

Institute of Computer Science

Software Engineering Curriculum

Sten-Oliver Salumaa

Convolutional Neural Networks for Cellular

Segmentation

Master’s thesis (30 ECTS)

Supervisors: PhD Leopold Parts

MSc Dmytro Fishman

Tartu 2018

2

Convolutional Neural Networks for Cellular Segmentation

Abstract:

There is a persistent demand for work-assisting algorithms in industry. Using present-day

technology, it is possible to free people from mundane tasks so they can concentrate on work

that requires human skills and flexibility. Deep learning methods can complete tasks that

were previously considered hard or even impossible for machines.

One example of this kind of task is segmenting brightfield microscopy images of cells. This

work is needed mostly in biomedical laboratories and pharmaceutical companies that must

analyse and quantify vast amounts of image data. Current workflows avoid useful

brightfield imagery because automatic industrial solutions for segmentation do not exist.

Manual annotation is very challenging and time consuming, even for experienced

professionals.

The goal of the thesis is to demonstrate that deep learning can solve the task of segmenting

challenging brightfield images. The developed solution opens new experimental

approaches, saving time and resources for biomedical scientists across the globe.

Keywords:

convolutional neural networks, deep learning, segmentation, biomedicine, image analysis

CERCS: P170

3

Konvolutsionaalsed tehisnärvivõrgud rakupiltide segmenteerimiseks

Lühikokkuvõte:

Üha enam lülituvad algoritmid töö tegemisel väärtuslikeks abimeesteks. Tänapäevase

tehnoloogia toel on võimalik inimesed vabastada lihtsamatest ülesannetest, et nad saaksid

keskenduda teistele töödele, mis on arvuti jaoks keerulised. Üks abistavatest tehnoloogiatest

on süvaõpe. Selle abil suudavad arvutid lahendada ülesandeid, mida varem peeti arvutite

jaoks raskeks või koguni võimatuks.

Üheks selliseks tööks on erevälja rakupiltide segmenteerimine. Seda on tarvis eelkõige

biomeditsiinilaborites ning ravimifirmades, mis peavad suurt hulka mikroskoobipilte

analüüsima ja kvantifitseerima. Praegused tööprotsessid väldivad ereväljapiltide kasutust,

kuna nende segmenteerimiseks pole tööstuslikke lahendusi ning käsitsi töötlemine on

keerukas ja aeganõudev.

Magistritöö eesmärgiks on tõestada, et masinõpe suudab lahendada seni masinatele raskete

ereväljapiltide segmenteerimise ülesande. Loodud lahendus aitab teadlastel üle maailma

katsetada teisi uurimismeetodeid ja säästa palju aega.

Võtmesõnad:

konvolutsionaalsed närvivõrgud, süvaõpe, segmenteerimine, biomeditsiin, pildianalüüs

CERCS: P170

4

Table of Contents

1. Terms and Notations ... 6

2. Introduction ... 8

2.1 History of neural networks in image domain ... 8

2.2 Present day in deep learning on images ... 9

2.3 Cellular segmentation challenge ... 10

2.4 The value of brightfield images .. 12

3. Methodology ... 15

3.1 Convolutional Neural Networks ... 15

Convolutions ... 15

Filters ... 16

Activation function .. 17

Max pooling .. 17

Dropout layer .. 18

Output layer ... 18

3.2 Training .. 19

Backpropagation ... 19

Optimizer ... 19

Loss function ... 19

Batch training .. 20

Stopping criterion .. 20

3.3 Network architectures tested .. 20

DeepCell architecture with patch approach .. 20

U-net architecture .. 22

Mask-RCNN architecture .. 24

3.4 Deep learning software ... 26

Keras ... 26

Tensorflow .. 27

Computation environment ... 27

3.5 Dataset .. 27

Pre-processing ... 28

4. Results ... 29

4.1 DeepCell architecture with patch approach .. 29

4.2 U-net architecture ... 33

4.3 Mask-RCNN architecture ... 35

5

5. Discussion ... 37

From semantic segmentation to instance segmentation .. 37

Toward better memory management and input image handling 39

Utilisation of multiple focal planes for richer information ... 40

6. Conclusions and Summary .. 42

7. Bibliography .. 43

Appendix ... 47

I. Combined test results with different architectures for nuclear segmentation 47

II. License .. 48

6

1. Terms and Notations

Convolutional Neural Network (CNN) is a class of artificial neural networks which work

on a feed-forward principle and employ convolution operations; often applied to analysing

visual data.

Brightfield microscopy is the simplest form of microscopy where light is either passed

through or reflected off a specimen [1].

Fluorescence microscopy is a form of microscopy in which fluorescent molecules are used

to mark certain structures, e.g. nucleic acids, which can then be viewed with a dedicated

microscope [2].

