PAKISTAN INSTITUTE OF DEVELOPMENT ECONOMICS

Seminar Paper No. 23

August 1977

PRODUCTIVITY TPENDS IN THE FiANUFACTURING INDUSTRIES

Aftab Ahmad Cheema

PRODUCTIVITY TRENDS IN THE MANUFACTURING INDUSTRIES

by

Aftab Ahmad Cheema

The importance of productivity as a factor of economic development is now almost universally recognised. Some of tine developed countries attribute their economic achievements more to increases in productivity than to anything else. The significance of changes in productivity beco: all the more important for the developing countries where the resources : limited in supply and have a very high social cost. Productivity growth is an"absolute requirement"in the developing countries and a fundamental requisite in any form of planning"irrespective of the stage of developnent and economic and social system $\angle 1$, pp. 127-8].

In Pakistan hardly any work has been done to see the trends in the productive efficiencies of the factors in the manufacturing industries. This paper is an attempt to provide an empirical evidence firstly, about the inter industry differentials in productivity levels and their trend growth rates and secondly, to see that when productivity increases how is the resulting gain distributed between the factors. A study of this kind is important not only from the economic but also from the social point oi view.

This paper is divided into three parts. Part I is about the method and data, Part II deals with the estimation of productivity trends, Part III is about the distribution of productivity gains, and then finally, a few concluding observations have been made.

1. Methodology and Data

Total productivity is defined as " the ratio between the output of wealth produced and the input of resources used up in the process of production" [3, 0. 1]. This is a very broad difinition and the outcomo of any empirical exercise will depend entirely upon how the terms "outputi and "input" are defined. Productivity may be calculated either on the basis of output or value added. Again output and value added figures col.? be either at market prices or at factor costs. "Inputs" may refer to eithos factor inputs or material inputs or both. Once these variables are defiro and the productivity ratios estimated then their growth rates can be easil: found out. There are two ways in which this can be accomplished. Firstli, , by fitting trend lines to the already prepared productivity indices, and secondly, by estimating production functions and then slightly manoeuvri: the technological coefficients of these functions. The results in both cases are almost the same provided the weights used in the first case arc same as the exponents obtained from the statistical production functions [7, p. 13]. the advantage in the first method i.e. the ratio of output to inputs is that it makes possible the inter temporal and inter industr: comparisons of productivities which is not possible in the case of produc functions. It was for these reasons that we decided to obtain productiv: growth rates from the productivity indices.

Trend rates of growth of total factor productivitics were obtained. by estimating the following equation:-

$$
\operatorname{In} P=a+b t
$$

where 'P'stands for productivity and 't' denotes the trend variablc. For each industry growth rate was given by b, the coefficient of trend
variable t. In order to estimate the above equation, total productivity indices were prepared for cach industry covering a ten year period from 1959-60 to 1969-70. Two types of indices were constructed, one baocd on the value added and the other on the output measure. The formulas used for this purpose were:

where w_{0}

$\mathrm{P}=$ Potal productivity based on value added.
$\mathrm{p}^{\prime}=$ Total productivity based on output.
$\mathrm{V}=\mathrm{Gross}$ value added.
$\mathrm{L}=$ Number of persons erployed.
$K \cong$ Gross value of capital.
$\mathrm{M}=$ Raw Materials
$\mathrm{w}=$ Wage rate.
$W=$ Total wages.
$r=$ Rate of return on capital.
$\mathrm{m}=$ Price of raw materials.
Subscripts refor to the time periods.
For equation (2) valuc added was taken at constant factor costs instead of at market prices expecting the results to be more consistent with factor cost figures, because in this way the effect of indirect tares
which is otherwise likely to reflect itscl in the form of increased productivity is separated. Total number of persons was used for calculating labour input and no distinction was drawn between production and non-production workers as with technclogical development the differe: between the two is becoming increasingly difficult to determine. The bo: measure of labour input is the number of hours worked but since no such data are available for any industry employment figures were taken as the second best and were weighted by the base year wage rates to obtain measures of labour input. Capital stock figures included land an buildi machinery and other assets as defined in the Census of Manufacturing Industries. Gross capital figures were preferred to net figures because of the controversial nature of depreciation rates and also to avoid any possible bias as the depreciation rates allowed by the governnent are invariably much higher than the actual productive capacity depreciation [4, pp. 34 r35 . Capital data as such shows the level of capital stoc but for comparing efficiency of capital at different points of time the stocks need to be converted into flows. This conversion was cone by multiplying the value of capital stocks by the rate of return on capital. Base year rate of return was used to construct capital input series. FCl raw materials, price and quantity figures were not available separately. So raw materials at constant prices were obtained by substracting value added from output which wore both available at constant prices.

