

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Abel Mesfin Cherinet

Recommending Issue Reports to Developers
Using Machine Learning

Master’s Thesis (30 ECTS)

Supervisor(s): Ezequiel Scott (PhD)

Tartu 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237085267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Recommending Issue Reports to Developers Using Machine Learning

Abstract:

The development of a software system is often done through an iterative process and differ-

ent change requests arise when bugs and defects are detected or new features need to be

added. These requirements are recorded as issue reports and put in the backlog of the soft-

ware project for developers to work on. The assignment of these issue reports to developers

is done in different ways. One common approach is self-assignment, where the developers

themselves pick the issue reports they are interested in and assign themselves. Practising

self-assignment in large projects can be challenging for developers because the backlog of

large projects become loaded with many issue reports, which makes it hard for developers

to filter out the issue reports in line with their interest. To tackle this problem, a machine

learning-based recommender system is proposed in this thesis. This recommender system

can learn from the history of the issue reports that each developer worked on previously and

recommend new issue reports suited to each developer. To implement this recommender

system, issue reports were collected from 6 different opensource projects and different ma-

chine learning techniques were applied and compared in order to determine the most suitable

one. For evaluating the performance of the recommender system, the Precision, Recall, F1-

score and Mean Average Precision metrics were used. The results show that, from a backlog

of 100 issue reports, by recommending the top 10 issue reports to each developer a recall

ranging from 52.9% up to 96% can be achieved, which is 6 up to 9.5 times better than

picking 10 issue reports randomly. Comparable improvements were also achieved in the

other metrics.

Keywords:

Recommender system, task assignment, bug-triage, machine learning, text classification,

Naïve Bayes, Support vector machines, K-nearest neighbor, Information retrieval

CERCS: P170 Computer science, numerical analysis, systems, control

3

Ülesannete soovitamine tarkvaraarendajatele masinõppe abil
Lühikokkuvõte:

Tarkvarasüsteemide arendust viiakse tihti läbi iteratiivse protsessina ning erinevad

tööüleasnded tekkivad siis kui leitakse defekte või tekib vajadus uue funktsionaalsuse

järele. Need ülesanded salvestatakse probleemihalduse süsteemi, kust arendajad saavad

sisendit oma tööle. Ülesannete jaotamine arendajatele võib toimude mitmel eri viisil. Üks

populaarsemaid lähenemisi näeb ette, et arendajad valivad ise ülesandeid, mis neid

huvitavad. Suurtes projektides võib see aga muutuda keeruliseks: ülesannete suure arvu

tõttu on arendajatel raske aegsasti valida omale huvitav tööülesanne. Selle probleemi

leevendamiseks esitatakse antud töös masinõppel põhinev soovitussüsteem, mis on

võimeline probleemihalduse süsteemi ajaloost õppima milliseid ülesandeid on iga arendaja

eelnevalt täitnud ja selle põhjal soovitada neile uusi ülesandeid. Süsteemi arendamiseks

koguti 6 erinevast avatud lähtekoodiga projektist ülesandeid, kasutati erinevaid masinõppe

meetodeid ja võrreldi tulemusi, et leida sobivaim. Soovitussüsteemi jõudluse hindamiseks

kasutati täpsuse (precision), saagise (recall), f1-skoori (f1-score) ja keskmise täpsuse

(mean average precision) mõõdikuid. Tulemused näitavad, et 100 tööülesande kirjelduse

põhjal 10 igale arendajale sobivaima soovitamise puhul võib saavutada saagise 52.9% ja

96% vahel, mis on 6 kuni 9.5 korda parem 10 juhusliku töökirjelduse valimisest. Sarnased

parandused saavutati ka teistes mõõdikutes.

Võtmesõnad:

Soovitussüsteem, probleemihaldus, masinõpe, teksti klassifitseerimine, naiivne Bayes’i al-

goritm, tugivektormasin

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria)

4

Table of Contents

1 Introduction ... 6

1.1 Problem Statement .. 8

2 Related Works ... 9

3 Methodology ... 12

3.1 Approach .. 12

3.2 Representation of issue reports ... 15

VSM .. 15

One Hot Encoding ... 15

3.3 Machine Learning Techniques ... 16

Naïve Bayes (NBY) .. 16

K-Nearest Neighbour (KNN) .. 17

Support Vector Machine(SVM) .. 18

3.4 Dataset .. 19

3.5 Data cleaning .. 20

3.6 Pre-processing .. 21

3.7 Feature selection ... 23

4 Results ... 26

4.1 RQ 1 .. 26

4.1.1 Choosing a value of k for KNN using MAP .. 26

4.1.2 Comparison for all metrics at N=10 using ML-Based IRS vs random

recommender ... 27

4.2 RQ 2 .. 29

4.2.1 Comparison of results of all metrics at N=10 for TFO vs TCF 29

4.2.2 Comparison of the influence of features using the chi-squared statistics 31

4.3 RQ 3 .. 32

4.3.1 Comparison of all metrics for N = 1 up to 25 for each algorism using TCF 32

4.3.2 Comparison of all metrics at N = maximum F1-score point using TCF 38

5 Discussion ... 39

6 Conclusion ... 42

7 References ... 43

Appendix ... 45

I. Code and Dataset .. 45

II. License .. 46

5

List of abbreviations

IRS Issue recommender system P precision

NBY Naïve Bayes R recall

KNN K-nearest neighbour F1 F1-score

SVM Support vector machine MAP Mean average precision

NTB NetBeans project COV Coverage

ECL Eclipse project RAND Random recommender

FDT Free Desktop project TFO Textual features only

MULE MuleSoft project TCF Both textual and categorical

features

MESOS Apache Mesos project @N At recommendation size of N

TIMOB Titanium SDK/CLI project ML Machine Learning

TF-IDF Term frequency-inverse docu-

ment frequency

VSM Vector space model

DF Document frequency

TF Term frequency

6

1 Introduction

In the course of development of a software system, many change requests, bugs and new

requirements arise at different stages and each of these issues needs to be documented using

issue reports and made ready for fixing. The recording and management of software issues

is mostly done through an issue tracking software. Bugzilla1 and Jira2 are some examples of

such softwares widely used in open-source projects.

Bugzilla is a web-based general-purpose bug tracker and testing tool originally developed

and used by the Mozilla project. However different open source software projects like

Eclipse3 have turned out to use this software to track issues reported on their software prod-

ucts. Jira is a similar issue tracking product developed by Atlassian that allows bug tracking

and agile project management. Apache Software Foundation4, an open-source community

of developers, currently manages more than 350 open source projects using this issue

tracker.

A basic issue report in these issue trackers has a title and description as textual fields. The

description elaborates the issue in full detail while the title summarizes the issue in a short

text, mostly a one-line sentence. Besides the title and description, an issue report also con-

tains other categorical fields which are used to label, categorize and prioritize the issue.

Some of the common metadata fields are assignee, reporter, issue type, priority, component,

version etc. Figure 1 and 2 show an example of an issue report from the Jira and Bugzilla

issue trackers of The Eclipse and Apache projects respectively.

1 https://www.bugzilla.org/about/
2 https://www.atlassian.com/software/jira
3 https://www.eclipse.org/
4 https://projects.apache.org/

Figure 1. An example of an issue report from the Bugzila issue tracker

of the Eclipse project

https://www.bugzilla.org/about/
https://www.atlassian.com/software/jira
https://www.eclipse.org/
https://projects.apache.org/

7

Once issues are well recorded and prioritized, they need to be assigned to a developer who

will be responsible for their fixing. The assignment of issue reports to developers can be

done in different ways. The traditional approach is through a separate person, who can be a

project manager, team leader, or bug triaging person who will decide which developer

should be assigned to which issue report. However, in more agile and self-organizing teams,

self-assignment is widely practised [1, 2]. This means developers get to choose tasks and

assign themselves. In large projects, where more developers collaborate and lots of issues

get reported periodically, assigning issue reports can be difficult and time-consuming as it

requires reading each issue report and choosing a suitable developer to assign them to.

Different research works have been done over the years to improve the issue report assign-

ment process. Some of these research works have proposed an automated assignment ap-

proach where a developer is assigned to each issue report directly [3, 4, 5] while the others

have proposed a developer recommender system that recommends a set of developers to a

third person who will assign the issue report to one of those developers [6, 7].

The automatic assignment and developer recommendation approach proposed in previous

works are not suited for a type of task assignment where developers are free to choose tasks

and assign themselves (i,e self-assignment) because the decision of assigning tasks is made

by either a software component or a third person respectively. Self-assignment is being

widely practised these days and when practising self-assignment in large projects, develop-

ers face the same problem of having to browse through many issue reports to find the issue

reports they prefer to assign themselves to.