Fluorescent dying (staining) is a process of applying fluorescent molecules to bind to parts

of cells. Fluorescent chemicals start emitting light when excited by a certain wavelength of

light.

Nucleus is a cell organelle that is found in most living eukaryotic cells, directing their

growth, metabolism, reproduction, and functioning [3].

Biomarker is a biological molecule used as a marker for a substance or process of interest.

Biomarkers used in fluorescent microscopy include dyes or stains.

Graphics Processing Unit (GPU) is a specialized hardware component in computers that

helps to accelerate image processing. Nowadays it is also used in high-performance

computing to speed up calculations on matrices by using parallelization of computations.

Microplate is an experiment container for accelerating high throughput microscopy. It is

made of plastic and can contain 24, 96, 384, or 1536 subcompartments in which cells are

put into. Instead of changing samples after every imaging in a microscope, up to thousands

of images of different cells in microplate compartments can be captured in an automated

way.

Semantic segmentation is pixelwise distinguishing of different object classes in an image.

When there are multiple instances of one object class they are considered equivalent and

assigned the same instance labels.

Instance segmentation is pixelwise distinguishing different objects and their classes in an

image. When there are multiple instances of the same object class they are considered

separate and given different instance labels.

7

Compound library is a collection of chemicals in standardized containers optimized for

high-throughput screening.

Screening in biomedicine is a strategy of making experiments and observing their results

in high throughput using standardized reagents and protocols.

Transfer learning is initializing artificial neural network with weights that have been

trained on other data. For example, using weights from a model trained on COCO dataset

[4] to initialise a network that segments cellular microscopy images.

8

2. Introduction

2.1 History of neural networks in image domain

The basic principles of neural networks and deep learning are known for decades. The initial

idea behind modern solutions dates to 1958, when Frank Rosenblatt first modelled a

computational system inspired by biology. He defined the Perceptron, a computational

approximation of how a human neuron works (Figure 1a, Figure 1b). The calculation core

receives several inputs, multiplies them with weights, sums them to obtain a total input, and

yields an output after passing through an activation function. Perceptrons can iteratively find

the best weight configuration to solve a linear classification problem. [5]

a)

b)

c)

Figure 1. a) Living neuron gets its signals from dendrites through synaptic gates, then

processes the signal inside the cell and produces its output in axons [6]. b) Artificial

neuron receives inputs x1...xn from connections (dendrites) which pass through weight

multiplication (synapses), are summed (cell body). Then an activation function is applied

to the result to generate the output. [7] c) A neural network can be formed by connecting

neurons’ outputs to other neurons’ inputs [8].

The history of hierarchical neural networks in visual perception begins in 1961, when

scientists at Harvard Medical School published a paper about mammalian vision

mechanisms. They discovered the hierarchical structure of visual cortex where simple

neurons are activated when seeing images of straight lines or dots, whereas complex neurons

become active when eyes detect more intricate shapes, for example triangles. [9] It gave

researchers initial ideas of decision systems in multilevel visual perception.

The first artificial neural network that resembles a convolutional neural network (CNN) is

Neocognitron from 1982. It featured a multi-layer design and convolution operations but

lacked an efficient supervised learning algorithm [10]. In 1989, CNNs started using

9

backpropagation-based training and were already capable of recognizing hand-written digits

[11].

While development of these systems continued, there were no disrupting applications

emerging. Two main obstacles restricted the development of image analysis solutions in

particular: lack of computing power and scarcity of labelled training data. With more data

and increasingly powerful computers in 2000s, the preconditions started becoming

favourable for the success of neural networks for images.

The revolutional era of deep learning started with AlexNet CNN architecture outperforming

all previous competitors on the ImageNet image classification challenge in 2012 by a large

margin. The task involves classifying images into 1000 different object categories (Figure

2). Krizhevsky et al. successfully trained AlexNet on 1.2 million images on two powerful

GPUs, and proved that deep learning can tackle complex problems with successful

outcomes. [12]

Figure 2. An example of AlexNet classification on ImageNet dataset [12]. The correct

label is shown under each image. The words and bar charts below show the most probable

predicted labels by AlexNet for each image with red bars indicating the final output, and

size of the bars reflecting the posterior probability assigned by the model.

2.2 Present day in deep learning on images

Modern deep learning is fuelled by large labelled datasets. Training data is now more

abundant than ever thanks to increased public, academic, and industrial interest.

Furthermore, global data science challenges push the field forward by creating and opening

10

training data to the public [4, 13]. Due to the abundancy of data, researchers can develop

and try out their ideas in numerous different settings.

The impact of neural networks in image processing domain is extensive, and CNNs are the

most frequently used architectures. Open source deep learning solutions for extracting

information from video frames for autonomous cars already exist [14], and Tesla’s, the

American electric car manufacturer’s lead of AI is talking about integrating deep learning

into conventional software solutions as Software 2.0 [15]. Tesla are in the process of

substituting computer vision algorithms in their vehicles with lightweight neural networks.