In Part III, for calculating total productivity gains and the shares reccived by labour and capital the following relations were used *:

```
were usec":
    GT}=\Delta\mp@subsup{V}{T}{}-\Delta\mp@subsup{I}{T}{
    GI}=\Delta\mp@subsup{I}{I}{}-\Delta\mp@subsup{I}{T}{
    G}\mp@subsup{G}{K}{}=\Delta\mp@subsup{Y}{K}{}-\Delta\mp@subsup{I}{K}{
```

where G stands for productivity gains V for gross value added, Y for income and I for input. Subscripts T, I \& K stand for total, labour and capital respectively. Total gains are defined as the difference between increases in gross value added and total factor inputs measured at consta factor costs and constant rates of compensation rospectively. Labour's share of productivity gains is the difforence between an increase in labour income i.e. wages (at constnat prices) and an increase in labour input (at constant wage rate). And similarly capitals share is the difference between an increase in non-wage income (at constant price) and increase in capital input (at constant rate of return).

The entire data used in this paper is the adjusted CMI data which was taken from the appendix tables of two earlier studies $[4,5]$.

II. Productivity Trends

Productivity indices prepared on the basis of equation (2) as given in appendix table I showed unexpectedly large year to year fluctuations in many industries and as a result the estimates of trend growth ratos also did not show any uniformity. 'they were very high in some industries and extremely low in some others. These apparontly doubtful estimatos necessitated the verifications of the findings by some other method. An alternative set of trend ratos was therefore estimated with the help of equation (3). In this case outputs were used instead of values added.

Raw materials which were ignored in the previous equation were thus explicitly included in the productivity formula. Not relying on the estimated figures for business taxes, "outputs" were taken at market prices instcad of factor costs.

Rates of growth of total factor productivity estimated both on tho basis of value added and output are given in table I. A comparison of t two estimates confirms the prior belief that owing to the differences in unclerlying factor intensities and the rates of capacity utilization, the productive efficiency lovels differ markorly "betwcen incustries" and thel they have been changing at different ratos "within industries".

The numerical values of the trancl rates based on value added are higher than those based on output for all inclustries. This was primarily due to the effeot of raw materials which were excluded in the former casc and included in the latter. The results in Table I show that out of a total of sixteen industries value added productivity showed an upward trend in thirteen and a ceclining trend in three industries. The rate of increase was highest in the leather inclustry (9.09%) and the rate of decline maximum in the paper industry (-8.09%) contrary to this there was only one industry which shower declining output productivity while in all others the output productivities showed upward trenc!s. Growth rate was highest in the Rubber inclustry (5.96\%) and lowest in the peper industry (-1.82%). Chemical ancl chomical products and the non-metallic mineral products were two such incustries which showed declining trends for valu but rising trends for output productivities.

-:8:-

The first glance at the table creates some loubts about the validity of the results, but if we look at the productivity indices k ivei in appendix tables (1) and (2), it becomcs quite evident that differenco: in growth rates were actually due to differences in procluctivity levels $v i c k$ in some cases showed wild fluctuations from yenr to year in a particular industry and from industry to inclustry in a particular year. Output prodetivity inclices are on the whole much more consistent as compared to thos based on value added. Larger annual fluctuations and the resulting tron rates in the case of value added can be attributed partially to the form of algebraic relationship between the variables used here to prepare indico. Looking at the two formulas for productivity, we find that the only difference between them is that in the case of output procluctivity a cons term (i.e. the value of raw materials) is added to the numerator and the cenominatior. If initially the numerator and the denominator are not equal then as a result of this addition the two term will be increased by different percentages and the ratio of these terms will also change ${ }^{1}$.
$1_{\text {A }}$ numerical example will illustrate the point. In the case of Lcetter industry the two productivity estimates for $1960-61$ were as follows:
$P=$ Value added / (Lrbour Input + Capital Input) $=21227 /(3924.85+6292.78)=2.07$
P^{\prime} Value added + Raw Materials.