Figure 2. An example of an issue report from the Jira issue tracker of the Apache Mesos

project

8

Therefore, this study tries to improve this self-assignment practice, by implementing a ma-

chine learning-based issue recommendation system that can learn from previous assignment

history of developers and recommend a shorter list of most relevant new issue reports for

developers to choose from.

1.1 Problem Statement

When the number of open issue reports in a backlog is large, self-assignment becomes chal-

lenging for developers as they have to read more issue reports to find the next issue report

they want to self-assign and this can be an unpleasant and time-consuming task.

Therefore, the aim of this study is to tackle this problem using a machine learning-based

issue recommender system (IRS) that can learn from the assignment history of the previ-

ously fixed issues and recommend a shorter list of new issues suited to each developer so

that developers can easily find the next issues to work on.

To implement such an IRS, three different traditional machine learning algorithms namely,

K-Nearest Neighbour, SVM and Naïve Bayes, are compared to select the best one. As a data

source, issue reports collected from 6 different open source projects which are based on the

Jira and Bugzilla issue trackers are used. By evaluating the implemented IRS using perfor-

mance metrics like Precision, Recall, Mean Average Precision and F1-score, this thesis

work tries to answer the following research question,

1. What is the performance of an IRS using ML algorithms with respect to a random recom-

mender?

2. How much does including features from the categorical fields affect the performance of

the IRS.

3. What is the optimal recommendation size that maximizes the F1-score (i.e. giving a good

balance between Precision and Recall)?

9

2 Related Works

There have been a number of research works done over the years which set out to improve

the assignment process of issue reports to developers. To find these research works, online

digital libraries like Google Scholars, IEEE and Springer have been accessed, as they are

reliable sources for academic resources. In these digital libraries, search keywords like “is-

sue/bug report recommendation”, “developer recommendation for issue/bug reports”, “task-

assignment in software projects” and others were used to find some of the related works.

Moreover, traversing through the references of the research works found in the first-round

search, it was possible to collect more related works. Among the collected works, 7 papers

which are most related to the topic of this study were selected for review.

The work by Murphy G et al. [3], as one of the very first works done on the topic, proposed

a machine learning-based approach for automatic assignment of bug reports to developers.

In their work, they treated the problem as a text categorisation task. For this, they used the

description of the issue reports as an information source and represented it in a bag of words

representation based on term frequency and used the Naïve Bayes algorithm to train a model

on this representation that can classify issue reports among the developers and automatically

assigned to them. They applied their approach to issue reports collected from the eclipse

project and were able to achieve accuracy up to 30%.

Another similar work was done by Ahsan SN et al. [4] which also used machine learning to

classify bug reports for automatic assignment. They tried to implement an automatic bug

triage system using latent semantic indexing and support vector machine. Just like the work

by Murphy G et al. [3], they relied totally on the description of the issue reports as an infor-

mation source. However, they are different in two things. First, they used TF-IDF weighing

based VSM representation for the issue reports and they also applied dimensionality reduc-

tion and latent semantic indexing methods for feature selection. The other difference is they

used the SVM algorithm for classification. In this way, they were able to achieve up to

44.4% accuracy on bug reports collected from the Mozilla open-source project.

Nasim S et al. [5] used the frequency of each alphabet instead of terms in the bug short

summary as features for 11 different classification algorithms to make the prediction on the

developer to be assigned. They used the Eclipse JDT project for their experiments. The bug

summaries in eclipse contain tags and a one-sentence description. They experimented their

approach using only the tagged issue reports and using all collected issue reports. The best

results they achieved was using only the tag information of the tagged issue reports which

gave an accuracy of 62% accuracy with the J48 decision tree algorithm. However, not all

issue report descriptions contain tags, in fact, from the issue reports they collected, less than

half of the issue reports contained tags in their description, which makes it hard to com-

pletely rely on tags. Using all collected issue reports the best accuracy they were able to

achieve was only 32%.

Not all research works on the issue report assignment problem relied on machine learning

algorithms. For example, Tamrawi A et al. [6] proposed a fuzzy sets-based approach. In

their approach, for every technical term in bug reports, they kept a record of a fuzzy set of

the developer's relation to the term based on the issue reports fixed by the developers previ-

ously. For a new issue report, they ranked the developers based of their membership score

to the fuzzy set of the new issue report, calculated based on the fuzzy set theory [8], and

assigned the issue report to the developer with the highest membership score. Using this

approach, they were able to achieve a top 1 accuracy of 37.81% and top 5 accuracies of on

average with issue reports collected from the Eclipse project.

10

Another example is the work by Hu H et al. [7]. Their approach makes use of a Developer-

Component-Bug (DCB) network structure to make developer recommendations. This net-

work captures the relationship among developers, source code components and bug report

and assigns a weight to each connection in the network. They made use of the VSM model

to represent bugs and the keywords for this model are extracted from the summary of the

bug report and the source code repository log of the commit corresponding to the bug fix.

They made use of cosine similarity to calculate the relevance of each previous bug to the

new bug. This relevance is then propagated through the DCB network to calculate the rele-

vance of each developer to the new bug which in turn is used to recommend the top n de-

velopers. They Evaluated their approach on Eclipse, Mozilla, NetBeans and 2 other indus-

trial projects. Their best result achieved 42.36% top1 accuracy and 73.85% top 5 accuracy

on the Eclipse project.

In an effort to improve the representation of the textual description of issue reports, recent

work by Mani S et al. [9] has applied a more advanced representation using deep learning.

They used a deep bidirectional recurrent neural network to learn the semantics of the textual

description of the issue reports in an unsupervised manner. Applying this type of represen-

tation on issue reports from the Chromium, Mozilla Core and Mozilla Firefox and by using

Naïve Bayes, SVM, SoftMax and cosine distance-based classifiers for predicting develop-

ers, they reported improvements in top 10 accuracies with respect to the TF-IDF based bag

of words representation, however their best results are still low for top 10 accuracy, which

is 47%.

Rocha H et al. [10] proposed a tool called NextBug [1] which recommends similar bugs to

each bug reports browsed by developers so that developers can find the next bug, they want

to fix after they worked on a bug report. The tool has an IR and recommender component.

The IR component uses the summary and description of issue reports computing a VSM

representation using TF-IDF weighting scheme. The recommender component computes

the similarity of bug reports by using a cosine similarity function and applying it on the

VSM representations. This way, for every issue report visited by developers they were able

to show the top similar issue reports as part of the visited issue report. Evaluating the tool

on bug reports collected from the Mozilla Project they were able to achieve a precision of

31% approximately by recommending 1 up to 5 similar issue reports for each visited issue

report.

The NextBug tool can be useful for developers when practising self-assignment however

the recommended issue reports are specific to an issue report instead of a developer and

developers have to visit an issue report they fixed before to find recommendations. This

makes it different from what this thesis proposes because it is trying to recommend issue

reports specific to developers.

In Table 1 the approaches used and results reported in the previous works reviewed is sum-

marised. In general, it can be seen that there are limited research works that target to im-

prove the self-assignment practice and the IRS we are implementing is expected to fill this

gap. We also noticed that most focus has been given to the description and summary of issue

reports as an information source, however, issue reports contain other categorical metadata

information (e.g. components, issue report type, priority, reporter, ..., etc) that can be useful

to analyse. Therefore, in this study, we tried to combine features from these categorical

fields with features from the description and title of issue reports to be used to train the

Machine learning algorithms and finally we analyse the effect of this on the performance of

the IRS.

11

Table 1. Summary of related works

Paper
Tries to Improve

task assignment by

Used Infor-

mation source
 Methods used Best results

Mur-

phy G

et al.

[3]

Automatic assign-

ment

Summary and de-

scription

• BOW representation with TF

• Naive Bayes classifier Accuracy: 30%

Ahsan

SN

et al.

[4]

Automatic assign-

ment

Summary and de-

scription

• VSM representation with TF-

IDF,

• Latent semantic indexing

• SVM classifier

 Accuracy: 44%

Nasim

S

et al.

[5]

Automatic assign-

ment

Summary and de-

scription

• Representation with Frequency

of alphabets

• 8 different classification algo-

risms, Best result with J48 deci-

sion tree classifier

Accuracy: 32%

 Accuracy: 62%(using only

tagged issue reports)

Hu H

et al.

[8]

Developers recom-

mendation to third

person assigner

Summary and de-

scription,

commit logs,

Source code com-

ponents

• VSM representation with TF-

IDF,

• Cosine similarity

• Developer-Component-bug net-

work structure

• ranking by score calculated from

the network

 Top 1 accuracy: 42.36%

 Top 5 accuracy: 73.85%

Mani

S

et al.