With increasing computing power there has been an emergence of very deep neural

networks with several millions of parameters [16]. Despite taking more time to train and

predict they result in state-of-the-art performance in ImageNet classification challenge [17].

What is more, it is possible to use these pretrained networks for other projects using transfer

learning [18]. With a fraction of time taking to train the original model it is feasible to

slightly retrain the network or a part of it for a different task. For example, a model trained

on ImageNet [17] dataset can be partially retrained to classify dog breeds on images.

Deep learning is also used in biology and medicine. For instance, neural networks have been

employed to automatically classify protein localisation in yeast cells. They can be utilised

to learn about gene function and describe quantitative state of cells. [19] Furthermore, deep

learning has been applied on detection of referable diabetic retinopathy disease, a human

eye disorder, from images. The model could diagnose the condition nearly as well as human

specialists. [20]

2.3 Cellular segmentation challenge

Modern drug discovery relies on vast number of experiments to test candidate compound

libraries. Thousands to millions of human cell populations are grown in microplates to test

the effect of these potential drugs. The cell populations range in origin, as well as in disease

stage or state. Within one experiment, a variety of chemicals and their doses are tested.

These assays are used to monitor whether the compounds cure or kill the diseased cells,

whether the healthy cells react to compounds in some unwanted way, or whether the

compound has any effect at all.

11

Human mind is subjective when it comes to images. One person might say that the cells

from experiment X had shown larger effect than experiment Y. But when another

experiment is conducted by a different person making an opposite claim then the two are

not easily and objectively comparable. Therefore, there is a need to make imaging

experiments quantifiable and thus comparable in an unbiased way.

Perhaps the most important step in image analysis is segmenting and annotating structures

(Figure 3). Using segmented images offers a wide range of information: nuclei count,

number of cells, median and average of nuclei’s 2D projection area, and intensity

distribution in case of fluorescent images [21]. Nuclear shape and morphology are in many

cases indicative of cell well-being. By identifying separate nuclei, we could extract any of

abnormal shapes or sizes, cluster them by some metric, monitor their migration and

intercellular sociology [22]. Furthermore, extracting segmented regions of interest (ROIs)

from the input image lays groundwork for cell phenotyping in subsequent processing steps

[23].

Quantifying and analysing images by annotating them cell-by-cell on a pixel level is easily

doable if there are only a few images to deal with. The problem starts to get unmanageable

when the data load increases, however.

12

Figure 3. Fluorescent nuclei and cell segmentation. Columns represent image modalities

and rows show different segmentation processing steps. [22]

Modern high-throughput microscopy systems can take hundreds of thousands of images of

biological experiments using automation [21]. As the amount of data increases, the

biologists find themselves short-handed when it comes to analysing the results of the

experiments. Various software solutions exist to help the scientists with this task. For

example, CellProfiler [24] is a free and open-source software package designed to help

biologists quantify a sample phenotypic profile from image data. Furthermore, Harmony

[25] software by PerkinElmer is a more advanced commercial product that includes many

additional features.

2.4 The value of brightfield images

Most cellular-level imaging solutions need biomarkers to make nuclei or other cellular

structures stand out in the images and to make segmentation possible for people and

software. Even if fluorescent dyes are used, a user is still needed to adjust the settings for

13

the segmentation algorithms on an image batch basis. The latter can take time from a few

minutes up to several hours.

Using fluorescent staining is helpful for segmentation but unfortunately it has drawbacks.

Firstly, inserting biomarkers into cells takes time. Cell plate samples must be prepared

specially for imaging. It generates additional work for laboratory specialists and the dyes

take a while to end up in the intended region. For example, biomarkers used for nuclear

staining in fluorescence microscopy need time to be absorbed by the cell and the nucleus.

[26]

Secondly, cell staining changes the cell state. During fluorescent sample preparation cells

are in most cases fixed into place with a chemical, then their membranes are opened with

another substance. Finally, the fluorescent molecule is introduced to the sample. These steps

kill the cell and further experiments on the same plate are not possible. Although it is more

challenging to do, sometimes fluorescent dyes are inserted into living cells. The stain’s

interference with cell’s inner chemistry changes its state and as such renders further

experiment investigation inaccurate or difficult. [27]

Thirdly, fluorescent stains experience an effect called photobleaching. When intense single-

wavelength light is shined upon the samples the dye light emitting intensity quickly fades

due to excited molecules reacting to intracellular chemicals. Because of this fluorescent

samples can be viewed for only a certain time. [28]

Finally, using a fluorescent dye comes with an opportunity cost of using the same emission

spectrum for another readout. Four, and in some specialised setups, six different colours can

be distinguished using standard fluorescent molecules. If information from some stains

could be replaced by another readout, the channel could be used to extract richer information

from the cells.