Labour Input + Capital Input + Material Inputs.

$$
=\frac{21227+47221}{3924.85+6292.78+47221}=1.19
$$

Thus the value added productivity was as high as 1.73 times the output the output productivity. In terms of percentages whereas P^{\prime} increased

-:9:-

only by 19%, P showed 107% increase in productivity over the previous yenr. Changes in productivity levels thus take place on account of disproportio: increases in the output and the inputs: And among the inputs it is mostly the capital input which sudclenly shoots up in some years thus tiltine the overall balance. Inepite of the fact that the available capital has nev : been fully utilised $[5,12 \overline{7}$ there is an increasing tenclency in some 0 . industries to adopt more and more capital intensive techniques of product A recent visit to a woolen mill revoaled that some of the ol mer mines were still in a perfectly good shape had bcen replaced by some very sophisticated but highly expensive machines. The result was that althou at current prices the output/input ratio was quite high, yet valued at bas year prices there was a much greater increase in the capital input than resulting output. This is exactly what seems to have happened in the par. incustry. Uptil 1964-65 total productivity was above the initial yoars level but the decline started after 1965 when correspondine to a 44% incri in output (from Rs. 109333 thousands in 1964-65 to Rs. 157981 thousands i 1965-66) there was a 79% increase in the capital input (from Rs. 21384 tlo. ands to Rs. 38264 thousands). This phenomenon of comparatively greater irm increase in capital input continuec! till the last year.

There was almost no increase in the output productivity in the chemical inclustry. Except for three years (from 1963-64 to 1965-66) the productivity index remained clost to 100 . In the case of leather manufacturing the output productivity was 29% higher in 1969-70 as compar to 1959-60. But the large yearly fluctuetions were mainly responsible for the low trend rete. When only one yonr i.e. 1962-63 (for which the productivity was exceptionally high), was excluded the annual trend rate
increased from. 24% to $.74 \%$. In the transport equipment industry the overall rate of growth was low because of leclining production levels after 1967-68. The trencl growth rate of output productivity in this industry was 3.01% till 1967-68, but the last two years pulled down the trend rate as low as . 97%.

In short the results of this study as given in table I suggest thei the total productivity has been increasing at quite high rates in rubber, tobacco, textile, printing \& publishing and electrical (machinery) incustries, and at rather moderate rates in the footwear and miscellaneon. industries. In all other inclustries the trend growth rates were loss tl. 1% per annum. With the exception of paper, leather, chemical and transk; industries growth rates of output total productivities were significant at 5% level in other industries. Footwear inclustry was the only instanc. where the rate was found significant at 10% level.

It is extromely cifficult to identify with exactitude the factors which caused fluctuations in the input output levels of different industries, as this is possible in only indepth case studies of individua? production units. Irrespective of the nature of inclustry one major facter that determines and controls the behaviour of other variable is the "management". It woulc not be too wrong to attribute some of the change, in production and productivity levels to management decisions. An ILO productivity study by Kilby $[8$, p. $305 \overline{]}$ the results of which are alsc quoted by Leibenstein [9, P. 400] shows that in the textile inclustry alone in Pakistan was there a smatic increase in the labour productivit:when only a few minor management lecisions were taken in this regard. These clecisions which includes simle technical alterations, payments by
result and workers training and supervision programmes, resultos in a 14% increase in labour productivity in the weaving unit of the mills and 59% in the bleaching unit. 'he production costs in torms of labour and capital were recuced by 29% and 37% in woaving and bleaching units respectively. The stucly also gives some tnteresting results about the effect of labour relations on the productivity level. The quote from the report "In one of the ILO missions to Pakistan an improvement of labour relations in a textile mill in Lyallpur resulted in a productivity intrease of 30%. Nothing else was changed except that labour turnover was reduced by one-fifth". L9, p. 401]. But it appoars that this increased productivity was not appreciated by the management for some unknown reasons. To their Ercat surprise when some members of the ILO mission revisited somo of the firms they found a reversion to previous med and productivitics. The cotton textile industry being one of the largest inclustries in Pakistan, any generalisation bascd on the expericnce of tha. \because industry will not be too wrone and it is believed that what is true for textile is by and large also true for other incustries.

