

Small town water supply infrastructure costs

Dr Mehran Eskandari Torbaghan & Dr Michael Burrow University of Birmingham April 2019

Question

What are the construction costs for urban water supply infrastructure in small/medium towns (population 10,000 to 40,000) in Africa, including costs per capita for water supply systems and unit costs of key water supply infrastructure items?

Contents

- 1. Executive summary
- 2. Factors influencing infrastructure cost
- 3. Per capita costs
- 4. Unit costs of infrastructure items
- 5. Contracting mechanisms
- 6. References

Appendix A: Projects examined

Appendix B: Additional data not included in the report

1. Executive summary

The capital costs of water supply infrastructure vary widely both on a per-capita basis for water supply systems and on a per-unit basis for specific infrastructure items. Examples of capital expenditure per capita for some water supply systems were found to vary by as much as 19-fold within a single country (for mechanised boreholes in Ghana), and unit costs of water supply system components varied by more than 4-fold (for boreholes with hand pumps in Ghana).

Figures 1 and 2 below show the range of per-capita and per-unit costs for the countries and items where the most data were available (Ghana was the country with the most data available). The boxes represent the second and third quartiles of the range of costs, the 'whiskers' above and below the boxes represent the maximum and minimum ranges, and the dots, if any, show extreme outlying values. The complete data are shown in tables 1 and 2, which appear later in this report.

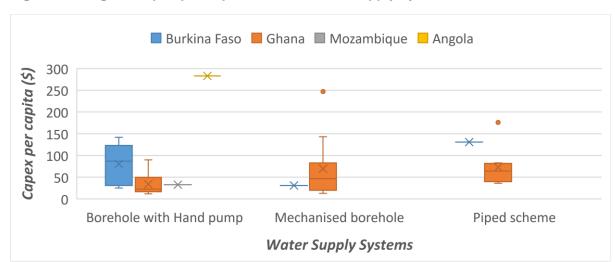
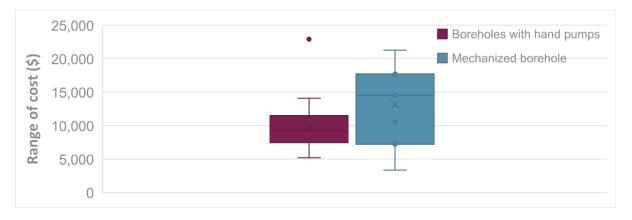



Figure 1: Range of capex per capita for three water supply systems

We found very limited data on the effect of different contracting mechanisms on costs, but one study in Ghana showed that national competitive bidding was associated with lower construction costs than international competitive bidding. (IRC 2012b)

2. Factors influencing infrastructure cost

The variety of organisations involved in construction of water infrastructure and their backgrounds makes it hard to compare the construction costs across the continent.

A common financial measure which is used to compare costs across countries is capital expenditure, known as capex, which is the invested capital for constructing assets, such as pumps and pipes (Fonseca *et al.*, 2010). 'Software' capex refers to one-off work with stakeholders before construction or implementation, while and 'Hardware' capex refers to the construction of physical assets (Fonseca *et al.*, 2010). Capex does not include operation and maintenance costs.

IRC (2012b) identified three major factors influencing the costs of small town water systems in Ghana:

- 1. Population density, showing the dispersion of users of the water system,
- 2. Types of technology for water storage and energy, and
- 3. Contract packaging.

The IRC study concluded that capex of water systems is more sensitive to pipe length per capita, a proxy for population density, than to the population alone, and that water systems contracted under international competitive bidding were reported to be more costly than those contracted under national or local competition (IRC, 2012b). It also found that in Ghana, water systems that use solar energy as a power source and steel storage facilities are significantly more costly than those with national grid power connections and concrete storage facilities. (IRC 2012b, p. 11)

In our review of the literature, we were only able to identify information about types of technology for water storage and energy (see sections 3 and 4). None of the reports that we were able to find presented information about population density or about the area covered by each project. We were able to identify information about contract packaging in only a very small number of cases, which are presented in Section 0.

One other factor that influences costs is the ground condition, which affects the costs associated with drilling/digging processes. Unfortunately no data on the ground and geotechnical condition encountered in projects was found within the literature. Burr et al. (2012) found a relationship between borehole depth and capex (for example, mean capex per borehole ranged from US\$5,788 for a 31 m borehole to US\$12,779 for a 55 m borehole), but borehole depth is not normally reported. Project duration can also have impact on the cost; this is reported in this report where data were available.

Burr and Fonseca (2013) reported large differences between the number of design users and actual users of water systems (varying in one case by up to 30%), and between contracted and actual costs (in one region in Ghana, the maximum average *contracted* cost of a system using boreholes with hand pumps was US\$9,223 while the average field data showed *actual* costs of US\$16,936).

In this report all costs extracted from the literature are converted to US\$. Total project costs used to derive some of the capex per capita values are presented in Appendix A. The review includes data from publications published after 2010 written in English; some examples of additional (older) data not considered in the report are presented in Appendix B.

3. Per capita costs

Capex per capita values and details of water supply projects, including project start and finish dates, region, population, types of storage, water sources and energy are presented below, where available.

