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Recommending Issue Reports to Developers Using Machine Learning  

Abstract: 

The development of a software system is often done through an iterative process and differ-

ent change requests arise when bugs and defects are detected or new features need to be 

added. These requirements are recorded as issue reports and put in the backlog of the soft-

ware project for developers to work on. The assignment of these issue reports to developers 

is done in different ways. One common approach is self-assignment, where the developers 

themselves pick the issue reports they are interested in and assign themselves. Practising 

self-assignment in large projects can be challenging for developers because the backlog of 

large projects become loaded with many issue reports, which makes it hard for developers 

to filter out the issue reports in line with their interest. To tackle this problem, a machine 

learning-based recommender system is proposed in this thesis. This recommender system 

can learn from the history of the issue reports that each developer worked on previously and 

recommend new issue reports suited to each developer. To implement this recommender 

system, issue reports were collected from 6 different opensource projects and different ma-

chine learning techniques were applied and compared in order to determine the most suitable 

one. For evaluating the performance of the recommender system, the Precision, Recall, F1-

score and Mean Average Precision metrics were used. The results show that, from a backlog 

of 100 issue reports, by recommending the top 10 issue reports to each developer a recall 

ranging from 52.9% up to 96% can be achieved, which is 6 up to 9.5 times better than 

picking 10 issue reports randomly. Comparable improvements were also achieved in the 

other metrics. 

Keywords: 

Recommender system, task assignment, bug-triage, machine learning, text classification, 

Naïve Bayes, Support vector machines, K-nearest neighbor, Information retrieval  

CERCS: P170 Computer science, numerical analysis, systems, control 
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Ülesannete soovitamine tarkvaraarendajatele masinõppe abil 
Lühikokkuvõte: 

Tarkvarasüsteemide arendust viiakse tihti läbi iteratiivse protsessina ning erinevad 

tööüleasnded tekkivad siis kui leitakse defekte või tekib vajadus uue funktsionaalsuse 

järele. Need ülesanded salvestatakse probleemihalduse süsteemi, kust arendajad saavad 

sisendit oma tööle. Ülesannete jaotamine arendajatele võib toimude mitmel eri viisil. Üks 

populaarsemaid lähenemisi näeb ette, et arendajad valivad ise ülesandeid, mis neid 

huvitavad. Suurtes projektides võib see aga muutuda keeruliseks: ülesannete suure arvu 

tõttu on arendajatel raske aegsasti valida omale huvitav tööülesanne. Selle probleemi 

leevendamiseks esitatakse antud töös masinõppel põhinev soovitussüsteem, mis on 

võimeline probleemihalduse süsteemi ajaloost õppima milliseid ülesandeid on iga arendaja 

eelnevalt täitnud ja selle põhjal soovitada neile uusi ülesandeid. Süsteemi arendamiseks 

koguti 6 erinevast avatud lähtekoodiga projektist ülesandeid, kasutati erinevaid masinõppe 

meetodeid ja võrreldi tulemusi, et leida sobivaim. Soovitussüsteemi jõudluse hindamiseks 

kasutati täpsuse (precision), saagise (recall), f1-skoori (f1-score) ja keskmise täpsuse 

(mean average precision) mõõdikuid. Tulemused näitavad, et 100 tööülesande kirjelduse 

põhjal 10 igale arendajale sobivaima soovitamise puhul võib saavutada saagise 52.9% ja 

96% vahel, mis on 6 kuni 9.5 korda parem 10 juhusliku töökirjelduse valimisest. Sarnased 

parandused saavutati ka teistes mõõdikutes.  

Võtmesõnad: 

Soovitussüsteem, probleemihaldus, masinõpe, teksti klassifitseerimine, naiivne Bayes’i al-

goritm, tugivektormasin  

CERCS:  P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria) 
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1 Introduction 

In the course of development of a software system, many change requests, bugs and new 

requirements arise at different stages and each of these issues needs to be documented using 

issue reports and made ready for fixing. The recording and management of software issues 

is mostly done through an issue tracking software. Bugzilla1 and Jira2 are some examples of 

such softwares widely used in open-source projects.  

Bugzilla is a web-based general-purpose bug tracker and testing tool originally developed 

and used by the Mozilla project. However different open source software projects like 

Eclipse3 have turned out to use this software to track issues reported on their software prod-

ucts. Jira is a similar issue tracking product developed by Atlassian that allows bug tracking 

and agile project management. Apache Software Foundation4, an open-source community 

of developers, currently manages more than 350 open source projects using this issue 

tracker.  

A basic issue report in these issue trackers has a title and description as textual fields. The 

description elaborates the issue in full detail while the title summarizes the issue in a short 

text, mostly a one-line sentence. Besides the title and description, an issue report also con-

tains other categorical fields which are used to label, categorize and prioritize the issue. 

Some of the common metadata fields are assignee, reporter, issue type, priority, component, 

version etc. Figure 1 and 2 show an example of an issue report from the Jira and Bugzilla 

issue trackers of The Eclipse and Apache projects respectively. 

 

 

                                                 
1 https://www.bugzilla.org/about/  
2 https://www.atlassian.com/software/jira 
3 https://www.eclipse.org/  
4 https://projects.apache.org/ 

 

Figure 1. An example of an issue report from the Bugzila issue tracker  

of the Eclipse project 

https://www.bugzilla.org/about/
https://www.atlassian.com/software/jira
https://www.eclipse.org/
https://projects.apache.org/
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Once issues are well recorded and prioritized, they need to be assigned to a developer who 

will be responsible for their fixing. The assignment of issue reports to developers can be 

done in different ways. The traditional approach is through a separate person, who can be a 

project manager, team leader, or bug triaging person who will decide which developer 

should be assigned to which issue report. However, in more agile and self-organizing teams, 

self-assignment is widely practised [1, 2]. This means developers get to choose tasks and 

assign themselves. In large projects, where more developers collaborate and lots of issues 

get reported periodically, assigning issue reports can be difficult and time-consuming as it 

requires reading each issue report and choosing a suitable developer to assign them to.  

Different research works have been done over the years to improve the issue report assign-

ment process. Some of these research works have proposed an automated assignment ap-

proach where a developer is assigned to each issue report directly [3, 4, 5] while the others 

have proposed a developer recommender system that recommends a set of developers to a 

third person who will assign the issue report to one of those developers [6, 7].  

The automatic assignment and developer recommendation approach proposed in previous 

works are not suited for a type of task assignment where developers are free to choose tasks 

and assign themselves (i,e self-assignment) because the decision of assigning tasks is made 

by either a software component or a third person respectively. Self-assignment is being 

widely practised these days and when practising self-assignment in large projects, develop-

ers face the same problem of having to browse through many issue reports to find the issue 

reports they prefer to assign themselves to.  

 

Figure 2. An example of an issue report from the Jira issue tracker of the Apache Mesos 

project 
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Therefore, this study tries to improve this self-assignment practice, by implementing a ma-

chine learning-based issue recommendation system that can learn from previous assignment 

history of developers and recommend a shorter list of most relevant new issue reports for 

developers to choose from. 

1.1 Problem Statement 

When the number of open issue reports in a backlog is large, self-assignment becomes chal-

lenging for developers as they have to read more issue reports to find the next issue report 

they want to self-assign and this can be an unpleasant and time-consuming task. 

Therefore, the aim of this study is to tackle this problem using a machine learning-based 

issue recommender system (IRS) that can learn from the assignment history of the previ-

ously fixed issues and recommend a shorter list of new issues suited to each developer so 

that developers can easily find the next issues to work on.  