In Genernl, it was noticed that during the ten year poriod covered. by this sudy total productivity levels increasec at fairly high rates during the first half and showed variations of iifforent degrees during the second half. Year $1962-63$ did not seem to be a normal yeer for many industries as the previously smooth trends showed a sudden change in this year. War with Inclia in 1965 resultod in lower procuctivitics in cly out of sixteen industrics either in 1965-66 or 1966-67. Unsettled politicn © nditions in the country after 1967 to syo extent also reflectcd thenselvor in lower productivities during tiee latter years of $1960^{\prime \prime} \mathrm{s}$.
III. Distribution of Froductivity Ga:ns

Total productivity gins and their distribution between labour an : capital are given in table 2. The overall cistribution seems to be qui uneven, rather quite unfair. But before we go into further cetails of evenness or faimess of the distribution of gains, let us for a moment look at table 3 and appendix table 3. Table 3 given the shares of labo and capital in the increase in total input from 1959-60 to 1969-70 and appendix table 3 , shows the ratios of labour and capital to total input.

It is generally believed that a major share of all gains is invariably taken away by the capital whilc labour hardly gets what is actually deserves. This view does not seem to be far from reality. Oui of a total of sixteen industries, in nine industries copital received more than 60% of the procluctivity gains, Take for exarmple the first inclustry i.e. food manufacturing incustry. Out of the total geins of Rs. 1721161 thousands, labour received only 9.8% while the rest went to capital. Table 3 shows that during the period covered by this study labour input in the food manufacturing inclustry was 15.65% of the total increase in inputs. Productivity gains received by labour were thus 6.47% less than what it shoul have received under an proportionate distribution. 'the increase in capital input on the other hand, was 84.35\% of the total input increase but capital received 90.82% of the gains because of two roasons. Firstly, capital had a very large shere in the food industry in 1969-70 (78.78% to be cxact), and there was every reason to expect 78.78% of the gains going to capital; secondly, as is clear from the factor rice indices, the price of capital increas
much more than of labour thercby tilting the balance in favour of capital.

Except in the chemicals, metal products, machinery excopt electrical, machinery and transport equipment inclustries in all other incustries the distribution of profuctivity gains was in favour of capital. In eleven industries capital's share of gains far excecced its share in the incremental input ranging from 4.77% in the basic metal inclustry to 60% in the tobacco manufacturing industry.

In absoluto terms, productivity gains were meximum in the textile industry (approximately Rs.619270.91 thousands) but labour got only one-third of it as its share (about 10.99% less than its due share) on account of higher proportion of capital in the total input in 1969-70 and price of capital relatively higher then the price of labour.

In general productivity gains are positive in all those inclustrics where in the price of output inereased more than the price of input. Arong these industrics the factor whose price increased more than the price of the other received a bigger share.

The results for paper anc paper products, chemicals and chemicals pfoclucts, non-metallic mincral products and transport equipment inclustriss look quite unreal. Since the quality of the chata cannot be guaranteed an element of error may be present there but the results are still quite amazing. Paper industry had a downward trenc in its total productivity as shown in table 1. Durinn the period 1959-60 to 1969-70 the velue added in this industry incrensed only by 39216 thousands waile correspondine increase in input cost was Rs. 62579 thousands. The industry thus ran a loss

$$
-: 16:-
$$

of Rs 23364 theusands due to Cecline in productivity. But this loss was not shared by both the factors. Labcur income actually exceoded labo input by Rs. 773 thousare!s. Productivity loss to capital was Rs. $2^{1}+137$ thousands. ioc. Rs. 773 thousends more than the totill lose the inenstry the amount naice to labour at the coct of capital.