Table 1: Per capita costs of water systems

(Values from the source material are shown in normal type; values calculated by the author are shown in bold)

Country	Source	Project	Region /	Popu-		Types of Technology		Capex	Notes
		years	City	lation	Water Storage	Water Source	Energy Source	Per Capita (\$)	
Angola	(Bain <i>et al.</i> , 2013)	2010	Urban			Piped on premises		283	1
Burkina	(Pezon,	2011	Sahel	7,404	-	Small piped scheme	-	131	2
Faso	2015)		Region / Mansila			Hand pump		104	
	(Burr and	2010-	Centre	-	-	Borehole with hand pumps		87	3
	Fonseca, 2013)	2011	Hauts- Bassins					31	
			Nord					142	
	(Burr et	1997-	Centre	5,001-	-	Boreholes with hand pumps	-	87	4
	al., 2012)	2009	Hauts- Bassins	15,000				31	
			Nord					142	
			For all three			Boreholes with hand pumps and piped systems	-	25	1
						Mechanised borehole	-	31	
						Exclusively boreholes with hand pumps	-	78	

Country	Source	Project	Region /	Popu- lation		Types of Technology		Capex	Notes
		years	City	lation	Water Storage	Water Source	Energy Source	Per Capita (\$)	
Central A frican Re public	(The Worl d Bank, 2017)	Apprais al	Bambari	40,000	Rehabilitation of the pumping station with installation of new pumps at its original location to restore original capacity of 250 m³/hour.	Replacement of electromechanical equipment of the water treatment plant. Minor public works to rehabilitate the plant & surroundings. Replacement of the conveyor pipeline from the station. Rehabilitation of the 1,200 m³ storage tank. Extension of access through up to 300 individual connections as well as rehabilitation/construction of up to 60 public stand posts. Allocations for consumables to ensure uninterrupted operation of the treatment plant (chemicals, fuels for backup generators).	Grid and Backup energy use	55	
Ghana	(Ristinma a et al., 2013)	Apprais al	Volta region	11,493	200m ³ Concrete Storage tank	17,574m pipeline		51	
	(Burr and Fonseca,	2010- 2011	Ashanti			Boreholes with hand pumps		18-12	3,5
	2013)		Northern					25-16	
			Volta	•				31-20	
	(IRC, 2012b)	2010	Northern	2,000 - 50,000	Steel storage facilities	Mechanized Borehole	Grid connections	83	1
							Solar power	143	
			Ashanti		-		Grid Connections	76	

Country	Source	Project years	Region / City	Popu- lation		Types of Technology		Capex Per	Notes
		years	City	lation	Water Storage	Water Source	Energy Source	Capita (\$)	
							Solar power	247	
			Volta		-		Grid Connections	20	
	(Appiah- Effah et al., 2011)	2009	Ashanti region	Small town (5,462)		Piped water system		79	6
	(Braimah <i>et al.</i> , 2010)	2008		Rural and small town		Piped water System		40	7
	(Nyarko <i>et al.</i> , 2010)	Up to 2008	Northern (N=2) Ashanti (N=1) Volta (N=1) Greater Accra (N=1) Central (N=12)	Small towns	-	Small town piped systems	-	40-176 (83)	7
	Burr <i>et al.</i> , 2012)	2008	NA	20,000		Single-town Piped water network (N=1)	-	36	4
		2007	NA	20,000	-	Multi-town Piped water network (N=2)	-	77	
	(Ristinma a, 2012)	2006	Northern	10,762	Steel	Mechanized borehole	Grid	54	8
				11,493				41	
				11,441				47	

Country	Source	Project	Region /	Popu- lation		Types of Technology er Storage Water Source Energy Source				
		years	City	lation	Water Storage	Water Source	Energy Source	Per Capita (\$)		
			Ashanti	19,477	Concrete & Steel tanks	Mechanized borehole	Grid	13		
	(Burr and Fonseca, 2013)	2006	-	>15,000	-	Reticulated supply with pumping, storage and distribution through public stand posts with provision for house connections.	-	36	3	
		2005				Reticulated supply with pumping, storage and distribution supplied to a number of interconnected towns or villages, each with its own storage and distribution network.		77	3	
	(Dwumfou r-Asare, 2009)	2005 (7 months)	Pantang Area	12,758	Reservoir (150m³ RC) Fill & Draw System	Borehole (N=1)	-	56.2	9	
	(Ristinma a, 2012)	2003	Volta	15,942	Concrete tank	Mechanized borehole	Grid	18	9	
	(GWCL, 2018)		Berekum	62,364		-Drilling and mechanization of boreholes (506,000 gallons per day), -Supply and laying of 8.52km transmission and 19.62km distribution pipeline and -Construction of 41 No. standpipes.		25		
	(IRC, 2012a)	1998	Central/ Aboransa	10,784		Borehole	Diesel generator set	85		
	(Asante, 2010)	1998	Central	10,784	-	Borehole	Diesel generator set	90	9	
	Burr <i>et al.</i> , 2012)	NA	Ashanti		-	Boreholes with hand pumps: Drilling & construction incl.	-	18-12	4	
			Northern		-	platforms	-	25-16		