Brightfield microscopy images are made using natural light without biomarkers (Figure 4).

They are hard to annotate using classic image analysis software, since the cells are nearly

transparent and low contrast [29]. In this type of image is hard to find nuclei from even for

a human.

However, brightfield images are easier to acquire and much faster to prepare since no extra

chemicals are added. For the same reason, they are cheaper to make because no additional

reagents are used. In addition, possibility of using brightfield microscopy for quantitative

image analysis enables using same cells for time-series analysis without needing extra

14

samples to account for cells that would be killed with fluorescent pre-processing. Without

stress-inducing additional dye molecules we can observe cells in a more natural environment

and get better results from tests.

Automated industrial brightfield image quantification has the potential to save thousands of

hours of unnecessary work. Thus, pharmaceutical companies are interested in a solution that

helps to extract more information from brightfield images. This would save their employees’

time and thus bring monetary savings and increase companies’ efficiency. Additional cost

reduction would come from using less reagents and cell samples.

Figure 4. Cropped examples of brightfield images of cells.

University of Tartu was approached by PerkinElmer [30], a global corporation focused on

human and environmental health, with aspirations on automatic brightfield segmentation.

Their head of image processing was interested whether deep learning solutions could further

develop the field of cellular annotation. The main goal of this cooperation is to integrate

machine learning models into Harmony software as additional segmentation tools.

The aim of this thesis is to create and explore proof-of-concept deep learning models that

could solve the nuclei segmentation problem in brightfield images. In addition, research is

focused on keeping computational cost low since PerkinElmer’s objective is to run the

algorithms on desktop computers once the models are incorporated to their segmentation

software.

I would like to thank Leopold Parts who took me aboard this project, showed me life and

world-class science in England, provided me with advice, support, and a great sense of

humour all the way through this journey. My big thanks go Dmytro Fishman who sparked

my interest in this project with his great presentation skills. He was always ready to help me

whenever I needed it and stayed easy-going and great to work with from start until the end.

15

3. Methodology

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of artificial neural networks used in deep

learning whose main calculation operation is convolving filters over matrices. This

paragraph introduces main principles behind its work mechanisms.

Convolutions

Figure 5. CNN convolution operation [31]. Light blue matrices represent three colour

channels on the input image. Red matrices are filters that are convolved over the input

volume with a step size of two. Current filter location is shown by dark blue 3x3 patches.

Green matrices are the calculated feature maps. Dark green square on the output illustrates

the spatial location where the dot product result between input and filter is currently being

written.

16

Images are matrices with each individual element in the matrix representing one pixel

intensity in one acquisition channel (usually RGB). Figure 5 shows an input image of 5x5

pixels with three channels – red, blue, green. It is extended with zeros on its edges (zero-

padded) to 7x7 to adjust the final output size as given in Equations 1 and 2. The network

convolves a filter, which is another matrix, over each of the input channels with a certain

step size called stride. At each of the filters’ locations a dot product between the filters and

the coinciding input arrays are calculated. Now all the dot product results are summed and

a bias is added to produce a final score in the corresponding location in the output volume,

also known as the feature map. The convolution operation rolls the filter across the input

image horizontally and vertically, until all the input image has been convolved with a filter.

In this case there are two separate filters that produce two feature maps as outputs.

The output shape W2 x H2 x D2 depending on the input shape W1 x H1 x D1 can be calculated

with the following equations where F is the filter’s side length, P the amount of zero-padding

on the input image’s edges, K the number of filters, and S the stride.

 𝑊2 =
𝑊1 − 𝐹 + 2𝑃

𝑆
+ 1

(1)

 𝐻2 =
𝐻1 − 𝐹 + 2𝑃

𝑆
+ 1

(2)

 𝐷2 = 𝐾
(3)

Filters

Filters in Figure 5 are called neurons in CNNs. Each number in the filter matrix is a weight

to be learned during training time. Every filter has the same number of channels as its

immediate input. For example, input image with three channels of shape 256x256x3 pixels

can have filters of 5x5x3 sliding and computing dot products over it. Filters in hidden layers

(Figure 6) have as many channels as the layers before them had filters. In each spatial

location the dot products for each input channel are calculated and summed together.

Neural networks are comprised of layers. The two filters with their biases in Figure 5 can

be referred to as a layer without an activation function. Figure 6 shows how a simplified

17

three-layer network is comprised. It has an input layer with three nodes which in our case

represent the channels of the input image, hidden layers with red nodes which represent

inner filters, and green output nodes correspond to final filters that output predicted feature

maps.