In the chomical industry, though the total productivity was $.72 \%$ higher in 1969-70 than what it was in 1959-60 the trond rate of productiv was -1.58%. But inspite of this negative trond, the productivity gains, though very nominal, wore still positive. 'Here was an incredible gain to labour and loss to capital. Ihe gain to labour was Rs. 43097 thousands which is about 15.32 times the total gain to the incustry as a whole, while the loss to capital was 14.32 times the industry gains. This probably happened due to the following reasons. We estimated productivity gains at constant prices. For labour and capital incomes current figures were d flated by the rolevant output indices, and inputs were calculated at constant rates of compensation. A look at the price indices shows that whereas the price of chomicals and chemicle products in 1969-70 had increas by 22%, the wee rate during the same period had increased by more than 100% in this industry and the price of capital had increased only by 4.05% ${ }_{5}^{\text {l }}$ he labour input at constant wage rate therefore, was less than the labour ir at constant pricos,resulting in a 1532% gain to labour. Similnrly the big gap between changes in capital income and capital input was because of the fact that the increase in the price of capital (i.e. 4.05\%) was much less than the increasc in the price of cutput (22.41) which was used to dofl: capital income. This diffurcnce of prices coupled with the fact that capital formed 80.14% of the total factor input in the chemical industry resulted in the distribution of geins which were unbclievably in fovour

-:17:-

of labour and against capital.

The third abnormal industry was the non-metallic mineral products industry. ${ }^{1}$ he total factor productivity in this industry in 1969-70 was 22.09% less than its initial level. Over the ten year period from 1959-60 to 1969-70 the productivity declined at a rate of 3.60%. During this period the value added increased only by Rs. 51763 thousands while to produce that much worth of output a cost of Rs. 127489.48 thousands was incurred. 'The net loss was Fis. 75726.48 thousands. Of this loss 98.48% was borne by capital while 1.52% was absorbed by labour. This unequal sharing of loss was again due to unequal changes in the factor prices. Although capital input was about 80% of the total factor input in 1969-70 in the non-metallic mineral products industry, the reason for havinE absorbed 98.48% of the loss was a 32.46% fall in the capital price indexform 100 in 1959-60 to 67.54 in 1969-70. The price of labour and output in the meantime had increased by 79.93% and 46.14% respectively.

Lastly, the transport equipment industry needs a little bit of explanation. Inspite of the fact that in 1969-70 the total factor productivity in this industry was 2.44% less than its initial level, there was on the whole an upward trend in the productivity. A comparison of the figures of initial and the terminal years shows that there was an increase of Rs. 39278 thousands in the value added and a corresponding increase of Rs. 41170 thousands in the input cost. But even though the industry experiencod a loss of Rs. 1886.6 thousands, labour managed to secure a gain of Rs. 11119.8 thousands, which is almost six times the total loss to the industry. "his gain to labour, as in some earlier cases was at the expense of capital

-: 18 :-

which suffered a productivity loss of Rs. 1300 . - thousands. Ihe explanation here again is the same though the degree of our measures (i.c. the price indices) is a little bit different. There was an increase of 25.3% in the price of transport equipments and of 63.36% in the price of labour but a decline of 46.59% in the price of capital over the entire period.

CONCLUSION

It is believed that in ordor to achieve economic development over a shorter historical period the developing countries will have to increase employment and productivity at the samc time $[1$, p. $12 \overline{\mathcal{Z}}$. From the development point of view increased productivity becomes civen more important than the increased production if we keep in mind the scarcity of the productive resources. Most of the industries included in this study showed significant growth in their productivity levels during 1959-70. Paper industry was the only case where a declining productivity rate was observed. The available statistical data has, however, led us to conclude that there wore no significant changes in the output productivity levels of leather, chemical and transport equipment industries. Decline in productivity should be a causc of concern to the governmert which must take proper steps to see that productivity does not fall below a minimum level. The magnitudes of the productivities as given in this paper may not be all true mainly on account of the poor quality of data for some of the industries, and especially so for the paper, chemicals, non-metallic minerals and - leather industries. Guisinger 【 $2, ~ p .22 \bar{〕}$ also makes a passing refercrice to it. ut inspite of all these wealnesses this excreise still cives us a fairly adequate ides awot the dircction of productivity changes.
-:19:-

For actually taking measures to raisc productivity, the conclusions of "the Mecting of Jxperfs on productivity in the Nanufacturing Industries ${ }^{11}$, held undor the auspicies of the ILO in Geneva in 1952 [3, p. 1757 can be of griat help to the government. The measures sufeosted in this report are three fold ; firstly, about plant and equipment. sccondly, about organisation and control of production, and thirdly, about personnel policy. Side by side with this the Hawthorne experiment L.9, p. 401-10_ which was a compl $\ddagger 0$ success in the textile mills in Lyallpur, can also be tried in other industries.