Country	Source	Project	Region /	Popu-		Types of Technology		Capex	Notes
		years	City	lation	Water Storage	Water Source	Energy Source	Per Capita (\$)	
			Volta		-		-	31-20	
Kenya	(Batchelor et al., 2011)	-				Rainwater Harvesting Sand dam (1750m³)		6	10
Mozambi que	(Bain <i>et al.</i> , 2013)	2010	Urban			Piped on premises		24	1
	Burr <i>et al.</i> , 2012)	NA	NA	-	-	Boreholes with hand pumps (N=4,000)	-	33	
				5,000- 15,000	-	Single-village/town networks	-	30-380	1,11
				17,000	-		-	87	1
	(Burr and Fonseca, 2013)	NA	Cabo Delgado, Gaza, Inhamban e, Manica, Nampula, Niassa, Sofala, Tete, Zambézia			Boreholes with hand pumps		33	3
			NA	>15,000		Reticulated supply with pumping, storage and distribution through public stand posts with provision for house connections.		87	3
Uganda	(Batchelor et al., 2011)	-				Rainwater Harvesting		45.7	10
South Africa	(Batchelor et al., 2011)	-			Urban yard tank (low pressure)			535	10.12

Country	Source	Project	Region /	Popu-		Types of Technology		Capex	Notes
		years	City	lation	Water Storage	Water Source	Energy Source	Per Capita (\$)	
					Urban roof tank (medium pressure)			645	
					Urban household connections (full pressure)			725	
South Africa	(Moriarty et al.,	-	-	Urban	Yard tank (low pressure)	-	-	301	12,13
	2011)				Roof tank (medium pressure)			363	
					Piped water & house Connection (full pressure)			410	
lower- income	(Fonseca, 2014)	2001- 2010	-	-	-	High cost tech. Urban water supply	-	319	14
countries	Based on the					Intermediate tech.	-	159	
	literature					Peri-urban water supply (N=4)	-	89-193	
			Rural & peri-urban	-	-	Boreholes with hand pumps	_	6-53	
			•			Hand dug well	-	5-89	
						Mechanized borehole with hand pump	-	3-102	
						Water treatment before distribution		0-80	
						Household rain water harvesting		16-167	

Country	Source	Project	Region /	Popu-		Types of Technology		Capex	Notes
		years	City	lation	Water Storage	Water Source	Energy Source	Per Capita (\$)	
						Shallow well with hand pump		12-216	
						Small piped system		47-130	
						Medium piped system	-	30-267	
						Large spring development	-	11- 1363	
						Peri-urban water		89-184	
Developi ng	(Bain <i>et al.</i> , 2013)	2010	Urban	-	-	Piped on premises	-	218	1
countries						Standpipe		93	
						Borehole	-	108	
						Other (Incl. rainwater harvesting, protected wells and protected springs.)		46	

¹Average (US\$; 2010), ²Per user (US\$; 2011), ³Per user (US\$; 2010), ⁴Average per **user** (not per capita) with user numbers ranging between 100 - 300 (US\$; 2010), ⁵values vary by number of users as per design to observed, ⁶US\$ 2009, ⁷Average (US\$; 2008), ⁸Original value in GHc 2011 (converted at a 1.64 US\$/GHc Rate), ⁹Original value in Ghc 2008 (converted at a 0.964 US\$/GHc Rate), ¹⁰US\$ PPP 2008, ¹¹Hardware cost only, ¹²Per household, ¹³Original value in Euros 2011 (converted at a 0.773 US\$/Euro Rate), ¹⁴US\$; 2011

4. Unit costs of infrastructure items

Unit costs of some water infrastructure system components are reported in Table 2.

Table 2: Unit costs of key infrastructure

Infrastructure components	Sub-components	Source	Country	Range of costs (\$)	Average cost by country (\$/unit)	Average cost (\$/unit)
Boreholes with hand pumps	Overall costs	(Burr <i>et al.</i> , 2012)	Burkina Faso	13,000	12,446	10,223
				10,677		
				13,588		
		Burr and Fonseca, 2013)	Burkina Faso	13,183		
				10,667		
				13,558		
		(Braimah <i>et al.</i> , 2010)	Ghana	7,000	8,687	
		(Allabo, 2016)	Ghana	5,200		
		(Burr <i>et al.</i> , 2012)	Ghana	5,272		
				7,451		
				9,223		
				22,910		
				7,869		

Infrastructure components	Sub-components	Source	Country	Range of costs (\$)	Average cost by country (\$/unit)	Average cos (\$/unit)
		Burr and Fonseca, 2013)	Ghana	5,272		
				7,451		
				9,223		
		Burr and Fonseca, 2013)	Mozambique	7,155	9,537	
		2010)		12,779		
				11,119		
				9,927		
				8,913		
				7,624		
				9,272		
				8,252		
				5,788		
		(Burr et al., 2012)	Mozambique	7,662		
				14,078		
				12,104		

	Range of costs (\$)	Average cost by country (\$/unit)	Average cost (\$/unit)
	11,299		
	9,974		
	8,519		
	10,935		
	9,455		
	6,805		
Mozambique	495		1,108
	1,276		
	989		
	1,406		
	1,068		
	912		
	1,667		
	1,146		
	1,016		
) Mozambique	11,299 9,974 8,519 10,935 9,455 6,805 Mozambique 495 1,276 989 1,406 1,068 912 1,667 1,146	11,299 9,974 8,519 10,935 9,455 6,805 Mozambique 495 1,276 989 1,406 1,068 912 1,667 1,146