To implement such an IRS, three different traditional machine learning algorithms namely, 

K-Nearest Neighbour, SVM and Naïve Bayes, are compared to select the best one. As a data 

source, issue reports collected from 6 different open source projects which are based on the 

Jira and Bugzilla issue trackers are used. By evaluating the implemented IRS using perfor-

mance metrics like Precision, Recall, Mean Average Precision and F1-score, this thesis 

work tries to answer the following research question,  

1. What is the performance of an IRS using ML algorithms with respect to a random recom-

mender? 

2. How much does including features from the categorical fields affect the performance of 

the IRS. 

3. What is the optimal recommendation size that maximizes the F1-score (i.e. giving a good 

balance between Precision and Recall)? 
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2 Related Works 

There have been a number of research works done over the years which set out to improve 

the assignment process of issue reports to developers. To find these research works, online 

digital libraries like Google Scholars, IEEE and Springer have been accessed, as they are 

reliable sources for academic resources. In these digital libraries, search keywords like “is-

sue/bug report recommendation”, “developer recommendation for issue/bug reports”, “task-

assignment in software projects” and others were used to find some of the related works. 

Moreover, traversing through the references of the research works found in the first-round 

search, it was possible to collect more related works. Among the collected works, 7 papers 

which are most related to the topic of this study were selected for review.  

The work by Murphy G et al. [3], as one of the very first works done on the topic, proposed 

a machine learning-based approach for automatic assignment of bug reports to developers. 

In their work, they treated the problem as a text categorisation task. For this, they used the 

description of the issue reports as an information source and represented it in a bag of words 

representation based on term frequency and used the Naïve Bayes algorithm to train a model 

on this representation that can classify issue reports among the developers and automatically 

assigned to them. They applied their approach to issue reports collected from the eclipse 

project and were able to achieve accuracy up to 30%.    

Another similar work was done by Ahsan SN et al. [4] which also used machine learning to 

classify bug reports for automatic assignment. They tried to implement an automatic bug 

triage system using latent semantic indexing and support vector machine. Just like the work 

by Murphy G et al. [3], they relied totally on the description of the issue reports as an infor-

mation source. However, they are different in two things. First, they used TF-IDF weighing 

based VSM representation for the issue reports and they also applied dimensionality reduc-

tion and latent semantic indexing methods for feature selection. The other difference is they 

used the SVM algorithm for classification. In this way, they were able to achieve up to 

44.4% accuracy on bug reports collected from the Mozilla open-source project. 

Nasim S et al. [5] used the frequency of each alphabet instead of terms in the bug short 

summary as features for 11 different classification algorithms to make the prediction on the 

developer to be assigned. They used the Eclipse JDT project for their experiments. The bug 

summaries in eclipse contain tags and a one-sentence description. They experimented their 

approach using only the tagged issue reports and using all collected issue reports. The best 

results they achieved was using only the tag information of the tagged issue reports which 

gave an accuracy of 62% accuracy with the J48 decision tree algorithm. However, not all 

issue report descriptions contain tags, in fact, from the issue reports they collected, less than 

half of the issue reports contained tags in their description, which makes it hard to com-

pletely rely on tags. Using all collected issue reports the best accuracy they were able to 

achieve was only 32%.   

Not all research works on the issue report assignment problem relied on machine learning 

algorithms. For example, Tamrawi A et al. [6] proposed a fuzzy sets-based approach.  In 

their approach, for every technical term in bug reports, they kept a record of a fuzzy set of 

the developer's relation to the term based on the issue reports fixed by the developers previ-

ously. For a new issue report, they ranked the developers based of their membership score 

to the fuzzy set of the new issue report, calculated based on the fuzzy set theory [8], and 

assigned the issue report to the developer with the highest membership score. Using this 

approach, they were able to achieve a top 1 accuracy of 37.81% and top 5 accuracies of on 

average with issue reports collected from the Eclipse project.  
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Another example is the work by Hu H et al. [7].  Their approach makes use of a Developer-

Component-Bug (DCB) network structure to make developer recommendations. This net-

work captures the relationship among developers, source code components and bug report 

and assigns a weight to each connection in the network.  They made use of the VSM model 

to represent bugs and the keywords for this model are extracted from the summary of the 

bug report and the source code repository log of the commit corresponding to the bug fix. 

They made use of cosine similarity to calculate the relevance of each previous bug to the 

new bug. This relevance is then propagated through the DCB network to calculate the rele-

vance of each developer to the new bug which in turn is used to recommend the top n de-

velopers. They Evaluated their approach on Eclipse, Mozilla, NetBeans and 2 other indus-

trial projects. Their best result achieved 42.36% top1 accuracy and 73.85% top 5 accuracy 

on the Eclipse project. 

In an effort to improve the representation of the textual description of issue reports, recent 

work by Mani S et al. [9] has applied a more advanced representation using deep learning. 

They used a deep bidirectional recurrent neural network to learn the semantics of the textual 

description of the issue reports in an unsupervised manner. Applying this type of represen-

tation on issue reports from the Chromium, Mozilla Core and Mozilla Firefox and by using 

Naïve Bayes, SVM, SoftMax and cosine distance-based classifiers for predicting develop-

ers, they reported improvements in top 10 accuracies with respect to the TF-IDF based bag 

of words representation, however their best results are still low for top 10 accuracy, which 

is 47%.  

Rocha H et al. [10] proposed a tool called NextBug [1] which recommends similar bugs to 

each bug reports browsed by developers so that developers can find the next bug, they want 

to fix after they worked on a bug report. The tool has an IR and recommender component. 

The IR component uses the summary and description of issue reports computing a VSM 

representation using TF-IDF weighting scheme. The recommender component computes 

the similarity of bug reports by using a cosine similarity function and applying it on the 

VSM representations. This way, for every issue report visited by developers they were able 

to show the top similar issue reports as part of the visited issue report. Evaluating the tool 

on bug reports collected from the Mozilla Project they were able to achieve a precision of 

31% approximately by recommending 1 up to 5 similar issue reports for each visited issue 

report.  

The NextBug tool can be useful for developers when practising self-assignment however 

the recommended issue reports are specific to an issue report instead of a developer and 

developers have to visit an issue report they fixed before to find recommendations. This 

makes it different from what this thesis proposes because it is trying to recommend issue 

reports specific to developers.  

In Table 1 the approaches used and results reported in the previous works reviewed is sum-

marised.  In general, it can be seen that there are limited research works that target to im-

prove the self-assignment practice and the IRS we are implementing is expected to fill this 

gap. We also noticed that most focus has been given to the description and summary of issue 

reports as an information source, however, issue reports contain other categorical metadata 

information (e.g. components, issue report type, priority, reporter, ..., etc) that can be useful 

to analyse. Therefore, in this study, we tried to combine features from these categorical 

fields with features from the description and title of issue reports to be used to train the 

Machine learning algorithms and finally we analyse the effect of this on the performance of 

the IRS. 
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Table 1. Summary of related works 

Paper 
Tries to Improve 

task assignment by  

Used Infor-

mation source    
                Methods used Best results 

Mur-

phy G  

et al. 

[3] 

Automatic assign-

ment  

Summary and de-

scription         

• BOW representation with TF 

• Naive Bayes classifier   Accuracy:  30%  

Ahsan 

SN  

et al. 

[4] 

Automatic assign-

ment  

Summary and de-

scription  

• VSM representation with TF-

IDF, 

• Latent semantic indexing 

• SVM classifier 

 

 Accuracy: 44% 

Nasim 

S  

et al. 

[5] 

Automatic assign-

ment  

Summary and de-

scription  

• Representation with Frequency 

of alphabets 

• 8 different classification algo-

risms, Best result with J48 deci-

sion tree classifier 

Accuracy: 32%  

 Accuracy: 62%(using only 

tagged issue reports)  

Hu H  

et al. 