[9]

Developers recom-

mendation to third

person assigner

Summary and de-

scription

• Representation using deep learn-

ing

• SVM, SoftMax and Naïve Bayes

classifiers
 Top 10 accuracy: 47%

Rocha

H

et al.

[10]

Similar Issue report

recommendation

Summary and de-

scription

• VSM representation with TF-

IDF

• Ranking by Cosine similarity
 Top 5 precision: 31%

12

3 Methodology

This section presents the procedures followed to answer the research questions of this study.

First, an IRS was built using the approach explained in section 3.1. The approach involves

pre-processing and feature selection steps which are further elaborated in the sections that

follow.

The IRS was evaluated using different machine learning algorithms on the collected issue

reports by sampling multiple backlogs of size 100 issue reports at different places within the

chronological order of the issue reports. The IRS was run to recommend issue reports to the

developers from each backlog and the performance for each recommendation was evaluated

using the precision, recall f1-score and mean average precision metrics. This experimental

setup and the evaluation metrics used are explained in section 3.6.

Finally, to answer each research question, the following procedures were followed.

RQ1: What is the performance of an IRS using ML algorithms with respect to a random

recommender?

To answer RQ 1, The IRS was evaluated using both textual and categorical features for each

ML algorithm separately with top 10 recommendation sizes, and the best results for each

metrics were compared against a random recommender to know how much more easily

developers can find relevant issue reports using the ML-based IRS compared to selecting

issue reports randomly.

RQ 2: How much did including features from the categorical fields affect the performance

of the IRS.

To answer RQ 2, the IRS was evaluated for top 10 recommendation as in RQ 1, but using

textual features only and the best results were compared with what was found using both

categorical and textual fields (see RQ 1). In addition to that, a chi-squared statistical test is

used to know which features are more associated with the class labels (i.e. the developers

|assigned to the issue reports) and which fields of the issue reports contributed these features.

RQ3: What is the optimal recommendation size that maximizes the f1-score (i.e. giving a

good balance between precision and recall)?

To find the size of recommendation with a better balance between precision and recall, the

f1-score was used for comparison because it measures both the precision and recall in har-

mony. By varying the recommendation size from 1 to 25, we tried to find the recommenda-

tion size which achieves a maximum f1-score in each project using the three algorithms

separately and by using both textual and categorical features.

3.1 Approach

The problem addressed by this thesis can be formulated as follows. Among a list of open

issue reports R, how can we recommend the top N issue reports suitable for each developer,

in a list of available developers D. Tackling this problem requires one to be able to rank

issue reports for each developer, based on their probability of being assigned to that devel-

oper.

To calculate the probability of assignment of an issue report to a developer, the problem was

first treated as a multi-class classification problem which means the issue reports were con-

sidered as items to be classified, the developers as the classes or labels to be assigned to

these items and the goal was to classify these items among the classes with a probability

13

estimate for all classes. These probability estimates could then be used as a measure of the

probability of assignment of issue reports to developers.

This problem can be referred to as a supervised multi-class text classification problem. It is

a text classification because issue reports are basically tagged textual documents. It is su-

pervised learning because previous issue reports, whose assigned developers are known, are

available to learn from. The fact that the number of developers used as classes can be more

than two also makes it a multi-class classification problem. Moreover, since we are doing

the classification to rank issue reports and extract the most relevant ones for each developer,

the problem can also be referred to as an information retrieval problem.

Among the different supervised machine learning algorithms out there that can be used for

the classification task, 3 traditional algorithms were selected for experiment namely K-near-

est Neighbour (KNN), Naïve Bayes (NBY) and Support Vector Machine (SVM). These

algorithms were selected for comparison because they are easy to implement are commonly

used algorithms for text classification problems in general [11, 12].

Before applying these ML algorithms, the issue reports pass through a set of pre-processing

steps to extract terms from the textual and categorical fields that can be used to represent

the issue reports. The pre-processing steps applied to the textual fields like the summary and

description involve, converting to lower case, removal of numbers and punctuations, stop

word removal, stemming, document indexing, dimensionality reduction.

After the pre-processing steps, the terms from the textual fields were used to build a VSM

representation using their TF-IDF weights which is a common way of representing text in

text mining [13]. Similarly, the terms from the categorical fields were converted into a nu-

meric representation using one-hot encoding [14] and combined with the VSM representa-

tion of the textual fields.

After issue reports were represented numerically using terms extracted from the textual and

categorical fields, the most relevant terms that can be used as features were selected using

chi-squared which is a statistical feature selection method. Chi-squared was used as a feature

selection method because it has been found to be a reliable feature selection method for text

classification [15] and has achieved good performance compared to other methods in bug

triaging [16].

After the features are selected, the three machine learning algorithms were separately used

to implement a classifier on these features. The classification was done to estimates the

probability of classification for all developers as a measure of the probability of assignment.

Using these estimates, the issue reports are ranked for each developer and the top N issue

reports with the highest probability of assignment are recommended to each developer.

Figure 3 shows an example of the general flow of the proposed approach. In this example,

there are three developers and 10 unassigned issue reports which need to be assigned to

these developers. After all issue reports pass through the pre-processing and feature selec-

tion steps, the machine learning section performs probabilistic classification on the unas-

signed issue reports using the previously assigned issue reports for training. The result of

the classification is a matrix of the probability of assignment that has the issue reports in the

row and the developers in the column and each cell RiDj represents the probability of the

issue report Ri to be assigned to the developer Dj.

Lastly, the recommender section takes this to rank the issue reports for each developer and

recommend the top 3 issue report in this case. For example, For the first developer D1, the

issue reports are sorted as R5, R9, R7, R10, … etc, in decreasing order of their probability

14

of being assigned to D1. Therefore, the top 3 issue reports, R5, R9, and R7, will be recom-

mended to developer D1.

Figure 3. An Example of the general flow of the IRS,

15

3.2 Representation of issue reports

Two different representation techniques were applied to the issue reports. VSM was used to

represent textual features such as description, title whereas One Hot Encoding was applied

for categorical features.

VSM

The Vector space model (VSM) also referred to as a term vector model is an algebraic model

for representing text documents numerically as a vector of terms and their weights. i.e. given

a vocabulary of terms 𝑇, and set of issue reports 𝑅, the term vector for an issue report 𝑅𝑗 is

given by

 𝑅𝑗 = (𝑊1𝑗, 𝑊2𝑗, 𝑊3𝑗, … , 𝑊𝑖𝑗) (Equation 1)

Where 𝑊𝑖𝑗 is the weight of a term 𝑇𝑖 in the issue report 𝑅𝑗

The commonly used method to give weights to terms in a VSM representation is Term Fre-

quency-Inverse Document Frequency (TF-IDF)5 weighing method. In the TF-IDF weighing

method, the weight of a term is proportional to the frequency of the term in a document but

is offset by the number of documents that contain the word, which helps to adjust for the

fact that some words appear more frequently in general. The TF-IDF is defined as the prod-

uct of term frequency (TF) and inverse document frequency (IDF). For a term t and issue

report r TF, IDF and TF-IDF are calculated with Equation 2, 3, and 4 respectively.

One Hot Encoding

One hot encoding is a widely used numeric representation of categorical features for use by

machine learning algorithms. With the one-hot encoding method, a categorical feature is

expanded into multiple dummy variables using its unique values. Then, for each example,

one or more of the dummy variables will be set to 1 or 0 depending on whether the example

has the value associated with the dummy variables or not. Figure 4 shows an example illus-

tration of the one-hot encoding method when applied to a components field which has

unique values UI, SDK, HTTP and LIB,

5 http://www.tfidf.com/

𝑇𝐹(𝑡, 𝑟) =
𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑖𝑛 𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑟

𝐼𝐷𝐹 (𝑡) = log (

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡

)

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑟) = 𝑇𝐹(𝑡, 𝑟) × 𝐼𝐷𝐹 (𝑡)

 (Equation 1)

 (Equation 2)

 (Equation 3)

http://www.tfidf.com/

16

3.3 Machine Learning Techniques

Three different algorithms were used separately to implement the IRS. These algorithms are

discussed below.

Naïve Bayes (NBY)

Naïve Bayes is a simple learning algorithm that is based on the Bayes rule and a strong

assumption that attributes are conditionally independent [17, 18]. Using the Bayes rule, for

a document 𝑥 with 𝑛 features and class 𝑦, the probability of x being labelled as class 𝑦 is

given by,

With the assumption that attributes are conditionally independent, 𝑃(𝑥|𝑦) is calculated as

where xi is the value of the ith feature of x and P(x) is given by

where k is the number of classes and ci is the ith class.