Infrastructure components	Sub-components	Source	Country	Range of costs (\$)	Average cost by country (\$/unit)	Average cost (\$/unit)
	Drilling and construction including platforms	(Burr et al., 2012)	Ghana	5,328		6,038
				6,066		
				6,721		
	Hand dug well	(Braimah <i>et al.</i> , 2010)	Ghana	3,600	3,600	3,300
		(Godfrey and Hailemichael, 2017)	Ethiopia	3,000	3,000	
	Protected dug well	(Allabo, 2016)	Ghana	1,560		1,560
	Hand pump	(Burr <i>et al.</i> , 2012)	Ghana	737		984
				1,230		
	Hydrogeological studies and supervision		Ghana	697		882
				1,066		
	Hand pump installation cost		Ghana	205		205
Mechanized borehole	Borehole site work	(Ristinmaa, 2012)	Ghana	3,383		4,399
				4,555		
				5,260		
	Borehole (N=1)	(Ristinmaa, 2012)	Ghana	21,261		12,426
				17,715		

Infrastructure components	Sub-components	Source	Country	Range of costs (\$)	Average cost by country (\$/unit)	Average cost (\$/unit)
				14,511		
				10,510		
				3,350		
				7,209		
		(Allabo, 2016)		17,715		
	Pipeline (16025m)	(Ristinmaa, 2012)	Ghana	277,743		-
	Pipeline (17715m)			142,689		
	Pipeline (14885m)			225,031		
	Pipeline (6938m)			94,059		
	Pipeline (17580m)			99,485		
	Pipeline (17500m)	(Ristinmaa <i>et al.</i> , 2013)		277,770		
	Steel Storage tank (150m³)	(Ristinmaa, 2012)	Ghana	137,956		137,936
		(Ristinmaa <i>et al.</i> , 2013)		137,915		
	Steel Storage tank (120m³)	(Ristinmaa, 2012)		123,402		130,274
				137,145		

Infrastructure components	Sub-components	Source	Country	Range of costs (\$)	Average cost by country (\$/unit)	Average cost (\$/unit)
	Steel Storage tank (2780m³) (50' dia. x 50' ht.)`	(USAID, 2012)	Liberia	550,000		550,000
	Concrete Storage tank (100m³)	(Ristinmaa, 2012)	Ghana	17,957		17,957
	Stand post (N=1)	(Ristinmaa, 2012)	Ghana	2,745		1,812
				1,994		
				1,728		
				1,569		
				670		
		(Ristinmaa <i>et al.</i> , 2013)		2,166		
Solar-powered water pumps	Medium–High total dynamic head (TDH) Medium–low flow	(Oxfam, 2018)	Kenya	41,105		41,105
	Low total dynamic head High flow			105,011		105,011
	Solar pump	(USAID, 2012)	Liberia	2,000		2,000
	Stand and Foundation for Panels		Liberia	2,000		2,000
	Fencing		Liberia	1,500		1,500
Treatment Plant	Package Treatment Plant	(USAID, 2012)	Liberia	170,000		170,000
	Generators		Liberia	5,000		5,000

Infrastructure components	Sub-components	Source	Country	Range of costs (\$)	Average cost by country (\$/unit)	Average cost (\$/unit)
Intake Pumps & Controls	125 gpm @ 60'TDH -Intake Structure Building & Components	(USAID, 2012)	Liberia	30,000		30,000
Power sources	Diesel Generator Set (80 KVA, Diesel fuelled and accessories)	(USAID, 2012)	Liberia	180,000		180,000
	Solar Power System, Solar Array, battery storage and controls (80 KVA)		Liberia	2,200,000		2,200,000
Reservoir	Concrete (200 m ³)	(Ristinmaa et al., 2013)	Ghana	90,415		90,415
Rainwater Harvesting	Sand dam (400 m³)	(Batchelor <i>et al.</i> , 2011)	Ethiopia	12,144		12,144
	Sand dam (1750 m³)		Kenya	17,966		17,966
	Ferrocement jar (13.6 m³)		Mali	1,388		1,388

5. Contracting mechanisms

In this review we were not able to find details about the effects of contracting mechanisms on costs. The contracting mechanism used was specified in only two articles, which are presented in Table 3. The IRC (2012b) report on water systems in Ghana shows that in that country, national competitive bidding was associated with lower costs compared with International competitive bidding, but we are not able to confirm whether this is the case in other countries.

Table 3: Costs per capita based for different types of contracts

Source	Type of	1	ypes of Technol	ogy	Capex	Average
	Contract	Water Storage	Water Source	Energy	Per Capita (\$)	Capex per capita (\$)
(IRC, 2012b)	International competitive	Steel storage	Borehole	Grid connections	83	119
	bidding	facilities		Solar power	143	
	International competitive bidding				130	
	National competitive bidding				49	35
	National competitive bidding			Grid Connections	20	
(The World Bank, 2017)	Open National		Mainly rehabilitation	Grid and Backup energy use	55	55