[8]   

Developers recom-

mendation to third 

person assigner  

Summary and de-

scription, 

commit logs, 

Source code com-

ponents   

• VSM representation with TF-

IDF,  

• Cosine similarity  

• Developer-Component-bug net-

work structure 

• ranking by score calculated from 

the network 

 Top 1 accuracy: 42.36%  

 Top 5 accuracy: 73.85%   

Mani 

S  

et al. 

[9] 

Developers recom-

mendation to third 

person assigner 

Summary and de-

scription  

• Representation using deep learn-

ing  

• SVM, SoftMax and Naïve Bayes 

classifiers  
 Top 10 accuracy:  47%  

Rocha 

H  

et al. 

[10] 

Similar Issue report 

recommendation  

Summary and de-

scription  

• VSM representation with TF-

IDF 

• Ranking by Cosine similarity  
 Top 5 precision: 31%   
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3 Methodology 

This section presents the procedures followed to answer the research questions of this study.  

First, an IRS was built using the approach explained in section 3.1. The approach involves 

pre-processing and feature selection steps which are further elaborated in the sections that 

follow.  

The IRS was evaluated using different machine learning algorithms on the collected issue 

reports by sampling multiple backlogs of size 100 issue reports at different places within the 

chronological order of the issue reports. The IRS was run to recommend issue reports to the 

developers from each backlog and the performance for each recommendation was evaluated 

using the precision, recall f1-score and mean average precision metrics. This experimental 

setup and the evaluation metrics used are explained in section 3.6.  

Finally, to answer each research question, the following procedures were followed.  

RQ1: What is the performance of an IRS using ML algorithms with respect to a random 

recommender? 

To answer RQ 1, The IRS was evaluated using both textual and categorical features for each 

ML algorithm separately with top 10 recommendation sizes, and the best results for each 

metrics were compared against a random recommender to know how much more easily 

developers can find relevant issue reports using the ML-based IRS compared to selecting 

issue reports randomly.  

RQ 2: How much did including features from the categorical fields affect the performance 

of the IRS.  

To answer RQ 2, the IRS was evaluated for top 10 recommendation as in RQ 1, but using 

textual features only and the best results were compared with what was found using both 

categorical and textual fields (see RQ 1). In addition to that, a chi-squared statistical test is 

used to know which features are more associated with the class labels (i.e. the developers 

|assigned to the issue reports) and which fields of the issue reports contributed these features.    

RQ3: What is the optimal recommendation size that maximizes the f1-score (i.e. giving a 

good balance between precision and recall)? 

To find the size of recommendation with a better balance between precision and recall, the 

f1-score was used for comparison because it measures both the precision and recall in har-

mony. By varying the recommendation size from 1 to 25, we tried to find the recommenda-

tion size which achieves a maximum f1-score in each project using the three algorithms 

separately and by using both textual and categorical features.  

3.1 Approach 

The problem addressed by this thesis can be formulated as follows. Among a list of open 

issue reports R, how can we recommend the top N issue reports suitable for each developer, 

in a list of available developers D. Tackling this problem requires one to be able to rank 

issue reports for each developer, based on their probability of being assigned to that devel-

oper.  

To calculate the probability of assignment of an issue report to a developer, the problem was 

first treated as a multi-class classification problem which means the issue reports were con-

sidered as items to be classified, the developers as the classes or labels to be assigned to 

these items and the goal was to classify these items among the classes with a probability 
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estimate for all classes. These probability estimates could then be used as a measure of the 

probability of assignment of issue reports to developers. 

This problem can be referred to as a supervised multi-class text classification problem. It is 

a text classification because issue reports are basically tagged textual documents. It is su-

pervised learning because previous issue reports, whose assigned developers are known, are 

available to learn from. The fact that the number of developers used as classes can be more 

than two also makes it a multi-class classification problem. Moreover, since we are doing 

the classification to rank issue reports and extract the most relevant ones for each developer, 

the problem can also be referred to as an information retrieval problem.  

Among the different supervised machine learning algorithms out there that can be used for 

the classification task, 3 traditional algorithms were selected for experiment namely K-near-

est Neighbour (KNN), Naïve Bayes (NBY) and Support Vector Machine (SVM). These 

algorithms were selected for comparison because they are easy to implement are commonly 

used algorithms for text classification problems in general [11, 12].  

Before applying these ML algorithms, the issue reports pass through a set of pre-processing 

steps to extract terms from the textual and categorical fields that can be used to represent 

the issue reports. The pre-processing steps applied to the textual fields like the summary and 

description involve, converting to lower case, removal of numbers and punctuations, stop 

word removal, stemming, document indexing, dimensionality reduction.  

After the pre-processing steps, the terms from the textual fields were used to build a VSM 

representation using their TF-IDF weights which is a common way of representing text in 

text mining [13]. Similarly, the terms from the categorical fields were converted into a nu-

meric representation using one-hot encoding [14] and combined with the VSM representa-

tion of the textual fields.   

After issue reports were represented numerically using terms extracted from the textual and 

categorical fields, the most relevant terms that can be used as features were selected using 

chi-squared which is a statistical feature selection method. Chi-squared was used as a feature 

selection method because it has been found to be a reliable feature selection method for text 

classification [15] and has achieved good performance compared to other methods in bug 

triaging [16].  

After the features are selected, the three machine learning algorithms were separately used 

to implement a classifier on these features. The classification was done to estimates the 

probability of classification for all developers as a measure of the probability of assignment. 

Using these estimates, the issue reports are ranked for each developer and the top N issue 

reports with the highest probability of assignment are recommended to each developer.  

Figure 3 shows an example of the general flow of the proposed approach. In this example, 

there are three developers and 10 unassigned issue reports which need to be assigned to 

these developers. After all issue reports pass through the pre-processing and feature selec-

tion steps, the machine learning section performs probabilistic classification on the unas-

signed issue reports using the previously assigned issue reports for training.  The result of 

the classification is a matrix of the probability of assignment that has the issue reports in the 

row and the developers in the column and each cell RiDj represents the probability of the 

issue report Ri to be assigned to the developer Dj.  

Lastly, the recommender section takes this to rank the issue reports for each developer and 

recommend the top 3 issue report in this case.  For example, For the first developer D1, the 

issue reports are sorted as R5, R9, R7, R10, … etc, in decreasing order of their probability 



 

14 

 

of being assigned to D1. Therefore, the top 3 issue reports, R5, R9, and R7, will be recom-

mended to developer D1. 

 

 

 

 

 

 

 

Figure 3. An Example of the general flow of the IRS, 
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3.2 Representation of issue reports 

Two different representation techniques were applied to the issue reports. VSM was used to 

represent textual features such as description, title whereas One Hot Encoding was applied 

for categorical features. 

VSM 

The Vector space model (VSM) also referred to as a term vector model is an algebraic model 

for representing text documents numerically as a vector of terms and their weights. i.e. given 

a vocabulary of terms 𝑇, and set of issue reports 𝑅, the term vector for an issue report 𝑅𝑗 is 

given by 

                           𝑅𝑗 = (𝑊1𝑗,   𝑊2𝑗,   𝑊3𝑗, … , 𝑊𝑖𝑗)                                            (Equation 1) 

Where 𝑊𝑖𝑗 is the weight of a term 𝑇𝑖 in the issue report 𝑅𝑗 

The commonly used method to give weights to terms in a VSM representation is Term Fre-

quency-Inverse Document Frequency (TF-IDF)5  weighing method. In the TF-IDF weighing 

method, the weight of a term is proportional to the frequency of the term in a document but 

is offset by the number of documents that contain the word, which helps to adjust for the 

fact that some words appear more frequently in general. The TF-IDF is defined as the prod-

uct of term frequency (TF) and inverse document frequency (IDF). For a term t and issue 

report r TF, IDF and TF-IDF are calculated with Equation 2, 3, and 4 respectively.  