Activation function

In Figure 5, we can see outputs of one convolutional layer. To introduce non-linearity into

the network, activation functions are used. For this work, Rectified Linear Units (ReLUs)

were used as activations on the outputs of a convolutional layers. They have proved to be

more efficient for neural networks’ inside layers or hidden layers than sigmoid or tanh

activations in many cases [32]. ReLUs calculate 𝑚𝑎𝑥(0, 𝑥) where x represents the output

matrix after convolution. After this operation all negative numbers in feature map matrices

will be assigned zeros and other values are left unchanged. Applying activation function

gives us activation maps, one for each filter. These are passed on to the next layer in the

network.

Max pooling

Max pooling is an operation that downscales the input volume by a factor. It can be

considered as a special case of filters. Instead of producing the dot product with the

underlying matrix it instead takes the area at hand and only extracts one value, the maximum

from it. For example, if a 2x2 region in the input matrix consists of numbers 1, 4, 2, and 3

then in the output of this pooling operation we get only number 4. Pooling filters move like

convolution filters but in most cases the stride value is equal to pooling window side length.

Figure 7 illustrates max-pooling operation with a filter size of 2x2 and stride 2.

Figure 6. Three-layer neural network with two hidden layers and one output layer.

18

a) b)

Figure 7. Max-pooling operation on a) pictorial and b) image-based examples using a pool

size of 2x2 and stride of 2 [33].

The biggest advantage of pooling is reduction of computational cost. Images are data-heavy

and thus are slow to convolve through in big networks. Downsampling them inside the

network allows to introduce more filters while not suffering from training slowing down.

Dropout layer

Dropout layers have been proved to help to reduce overfitting in CNNs [34]. Dropout works

by randomly not using a neuron during training time with a fixed turn-off probability. It

discourages some neurons becoming too dominating in the neural network which helps the

network to generalize better to unseen test data.

Output layer

This is the last layer of a neural network. In classification models it is usually a fully

connected layer. This means that every activation map value from previous layer has a

weighted connection to each output layer node. There are as many output nodes as there are

possible classes.

In case of segmentation models, the last layer is usually convolutional. If one channel

segmentation map is required then the last layer is a single convolution filter, usually of size

1x1 with a stride of one. This calculates the weighted sum of previous layer’s output maps

and reduces the image depth to one, outputting a single channel segmentation.

19

3.2 Training

The purpose of training is to minimize the difference between network’s output and ground

truth data. It is also required that the model would produce accurate results when presented

with data that was not used during training phase.

Backpropagation

Backpropagation is the main algorithm behind the training process of a CNN. It was first

used in a CNN in 1989 [11] for handwritten character and digit recognition and has since

been the backbone for training modern architectures. In a network each neuron has its

weights which influence the final output. Backpropagation algorithm compares the network

output with the expected output or ground truth and calculates an error measure. From that

result it backtracks the change or gradient of every step in the computational process using

the chain rule partial derivatives. In the end of this process we can see how much each value

in filters affected the final loss of the network. Based on these gradients, there is a parameter

or weight update conducted depending on the step size and the optimizer method of the

network. After taking a step, the whole process of forward-feeding an image batch through

the network is repeated until some stopping criteria is met.

Optimizer

Optimizer is the algorithm that decides how the parameter update takes place. The simplest

option is to use the standard Stochastic Gradient Descent that updates individual values in

each filter based on their respective gradients and a constant learning rate. In current work,

a more modern optimizer Adam [35] is used. Although recent work has suggested that Adam

optimizer might not be the best option for overall generalization and convergence

performance [36], in practice it converges faster than some alternatives [35].

Loss function

Loss function is a way of calculating the error between ground truth and the network’s

output. In classification problems we can compare the network’s output class probability

vector with ground truth. In segmentation tasks we can measure the differences between

each pixel in output and ground truth masks.

20

Batch training

Usually the dataset size is bigger than available memory capacity and hence cannot be

passed through a network all at once. Batch training means only using a subset of the data

at a time while doing a forward pass during training.

Stopping criterion

There are two main reasons to stop training process. Firstly, the network has reached its

smallest error rate and the loss function on validation data does not change anymore. In this

case the network has converged. Secondly, the training loss is getting substantially smaller

than validation loss. This indicates that the model is overfitting and further training

decreases model’s performance on unseen data.

3.3 Network architectures tested

Due to restrictions to the thesis format, employed artificial neural networks are described

here without in-depth technical details. Literature references for each network are provided

for additional information.

DeepCell architecture with patch approach

Microscopy image segmentation can be transformed into a classification task, thus making

it possible to leverage on the vast existing experience and information available. Each pixel

in an image can be thought of as a centre of its surrounding area. We can extract thousands

of small square crops from an image this way and label them based on whether the central

pixel represents a nucleus or background. A neural network can be trained to classify the

central pixel of each of these patches using its surroundings as context information (Figure

8). Training data is kept balanced by selecting the same number of patches from different

classes. In our case, around 1,000 nucleus and background labelled patches are selected

from each image for training, resulting in 3878812 patches in the training dataset and

969624 in the validation dataset.