6. References

- Alexander, K.T., A. Mwaki, D. Adhiambo, M. Cheney-Coker, R. Muga and M.C. Freeman (2016). "The Life-Cycle Costs of School Water, Sanitation and Hygiene Access in Kenyan Primary Schools." International journal of environmental research and public health 13(7): 637.
- Allabo, A.S. (2016). Access to water and financial implications of groundwater development in Dodowa, Ghana. MSc, Kwame Nkrumah University of Science and Technology.
- Appiah-Effah, E., K. Nyarko, B. Dwumfour-Asare and P. Moriarty (2011). Cost of Rural and Small Town Water Service Delivery in the Bosomtwe District. **3rd Ghana Water Forum, Accra, Ghana, 2011 Water and Sanitation Services Delivery in a Rapidly Changing Urban Environment** Accra, Ghana, Ministry of Water Resources, Works and Housing Ghana: Accra, Ghana: 102-107.
- Asante, J.K. (2010). Quantifying the Cost of Sustainable Water Service in Selected Small Towns in Central Region. MSc, Kwame Nkrumah University
- Bain, R., R. Luyendijk and J. Bartram (2013). Universal access to drinking water: The role of aid, WIDER Working Paper.
- Banerjee, S.G. and E. Morella (2011). **Africa's water and sanitation infrastructure: access, affordability, and alternatives**, The World Bank.
- Batchelor, C., C. Fonseca and S. Smits (2011). Life-cycle costs of rainwater harvesting systems.

 Occasional paper. The Hague, The Netherlands: IRC International Water and Sanitation Centre, WASHCost and RAIN. 46.
- Braimah, I., K. Nyarko and P. Moriarty (2010). The use of cost information in planning and decision making in rural water and sanitation service delivery in Ghana. IRC Symposium 2010, Pumps, Pipes and Promises: Costs, Finances and Accountability for Sustainable WASH Services, The Hague, The Netherlands.
- Burr, P. and C. Fonseca (2013). Applying a life-cycle costs approach to water. Costs and service levels in rural and small town areas in Andhra Pradesh (India), Burkina Faso, Ghana and Mozambique. **Full Working paper 8**.
- Burr, P., C. Fonseca, P. Moriarty and P. McIntyre (2012). The recurrent expenditure gap: Failing to meet and sustain basic water services; executive summary. The Hague, the Netherlands: IRC International Water and Sanitation Centre., WASHCost Working Paper
- Danert, K., R.C. Carter, D. Adekile and A. MacDonald (2009). "Cost-effective boreholes in sub-Saharan Africa."
- Dwumfour-Asare, B. (2009). **Investment cost of small town water supply schemes in the Greater Accra Region**. MSc, Kwame Nkrumah University of Science and Technology.
- Fonseca, C., R. Franceys, C. Batchelor, P. McIntyre, A. Klutse, K. Komives, P. Moriarty, A. Naafs, K. Nyarko and C. Pezon (2010). Life-Cycle Costs Approach; Glossary and cost components, The Hague: IRC International Water and Sanitation Centre.
- Fonseca, C.P.d.C. (2014). The Death of the Communal Handpump? Rural water and sanitation household costs in lower-income countries. PhD, Cranfield University.

- Godfrey, S. and G. Hailemichael (2017). "Life cycle cost analysis of water supply infrastructure affected by low rainfall in Ethiopia." **Journal of Water, Sanitation and Hygiene for Development 7**(4): 601-610.
- GWCL (2018). Proposals for Review of Aggregate Revenue Requirement and Tariff. https://www.gwcl.com.gh/tarrif_paper.pdf, Ghana Water Company Limited.
- Haysom, A. (2006). A Study of the Factors Affecting Sustainability of Rural Water Supplies in Tanzania, Cranfield University, Silsoe Institute of Water and the Environment: 54.
- Hutton, G. and J. Bartram (2008). "Regional and global costs of attaining the water supply and sanitation target (Target 10) of the Millennium Development Goals." **World Health Organization, Geneva**.
- Hutton, G. and M. Varughese (2016). The costs of meeting the 2030 sustainable development goal targets on drinking water, sanitation, and hygiene, The World Bank.
- IRC. (2012a). "Life-Cycle Costs in Ghana; Briefing Note 9: Cost study of small towns water schemes in central region, Ghana." **Life-Cycle Costs in Ghana** Retrieved 12/03/2019, from https://www.ircwash.org/sites/default/files/cost_study_of_small_towns_water_schemes_i n_central_region_ghana_briefing_note_9.pdf.
- IRC. (2012b). "Life-Cycle Costs in Ghana; Briefing Note 11: Cost drivers of capital investment of small towns water schemes." Life-Cycle Costs in Ghana Retrieved 11/03/2019, from https://www.ircwash.org/sites/default/files/cost_drivers_of_capital_investment_of_small_t own_water_schemes_briefing_note_11.pdf.
- Luengo, M., S. Banerjee and S. Keener (2010). **Provision of water to the poor in Africa: Experience with water standposts and the informal water sector**, The World Bank.
- McGinnis, S.M., T. McKeon, R. Desai, A. Ejelonu, S. Laskowski and H.M. Murphy (2017). "A Systematic Review: Costing and Financing of Water, Sanitation, and Hygiene (WASH) in Schools." International journal of environmental research and public health 14(4): 442.
- Moriarty, P., C. Batchelor, C. Fonseca, A. Klutse, A. Naafs, K. Nyarko, C. Pezon, A. Potter, R. Reddy and M. Snehalatha (2011). Ladders for assessing and costing water service delivery. International Water and Sanitation Centre, available at http://www.washcost.info/page/196. IRC International Water and Sanitation Centre.
- Nyarko, K., B. Dwumfour-Asare, E. Appiah-Effah and P. Moriarty (2010). **Cost of delivering water services in rural areas and small towns in Ghana**. IRC symposium; Pumps, Pipes and Promises: Costs, Finances and Accountability for Sustainable WASH Services, IRC, International Water and Sanitation Centre, the Hague, Netherlands.
- Oxfam (2018). Funding mechanisms to incentivize sustainable and inclusive water provision in Kenya's arid and semi-arid lands. www.socialfinance.org.uk, Oxfam.
- Pezon, C. (2015). "Providing water services at scale: how to move from unsustainable assistance to sustainable development?" **Water Policy 17**(6): 1127-1142.
- Ristinmaa, K. (2012). Cost functions for predicting capital expenditure of small town water systems A Minor Field Study in Ghana. Bachelor's Thesis, Lund University.
- Ristinmaa, K., K. Nyarko and B. Dwumfour-Asare (2013). "Cost funCtions for predicting Capital expenditure of small town water systems in ghana." **VATTEN Journal of Water Management and Research 69**: 27-36.

