to strong positive selection.  1070 

 1071 

Punctuated equilibrium  1072 

Rapid speciation events with long periods of intervening stasis.  1073 

 1074 

Hopeful monster 1075 

The generation of an individual with a grossly-altered genome compared to its ancestor, 1076 

which may be adaptive. A hopeful monster is the result of punctuated change in the 1077 

genome. 1078 



 

 

 1079 

Passenger mutation  1080 

A mutation that has no effect on clone fitness 1081 

 1082 

Driver mutation  1083 

A mutation that increases clone fitness 1084 

 1085 

Variant Allele Frequency 1086 

Relative frequency of a variant in a tumour sample, expressed as a percentage  1087 

 1088 

Aneuploid 1089 

The presence of an abnormal chromosome complement 1090 

 1091 

Fixation 1092 

Rise of a variant in frequency in the population to 100% 1093 

 1094 

Chromoplexy  1095 

A complex rearrangement of the cancer genome that involves a number of chromosomes 1096 

 1097 

Chromothripsis  1098 

A complex rearrangement of the cancer genome that involves a single chromosome 1099 

 1100 

Patient-derived xenografts 1101 

A tumour model where the tissue from patient’s tumour is implanted in an immunodeficient 1102 

mouse. 1103 

  1104 

Immune checkpoint blockade 1105 

Therapies that target immune checkpoints such as CTLA4 and PD1 which tumours can use to 1106 

escape anti-tumour immune responses 1107 