Figure 4. An Example of the One-Hot Encoding representation

𝑃(𝑦|𝑥) = 𝑃(𝑦)𝑃(𝑥|𝑦)/𝑃(𝑥) (Equation 4)

𝑃(𝑥|𝑦) = ∏ 𝑃(𝑥𝑖 | 𝑦)

𝑛

𝑖=1

 (Equation 5)

𝑃(𝑥) = ∏ 𝑃(𝑐𝑖)𝑃(𝑥| 𝑐𝑖)

𝑘

𝑖=1

 (Equation 6)

17

There are two variants of this algorithm widely used in document classification, namely the

multivariate Bernoulli model and Multinomial model, based on how they calculate the prob-

ability of a document given a class. For this study, the Multinomial model was used because,

unlike the Bernoulli model, this model considers the frequency of words in the document

when calculating the probabilities which make it more suited for the VSM representation

and it has also been found to generally have better performance [17, 18]. To train the Multi-

nominal Naïve Bayes model the “naivebayes”6 package in R was used.

K-Nearest Neighbour (KNN)

KNN is one of the simplest lazy machine learning algorithms used for classification which

doesn’t require any training phase. When applied in text classification [19], KNN deter-

mines a class for a new document using the class composition of the top k documents most

similar to the new document. As an estimate of the probability of classes, the weighted pro-

portion of those classes in the k nearest neighbours was used, which is given by,

where 𝑥𝑗 is a document of class 𝑦𝑖 in the 𝑘 most similar documents to document 𝑥𝑖,
i.e 𝐾𝑁𝑁(𝑥𝑖), of class 𝑦𝑖. 𝛿(𝑦𝑖, 𝑐𝑗) is there to select only documents of class 𝑦𝑖 in 𝐾𝑁𝑁(𝑥𝑖)

and 𝑆𝑖𝑚(𝑥𝑖, 𝑥𝑗) represents the similarity of two documents 𝑥𝑗 and 𝑥𝑖.

If a class doesn’t exist in the 𝑘 nearest neighbours, its probability estimate is calculated to

be 0 with Equation 10. To make sure that enough classes have a non-zero probability esti-

mate, k has to be made as big as possible, while also making sure that the recommendation

recall is not significantly affected. Experimentally, the value of 𝑘 was varied from 1 to 50

to select a general optimum value. This experiment is presented in section 4.1.1

To calculate the similarity of two-issue reports, the cosine similarity measure [16], a com-

mon similarity function for VSM, was used. The cosine similarity of two documents 𝐴 =
 (𝐴1, 𝐴2, , 𝐴𝑛) and 𝐵 = (𝐵1, 𝐵2, , 𝐵𝑛) is given by

To implement the KNN algorithm, the "text2vec"7 R package, the package also used to build

the VSM model, was used to calculate the cosine similarities and custom code was written

to find the nearest neighbours and calculate the class probabilities.

6 https://cran.r-project.org/web/packages/naivebayes/vignettes/intro_naivebayes.pdf

7 http://text2vec.org/

𝑃(𝑦𝑖|𝑥𝑖) =
∑ 𝑆𝑖𝑚(𝑥𝑖, 𝑥𝑗)𝛿(𝑦𝑖, 𝑦𝑗) 𝑥𝑗 ∈ 𝐾𝑁𝑁(𝑥𝑖)

∑ 𝑆𝑖𝑚(𝑥𝑖, 𝑥𝑗) 𝑥𝑗 ∈ 𝐾𝑁𝑁(𝑥𝑖)

, 𝛿(𝑦𝑖, 𝑦𝑗) = {
1 𝑦𝑖 = 𝑦𝑗
0 𝑦𝑖 ≠ 𝑦𝑗

 (Equation 7)

𝑆𝑖𝑚(𝐴, 𝐵) =
∑ 𝐴𝑖𝐵𝑖𝑛

𝑖=1

√∑ 𝐴𝑖2𝑛
𝑖=1 √∑ 𝐵𝑖2𝑛

𝑖=1

 (Equation 8)

https://cran.r-project.org/web/packages/naivebayes/vignettes/intro_naivebayes.pdf
http://text2vec.org/

18

Support Vector Machine(SVM)

SVM[20] is another supervised machine learning algorism widely used for classification

and regression problems. SVM is basically a binary classifier which tries to find a hyper-

plane in a vector space which best separates two classes of a dataset.

Such a hyperplane can be represented as a set of points x satisfying ⟨𝑤, 𝜙(𝑥)⟩ − 𝑏 = 0

where ⟨⟩ is the inner product, w represents a vector normal to the hyperplane, b represents

the distance of the plane from the origin and 𝜙 is a kernel function. The goal of SVM is to

find the value of w and b which maximize the margin 𝛾 given by,

where l is the number of data points.

Fig 4(c) illustrates an example of a maximum margin hyperplane in a 2-dimensional vector

space. For a new data point, SVM decides its class based on which side of the hyperplane

the new data point lies.

The purpose of the kernel function in SVM is to transform the feature space into a form

separable by a linear hyperplane as shown in Figure 5(a, b). There are different types of

kernel functions used with SVM. Some examples are linear, radial, polynomial and sigmoid

kernels. Among these kernels, The linear kernel is simple and widely used in practice [8].

To implement the linear SVM in R the “e1071”8 library was used. This library is based on

LIBSVM, a popular SVM library written in C++. LIBSVM uses the “one-against-one” ap-

proach to apply SVM to the multiclass classification problem. the “one-against-one” basi-

cally applies SVM to classify between all possible pairs of classes and takes the class with

the maximum vote. The LIBSVM library also makes probability estimation for SVM using

8 https://cran.r-project.org/web/packages/e1071/e1071.pdf

𝛾 = min
1<𝑖<𝑙

‖⟨𝑤, 𝜙(𝑥)⟩) − 𝑏‖ (Equation 9)

Figure 5. Support Vector Machines, Figure 1

(a) datapoints in a vector space. (b) datapoints in a vector space after kernel

function is applied. (c) margin of the hyperplane.

https://cran.r-project.org/web/packages/e1071/e1071.pdf

19

a pairwise coupling approach proposed in [21]. More details about the library can also be

found in its practical guide [22].

3.4 Dataset

The issue reports for this study were collected from the Jira and Bugzilla issue tracking

systems. Three projects were chosen for each issue tracking software making the total num-

ber of projects studied six. For the Bugzilla issue tracking system, the Eclipse (ECL)9, Net-

Beans (NTB)10 and Free Desktop (FDT)11 projects and for Jira issue tracking system, the

MuleSoft (MULE)12, Apache Mesos (MESOS)13 and Titanium SDK/CLI (TIMOB)14 pro-

jects were studied. These projects were chosen because their issue repositories are freely

accessible, they have enough issue reports to be analysed and have been widely researched

in similar studies [20, 21, 22, 23].

9 https://bugs.eclipse.org/bugs/
10 https://netbeans.org/bugzilla/
11 https://bugs.freedesktop.org/
12 https://www.mulesoft.org/jira/projects/MULE/issues
13 https://issues.apache.org/jira/projects/MESOS/issues
14 https://jira.appcelerator.org/projects/TIMOB/issues

 Tabel 2. Collection of issue reports

Project Status Resolution

status

Creation date # of issue

 reports

of assignees

NB

RESOLVED,

VERIFIED,

CLOSED

FIXED 01/01/2012

 –

31/12/2012

8392 114

EC RESOLVED,

VERIFIED,

CLOSED

FIXED 01/01/2011

–

 31/12/2013

8310 244

FD RESOLVED,

VERIFIED,

CLOSED

FIXED 01/01/2011

 –

31/12/2012

9928 432

MULE RESOLVED,

DONE,

CLOSED

FIXED, COM-

PLETED,

DONE

01/01/2016

 –

31/12/2017

3447 53

MESOS RESOLVED RESOLVED,

DONE,

FIXED

01/01/2014

–

31/12/2017

4055 185

TRIMOB

RESOLVED,

CLOSED

FIXED,

DONE

01/01/2011

–

31/12/2013

7745 114

https://bugs.eclipse.org/bugs/
https://netbeans.org/bugzilla/
https://bugs.freedesktop.org/
https://www.mulesoft.org/jira/projects/MULE/issues
https://issues.apache.org/jira/projects/MESOS/issues
https://jira.appcelerator.org/projects/TIMOB/issues

20

The issue repositories of these projects provide the functionalities to search, filter and export

issue reports. Using these functionalities, it was possible to query and extract issue reports

that are successfully resolved within a limited range of creation dates in the form of CSV

files. Projects like MESOS have a limit of 1000 issue reports that can be downloaded at a

time, so the issue reports were exported with multiple downloads by dividing the creation

date range. To extract issue reports that are successfully resolved, certain values were set

for the status and resolution status fields of the issue reports when executing the queries as

shown in Table 2. Table 2 also summarizes how many issue reports were collected for each

project.