21

During prediction, a patch is generated for every pixel of the input image. To complete the

surrounding area for pixels near the edges of the image, image is extended by reflecting its

pixels near its edges. An example of reflective padding is illustrated in Figure 11. Each

created patch is passed through the network to be classified. After classification, the

segmentation is generated by taking each central pixel from the classified patches and

labelling it with a certain colour depending on its class. For example, white is used for nuclei

and black for background class. Central pixels are put back into their original locations and

a fully segmented image is returned.

For an image of size 1080x1080 we must create 1,166,400 patches and classify each of

them. Due to the computation-heavy nature of this approach, it is relatively slow to segment

the whole image.

Figure 9. DeepCell architecture [37] for classifying each pixel in the image into nucleus or

background. The rectangles denote individual feature maps, and inputs are passed through

the network from left to right, with operations defined below the image applied at each

stage. The number and dimensions of feature maps are provided above individual layers.

The DeepCell network features six convolutional layers with one fully connected layer in

the end to produce a classification output for the patch (Figure 9).

a)

b)

Figure 8. Breaking down an image to separate 31x31 pixel patches for training. Patch

a) gets a label of a background pixel while b) is assigned a nucleus pixel label.

22

U-net architecture

The U-net architecture [38] was specifically developed for biomedical image segmentation.

It has a smaller computational cost due to lacking redundant calculations of overlapping

patches compared to the patch based approach. Instead of predicting the image pixel-by-

pixel with patches, entire image is forwarded through a CNN only once to get a

segmentation. In the output there will be a ready-made segmentation map for the image. In

this thesis, an implementation of U-net [38] is used to test whether whole image

segmentation in a cellular setting would be feasible.

Figure 10. U-net architecture [38]. Blue boxes represent calculated feature maps from the

passing image. White boxes correspond to feature maps that were calculated in a) the

encoder path and concatenated with b) the decoder path. The up-conv layers represent a

special convolution operation that increases the activation map size. The network holds in

total 23 convolutional layers.

This architecture consists of an encoder and a decoder paths (Figure 10). Skip connections

are built at different levels to pass on activation maps from the encoder path to decoder

b) a)

23

paths. It helps to combine less processed input image information with more processed

feature maps.

U-net architecture is only usable with images that are the same size. The original U-net uses

image crops of size 572x572 as inputs. The actual image sections are of size 388x388 but

need reflective padding on the edges (Figure 11) because after every convolution layer the

feature map dimensions diminish when not using padding on the edges (Equations 1 and 2).

In case of larger inputs not designed for this network, the image can be separated into smaller

parts which can be segmented independently and combined. In the original U-net paper

multiple passes through the network are required. Our dataset is 1080x1080 pixels and the

goal is to pass it through the network as fast as possible. Thus, image cropping is not used.

Figure 11. Reflective padding added to input images in the original U-net paper to account

for dimension reduction in convolution layers [38]. In our implementation, this is

mitigated with Keras library’s ’same’ padding function which makes sure that the feature

map has the same width and height after a convolution layer.

U-net model is changed in implementation compared to the original design in the paper to

increase its performance. The original U-net implementation has more than 31 million

parameters or weights that are used in the filters during learning and predicting.

Segmentation and training times suffer from big models because all these numbers are used

for calculations when predicting or training.

The original U-net architecture was changed to accommodate new data dimensions of

1080x1080 and increase speed. Two additional levels of layers were added to encoder and

decoder parts of the network and filter numbers were trimmed on each layer. To further

decrease parameters, transposed convolution layers, which were used in the U-net paper,

were replaced with upsampling layers that resize feature maps without using learned

24

parameters. Our final network has 1,219,009 parameters, over 25 times less than the original

version. Fewer parameters means smaller model and less calculations which, in turn, leads

to higher segmentation speed.

During training of our U-net no transfer learning is applied. The network is trained from

scratch on 2016 images and validated on 504 images.

Mask-RCNN architecture

Mask-RCNN can detect objects in the image, segment them, and provide bounding boxes

[39]. Since its outputs are already self-contained items (Figure 12b) they are easy to quantify

and study on an object-by-object basis further down the image analysis pipeline.

a) b)

Figure 12. Difference between a) semantic and b) instance segmentation. Semantic

segmentation assigns each pixel a class label not recognizing separate objects. Instance

segmentation treats each nucleus as a distinct object. Images by Dmytro Fishman.

Mask-RCNN relies on three different previously published object detection and

classification models: R-CNN [40] , Fast-RCNN [41], and Faster-RCNN [42]. Earlier

groundwork was done to find out how well CNNs could be used for object detection and

classification. Mask-RCNN added segmentation to detected objects (Figure 13b).