 

 

 

 

                 

             

 

One Hot Encoding 

One hot encoding is a widely used numeric representation of categorical features for use by 

machine learning algorithms.  With the one-hot encoding method, a categorical feature is 

expanded into multiple dummy variables using its unique values. Then, for each example, 

one or more of the dummy variables will be set to 1 or 0 depending on whether the example 

has the value associated with the dummy variables or not. Figure 4 shows an example illus-

tration of the one-hot encoding method when applied to a components field which has 

unique values UI, SDK, HTTP and LIB, 

 

 

 

                                                 
5 http://www.tfidf.com/  

𝑇𝐹(𝑡, 𝑟) =  
𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡 𝑖𝑛 𝑟

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑟
 

𝐼𝐷𝐹 (𝑡) = log (

 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑡
  

) 

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑟) =  𝑇𝐹(𝑡, 𝑟)  ×  𝐼𝐷𝐹 (𝑡) 

          (Equation 1) 

      (Equation 2) 

   (Equation 3) 

http://www.tfidf.com/
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3.3 Machine Learning Techniques 

Three different algorithms were used separately to implement the IRS. These algorithms are 

discussed below.  

Naïve Bayes (NBY) 

Naïve Bayes is a simple learning algorithm that is based on the Bayes rule and a strong 

assumption that attributes are conditionally independent [17, 18]. Using the Bayes rule, for 

a document 𝑥 with 𝑛 features and class 𝑦, the probability of x being labelled as class 𝑦 is 

given by, 

                                                                                 

 

With the assumption that attributes are conditionally independent, 𝑃(𝑥|𝑦) is calculated as  

 

 

                          

 

where xi is the value of the ith feature of x and P(x) is given by 

 

                                                                                

 

 

where k is the number of classes and ci is the ith class.  

 

 

Figure 4. An Example of the One-Hot Encoding representation 

𝑃(𝑦|𝑥) = 𝑃(𝑦)𝑃(𝑥|𝑦)/𝑃(𝑥)    (Equation 4) 

𝑃(𝑥|𝑦) =  ∏ 𝑃(𝑥𝑖 | 𝑦)

𝑛

𝑖=1

        (Equation 5) 

𝑃(𝑥) =  ∏ 𝑃(𝑐𝑖)𝑃(𝑥| 𝑐𝑖)

𝑘

𝑖=1

    (Equation 6) 
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There are two variants of this algorithm widely used in document classification, namely the 

multivariate Bernoulli model and Multinomial model, based on how they calculate the prob-

ability of a document given a class. For this study, the Multinomial model was used because, 

unlike the Bernoulli model, this model considers the frequency of words in the document 

when calculating the probabilities which make it more suited for the VSM representation 

and it has also been found to generally have better performance [17, 18]. To train the Multi-

nominal Naïve Bayes model the “naivebayes”6  package in R was used. 

K-Nearest Neighbour (KNN) 

KNN is one of the simplest lazy machine learning algorithms used for classification which 

doesn’t require any training phase. When applied in text classification [19], KNN deter-

mines a class for a new document using the class composition of the top k documents most 

similar to the new document. As an estimate of the probability of classes, the weighted pro-

portion of those classes in the k nearest neighbours was used, which is given by,  

 

 

 

 

 

where 𝑥𝑗 is a document of class 𝑦𝑖 in the 𝑘 most similar documents to document 𝑥𝑖, 
i.e 𝐾𝑁𝑁(𝑥𝑖), of class 𝑦𝑖. 𝛿(𝑦𝑖, 𝑐𝑗) is there to select only documents of class 𝑦𝑖  in 𝐾𝑁𝑁(𝑥𝑖) 

and 𝑆𝑖𝑚(𝑥𝑖, 𝑥𝑗) represents the similarity of two documents 𝑥𝑗 and 𝑥𝑖.  

If a class doesn’t exist in the 𝑘 nearest neighbours, its probability estimate is calculated to 

be 0 with Equation 10. To make sure that enough classes have a non-zero probability esti-

mate, k has to be made as big as possible, while also making sure that the recommendation 

recall is not significantly affected. Experimentally, the value of 𝑘 was varied from 1 to 50 

to select a general optimum value. This experiment is presented in section 4.1.1 

To calculate the similarity of two-issue reports, the cosine similarity measure [16], a com-

mon similarity function for  VSM, was used. The cosine similarity of two documents 𝐴 =
 (𝐴1, 𝐴2, . . . . . , 𝐴𝑛) and 𝐵 =  (𝐵1, 𝐵2, . . . . . , 𝐵𝑛)  is given by              

 

                                                

  

            

To implement the KNN algorithm, the "text2vec"7 R package, the package also used to build 

the VSM model, was used to calculate the cosine similarities and custom code was written 

to find the nearest neighbours and calculate the class probabilities. 

                                                 
6 https://cran.r-project.org/web/packages/naivebayes/vignettes/intro_naivebayes.pdf  

  
7 http://text2vec.org/ 

𝑃(𝑦𝑖|𝑥𝑖) =  
∑ 𝑆𝑖𝑚(𝑥𝑖, 𝑥𝑗)𝛿(𝑦𝑖, 𝑦𝑗) 𝑥𝑗 ∈ 𝐾𝑁𝑁(𝑥𝑖)

∑ 𝑆𝑖𝑚(𝑥𝑖, 𝑥𝑗) 𝑥𝑗 ∈ 𝐾𝑁𝑁(𝑥𝑖)
  

, 𝛿(𝑦𝑖, 𝑦𝑗) =  {
1   𝑦𝑖 = 𝑦𝑗
0  𝑦𝑖 ≠  𝑦𝑗

 

   (Equation 7) 

𝑆𝑖𝑚(𝐴, 𝐵) =
∑ 𝐴𝑖𝐵𝑖𝑛

𝑖=1

√∑ 𝐴𝑖2𝑛
𝑖=1 √∑ 𝐵𝑖2𝑛

𝑖=1

 
   (Equation 8) 

https://cran.r-project.org/web/packages/naivebayes/vignettes/intro_naivebayes.pdf
http://text2vec.org/
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Support Vector Machine(SVM) 

SVM[20] is another supervised machine learning algorism widely used for classification 

and regression problems. SVM is basically a binary classifier which tries to find a hyper-

plane in a vector space which best separates two classes of a dataset.  

Such a hyperplane can be represented as a set of points x satisfying ⟨𝑤, 𝜙(𝑥)⟩ −  𝑏 =  0 

where ⟨⟩  is the inner product, w represents a vector normal to the hyperplane, b represents 

the distance of the plane from the origin and 𝜙 is a kernel function. The goal of SVM is to 

find the value of w and b which maximize the margin 𝛾 given by,  

                                                                          

 

 

where l is the number of data points.                                                           

Fig 4(c) illustrates an example of a maximum margin hyperplane in a 2-dimensional vector 

space. For a new data point, SVM decides its class based on which side of the hyperplane 

the new data point lies. 

The purpose of the kernel function in SVM is to transform the feature space into a form 

separable by a linear hyperplane as shown in Figure 5(a, b). There are different types of 

kernel functions used with SVM. Some examples are linear, radial, polynomial and sigmoid 

kernels. Among these kernels, The linear kernel is simple and widely used in practice [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To implement the linear SVM in R the “e1071”8  library was used.  This library is based on 

LIBSVM, a popular SVM library written in C++. LIBSVM uses the “one-against-one” ap-

proach to apply SVM to the multiclass classification problem. the “one-against-one” basi-

cally applies SVM to classify between all possible pairs of classes and takes the class with 

the maximum vote. The LIBSVM library also makes probability estimation for SVM using 

                                                 
8 https://cran.r-project.org/web/packages/e1071/e1071.pdf  

𝛾 =  min
1<𝑖<𝑙

‖⟨𝑤, 𝜙(𝑥)⟩) −  𝑏‖     (Equation 9) 

 

Figure 5. Support Vector Machines, Figure 1  

(a) datapoints in a vector space. (b) datapoints in a vector space after kernel 

function is applied. (c) margin of the hyperplane. 

https://cran.r-project.org/web/packages/e1071/e1071.pdf
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a pairwise coupling approach proposed in [21]. More details about the library can also be 

found in its practical guide [22]. 