Each issue report has a title, description and other metadata fields which characterize the

issues. These fields are filled at different stages of the lifecycle of the issue report and some

of them are prone to change. For the purpose of recommending new issue reports, one needs

to use the attributes which are filled when a new issue is reported. By looking at the new

issue report creation form for each project and also through a small survey on new unas-

signed issue reports of each project, it was possible to select a set of fields that can be ana-

lysed to recommend new issue reports which are summarised in Table 3.

Each project might also include custom fields in their issue tracker system, however, to be

more standard across projects, only default fields provided by the issue tracker software are

included. The selection of fields was done by limiting the columns to be included in the

search queries when collecting the issue reports. For the Bugzilla based projects, there were

no possibilities to export the description of the issue reports in the CSV format so the de-

scriptions were extracted from the XML format and added into the CSV file by matching

the ID of the issue reports.

3.5 Data cleaning

After selecting the fields to be analysed and collecting the issue reports accordingly, further

cleaning steps were applied to select the issue reports relevant for analysis. Two cleaning

steps were taken in this case,

• Removing issue reports with no assignee or whose assignee field does not refer to a

developer.

Tabel 3: Field selection of issue reports

Summ

ary

De-

scrip

tion

Repo

rter

Compo

nent

Is-

sue

Type

Ver-

sion
OS

Hard

ware

Prod

uct

Prio

rity

Sev

erity

NB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X

EC ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓

FD ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ ✓

MULE ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X

MESOS ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X

TIMOB ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ X

21

• Removing issue reports fixed by inactive developers.

For projects based on Jira, some of the issue reports had empty values, so these reports were

removed. For the issue reports collected from projects based on Bugzilla, the values for the

Assignee field were all available. However, projects like EC have assignee field values

which do not refer to a specific developer rather referring to a name of an inbox where issue

reports are added to. Some examples of such assignee values are “Platform-UI-In-

box@eclipse.org”, “jdt-doc-inbox@eclipse.org’’, etc. Issue reports with such value of as-

signee were also removed.

In the second step, issue reports which are assigned to developers who have only been as-

signed to a few issue reports in the whole dataset were removed. We consider these devel-

opers to be inactive in the development process. To remove inactive developers, developers

were arranged in increasing order of the number of issues they were assigned to and the

cumulative sum of the number of issues was used to filter out developers whose cumulative

sum of the number of issues assigned composes less than 10% of the total number of issue

reports.

In the above two steps. 795 issue reports from NTB, 1833 issue reports from ECL, 4545

issue reports from FDT, 348 issue reports from MULE, 586 issue reports from MESOS and

729 issue reports from TIMOB were removed. The total number of issues and developers

for each project after the two cleaning steps is summarized in Table 4.

3.6 Pre-processing

The first pre-processing was applied to the textual fields which are the title and description

of the issue reports. Before converting these textual fields into a VSM representation, a set

of pre-processing measures were taken to remove less interesting words and characters and

keep only the relevant ones. The basic pre-processing measures [23] taken in text mining

were also applied in this study which will be presented as follows,

1. Converting to Lowercase: All alphabetic characters were converted to lowercase be-

cause we want a word to appear exactly the same every time it appears and are less

interested in the capitalization of the words.

Tabel 4: Number of issues and developers after data cleaning

project # of issues # of developers

NTB 7597 38

ECL 6477 50

FDT 5474 101

MULE 3099 18

MESOS 3469 56

TIMOB 7016 28

22

2. Removal of Numbers and Punctuations: Numbers and punctuations were removed

because they will appear to be words to the machine and they create noises.

3. Stop Words Removal: Stop words are words that appear very frequently in all texts

because of their nature (a, and, also, the, etc.). For this step, we used the 571 English

stop words from the SMART information retrieval system15.

4. Stemming: Stemming is the process of reducing words to root by removing inflexion

through dropping unnecessary characters, usually a suffix. With this step, it is pos-

sible to remove common word endings (e.g., “ing”, “es”, “s”).

5. Document Indexing: This step involves extracting a set of unique terms in the whole

set of issue reports and calculating their term frequency (TF) and document fre-

quency (DF). TF represents the total frequency of a term in the issue reports and DF

represents the number of issue reports containing a term.

6. Dimensionality reduction: This step involves reducing the size of the vocabulary

used to represent documents by removing rare and too common words. For this

study, using the DF values calculated in step 5, terms which do not appear in at least

3 issue reports or terms which appear in more than half of the issue reports were

removed. This step assists the chi-square test based feature selection that will be

applied later.

7. After the above 6 steps, a document term matrix (DTM) was created with the issue

reports in the row, the extracted vocabulary of terms in the column and each cell

containing the TF-IDF weights where each row of the DTM represents the VSM of

the title and description of issue reports. To implement the above pre-processing

steps the "tm"16 and "text2vec"17 R packages were used in combination. "tm" was

used for the first 4 steps while text2vec was used for the last 2 steps and for the

creation of the DTM.

The second pre-processing was applied to the categorical fields which involve the compo-

nent, version, product, reporter priority etc. A matrix of similar structure as the DTM was

constructed for these fields using the one-hot encoding approach explained in Figure 4.

15 https://www.lextek.com/manuals/onix/stopwords2.html
16 https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
17 http://text2vec.org/

Tabel 5: Number of terms after preprocessing

project # terms from textual
features

terms from categori-
cal features

total

NTB 5320 1597 6917

ECL 5077 1132 6209

FDT 6510 2546 9056

MULE 2609 355 2964

MESOS 3357 544 3901

TIMOB 4689 1851 6540

https://www.lextek.com/manuals/onix/stopwords2.html
https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://text2vec.org/

23

Which means unique terms were extracted from the categorical fields and put in a column

then for each issue report, the values for these columns were set to 1 if the issue report is

labelled with the respective term and 0 if not. This matrix was then combined with the DTM

to give the full representation of the issue reports. The total number of terms extracted in

the pre-processing step for each project is summarised in Table 5.

3.7 Feature selection

After issue reports are represented using the terms extracted from the textual and categorical

fields, the chi-squared test was used as a feature selection measure to remove non-informa-

tive terms according to dataset statistics.

The chi-squared test is a statistical test that measures the lack of independence between the

terms and the classes, in a text classification problem. For a set of classes, 𝑐 =
 {𝑐1, 𝑐2, . . . , 𝑐𝑘} The chi-squared statistics of a term t, also represented as 𝑥2, can be cal-

culated as,

𝑥2(𝑡, 𝑐) = ∑ ∑
[n𝑡𝑐 − 𝑛𝑡𝑛𝑐/𝑁]2

 𝑛𝑡𝑛𝑐/𝑁
𝑐𝑡𝜖{0,1}

Where n represents the observation count for each state of t and c and N represents the total

number of samples. From the chi-squared statistics, the Cramér's V coefficient was calcu-

lated to measure the association of each term with the classes. The Cramér's V coefficient

is given by,

 𝑉 = √
𝑥2/𝑁

𝑘−1

When the value of 𝑥2 for a term 𝑡 is 0, it means that the classes are independent of or not

associated with the term t therefor such terms were removed from the feature set. Using this

measure, it was possible to decrease the number of terms used as features which are

Tabel 6: Number of terms after feature selection

project # of terms from textual
features

of terms from cate-
gorical features

total

NTB 173 163 336

EC L 194 80 274

FDT 484 143 627

MULE 25 52 77

MESOS 24 59 83

TIMOB 118 96 214

24

summarized in Table 6. The chi-squared test and the calculation of the Cramer coefficient

were performed using the “Fselector”18 package in R.

3.8 Evaluation

To evaluate the IRS, a set of training and test sets were extracted. The test sets are used to

represent a backlog of unassigned issue reports and the training sets are used to represent

the fixed issue reports. To extract such training and test sets, the issue reports were first

arranged by their creation date to keep their chronological order. After that, 10 different

partitions of the issue reports were extracted by taking the first {10%, 20%, 30%, , 100%}

of the issue reports as summarized in Table 7. For each partition, the last 100 issue reports

were taken as a test set to represents a large backlog of open issue reports and the rest as a

training set to represent previously fixed issue reports. The IRS is run on each partition and

the final values for the evaluation metrics were taken as the average of the result from each

partition. This was done for cross-validation of the result across the creation date range of

the issue reports in each project.