25

a) b)

Figure 13. Mask-RCNN a) architecture [43] and b) instance segmentation example

highlighting individual instances of people and bikes [44].

The architecture (Figure 13a) consists of a convolutional backbone that processes the input

image and outputs a feature map on its last layer. In the original paper, ResNet architecture

[45] is used in conjunction with Feature Pyramid Network [46] to form the backbone.

A region proposal network generates coordinates for potential objects in the feature map. It

also prunes away bounding box proposals which are overlapping (Figure 14) or have low

probabilities of being objects. Next, the extracted objects are squashed into a fixed size

feature map that can be processed by the mask branch, box regressor, and classifier network

(Figure 13a). For every feature map the mask branch with a convolutional network generates

a segmentation. Separately, fully connected layers classify and provide bounding box

coordinates for the object.

26

a) b)

Figure 14. A pictorial example of a region proposal network a) proposing and b) removing

substantially overlapping bounding boxes. In one case, a nucleus is undetected after

bounding box pruning. In the other case, the algorithm avoids double detection. These

images are different from actual feature maps since the output on which region proposal

network operates in the used implementation is a more abstract feature map with a shape

of 32x32x2048 [47].

Current thesis uses a Mask-RCNN implementation by Matterport [48]. Mask-RCNN is a

complex architecture, essentially consisting of four separate networks. Due to its intricate

design it is challenging to train. A simple end-to-end training of all layers is not the best

option in practice. There are numerous techniques how to approach the training regarding

which layers to choose. A solution that works well is to first initialize the network backbone

with weights pretrained on COCO dataset [4]. Next, it is beneficial to train mask head and

fully connected layers, after which the whole network could be trained. To get better results,

the whole network can be additionally trained with a lowered learning rate.

3.4 Deep learning software

Deep learning related work on the thesis was conducted using Keras with Tensorflow

backend.

Keras

Keras is an open source high-level wrapper library for neural network frameworks. Its main

features include user friendliness, modularity, and ease of extensibility [49]. Keras is written

in Python which makes for an easy to understand source code. It is one of the most used

high-level wrappers for Tensorflow. Developing neural networks is quicker when using it

for many commonly used layer declarations. The wrapper provides means to build networks,

27

load pre-trained weights, pre-process data, augment data, asynchronously feed training data

and much more.

Tensorflow

Keras is flexible with regards to using different backend frameworks for carrying out the

computation-heavy tasks. One those frameworks is Tensorflow which was used in this

thesis.

Tensorflow is meant for high-performance numerical computations across various

computing hardware. To achieve its performance levels, it uses optimized code for specific

hardware platforms. For instance, on NVIDIA GPUs Tensorflow can use cuDNN library

[50] for computation-heavy tasks.

Computation environment

University of Tartu's High Performance Computing Center aims to build and develop the

required infrastructure for scientific computing [51]. It serves two GPU nodes, one of which

(falcon2) was used for the thesis, and has the following hardware specifications [52]:

• 2 x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (48 cores total)

• 256GB RAM

• 5TB of local SSD storage

• 8 x NVIDIA Tesla P100 GPUs with 12GB of VRAM each; only a single GPU was

used at a time for training

3.5 Dataset

The data used in this thesis was provided by PerkinElmer under a cooperation contract with

the University of Tartu. The dataset consists of 3024 different microplate images of

1080x1080 pixels that contain cells from seven different cell lines: HeLa, HepG2, HT1080,

A549, MCF7, NIH-3T3, MDCK. To stain the nuclei, Hoechst 33342 dye was used, which

emits fluorescence upon binding double stranded DNA. Each image has two channels

(human-visible brightfield; fluorescence) corresponding to different image modalities

acquired from the same sample, and one channel with label masks (Figure 15). The ground

truth segmentations were generated with existing PerkinElmer’s Acapella software based

on the fluorescence channel images.

28

The dataset is unbalanced with regards to the number of background and nuclei pixels.

Considering the whole dataset there are 87.9 % background pixels and 12.1 % nuclei pixels.

F

u
ll

 i
m

ag
e

C

ro
p
p
ed

 i
m

ag
e

 a) b) c)

Figure 15. Dataset example of a) brightfield image, b) fluorescence channel on nuclear-

stained plate, and c) binary labelled mask of nuclei.

Pre-processing

Some adjustments to the raw dataset are made to increase pipeline speed for training and

inference processes. The training, validation, and test image sets are separately concatenated

into a Numpy array file and saved on disk. For fluorescent images, pixel intensities are

normalized between 0 and 255 to convert to 8-bit format.