In the end, a few words of caution of the policy makcrs may not be out of place. Although highor productivity is an extemely dosirable thing, the government must see to that it does not aggrevate the problem of uncmployment and that there is an adequate rate of capital formation providing ncw employment opportunatios. To see that the "'higher productivity ${ }^{31}$ efforts do not lose their cffectivencss in the long run, equitable distribution of productivity gains should be ensured.' To quote again from the ILO roport $[3$, p. 177] "these are matters both of social justice and cconomic necessity: failure to distribute widely the benefits of higher productivity and to maintain demand and employment vould mean that the conditions for continuing incronses in productivity would not exist".

Bhatti/
881977/

$\begin{aligned} & -: 20 ;- \\ & \operatorname{TMIX} \mathrm{T} \end{aligned}$						
PPoduchivicy Indichs						
1963-64	1964-65	1965-66	1966-67	1967-58	1958-59	1969-70
137.88	120.07	129.17	107.71	103.94	121.72	153.63
112.53	107.99	135.97	94.97	130.72	158.35	185.91
102.90	114. 37	111.46	102.32	137.76	159.71	178.42
8 c .25	118.47	73.50	60.10	59.00	110.09	157.42
151.39	134. 50	78-58	76.09	72.90	68.78	71.19
158.44	154.?3	155.74	158.14	201.01	2.10 .70	214.73
439.82	324.2 is	529.29	382.38	337.35	429.76	500.55
234.97	250.26	141.87	196.02	211.55	223.22	229.21
14.2 .30	160.43	126.77	104.50	98.13	88.14	100.72
145.42	94.00	107.00	97.96	105.43	$10 \% .42$:13.66
142.41	$15 \% .83$	159.35	155.24s	21-. 63	187.53	149.72
124.26	112.64	114.26	119.61	132.74	122.54	115.45
-	112.54	125. 65	124.52	135.57	129.11	124.88
96.55	140.08	150.82	164.42	189.83	189.37	125.25
167.91	150.94	143.58	139.62	184.56	1 k 4.27	97.66
210.12	186.52	281.60	163.97	205.13	233.04	273.06

Juraudonht 3xodsuex I．
 $\underset{\text { Lrical }}{\text { Wachinery Except iclc }}$
 Basic metals． Lexauth stity artion

 oot szonpoxi x эqqny x，xeqqny | Products |
| :--- |
| Peather $\quad 100$ | $\begin{array}{ll}\text { Printing \＆Fublishing } & 100 \\ \text { Leacher i\＆Leather } & 100\end{array}$

 Wearing Apparel дәчวо pue xeamjood

 $\left\lvert\, \begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 0\end{aligned}\right.$ 98.40 $0 円 \cdot 86$
$00 \cdot \varepsilon 0 ป$ 89 ＇66
ع8．

६8．

97.56 100．76， 101.52

97.74
114.19
119.17

$\stackrel{0}{0}$
$\dot{\omega}$
$\circ \stackrel{\rightharpoonup}{\circ}$
$\dot{\infty}$.

$\dot{\infty}$. | $\stackrel{0}{0}$ | $\stackrel{0}{0}$ | |
| :---: | :---: | :---: |
| 0 | $\tilde{0}$ | |
| 0 | ∞ | |
| 0 | 0 | 0 |
| 0 | 0 | | 99.92 $\stackrel{\circ}{8}$

8
8

58・カロォ
95.35
99.99

9． 78
H

$\stackrel{\sim}{\sim}$

69° LOI
8ヶ・をと

$9 \varepsilon \cdot 96$
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\sim}$

8
0
8

$\stackrel{\stackrel{\rightharpoonup}{む}}{\stackrel{\rightharpoonup}{~}}$

0
0
0

능
is
in

$107.85 \quad 116.55$

$96 \cdot 9$ OT 0 ・をとI 0 ・くII

19．901 LS －501

で・80才 \quad 18． 20 た
119.36109 .23 144．35 141，89

てく。てく

$\stackrel{0}{\circ}$
$\stackrel{1}{0}$
0

$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{\rightharpoonup}{*}$
$\stackrel{\sim}{\sim}$
$\stackrel{\omega}{\omega}$
～

$\begin{array}{ll}u & \stackrel{\rightharpoonup}{*} \\ \stackrel{0}{i} \\ \stackrel{0}{0}\end{array}$