The World Bank (2017). Project appraisal document on a proposed grant in the amount of SDR 14.3 million (US\$20 million equivalent) to the Central African Republic for a water and electricity upgrading project. Water Global Practice Africa Region The World Bank.

USAID (2012). Draft Voinjama Water Master Plan Liberia Municipal Water Project, USAID.

Appendix A: Projects examined

The overall costs of various water system, as reported within the reviewed literature, are presented in Table 4.

Table 4: Overall cost of various water systems

Source	Country	Region / City	Population		Types of Technology		Overall	Notes
				Water Storage	Water Source	Energy	capex	
(Nyarko <i>et al.</i> , 2010)	Ghana	Northern Ashanti Volta Greater Accra Central	Small towns	-	Small town piped systems	-	136,100 - 1,151,350	1
(Burr et al., 2012)	Ghana	2008	20,000	-	Single-town Piped water network (N=1)	-	19,477	2
·		2007			Multi-town Piped water network (N=2)	-	19,820	
(Ristinmaa,	Ghana	Northern	10,762	Steel	Mechanized borehole	Grid	585,822	3
2012)			11,493				468107	
			11,441				542,575	
		Volta	15,942	Concrete tank	Mechanized borehole	Grid	292,178	
		Ashanti	19,477	Concrete & Steel tanks	Mechanized borehole	Grid	261,833	
(Burr and Fonseca, 2013)	Ghana		>15,000		Reticulated supply with pumping, storage and distribution through public stand posts with provision for house connections.		19,477 - 19,820	4
(Appiah-Effah et al., 2011)	Ghana	Ashanti region	Small town (5,462)		Piped water system		429,151	5

			15,584		781,847	
(The World B ank, 2017)	Central Afri can Republi c	Bambari	40,000		Rehabilitation of a pumping station & storage tank with installation of new pumps, replacement of the water treatment plant and Minor public works Grid and 2,200,000 Backup energy energy	
(Ristinmaa et al., 2013)	Ghana	Volta region	11,493	200m ³ S tank	orage 17,574m pipeline 586,056	3
(GWCL, 2018)	Ghana	Berekum	62,364		Drilling and mechanization of boreholes (506,000 gallons per day), Supply and laying of 8.52km transmission and 19.62km distribution pipeline and Construction of 41 standpipes.	6
		Nsawam	44,522 (2013)		Construction of a new 1.7 million per day treatment plant and distribution improvement works.	
(USAID, 2012)	Liberia	-	19,600	-	Restore Water Distribution System to serve all areas 16,245,00 0	

¹US\$; 2008, ²Mean service area size (US\$ 2010), ³Original value in Ghc 2011 (converted at a 1.64 US\$/GHc Rate), ⁴US\$; 2010, ⁵US\$ 2009, ⁶Original value in Euros (converted at a 0.89 US\$/Euro Rate)

Appendix B: Additional data not included in the report

Additional data from the literature which did not meet the criteria for inclusion in this study are presented here; this primarily consists of data for projects undertaken before 2010.

Table 5: Out of date data for costs in Africa (per capita) for different supply systems, source (Hutton and Bartram, 2008)

Per capita costs of water and sanitation improvements, excluding programme costs

		Per capita costs (US\$ year 2005a)							
	Initial in	nvestmen	it cost	Annual recurrent cost					
Improvement type	Africa	Asia	LAC	Africa	Asia	LAC			
Water improvement									
Household connection (treated)	164	148	232	13.4	9.6	14.6			
Standpost	50	103	66	0.5	1.0	0.7			
Borehole	37	27	89	0.2	0.2	0.6			
Dug well	34	35	77	0.2	0.2	0.5			
Rainwater	79	55	58	0.5	0.4	0.4			
Average of non-household connection options	50	55	72	0.4	0.5	0.5			
Sanitation improvement									
Household connection (partial treatment)	193	248	258	8.2	9.1	11.0			
Septic tank	185	167	258	6.2	6.1	6.8			
Pour-flush	147	81	97	6.1	5.5	5.7			
VIP	92	81	84	3.8	3.8	3.8			
Simple pit latrine	63	42	97	3.6	3.5	3.9			
Average of non-household connection options	122	93	134	4.9	4.7	5.0			

LAC, Latin America and the Caribbean

Costs of water systems in Africa are listed by McGinnis *et al.* (2017; Table 3), however the utilised information did not meet the main criteria adopted in this study (population and being published after 2010).

^a Data from 2000 adjusted to 2005 prices using an average annual gross domestic product (GDP) deflator of 10%.