The IRS is then evaluated with these train and test sets using precision, recall, F1-score and

mean average precision (MAP). These metrics were selected considering the fact that the

IRS performs a classification task [24, 25].

For each developer, the precision measures how much of the issue reports recommended to

the developer are relevant and the recall measures how much of the relevant issue reports

have been recommended to the developer. Because the IRS produces a ranked list of issue

18 https://cran.r-project.org/web/packages/FSelector/FSelector.pdf

Tabel 7. Dataset partitions for cross validation

Partition NB EC FD MULE MESOS TIMOB

First 10% 759 647 547 309 346 701

First 20% 1519 1295 1094 619 693 1403

First 30% 2279 1943 1642 929 1040 2104

First 40% 3038 2590 2189 1239 1387 2806

First 50% 3798 3238 2737 1549 1734 3508

First 60% 4558 3886 3284 1859 2081 4209

First 70% 5317 4533 3831 2169 2428 4911

First 80% 6077 5181 4379 2479 2775 5612

First 90% 6837 5829 4926 2789 3122 6314

100% 7597 6477 5474 3099 3469 7016

https://cran.r-project.org/web/packages/FSelector/FSelector.pdf

25

reports, The MAP was used to evaluate the ordered precision of the recommendations given

by the IRS. The F1 score was used to aggregate the precision and recall metrics.

If, among all the issue reports, m issue reports in total are relevant to a developer and if the

developer is recommended N issue reports, the precision(P), recall(R), F1-score(F1) and

average precision (AP) are calculated as,

The final values for the above metrics were calculated using the average of the result for

each developer. The mean of the AP of each developer is what we call MAP.

R@N =
 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 @ 𝑁

m

P@N =
 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 @ 𝑁

N

 𝐹1(𝑁) = 2
𝑃(𝑁)𝑅(𝑁)

𝑃(𝑁)+𝑅(𝑁)

 𝐴𝑃@𝑁 =
1

𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 @ 𝑁
∑ 𝑃(𝑘)𝑟𝑒𝑙(𝑘)

𝑁

𝑘=1

 (Equation 10)

 (Equation 11)

 (Equation 13)

 (Equation 14)

26

4 Results

This section presents the results according to each research question.

4.1 RQ 1

The purpose of this section is to compare how the ML-based IRS compares to a random

recommender.

4.1.1 Choosing a value of k for KNN using MAP

The choice of k for KNN is an important decision to make because it affects the performance

of the classifier. To select a general value of k for KNN that can be used across the projects,

the MAP was compared for a value of k ranging from 1 to 50 as shown in Figure 6. The

MAP was measured for the complete ranking of issue reports (i.e. MAP@100) and both

categorical and textual features were used. Taking the average of MAP from each project,

it is found that a value k between 20 and 40 is a good choice for K. Therefore, for the rest

of the results a value of k = 25 was used.

For SVM, parameter tuning was done using the tune() functions in "e1071 library, however

better result was achieved using the default parameters (e.g cost = 1 and epsilon = 0.1).

Similarly,fornaive Bayes, the default Laplace smoozing value = 0.5 in the multinomial_na-

ive_bayes() function of the "naivebayes" library was used was used.

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

M
A

P
@

1
0

0

k

KNN

NTB

ECL

FDT

MULE

MESOS

TIMOB

Average

Figure 6: comparision of MAP@100 using KNN for k ranging from 1 to 50

27

4.1.2 Comparison for all metrics at N=10 using ML-Based IRS vs random recom-
mender

This section presents in Table 8, the results for all metrics at a recommendation size N = 10

and using the three ML algorithms separately. In addition, it also presents the result achieved

through a random recommendation(RAND). For this evaluation, both the textual and cate-

gorical features(TCF) were used.

From Table 8, the highest results achieved for each metrics in every project from the result

of KNN, NBY and SVM is highlighted. This value is compared with the result of a random

recommender in Figure 7 below in the form of a bar plot and Figure 8 shows the ratio of the

result for each metrics against the result of the random recommender.

28

Figure 7. Comparision of best results of P, R, F1, and MAP for N = 10 using TCF vs

RAND

0

1

2

3

4

5

6

7

8

9

10

11

12

P/Prand R/Rrand F1/F1rand MAP/MAPrand

NTB ECL FDT MULE MESOS TIMOB

Figure 8. Comparision of ration of best result for P, R, F1, and MAP at N = 10 from KNN,

SVM and NBY using TCF vs RAND

29

4.2 RQ 2

The purpose of the results under RQ 2 is to show how a comparison of all metrics using

textual fields only versus using both textual and categorical fields as a source of features.

4.2.1 Comparison of results of all metrics at N=10 for TFO vs TCF

In this section, Table 9 presents, for each algorithm, the result of all metrics for the top 10

recommendation using textual fields only(TFO). It also includes the best results found using

TCF in RQ 1 from the three algorithms which are highlighted in Table 8.

In Figure 9, the best results achieved for all metrics by using TFO which are highlighted in

Table 9 are compared against the best results achieved using TCF in the form of a bar plot.

30

Next, In figure 10, the percentage increase achieves for all metrics between using TFO and

TCF is also presented in a bar pot.

0

10

20

30

40

50

60

70

80

90

100

TCF TFO TCF TFO TCF TFO TCF TFO TCF TFO TCF TFO

NTB ECL FDT MULE MESOS TIMOB

P@10 R@10 F@10 MAP@10

Figure 9. Comparision of best results of P, R, F1, and MAP for N = 10 using TFO vs TCF

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

220%

240%

P R F1 MAP

100% x (TCF - TF)/TFO

NTB ECL FDT MULE MESOS TIMOB

Figure 10. Comparision of % increase of P, R, F1, and MAP for N = 10 using TFO vs TCF

31

4.2.2 Comparison of the influence of features using the chi-squared statistics

In this section, the top 10 terms in the issue reports of each project with the highest Cramer’s

V coefficient values calculated from the chi-squared feature selection step and the fields of

the issue reports they were extracted from is presented in Figure 11. Moreover, the average

of the Cramer’s V coefficient of all terms extracted from each field of the issue report is

compared in Figure 12.

Figure 11. Comparision of average Cramer’s V coefficient of terms from each field of the

issue reports

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26
0.28

0.3

NTB ECL FDT MULE MESOS TIMOB

Average of Cramer’s V coefficient

text

categoricals

component

hardware

issue type

label/keyword

OS

product

priority

Figure 12. Top 10 influential terms and thier source field using Cramer’s V coefficient

32

4.3 RQ 3

4.3.1 Comparison of all metrics for N = 1 up to 25 for each algorism using TCF

In this part of the result, the P, R, F1 and MAP values of the IRS are compared for recom-

mendation size N ranging from 1 to 25 for each algorithm including a random recommender

using TCF. It also includes the maximum F1-score points. The results for each algorithm

and project are presented in the form of a line graph from Figure 13 to 18.

Figure 13. Comparision of all metrics as N increase from 1 to 25 using TCF for

NTB

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

NTB

KNN P

NBY P

SVM P

RAND P

KNN R

NBY R

SVM R

RAND R

KNN MAP

NBY MAP

SVM MAP

RAND MAP

KNN F1

NBY F1

SVM F1

RAND F1

33

Figure 14. Comparision of all metrics as N increase from 1 to 25 using TCF for ECL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ECL

KNN P

NBY P

SVM P

RAND P

KNN R

NBY R

SVM R

RAND R

KNN MAP

NBY MAP

SVM MAP

RAND MAP

KNN F1

NBY F1

SVM F1

RAND F1

34

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

FDT

KNN P

NBY P

SVM P

RAND P

KNN R

NBY R

SVM R

RAND R

KNN MAP

NBY MAP

SVM MAP

RAND MAP

KNN F1

NBY F1

SVM F1

RAND F1

Figure 15. Comparision of all metrics as N increase from 1 to 25 using TCF for FDT

35

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

MULE

KNN P

NBY P

SVM P

RAND P

KNN R

NBY R

SVM R

RAND R

KNN MAP

NBY MAP

SVM MAP

RAND MAP

KNN F1

NBY F1

SVM F1

RAND F1

Figure 16. Comparision of all metrics as N increase from 1 to 25 using TCF for MULE

36

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

MESOS

KNN P

NBY P

SVM P

RAND P

KNN R

NBY R

SVM R

RAND R

KNN MAP

NBY MAP

SVM MAP

RAND MAP

KNN F1

NBY F1

SVM F1

RAND F1

Figure 17. Comparision of all metrics as N increase from 1 to 25 using TCF for MESOS

37

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

TIMOB

KNN P

NBY P

SVM P

RAND P

KNN R

NBY R

SVM R

RAND R

KNN MAP

NBY MAP

SVM MAP

RAND MAP

KNN F1

NBY F1

SVM F1

RAND F1

Figure 18. Comparision of all metrics as N increase from 1 to 25 using TCF for TIMOB

38

4.3.2 Comparison of all metrics at N = maximum F1-score point using TCF

This part presents the value of all metrics at maximum F1-sore for each algorism using both

textual and categorical features in Table 10.