3.4 Dataset 

The issue reports for this study were collected from the Jira and Bugzilla issue tracking 

systems. Three projects were chosen for each issue tracking software making the total num-

ber of projects studied six. For the Bugzilla issue tracking system, the Eclipse (ECL)9, Net-

Beans (NTB)10  and Free Desktop (FDT)11  projects and for Jira issue tracking system, the 

MuleSoft (MULE)12, Apache Mesos (MESOS)13  and Titanium SDK/CLI (TIMOB)14  pro-

jects were studied. These projects were chosen because their issue repositories are freely 

accessible, they have enough issue reports to be analysed and have been widely researched 

in similar studies [20, 21, 22, 23]. 

                                                 
9 https://bugs.eclipse.org/bugs/ 
10 https://netbeans.org/bugzilla/  
11  https://bugs.freedesktop.org/  
12 https://www.mulesoft.org/jira/projects/MULE/issues 
13 https://issues.apache.org/jira/projects/MESOS/issues  
14 https://jira.appcelerator.org/projects/TIMOB/issues  

                                       Tabel 2. Collection of issue reports 

Project Status Resolution 

status  

Creation date # of issue 

 reports 

# of assignees 

NB 

 

RESOLVED, 

VERIFIED,  

CLOSED 

FIXED 01/01/2012 

 –  

31/12/2012 

8392 114 

EC  RESOLVED, 

VERIFIED,  

CLOSED 

FIXED 01/01/2011  

– 

 31/12/2013 

8310 244 

FD RESOLVED, 

VERIFIED,  

CLOSED 

FIXED 01/01/2011 

 –  

31/12/2012 

9928 432 

MULE RESOLVED, 

DONE,  

CLOSED 

FIXED, COM-

PLETED, 

DONE 

01/01/2016 

 –  

31/12/2017 

3447 53 

MESOS RESOLVED RESOLVED,  

DONE, 

FIXED 

01/01/2014  

–  

31/12/2017 

4055 185 

TRIMOB 

 

RESOLVED, 

CLOSED 

FIXED, 

DONE 

01/01/2011  

–  

31/12/2013 

7745 114 

 

 

https://bugs.eclipse.org/bugs/
https://netbeans.org/bugzilla/
https://bugs.freedesktop.org/
https://www.mulesoft.org/jira/projects/MULE/issues
https://issues.apache.org/jira/projects/MESOS/issues
https://jira.appcelerator.org/projects/TIMOB/issues
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The issue repositories of these projects provide the functionalities to search, filter and export 

issue reports. Using these functionalities, it was possible to query and extract issue reports 

that are successfully resolved within a limited range of creation dates in the form of CSV 

files. Projects like MESOS have a limit of 1000 issue reports that can be downloaded at a 

time, so the issue reports were exported with multiple downloads by dividing the creation 

date range. To extract issue reports that are successfully resolved, certain values were set 

for the status and resolution status fields of the issue reports when executing the queries as 

shown in Table 2. Table 2 also summarizes how many issue reports were collected for each 

project. 

Each issue report has a title, description and other metadata fields which characterize the 

issues. These fields are filled at different stages of the lifecycle of the issue report and some 

of them are prone to change. For the purpose of recommending new issue reports, one needs 

to use the attributes which are filled when a new issue is reported. By looking at the new 

issue report creation form for each project and also through a small survey on new unas-

signed issue reports of each project, it was possible to select a set of fields that can be ana-

lysed to recommend new issue reports which are summarised in Table 3.  

Each project might also include custom fields in their issue tracker system, however, to be 

more standard across projects, only default fields provided by the issue tracker software are 

included. The selection of fields was done by limiting the columns to be included in the 

search queries when collecting the issue reports. For the Bugzilla based projects, there were 

no possibilities to export the description of the issue reports in the CSV format so the de-

scriptions were extracted from the XML format and added into the CSV file by matching 

the ID of the issue reports. 

 

 

3.5 Data cleaning  

After selecting the fields to be analysed and collecting the issue reports accordingly, further 

cleaning steps were applied to select the issue reports relevant for analysis. Two cleaning 

steps were taken in this case,   

• Removing issue reports with no assignee or whose assignee field does not refer to a 

developer. 

Tabel 3: Field selection of issue reports 

  
Summ 

ary  

De-

scrip 

tion 

Repo 

rter 

Compo 

nent 

Is-

sue 

Type 

Ver-

sion 
OS 

Hard 

ware 

Prod 

uct 

Prio 

rity 

Sev 

erity 

NB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   X 

EC ✓ ✓ ✓ ✓  X ✓ ✓ ✓ ✓ ✓ ✓ 

FD ✓ ✓ ✓ ✓  X  ✓ ✓ ✓ ✓ ✓ ✓ 

MULE ✓ ✓ ✓ ✓ ✓ ✓   X   X   X ✓   X 

MESOS ✓ ✓ ✓ ✓ ✓ ✓   X   X   X ✓   X 

TIMOB ✓ ✓ ✓ ✓ ✓ ✓   X   X   X ✓   X 
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• Removing issue reports fixed by inactive developers. 

For projects based on Jira, some of the issue reports had empty values, so these reports were 

removed. For the issue reports collected from projects based on Bugzilla, the values for the 

Assignee field were all available. However, projects like EC have assignee field values 

which do not refer to a specific developer rather referring to a name of an inbox where issue 

reports are added to. Some examples of such assignee values are “Platform-UI-In-

box@eclipse.org”, “jdt-doc-inbox@eclipse.org’’, etc. Issue reports with such value of as-

signee were also removed.   

In the second step, issue reports which are assigned to developers who have only been as-

signed to a few issue reports in the whole dataset were removed. We consider these devel-

opers to be inactive in the development process. To remove inactive developers, developers 

were arranged in increasing order of the number of issues they were assigned to and the 

cumulative sum of the number of issues was used to filter out developers whose cumulative 

sum of the number of issues assigned composes less than 10% of the total number of issue 

reports. 

In the above two steps. 795 issue reports from NTB, 1833 issue reports from ECL, 4545 

issue reports from FDT, 348 issue reports from MULE, 586 issue reports from MESOS and 

729 issue reports from TIMOB were removed.  The total number of issues and developers 

for each project after the two cleaning steps is summarized in Table 4. 

 

3.6 Pre-processing 

The first pre-processing was applied to the textual fields which are the title and description 

of the issue reports. Before converting these textual fields into a VSM representation, a set 

of pre-processing measures were taken to remove less interesting words and characters and 

keep only the relevant ones. The basic pre-processing measures [23] taken in text mining 

were also applied in this study which will be presented as follows,    

1. Converting to Lowercase: All alphabetic characters were converted to lowercase be-

cause we want a word to appear exactly the same every time it appears and are less 

interested in the capitalization of the words. 

Tabel 4: Number of issues and developers after data cleaning 

project # of issues  # of developers 

NTB 7597 38 

ECL  6477 50 

FDT 5474 101 

MULE 3099 18 

MESOS 3469 56 

TIMOB 7016 28 
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2. Removal of Numbers and Punctuations: Numbers and punctuations were removed 

because they will appear to be words to the machine and they create noises. 