Table 6: PVC pipes prices in GHc, source Dwumfour-Asare (2009)

PVC pipes (class C)	2004	2005	2005	2007	
Diameter by pipe length	2004	2005	2006	2007	2008
200mm or 8"X 6m	104.81	120.50	132.58	144.70	173.65
50mm or 6" X 6m	68.74	79.00	83.10	87:00	104.40
100mm or 4" X 6m	32.08	35.89	38.76	40.60	48.71
-	NB: Prices are th	ne Ex-factory prices i	ncluding VAT+NHIL ir	i GH¢	1

Table 7: Cost per item as percentage of the overall costs, source Dwumfour-Asare (2009)

Level of Disaggre	Pantang	
Level 1	Level 2	WSS
Hardware cost	Items	
	General items	3.46
	Pumps, installation & control	7.2
	panel	
	Pipelines (Trans. & Dist.) works	45.59
	Treatment plant(s)	0
	Reservoir(s)	9.01
	Public Standpipes	2.39
	Borehole(s) or alternative water	2.89
	source works	
	Watson Board House	2.97

Table 8: Estimated and actual drilling costs, older than 2010, source Danert et al. (2009)

Country, year (ref)	Cost/Pri	ce per:	Description
	well	meter	
Burkina Faso 2006 (ANTEA 2007)		\$152	Average cost of drilling and installation of casing and screen (PVC) but not the pump, as established by study of drilling costs.
Chad 2005 (Practica, 2005)	\$12,000 - 15,000		Range of machine drilled well prices paid by different agencies.
Ethiopia, 2005 (Carter, 2006)	\$37,800	\$252	Estimated price for a 200 mm diameter, steel cased borehole to 150m. No pump or supervision (based on analysis of inputs).
Kenya, 1996 (Doyen, 2003)	\$8,400	\$120	Price estimated for 70m well in specific programme (includes drilling, testing but not siting, supervision or failure)
Malawi, 2001 (Mthunzi, 2004)	\$2,730	-	Estimated average well cost including capital, recurrent, personnel & materials; assuming 45 wells per year with small rig by NGO.
Niger, 2005 (Danert, 2005)	\$10,000	\$160	Estimated price on a bill of quantities, 60m depth, 700km from capital city, excluding supervision and pump installation
Mozambique, 2006 (WE Consult, 2006)		\$151	Average drilling price according to the report. Includes siting, pump installation and VAT.
Nigeria, 2006 (Adekile, 2007)	\$11,700	\$195	Federal Ministry of Water Resources 2006 borehole price. PVC lined, 60 m depth fitted with handpump.
Nigeria, 2008 (Adekile et al, 2008a)	\$6,000	\$120	Estimated price for a 110mm diameter, PVC lined borehole to 50m depth without pump or supervision (based on analysis of inputs).
Nigeria, 2008 (Adekile et al, 2008a)	\$2,140	-	Hand drilled, 110 mm, PVC lined.
Senegal, 2006 (ANTEA, 2007)	-	\$500	Average cost of drilling and installation of casing and screen (stainless steel) but not the pump, as established by study.
Tanzania, 2004 (Baumann, 2005)	\$6,000	-	Budget for borehole with a handpump, as in the National Rural Water Supply and Sanitation Programme (2004), Main Report V 1.
Uganda, 2007 (MWE, 2007)	\$8,700	-	Average price of private sector drilled deep boreholes (with handpumps) paid for by district local governments in F/Y 2006/7.
Nigeria, 2008 (Adekile et al, 2009)	\$500,000	\$2,500	Contract price for 200 m borehole in River State

Table 9: Details of borehole costs for larger cities (over 100,000 population) in Kenya, source (Alexander et al., 2016)

Setting up a school WASH program: Capital Hardware costs, Kenya 2014.

Item	Unit Cost of Item	Average Cost per School per Year	Average Cost per Studen per Year		
Total cost, divided by ten years	USD (KES)	USD (KES)	USD (KES)		
Borehole	9529 (850,000)	953 (85,000)	2.38 (212)		
Two 10,000 L water tanks	2690 (240,000)	369 (24,000)	0.67 (60)		
Two 25,000 L water tanks	6726 (600,000)	673 (60,000)	1.68 (150)		
Gutters for collecting rain water	202 (18,000)	20 (1800)	0.05 (4.5)		
VIP latrine: 4 doors	8965 (800,000)	897 (80,000)	2.24 (200)		
Sub-total borehole and VIP	18,500 (1,650,000)	1850 (165,000)	4.62 (412.50)		
Sub-total rainwater system and VIP	18,590 (1,658,000)	1859 (165,800)	4.65 (414.50)		
Total cost, divided by three years					
Handwashing vessels	224 (20,000)	75 (6667)	0.19 (16.7)		
Drinking water vessels	90 (8000)	30 (2667)	0.07 (6.7)		
Water vessel for menstrual hygiene 12 (1000)		4 (333)	0.01 (0.8)		
Sub-total	326 (29,000)	108 (9667)	0.27 (24.2)		
TOTAL (higher cost of rainwater system)	18,916 (1,681,422)	1967 (175,467)	4.92 (439)		

Table 10: Price per unit for larger cities (with over 1m population), source Luengo et al. (2010)