Table 10. Result of P, R, F1, and MAP for N = maximum F1 point for each algorithms using

TCF

PROJ ALG N P R F1(max) MAP

NTB KNN 3 63.61 70.27 66.77 89.67

 NBY 3 66.81 73 69.76 91.19

 SVM 3 69.06 76.63 72.65 92.95

ECL KNN 4 41.63 53.48 46.81 65.79

 NBY 5 38.28 60.14 46.78 65.82

 SVM 5 39.23 61.2 47.81 65.82

FDT KNN 3 40.73 55.17 46.87 63.34

 NBY 3 39.09 52.55 44.83 58.97

 SVM 2 50.26 49.9 50.08 64.12

MULE KNN 6 51.85 56.74 54.19 79.62

 NBY 5 59.46 55.69 57.51 82.21

 SVM 5 57.68 53.51 55.52 81.16

MESOS KNN 3 38.09 35.35 36.67 55.6

 NBY 4 38.22 46 41.75 58.76

 SVM 4 36.79 42.35 39.37 57.91

TIMOB KNN 13 31.21 55.96 40.07 54.09

 NBY 9 36.37 50.55 42.3 58.5

 SVM 15 30.58 62.74 41.12 54.57

39

5 Discussion

In this section, the results presented in the previous section are discussed with respect to the

research questions of this study.

RQ1: What is the performance of an IRS using ML algorithms with respect to a random

recommender?

To answer this question, we have evaluated the performance of the IRS we implemented for

top 10 recommendation using precision, recall, f1-score and mean average precision and

compared these results with the result found by random recommendation in section 4.1.

The result shows that, using the ML-based IRS, it is possible to achieve best top 10 recall

ranging from 52.9% up to 96 % for TIMOB and NTB projects respectively, which means

developers can find more than half of the issue reports relevant to them in the top 10 issue

reports recommended from a backlog of 100 unassigned issue reports. In NTB, the ratio of

the top 10 recall of the ML-based IRS with the recall of a random recommendation is 9.5

which means developers are around 9 times more likely to find the issue reports that they

are later assigned to from the top 10 recommendation of the IRS compared to randomly

picked 10 issue reports. This ratio for the ECL, FDT, MULE, MESOS and TIMOB is 8.1,

8.2, 7.1, 6.3 and 6 respectively. The best results achieved for top 10 recall are by using the

SVM algorism in the NTB, ECL, FDT and MESOS project and using Naïve Bayes in MULE

and MESOS projects.

Similarly, the best precision achieved for top 10 recommendation ranges from 23.4% up to

42.6 in MESOS and MULE projects respectively. The precision range for top 10 recom-

mendation is generally lower than 50 % which means developers were later assigned to less

than half of the recommended issue reports. However, comparing this result with the preci-

sion of a random recommender, more or less the same improvement achieved for the recall

was also achieved which ranges from 4.7 up to 9.5 for TIMOB and NTB projects respec-

tively.

The reason why the precision value is lower than recall for top 10 recommendation is that

the number of issue reports that each developer is assigned to from 100 unassigned issue

reports on average is less than 10 in most projects and this sets a limit to the maximum

precision that can be achieved. For example, the number of active developers in the NTB

project is 36, which means each developer fixes approximately 3 issue reports from the 100

issue reports if they were equally divided among the developers. Even if the IRS includes

all three issue reports in the top 10 recommendation, the precision that can be achieved is

still 30%. In NTB, the top 10 precision achieved is 29.2% which is quite close to the ex-

pected precision if issue reports were equally divided among the developers.

The precision metric has limitations in telling how well the IRS performs, therefore, to fill

this limitation, we additionally compared the MAP which measures not just how correct the

recommendations are, but also how precisely the issue reports are ranked in the top 10 rec-

ommendations. For the top 10 recommendation, the MAP achieved ranges from 55.5% up

to 95.5 % for TIMOB and NTB respectively, which is pretty much close to the range for top

10 recall. If we assume that, in NTB, each developer was assigned to an equal number of

issue reports (i.e. 3 issue reports approximately), the 95.5 % MAP tells us that the IRS is

not only able to include the 3 issue reports that each developer fixed in the 10 issue reports

it recommends but also was able to give them a higher rank, most probably in the top 5 issue

reports. Comparison of MAP of the ML-based IRS with a random recommender shows a

ratio ranging from 4.1 up to 10.5 for TIMOB and NTB respectively.

40

RQ 2: How much did including features from the categorical fields affect the performance

of the IRS.

For RQ 2, we implemented the IRS using only features extracted from the textual fields (i.e.,

the summary and description) and evaluated the performance using all metrics for top 10

recommendation and compared this result with what we found in RQ 1 using both the textual

and categorical fields as presented in section 3.4. Taking the result for NTB as an example,

the best result for top 10 recall achieved using textual features only is 58.4%; however, by

including the categorical features a recall of 96% was achieved. This means an increase of

64.4%. Similarly, in the ECL, FDT, MULE, MESOS and TIMOB projects an increase of

85.3%, 26.5%, 174.2%, 200%, 88.2% was achieved. For precision, the percentage increase

ranges from 24.7% for FDT up to 185.3% for MESOS. This shows that including the cate-

gorical fields when extracting features improves the performance of the IRS significantly.

In addition to this, we also used the result of the Cramer's coefficient calculated using chi-

squared statistics in the feature selection step to get further insight into which fields of the

issue report contributed the terms which are associated with the developers assigned to the

issue reports. Figure 11 in section shows the top 10 terms with the highest Cramer's coeffi-

cient value. In can be seen that most of these terms come from categorical fields like com-

ponent, reporter and product.

Comparison of the average of the Cramer's coefficient value of terms which are extracted

from each field is also presented in Figure 12. From this figure, it can be seen that the field

that is most associated with the assignee are the Product type(in NTB), the Operating Sys-

tem(in ECL and FDT), Software Component(in MULE and TIMOB) and the Reporter(in

MESOS). It can also be seen that the average of the Cramers Coefficient for terms from the

textual fields like summary and description is very low compared to the terms form the

categorical fields.

RQ3: What is the optimal recommendation size that maximizes the f1-score (i.e. giving a

good balance between precision and recall)?

For RQ 3, we compared how the performance of the IRS changes in terms of each evaluation

metrics as the recommendation size varies using a line graph as shown from Figure 13 up

to 18. From these graphs, it is possible to notice a similar trend in each project. As recom-

mendation size increases, the precision value decreases while the recall value increases. This

is expected because the chance of making incorrect recommendation increases but more

relevant issue reports start to get included in the recommendation. The MAP, on the other

hand, shows a small increase at the beginning and stays more or less constant. This is be-

cause the MAP is more dependent on the correctness of the top-ranked issue reports and its

value doesn’t change significantly even if correct recommendations are made at a lower

rank.

Since the precision and recall values have opposite behaviours, we compared the F1 score

to find the optimum sizes of recommendation which balances the two. The trend for F1

score is, that it starts to increase at the beginning until it reaches a maximum and starts to

decrease. The maximum value for the F1 score is oftentimes around the crossing point be-

tween precision and recall because it gives equal weight to precision and recall.

41

The size of recommendation which archives the highest F1-score is different from project

to project as recorded in Table 10. In addition to the projects, each algorithm might also

reach maximum F1 score at different points. For example, in NTB the maximum f1 score

was reached at N = 3 for all algorithms while in TIMOB it was reached at N = 13, 9, and 15

for KNN, NBY and SVM respectively. Taking the algorithms that archives the highest max-

imum F1, the optimum sizes of recommendation found for NTB, ECL, FDT, MULE,

MESOS and TIMOB are 3, 5, 2, 5, 4, 9 respectively. For NTB, ECL and FDT the best

maximum f-score achieved was using SVM while in MULE, MESOS and TIMOB it was

achieved using the Naïve Bayes algorithm.

Taking the algorithms that archives the highest maximum F1, the optimum sizes of recom-

mendation found for NTB, ECL, FDT, MULE, MESOS and TIMOB are 3, 5, 2, 5, 4, 9

respectively. For NTB, ECL and FDT the best maximum F1-score was achieved using SVM

and it amounts to 72.65%, 47.81%, and 50.08 respectively, while in MULE, MESOS and

TIMOB it was achieved using the Naïve Bayes algorithm and it amounts to 57.51%, 41.75%

and 42.3% respectively.