3. Stop Words Removal: Stop words are words that appear very frequently in all texts 

because of their nature (a, and, also, the, etc.). For this step, we used the 571 English 

stop words from the SMART information retrieval system15.  

4. Stemming: Stemming is the process of reducing words to root by removing inflexion 

through dropping unnecessary characters, usually a suffix. With this step, it is pos-

sible to remove common word endings (e.g., “ing”, “es”, “s”).   

5. Document Indexing: This step involves extracting a set of unique terms in the whole 

set of issue reports and calculating their term frequency (TF) and document fre-

quency (DF). TF represents the total frequency of a term in the issue reports and DF 

represents the number of issue reports containing a term.  

6. Dimensionality reduction:  This step involves reducing the size of the vocabulary 

used to represent documents by removing rare and too common words. For this 

study, using the DF values calculated in step 5, terms which do not appear in at least 

3 issue reports or terms which appear in more than half of the issue reports were 

removed. This step assists the chi-square test based feature selection that will be 

applied later.  

7. After the above 6 steps, a document term matrix (DTM) was created with the issue 

reports in the row, the extracted vocabulary of terms in the column and each cell 

containing the TF-IDF weights where each row of the DTM represents the VSM of 

the title and description of issue reports. To implement the above pre-processing 

steps the "tm"16  and "text2vec"17  R packages were used in combination. "tm" was 

used for the first 4 steps while text2vec was used for the last 2 steps and for the 

creation of the DTM.  

The second pre-processing was applied to the categorical fields which involve the compo-

nent, version, product, reporter priority etc. A matrix of similar structure as the DTM was 

constructed for these fields using the one-hot encoding approach explained in Figure 4. 

                                                 
15 https://www.lextek.com/manuals/onix/stopwords2.html  
16 https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf 
17 http://text2vec.org/  

Tabel 5: Number of terms after preprocessing 

project # terms from textual 
features  

# terms from categori-
cal features   

total 

NTB 5320 1597 6917 

ECL  5077 1132 6209 

FDT 6510 2546 9056 

MULE 2609 355 2964 

MESOS 3357 544 3901 

TIMOB 4689 1851 6540 

 

https://www.lextek.com/manuals/onix/stopwords2.html
https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://text2vec.org/
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Which means unique terms were extracted from the categorical fields and put in a column 

then for each issue report, the values for these columns were set to 1 if the issue report is 

labelled with the respective term and 0 if not. This matrix was then combined with the DTM 

to give the full representation of the issue reports. The total number of terms extracted in 

the pre-processing step for each project is summarised in Table 5. 

 

3.7 Feature selection 

After issue reports are represented using the terms extracted from the textual and categorical 

fields, the chi-squared test was used as a feature selection measure to remove non-informa-

tive terms according to dataset statistics.  

The chi-squared test is a statistical test that measures the lack of independence between the 

terms and the classes, in a text classification problem. For a set of classes, 𝑐 =
 {𝑐1, 𝑐2, . . . , 𝑐𝑘}   The chi-squared statistics  of a term t, also represented as 𝑥2, can be cal-

culated as,  

𝑥2(𝑡, 𝑐) = ∑ ∑
[n𝑡𝑐 −  𝑛𝑡𝑛𝑐/𝑁]2

 𝑛𝑡𝑛𝑐/𝑁
𝑐𝑡𝜖{0,1}

 

Where n  represents the observation count for each state of t and c and N represents the total 

number of samples. From the chi-squared statistics, the Cramér's V coefficient was calcu-

lated to measure the association of each term with the classes. The Cramér's V coefficient 

is given by, 

                                                 𝑉 =  √
𝑥2/𝑁

𝑘−1
 

 

When the value of 𝑥2 for a term 𝑡 is 0, it means that the classes are independent of or not 

associated with the term t therefor such terms were removed from the feature set. Using this 

measure, it was possible to decrease the number of terms used as features which are 

Tabel 6: Number of terms after feature selection 

project # of terms from textual 
features  

# of terms from cate-
gorical features   

total 

NTB 173 163 336 

EC L 194 80 274 

FDT 484 143 627 

MULE 25 52 77 

MESOS 24 59 83 

TIMOB 118 96 214 
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summarized in Table 6.  The chi-squared test and the calculation of the Cramer coefficient 

were performed using the “Fselector”18 package in R.   

3.8 Evaluation 

To evaluate the IRS, a set of training and test sets were extracted.  The test sets are used to 

represent a backlog of unassigned issue reports and the training sets are used to represent 

the fixed issue reports. To extract such training and test sets, the issue reports were first 

arranged by their creation date to keep their chronological order.  After that, 10 different 

partitions of the issue reports were extracted by taking the first {10%, 20%, 30%,  ...., 100%} 

of the issue reports as summarized in Table 7. For each partition, the last 100 issue reports 

were taken as a test set to represents a large backlog of open issue reports and the rest as a 

training set to represent previously fixed issue reports. The IRS is run on each partition and 

the final values for the evaluation metrics were taken as the average of the result from each 

partition. This was done for cross-validation of the result across the creation date range of 

the issue reports in each project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The IRS is then evaluated with these train and test sets using precision, recall, F1-score and 

mean average precision (MAP). These metrics were selected considering the fact that the 

IRS performs a classification task [24, 25].  

For each developer, the precision measures how much of the issue reports recommended to 

the developer are relevant and the recall measures how much of the relevant issue reports 

have been recommended to the developer. Because the IRS produces a ranked list of issue 

                                                 
18 https://cran.r-project.org/web/packages/FSelector/FSelector.pdf  

Tabel 7. Dataset partitions for cross validation 

Partition  NB EC FD MULE MESOS TIMOB 

First 10% 759 647  547  309  346  701 

First 20% 1519  1295  1094  619  693  1403 

First 30% 2279  1943  1642  929  1040  2104 

First 40% 3038  2590  2189  1239  1387  2806 

First 50% 3798  3238  2737  1549  1734  3508 

First 60% 4558  3886  3284  1859  2081  4209 

First 70% 5317  4533  3831  2169  2428  4911 

First 80% 6077  5181  4379  2479  2775  5612 

First 90% 6837  5829  4926  2789  3122  6314 

100% 7597 6477 5474 3099 3469 7016 

 

https://cran.r-project.org/web/packages/FSelector/FSelector.pdf


 

25 

 

reports, The MAP was used to evaluate the ordered precision of the recommendations given 

by the IRS. The F1 score was used to aggregate the precision and recall metrics. 

If, among all the issue reports, m issue reports in total are relevant to a developer and if the 

developer is recommended N issue reports, the precision(P), recall(R), F1-score(F1) and 

average precision (AP) are calculated as, 

 

 

                

 

                      

 

 

                                   

 

                

 

 

 

The final values for the above metrics were calculated using the average of the result for 

each developer. The mean of the AP of each developer is what we call MAP. 

 

 

 

 

 

 

 

 

 

 

 

R@N =
 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 @ 𝑁 

m
 

P@N =
 # 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 @ 𝑁 

N
 

            𝐹1(𝑁) =   2
𝑃(𝑁)𝑅(𝑁)

𝑃(𝑁)+𝑅(𝑁)
 

 𝐴𝑃@𝑁 =  
1

# 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑠𝑠𝑢𝑒 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 @ 𝑁 
∑ 𝑃(𝑘)𝑟𝑒𝑙(𝑘)

𝑁

𝑘=1

 

    (Equation 10) 

 (Equation 11) 

 (Equation 13) 

 (Equation 14) 
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4 Results 

This section presents the results according to each research question. 

4.1 RQ 1 

The purpose of this section is to compare how the ML-based IRS compares to a random 

recommender.  