$07 \cdot 239$	S9． 5.7	08．95I	$23^{\circ} 892$	$3 ¢ \cdot 26 I$	36•68¢	$98^{\circ} 801$	75．05	7500	69．26	00．002	Teqtecer
68.209	$36 \cdot 967$	92．906	0¢06\％	$35 \cdot 2 ¢$	07.193	20． 285	$96 \cdot 96$	\％1．96	$97 \cdot 26$	$00 \cdot 0 \mathrm{OL}$	xnoger
										．．．	－
76.388 60.605		S．E． 2.5%	を¢．3¢5		39＊ $1{ }^{\circ} \mathrm{T}$	$59^{\circ} 027$	Sobers	T\％${ }^{\circ} \mathrm{LO}$	5066	Cu 00 T	โจาขุสจว
$63^{\circ} \mathrm{CO}$	OL＊¢9\％	10．S\％${ }^{\text {a }}$	¢ $7 *$ OLI	L8． 275	$86^{\circ} \mathrm{G}$ ¢	37．0\％	¢S．LOI	$92 \cdot \angle 01$	$10 \cdot \mathrm{CnT}$	OU． 00 T	moqण
Tढ：IL9	TS＊页可	$58 \cdot 837$	9T．OTE	$\varepsilon .10$ 礝	$10^{\circ} 963$		37.982	77\％ 61.1	6¢＊ 2Σ ¢	L．${ }^{\circ} \mathrm{OOT}$	T8\％
致•702	${ }_{7} 5 \cdot 7 \mathrm{y}$ \％	IL．Gg¢	0T•3G\＆	「じ Ļ¢	I6．25］	39：05．	98．LSI	38.65	$30^{\circ} \mathrm{V}$ \％	しu＊OOT	xnoqer
30° 〔36	${ }_{78}{ }^{\circ} \cdot 159$	$38 \cdot 136$	68° ¢87	อ\％．035	$62 \cdot 96 \varepsilon$		8З•〔6を	79．59\％	$2 L \cdot \underline{\circ}$	C0． 002	
66． 73 ¢	30.988	$09 \cdot 69 \%$	ST\％© \％	05．993	73：LET	L6＊旸I	69：\％「ご	IT＊ 30	¢ $3 \cdot \mathrm{COL}$	00．01	xnoqer
20－6961	69－8961	$\frac{1}{39-2961}$	29－9961	99－5951	98－7961	79－8961	89－8965	39－595	－9－096T	09－6967	