To generalize about the performance of the three different algorithms used to build the IRS

it is possible to calculate the average of the result achieved by each algorithm in each project

at the maximum F1-score point as shown in Figure 19 below. From this figure, it can be

seen that on average SVM has the best performance in all metrics followed by NBY and

KNN respectively. However, since the difference in performance is not very significant it is

possible to use each of these algorithms to build an IRS.

44.5

54.5

48.6

68

46.4

56.3

50.5

69.2

47.3

57.7

51.1

69.4

0

10

20

30

40

50

60

70

80

P R F1 MAP

KNN NBY SVM

Figure 19. Average of all metrics for KNN, NBY and SVM across all projects @ N =

maximum F1-score point

42

6 Conclusion

In this study, we have shown how traditional machine learning algorithms like KNN, Naïve

Bayes and SVM can be used to implement an issue recommender system that can facilitate

the self-assignment of issue reports by developers. Most previous works have used these

algorithms to either do an automatic assignment or to recommend developers to a third per-

son that does the assignment. In this study, we used these algorithms to perform probabilistic

classifications and used their probability estimates to rank the issue reports for each devel-

oper and recommend the top ones.

By evaluating the issue recommender system in terms of precision, recall, f1-score and mean

average precision metrics and comparing it with a random recommender, we have shown

how easily developers can find relevant issue reports from the issues reports recommended

to them using machine learning. The evaluation in terms of recall shows that developers are

up to 9 times more likely to find the issue reports that they later fixed in the top 10 recom-

mendations given by the issue recommender system compared to picking 10 issue reports

randomly from 100 unassigned issue reports. The same improvements are also reflected in

the other metrics.

Most previous works have also focused on the summary and description of the issue reports

as an information source to implement their solutions for automatic assignment and devel-

oper recommendation. In this study, we have tried to include more features from categorical

metadata fields like the software component, version and platform(ie.g operating system

and hardware) the issue reports belong to, the reporter who created the issue reports and the

priority and severity of the issue and a significant improvement in all metrics.

We have also shown how we can use metrics like f1-score to find an Optimum recommen-

dation size that can achieve a good balance between precision and recall. The best maximum

f1-score we achieved was 72.65% in the Netbeans project algorithm for top 3 recommenda-

tion size with precision and recall amounting to 69.06 % and 76.63% respectively. The

worst maximum f1-score we achieved was 42.3% in the TIMOB project for top 9 recom-

mendation size with precision and recall amounting to 50.55% and 42.3% respectively. The

comparison of the three algorithms we evaluated shows that SVM has the best performance

followed by Naive Bayes and KNN respectively with a very small difference in each eval-

uation metrics.

Overall, the issue recommender we evaluated has a reasonable performance to apply in an

issue tracking software. In these issue tracking software, it can be used as an additional way

of sorting issue reports according to each developer and to create a more customized back-

log. It can also be used to send periodic recommendations of bugs to developers participat-

ing in open source projects. However, its performance can be improved by including by

collecting feedback from developers on the recommendations using ratings, comments and

likes.

43

7 References

[1] Crowston K, Li Q, Wei K, Eseryel UY, Howison J. Self-organization of teams for

free/libre open source software development. Information and software technology.

2007 Jun 1;49(6):564-75.

[2] Hoda R, Noble J, Marshall S. Developing a grounded theory to explain the practices

of self-organizing Agile teams. Empirical Software Engineering. 2012 Dec

1;17(6):609-39.

[3] Murphy G, Cubranic D. Automatic bug triage using text categorization.

InProceedings of the Sixteenth International Conference on Software Engineering &

Knowledge Engineering 2004 Jun.

[4] Ahsan SN, Ferzund J, Wotawa F. Automatic software bug triage system (BTS) based

on latent semantic indexing and support vector machine. In2009 Fourth International

Conference on Software Engineering Advances 2009 Sep 20 (pp. 216-221). IEEE.

[5] Nasim S, Razzaq S, Ferzund J. Automated change request triage using alpha

frequency matrix. In2011 Frontiers of Information Technology 2011 Dec 19 (pp.

298-302). IEEE.

[6] Tamrawi A, Nguyen TT, Al-Kofahi J, Nguyen TN. Fuzzy set-based automatic bug

triaging (NIER track). InProceedings of the 33rd International Conference on Soft-

ware Engineering 2011 May 21 (pp. 884-887). ACM.

[7] Hu H, Zhang H, Xuan J, Sun W. Effective bug triage based on historical bug-fix in-

formation. In2014 IEEE 25th International Symposium on Software Reliability En-

gineering 2014 Nov 3 (pp. 122-132). IEEE.

[8] Klir GJ, Yuan B. Fuzzy sets and fuzzy logic: theory and applications. Upper Saddle

River. 1995:563.

[9] Mani S, Sankaran A, Aralikatte R. Deeptriage: Exploring the effectiveness of deep

learning for bug triaging. InProceedings of the ACM India Joint International Con-

ference on Data Science and Management of Data 2019 Jan 3 (pp. 171-179). ACM.

[10] Rocha H, Oliveira G, Maques-Neto H, Valente MT. Nextbug: A tool for recom-

mending similar bugs in open-source systems. InV Brazilian Conference on Soft-

ware: Theory and Practice–Tools Track (CBSoft Tools). SBC, Maceio, AL, Brazil

2014 (Vol. 2, pp. 53-60).

[11] Aggarwal CC, Zhai C. A survey of text classification algorithms. In Mining text data

2012 (pp. 163-222). Springer, Boston, MA.

[12] Patra A, Singh D. A survey report on text classification with different term weighing

methods and comparison between classification algorithms. International Journal of

Computer Applications. 2013 Jan 1;75(7).

[13] Hotho A, Nürnberger A, Paaß G. A brief survey of text mining. In Ldv Forum 2005

May 13 (Vol. 20, No. 1, pp. 19-62).

[14] Brownlee J. Why One-Hot Encode Data in Machine Learning? [Internet]. Machine

Learning Process. 2017 July 28. Available from:

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

[15] Yang Y, Pedersen JO. A comparative study on feature selection in text

categorization. In Icml 1997 Jul 8 (Vol. 97, No. 412-420, p. 35).

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

44

[16] Alenezi M, Magel K, Banitaan S. Efficient Bug Triaging Using Text Mining. JSW.

2013 Sep 1;8(9):2185-90.

[17] Lewis DD. Naive (Bayes) at forty: The independence assumption in information

retrieval. In European conference on machine learning 1998 Apr 21 (pp. 4-15).

Springer, Berlin, Heidelberg.

[18] McCallum A, Nigam K. A comparison of event models for naive bayes text classifi-

cation. In AAAI-98 workshop on learning for text categorization 1998 Jul 26 (Vol.

752, No. 1, pp. 41-48).

[19] Tan S. Neighbor-weighted k-nearest neighbour for unbalanced text corpus. Expert

Systems with Applications. 2005 May 1;28(4):667-71.

[20] Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995 Sep

1;20(3):273-97.

[21] Wu TF, Lin CJ, Weng RC. Probability estimates for multi-class classification by

pairwise coupling. Journal of Machine Learning Research. 2004;5(Aug):975-1005.

[22] Chang CC, Lin CJ. LIBSVM: A library for support vector machines. ACM

Transactions on intelligent systems and technology (TIST). 2011 Apr 1;2(3):27.

[23] Srividhya V, Anitha R. Evaluating preprocessing techniques in text categorization.

International journal of computer science and application. 2010;47(11):49-51.

[24] Chen M, Liu P. Performance Evaluation of Recommender Systems. International

Journal of Performability Engineering. 2017 Dec 1;13(8).

[25] Herlocker JL, Konstan JA, Terveen LG, Riedl JT. Evaluating collaborative filtering

recommender systems. ACM Transactions on Information Systems (TOIS). 2004 Jan

1;22(1):5-3.

45

Appendix

I. Code and Dataset

The dataset of the collected issue reports and the code used for each project can be found in

the following Kaggle link: https://www.kaggle.com/abelmes/irs-dataset/

https://www.kaggle.com/abelmes/irs-dataset/

46

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Abel Mesfin Cherinet

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital ar-

chives until the expiry of the term of copyright,

Recommending Issue Reports to Developers Using Machine Learning

supervised by Ezequiel Scott (PhD)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by

giving appropriate credit to the author, to reproduce, distribute the work and communicate

it to the public, and prohibits the creation of derivative works and any commercial use of

the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation.

Abel Mesfin Cherinet

08/14/2019