4.1.1 Choosing a value of k for KNN using MAP 

The choice of k for KNN is an important decision to make because it affects the performance 

of the classifier. To select a general value of k for KNN that can be used across the projects, 

the MAP was compared for a value of k ranging from 1 to 50 as shown in Figure 6. The 

MAP was measured for the complete ranking of issue reports (i.e. MAP@100) and both 

categorical and textual features were used. Taking the average of MAP from each project, 

it is found that a value k between 20 and 40 is a good choice for K. Therefore, for the rest 

of the results a value of k = 25 was used. 

For SVM, parameter tuning was done using the tune() functions in "e1071 library, however 

better result was achieved using the default parameters (e.g cost = 1 and epsilon = 0.1). 

Similarly,fornaive Bayes, the default Laplace smoozing value = 0.5 in the multinomial_na-

ive_bayes() function of the "naivebayes" library was used was used. 
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4.1.2 Comparison for all metrics at N=10 using ML-Based IRS vs random recom-
mender 

This section presents in Table 8, the results for all metrics at a recommendation size  N = 10 

and using the three ML algorithms separately. In addition, it also presents the result achieved 

through a random recommendation(RAND). For this evaluation, both the textual and cate-

gorical features(TCF) were used.   

 

 

From Table 8, the highest results achieved for each metrics in every project from the result 

of KNN, NBY and SVM is highlighted. This value is compared with the result of a random 

recommender in Figure 7 below in the form of a bar plot and Figure 8 shows the ratio of the 

result for each metrics against the result of the random recommender. 
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Figure 7. Comparision of best results of P, R, F1, and MAP for N = 10 using TCF vs 

RAND 
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4.2 RQ 2 

The purpose of the results under RQ 2 is to show how a comparison of all metrics using 

textual fields only versus using both textual and categorical fields as a source of features.  

4.2.1 Comparison of results of all metrics at N=10 for TFO vs TCF 

In this section, Table 9 presents, for each algorithm,  the result of all metrics for the top 10 

recommendation using textual fields only(TFO). It also includes the best results found using 

TCF in RQ 1 from the three algorithms which are highlighted in Table 8.  

 

 

In Figure 9, the best results achieved for all metrics by using TFO which are highlighted in 

Table 9  are compared against the best results achieved using TCF in the form of a bar plot. 
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Next, In figure 10, the percentage increase achieves for all metrics between using TFO and 

TCF is also presented in a bar pot. 
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4.2.2 Comparison of the influence of features using the chi-squared statistics 

In this section, the top 10 terms in the issue reports of each project with the highest Cramer’s 

V coefficient values calculated from the chi-squared feature selection step and the fields of 

the issue reports they were extracted from is presented in Figure 11. Moreover, the average 

of the Cramer’s V coefficient of all terms extracted from each field of the issue report is 

compared in Figure 12. 

 

Figure 11. Comparision of average Cramer’s V coefficient of terms from each field of the 

issue reports 
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4.3 RQ 3 

4.3.1 Comparison of all metrics for N = 1 up to 25 for each algorism using TCF 

In this part of the result, the P, R, F1 and MAP values of the IRS are compared for recom-

mendation size N ranging from 1 to 25 for each algorithm including a random recommender 

using TCF. It also includes the maximum F1-score points. The results for each algorithm 

and project are presented in the form of a line graph from Figure 13 to 18. 

 

 

 

 

Figure 13. Comparision of all metrics as N increase from 1 to 25 using TCF for 

NTB 
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Figure 14. Comparision of all metrics as N increase from 1 to 25 using TCF for ECL 
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4.3.2 Comparison of all metrics at N = maximum F1-score point using TCF 

This part presents the value of all metrics at maximum F1-sore for each algorism using both 

textual and categorical features in Table 10. 

 

 

 

Table 10. Result of P, R, F1, and MAP for N = maximum F1 point for each algorithms using  

TCF 

PROJ  ALG N P R F1(max) MAP 

NTB KNN 3 63.61 70.27 66.77 89.67 

 NBY 3 66.81 73 69.76 91.19 

 SVM 3 69.06 76.63 72.65 92.95 

ECL KNN 4 41.63 53.48 46.81 65.79 

 NBY 5 38.28 60.14 46.78 65.82 

 SVM 5 39.23 61.2 47.81 65.82 

FDT KNN 3 40.73 55.17 46.87 63.34 

 NBY 3 39.09 52.55 44.83 58.97 

 SVM 2 50.26 49.9 50.08 64.12 

MULE KNN 6 51.85 56.74 54.19 79.62 

 NBY 5 59.46 55.69 57.51 82.21 

 SVM 5 57.68 53.51 55.52 81.16 

MESOS KNN 3 38.09 35.35 36.67 55.6 

 NBY 4 38.22 46 41.75 58.76 

 SVM 4 36.79 42.35 39.37 57.91 

TIMOB KNN 13 31.21 55.96 40.07 54.09 

 NBY 9 36.37 50.55 42.3 58.5 

 SVM 15 30.58 62.74 41.12 54.57 
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5 Discussion  

In this section, the results presented in the previous section are discussed with respect to the 

research questions of this study.  

RQ1: What is the performance of an IRS using ML algorithms with respect to a random 

recommender? 

To answer this question, we have evaluated the performance of the IRS we implemented for 

top 10 recommendation using precision, recall, f1-score and mean average precision and 

compared these results with the result found by random recommendation in section 4.1.  

The result shows that, using the ML-based IRS, it is possible to achieve best top 10 recall 

ranging from 52.9% up to 96 % for TIMOB and NTB projects respectively, which means 

developers can find more than half of the issue reports relevant to them in the top 10 issue 

reports recommended from a backlog of 100 unassigned issue reports. In NTB, the ratio of 

the top 10 recall of the ML-based IRS with the recall of a random recommendation is 9.5 

which means developers are around 9 times more likely to find the issue reports that they 

are later assigned to from the top 10 recommendation of the IRS compared to randomly 

picked 10 issue reports. This ratio for the ECL, FDT, MULE, MESOS and TIMOB is 8.1, 

8.2, 7.1, 6.3 and 6 respectively.  The best results achieved for top 10 recall are by using the 

SVM algorism in the NTB, ECL, FDT and MESOS project and using Naïve Bayes in MULE 

and MESOS projects. 

Similarly, the best precision achieved for top 10 recommendation ranges from 23.4% up to 

42.6 in MESOS and MULE projects respectively. The precision range for top 10 recom-

mendation is generally lower than 50 % which means developers were later assigned to less 

than half of the recommended issue reports. However, comparing this result with the preci-

sion of a random recommender, more or less the same improvement achieved for the recall 

was also achieved which ranges from 4.7 up to 9.5 for TIMOB and NTB projects respec-

tively.  

The reason why the precision value is lower than recall for top 10 recommendation is that 

the number of issue reports that each developer is assigned to from 100 unassigned issue 

reports on average is less than 10 in most projects and this sets a limit to the maximum 

precision that can be achieved.  For example, the number of active developers in the NTB 

project is 36, which means each developer fixes approximately 3 issue reports from the 100 

issue reports if they were equally divided among the developers. Even if the IRS includes 

all three issue reports in the top 10 recommendation, the precision that can be achieved is 

still 30%. In NTB, the top 10 precision achieved is 29.2% which is quite close to the ex-

pected precision if issue reports were equally divided among the developers.  