Country	Largest city	HH connection (US\$/m3)*	Small piped network (US\$/m3)	Standpipe (US\$/m3)	HH reseller (US\$/m3)	Water tanker (US\$/m3)	Water vendor (US\$/m3)
Benin	Cotonou	0.41	N/A	1.91	1.91	N/A	N/A
Burkina Faso	Ouagadougou	0.90	N/A	0.48	N/A	N/A	1.67
Ethiopia	Addis Ababa	0.19	N/A	0.87	1.44	3.85	N/V
Mozambique	Maputo	0.96	0.98	0.98	0.98	N/A	N/V
Niger	Niamey	0.52	N/A	0.48	N/A	N/A	1.79
Nigeria	Kaduna	0.17	N/A	N/V	N/V	3.43	5.71
Rwanda	Kigali	0.44	N/A	1.79	1.79	4.48	N/A
Senegal	Dakar	0.37	N/A	1.53	N/V	N/A	2.29
South Africa	Johannesburg	0.05	N/A	N/A	N/A	N/V	N/V
DRC	Kinshasa	0.05	2.11	1.02	1.01	N/A	N/A
Ghana	Accra	0.52	N/A	5.51	1.53	5.46	6.89
Kenya	Nairobi	0.18	0.60	1.73	N/A	3.74	3.47
Lesotho	Maseru	0.40	N/A	2.58	N/V	N/V	N/V
Malawi	Blantyre	0.12	N/A	1.16	3.38	N/A	N/A
Namibia	Windhoek	1.45	N/A	N/A	N/A	N/A	N/A
Sudan	Great Khartoum	0.37	N/A	1.15	N/V	4.32	3.00
Zambia	Lusaka	0.56	N/A	1.67	N/V	N/A	3.00
Cape Verde	Praia	2.67	N/A	9.44	N/A	9.67	11.38
Chad	N'Djamena	0.22	N/V	N/V	N/V	N/A	N/V
Cote d'Ivoire	Abidjan	0.04	N/V	0.93	1.82	N/A	3.35
Madagascar	Antananariyo	0.11	0.47	1.24	N/V	N/A	2.33
Tanzania	Dar es Salaam	0.39	N/V	0.87	0.98	2.40	2.56
Uganda	Kampala	0.25	N/A	1.40	1.40	N/V	4.50
	Average	0.49	1.04	1.93	1.63	4.67	4.00
	Median	0.37	0.79	1.24	1.49	4.08	3.00
	Min	0.04	0.47	0.48	0.98	2.40	1.67
	Max	2.67	2.11	9.44	3.38	9.67	11.38
	Overprice**		2.14	3.36	4.02	11.03	8.11

^{*4} m3/month

** Price SSIP/HH connection Source: AICD WSS database, Other

Note: Data from 23 cities. Standpipe price is the "retail" otherwise referred to as informal price paid by the consumer at the tap.

Table 11: Unit costs of well and boreholes, source Banerjee and Morella (2011), not specifically for urban systems

	Borehole with hand pump (\$ per capita)	Well with hand pump (\$ per capita)		
Benin	50	36		
Burkina Faso	36	26		
Cameroon	76	58		
Cape Verde	50	36		
Chad	50	36		
Congo, Dem. Rep.	50	36		
Côte d'Ivoire	50	36		
Ethiopia	50	36		
Ghana	22	20		
Kenya	50	36		
Lesotho	50	36		
Madagascar	50	17		
Malawi	50	36		
Mozambique	50	36		
Namibia	50	36		
Niger	94	82		
Nigeria	50	36		
Rwanda	50	36		
Senegal	50	36		
South Africa	50	36		
Sudan	50	36		
Tanzania	50	36		
Uganda	50	36		
Zambia	50	36		

Table 12: Out of date cost details for Tanzanian, source (Haysom, 2006)

Technology	Capital Cost
Lister (diesel-fuelled engine,	Sh7-8 million
manufactured in either the UK or South	
Africa)	
Mono (progressing cavity pump)	Sh15 million
Electrical Submersible (pump with	Sh8 million
electrically-powered motor next to	
pump below water level)	
Chinese DF (diesel-fuelled engine,	Sh500,000 – 1 million
manufactured in China)	
Chinese HZ (diesel-fuelled electricity	Sh500,000
generator manufactured in China)	
Borehole (depends on depth and soil	Sh8-15 million
type)	

Suggested citation

Eskandari Torbaghan, M., & Burrow, M.P.N. (2019). *Evidence of small town urban water supply costs per capita and unit costs.* K4D Helpdesk Report. Brighton, UK: Institute of Development Studies.

About this report

The K4D research helpdesk provides rapid syntheses of a selection of recent relevant literature and international expert thinking in response to specific questions relating to international development. For any enquiries, contact helpdesk@k4d.info.

K4D services are provided by a consortium of leading organisations working in international development, led by the Institute of Development Studies (IDS), with Education Development Trust, Itad, University of Leeds Nuffield Centre for International Health and Development, Liverpool School of Tropical Medicine (LSTM), University of Birmingham International Development Department (IDD) and the University of Manchester Humanitarian and Conflict Response Institute (HCRI).

This report was prepared for the UK Government's Department for International Development (DFID) and its partners in support of pro-poor programmes. It is licensed for non-commercial purposes only. K4D cannot be held responsible for errors or any consequences arising from the use of information contained in this report. Any views and opinions expressed do not necessarily reflect those of DFID, K4D or any other contributing organisation. © DFID - Crown copyright 2017.