$35 \cdot 827$ 86.697		$\begin{aligned} & \varepsilon \cdot \propto \varepsilon \\ & 8 \tau \cdot 8 z I \end{aligned}$	$\begin{aligned} & 59 \cdot L \tau z \\ & 66 \cdot 85 \tau \end{aligned}$	$\begin{aligned} & 3 i \cdot g<\varepsilon \\ & \varepsilon 9 \cdot \angle L I \end{aligned}$	$\begin{aligned} & I \Sigma \cdot \angle \Sigma \Sigma \\ & \tau \Sigma \angle \Sigma I \end{aligned}$	$36 \cdot 2 L z$ $06^{\circ} 975$	$\begin{gathered} \tau \varepsilon \cdot 30 \tau \\ 09 \cdot \varsigma_{8} \end{gathered}$	$\begin{aligned} & 02 \cdot 66 \\ & 85 \cdot 66 \end{aligned}$	$\begin{aligned} & \tau 2 \cdot G \dot{L} \\ & 88 \cdot 86 \end{aligned}$	$00^{\circ} 00$ i $00^{\circ} 00$ I	Toqudeo mnoqvi
											लextoovitiosin
上T＊S		20． $0^{\text {chg }}$	$S_{8} ¢_{\text {¢ }}$	$85 \cdot 086$	59.3 ¢\％	L3．66I	Ls． 3 I	60．80工	¢¢． 20 I	$00^{\circ} 005$	［07？
$98 \cdot$ ¢9	¢ $9^{\circ} \mathrm{L}$ 行	$60^{\circ} 8$ ¢ $工$	ULCLI	00° I6	08• 6 \％		OE． \％$^{\text {c }}$	$3 \%^{\circ} \mathrm{L6}$	49.96	$00 \cdot 01$	xnoquT
											Emasint
309727	$88 \cdot 538$	03．508	OS．08z	$85 \cdot 3$ 亿z		L0． $5_{\text {Hit }}$	$62 \cdot ¢ 91$	20．885	$L ¢ \cdot ¢$ III	00：007	［07 ¢ $^{\text {dev }}$
O9020	76\％$\% 95$	$6{ }^{\circ} \mathrm{C}$ 行	ごっ矿	L0．065	00.821	12\％OL	$96^{*} ¢ \subseteq$	SL $\bullet^{\circ} 9$	76 $6^{\circ} 9 \mathrm{~L}$	00＊＊OT	xnoquy
$95 \cdot 08 \mathrm{I}$	20＊¢¢T		OS．Szi	$55^{\circ} \mathrm{Lz} \mathrm{\tau}$	$69 * 501$	－	－	－	－	00．00\％	To7 ${ }^{\text {du }}$ \％
92.89 L	78.855	S¢． STI $^{\text {L }}$	$65 \cdot 87 \mathrm{~L}$	32．tst	$00^{\circ} \cdot 75$	－	－	－	－	00．00t	x．oqut
	$\text { z0. } 8 \boxed{ }$	$38 \cdot 59 \tau$	50.54	LT 6 ¢ $2 T$	88\％动		OL•万TL	81\％zor	โె＇S0I	00＊005	
95．59t	$98 \cdot$ SST	9109 9	$92 \cdot 6$	$38^{\circ} \mathrm{C}$ ¢	$62 \cdot$ ²I	LS．$¢ ¢ \square$	OS＊\％	69\％\％or	09．10I	00000	anoquer
											Ssomat tylun
L8\％ 88 L	95．193	06．918	¢\％L L		92－0 2 z				$68 \cdot 3 L$	20＊ 0	T07？${ }^{\text {des }}$
S0．FLI	LE．TLI	$5 ¢ * 79$	U6行	89＊9LI		¢L $2 \cdot 2 \tau$	¢¢－ori	${ }_{59} 9^{\text {\％}}$ \％ 01	${ }^{0} \cdot 1 \cdot 301$	00000	
961	－8967	89－296T	29－9965	99－996I	59－796T		द9－796t	89－T961	T9－0961	09－6561	STIJEN JIS＇m
				SuTali fio							

RAFEREICES

1．Goncd ，P．＂Productivity and Sconomic Planningit OECD． Faris，1970．

2．Guisinger，Stephen \mathbb{E}_{0}＂Pattern of Industrial Growth in Pakistan＇。 Pakistan Development Review Vol．xv，No． 1 Spring 1976.

3．IIO．＂tigher Productivity in Manufacturing Industries＂． Genevs， 1967.

4．Kemal，A．R．＂Consistent Time Series of Data Relating to Pakistan＇s Large Scale Manufacturing Industries＂Pakistan Development Review．Vol．xv No．1．Spring 1976.

5．＂Sectoral Growth Rates and Ifficiency of Factor use in Large icale Manufacturing Sector in West Pakistan＂． Pakistan Development Reviewo Vol．xv，No．4．Winter， 1976.
6.
－＂Capacity utilization in Manufacturing Industries of Pakistanit Pakistan Development Review．Vol．XIII，No． 3 Autem 1974 。

7．Kendrick，John W．＂Postwar Productivity Trends in the United States，1948－1969＂．National Bureau of Sconomic Research．New York， 1973.

8．Kilby，Po＂Organization and Productivity in Backward Sconomies＂．Quarterly Journal of Sconorics．May， 1962.

9．Leibenstein，Harvey．＂Allocative Ifficiezcy vs。X－Efficiency＂。 American Jconomic Review 1966.

10．Roethlishercer，F．T．and W．J．Dickson，＂Managoment and the workeril Cambridge 1939.

11．Sinha，J．N．and P．K．Sawhey．＂wages and Productivity in selected Indian Industries＇．Institute of Economic Growth，Dehli 1970.

12．Vinston，G．C．＂Capital utilization in Economic Development＂the 3conomic Journal．Vol．81．March 1971.

This work is licensed under a
Creative Commons
Attribution - NonCommercial - NoDerivs 3.0 Licence.

To view a copy of the licence please see:
http://creativecommons.org/licenses/by-nc-nd/3.0/