The precision metric has limitations in telling how well the IRS performs, therefore, to fill 

this limitation, we additionally compared the MAP which measures not just how correct the 

recommendations are, but also how precisely the issue reports are ranked in the top 10 rec-

ommendations. For the top 10 recommendation, the MAP achieved ranges from 55.5% up 

to 95.5 % for TIMOB and NTB respectively, which is pretty much close to the range for top 

10 recall. If we assume that, in NTB, each developer was assigned to an equal number of 

issue reports (i.e. 3 issue reports approximately), the 95.5 % MAP tells us that the IRS is 

not only able to include the 3 issue reports that each developer fixed in the 10 issue reports 

it recommends but also was able to give them a higher rank, most probably in the top 5 issue 

reports. Comparison of MAP of the ML-based IRS with a random recommender shows a 

ratio ranging from 4.1 up to 10.5 for TIMOB and NTB respectively.  
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RQ 2: How much did including features from the categorical fields affect the performance 

of the IRS.  

For RQ 2, we implemented the IRS using only features extracted from the textual fields (i.e., 

the summary and description) and evaluated the performance using all metrics for top 10 

recommendation and compared this result with what we found in RQ 1 using both the textual 

and categorical fields as presented in section 3.4. Taking the result for NTB as an example, 

the best result for top 10 recall achieved using textual features only is 58.4%; however, by 

including the categorical features a recall of 96% was achieved. This means an increase of 

64.4%. Similarly, in the ECL, FDT, MULE, MESOS and TIMOB projects an increase of 

85.3%, 26.5%, 174.2%, 200%, 88.2% was achieved.  For precision, the percentage increase 

ranges from 24.7% for FDT up to 185.3% for MESOS. This shows that including the cate-

gorical fields when extracting features improves the performance of the IRS significantly.  

In addition to this, we also used the result of the Cramer's coefficient calculated using chi-

squared statistics in the feature selection step to get further insight into which fields of the 

issue report contributed the terms which are associated with the developers assigned to the 

issue reports. Figure 11 in section shows the top 10 terms with the highest Cramer's coeffi-

cient value. In can be seen that most of these terms come from categorical fields like com-

ponent, reporter and product.  

Comparison of the average of the Cramer's coefficient value of terms which are extracted 

from each field is also presented in Figure 12. From this figure, it can be seen that the field 

that is most associated with the assignee are the Product type(in NTB), the Operating Sys-

tem(in ECL and FDT), Software Component(in MULE and TIMOB) and the Reporter(in 

MESOS). It can also be seen that the average of the Cramers Coefficient for terms from the 

textual fields like summary and description is very low compared to the terms form the 

categorical fields.  

RQ3: What is the optimal recommendation size that maximizes the f1-score (i.e. giving a 

good balance between precision and recall)? 

For RQ 3, we compared how the performance of the IRS changes in terms of each evaluation 

metrics as the recommendation size varies using a line graph as shown from Figure 13 up 

to 18. From these graphs, it is possible to notice a similar trend in each project. As recom-

mendation size increases, the precision value decreases while the recall value increases. This 

is expected because the chance of making incorrect recommendation increases but more 

relevant issue reports start to get included in the recommendation. The MAP, on the other 

hand, shows a small increase at the beginning and stays more or less constant. This is be-

cause the MAP is more dependent on the correctness of the top-ranked issue reports and its 

value doesn’t change significantly even if correct recommendations are made at a lower 

rank.   

Since the precision and recall values have opposite behaviours, we compared the F1 score 

to find the optimum sizes of recommendation which balances the two. The trend for F1 

score is, that it starts to increase at the beginning until it reaches a maximum and starts to 

decrease. The maximum value for the F1 score is oftentimes around the crossing point be-

tween precision and recall because it gives equal weight to precision and recall.   
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The size of recommendation which archives the highest F1-score is different from project 

to project as recorded in Table 10.  In addition to the projects, each algorithm might also 

reach maximum F1 score at different points. For example, in NTB the maximum f1 score 

was reached at N = 3 for all algorithms while in TIMOB it was reached at N = 13, 9, and 15 

for KNN, NBY and SVM respectively. Taking the algorithms that archives the highest max-

imum F1, the optimum sizes of recommendation found for NTB, ECL, FDT, MULE, 

MESOS and TIMOB are 3, 5, 2, 5, 4, 9 respectively. For NTB, ECL and FDT the best 

maximum f-score achieved was using SVM while in MULE, MESOS and TIMOB it was 

achieved using the Naïve Bayes algorithm.  

Taking the algorithms that archives the highest maximum F1, the optimum sizes of recom-

mendation found for NTB, ECL, FDT, MULE, MESOS and TIMOB are 3, 5, 2, 5, 4, 9 

respectively. For NTB, ECL and FDT the best maximum F1-score was achieved using SVM 

and it amounts to 72.65%, 47.81%, and 50.08 respectively,  while in MULE, MESOS and 

TIMOB it was achieved using the Naïve Bayes algorithm and it amounts to 57.51%, 41.75% 

and 42.3% respectively.  

To generalize about the performance of the three different algorithms used to build the IRS 

it is possible to calculate the average of the result achieved by each algorithm in each project 

at the maximum F1-score point as shown in Figure 19 below. From this figure, it can be 

seen that on average SVM has the best performance in all metrics followed by NBY and 

KNN respectively. However, since the difference in performance is not very significant it is 

possible to use each of these algorithms to build an IRS. 
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6 Conclusion  

In this study, we have shown how traditional machine learning algorithms like KNN, Naïve 

Bayes and SVM can be used to implement an issue recommender system that can facilitate 

the self-assignment of issue reports by developers. Most previous works have used these 

algorithms to either do an automatic assignment or to recommend developers to a third per-

son that does the assignment. In this study, we used these algorithms to perform probabilistic 

classifications and used their probability estimates to rank the issue reports for each devel-

oper and recommend the top ones.   

By evaluating the issue recommender system in terms of precision, recall, f1-score and mean 

average precision metrics and comparing it with a random recommender, we have shown 

how easily developers can find relevant issue reports from the issues reports recommended 

to them using machine learning.  The evaluation in terms of recall shows that developers are 

up to 9 times more likely to find the issue reports that they later fixed in the top 10 recom-

mendations given by the issue recommender system compared to picking 10 issue reports 

randomly from 100 unassigned issue reports.   The same improvements are also reflected in 

the other metrics. 

Most previous works have also focused on the summary and description of the issue reports 

as an information source to implement their solutions for automatic assignment and devel-

oper recommendation. In this study, we have tried to include more features from categorical 

metadata fields like the software component, version and platform(ie.g operating system 

and hardware) the issue reports belong to, the reporter who created the issue reports and the 

priority and severity of the issue and a significant improvement in all metrics.  

We have also shown how we can use metrics like f1-score to find an Optimum recommen-

dation size that can achieve a good balance between precision and recall. The best maximum 

f1-score we achieved was 72.65% in the Netbeans project algorithm for top 3 recommenda-

tion size with precision and recall amounting to  69.06 % and  76.63% respectively.  The 

worst maximum f1-score we achieved was 42.3%  in the TIMOB project for top 9 recom-

mendation size with precision and recall amounting to  50.55% and 42.3% respectively. The 

comparison of the three algorithms we evaluated shows that SVM has the best performance 

followed by Naive Bayes and KNN respectively with a very small difference in each eval-

uation metrics.   

Overall, the issue recommender we evaluated has a reasonable performance to apply in an 

issue tracking software.  In these issue tracking software, it can be used as an additional way 

of sorting issue reports according to each developer and to create a more customized back-

log. It can also be used to send periodic recommendations of bugs to developers participat-

ing in open source projects. However, its performance can be improved by including by 

collecting feedback from developers on the recommendations using ratings, comments and 

likes. 
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Appendix 

I. Code and Dataset 

The dataset of the collected issue reports and the code used for each project can be found in 

the following Kaggle link: https://www.kaggle.com/abelmes/irs-dataset/  

https://www.kaggle.com/abelmes/irs-dataset/
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