Brightfield image pixel values are normalized between 0 and 255 and then contrast is

applied using the PIL library’s ImageEnhance [53] module in Python. This increases pixel

values that are higher and decreases lower ones, hence making cellular structures stand out

more. The reasoning behind it is that with the initial normalized images U-net struggled to

get past a certain accuracy. After applying pre-processing, our network managed to

converge to better validation accuracy.

29

4. Results

The goal of PerkinElmer is to come up with a solution for segmenting brightfield images.

As this modality is more complicated to analyse, fluorescent images are worked on initially

to test whether deep learning can solve simpler challenges. We approach the segmentation

challenge step by step, testing a range of increasingly complex architectures.

4.1 DeepCell architecture with patch approach

Previous work on fluorescent images was done using DeepCell architecture and patch

approach for segmentation by researchers from University of Tartu, Wellcome Sanger

Institute and University of Cambridge. DeepCell had proved accurate and relatively simple

to implement and train on fluorescent images and was therefore implemented first. Despite

having 504 test images available, 200 were used for DeepCell tests due to technical

problems. We confirmed that this patch based approach is highly accurate on fluorescent

images, with only 2.9% pixel-level error (Table 1).

Table 1. Speed and accuracy of DeepCell architecture on two-class segmentation.

 Fluorescent

images

Brightfield

images

Segmentation time per image on a GPU 104.5 s 104.2 s

Overall test accuracy on a test set of 200

images

97.1 % 91.8 %

Nucleus pixel accuracy 92.4 % 72.3 %

Background pixel accuracy 97.7 % 94.4 %

Nucleus pixel precision 84.1 % 63.2 %

Nucleus pixel recall 92.4 % 72.3 %

To visually verify the results, example segmentations are provided in Figure 16. There is

little to no differences between the ground truth and our segmentations. In addition, when

PerkinElmer was generating ground truth they decided to filter out nuclei on the edges of

30

the image because their algorithm was more uncertain when segmenting those. Our solution

can recall nuclei on edges as well as anywhere else in the image. This suggests that our

97.1% accuracy is not higher because in some cases it performs better than the ground truth.

Segmenting time per image is a little over 100 seconds. Spending that much time per image

is slow but the speed can be further improved. It was shown by University of Tartu PhD

student Daniel Majoral that overlapping convolution calculations are redundant and can be

further optimized. He demonstrated that the segmentation time could be shortened to just

2.55 seconds on a GPU.

31

 Raw microscopy images Ground truth segmentations DeepCell predictions
C

ro
p
p
ed

 i
m

ag
e,

 m
id

d
le

C
ro

p
p
ed

 i
m

ag
e,

 c
o
rn

er

F
u
ll

 i
m

ag
e

Figure 16. Binary prediction on fluorescent images using DeepCell architecture with patch

method. Red in the predictions column indicates nuclei that did not appear in the ground

truth generated by PerkinElmer.

Next, we tested whether patch approach can handle the more complex brightfield images.

The process of generating training data stayed the same. In this case only the input

fluorescent images were swapped for brightfield images and the network was trained again

from scratch.

While DeepCell with patch technique had good accuracy on fluorescent images,

performance dropped to 91.8% accuracy for brightfield (Table 1), with the network’s

32

segmentations very different from ground truth (Figure 17). With a more complex image

modality, DeepCell missed many nuclei and falsely predicted extranuclear debris.

This network converges after 9 epochs on fluorescent image data, with each epoch lasting

870 seconds. On brightfield images, it takes 25 epochs for the loss to plateau.

 Raw microscopy images Ground truth segmentations DeepCell predictions

C
ro

p
p
ed

 i
m

ag
e,

 m
id

d
le

C
ro

p
p
ed

 i
m

ag
e,

 c
o
rn

er

F
u
ll

 i
m

ag
e

Figure 17. Binary prediction on brightfield images using DeepCell architecture with patch

method.

Although the method could be further refined, we decided not to continue because of its

main drawback, low speed. Even after optimizing it proved to be too slow, with 2.55 seconds

required per image using a GPU. In addition, the patch generation process takes three

seconds per 1080x0180 image with a CPU. The results show that the patch method cannot

33

meet the industrial demands of one second per image on a desktop computer. We thus

looked for other architectures that would perform better on brightfield modality.

4.2 U-net architecture

We first tested U-net, which has been successfully applied in several bioimaging challenges.

It converges after 20 epochs of each taking 1200 seconds. U-net was 96.3 % accurate on

brightfield images (Table 2), and almost thousand times faster compared to DeepCell patch

method, taking 0.109 seconds to segment a 1080x1080 image. U-net inputs do not need

additional time-consuming generating of hundreds of thousands of patches from input

media.

Table 2. Speed and accuracy reports by U-net segmentation on brightfield images.

 Brightfield images

Prediction time per image 0.109 s

Overall test accuracy on a test set of 504

images

96.3 %

Nucleus pixel accuracy 82.4 %

Background pixel accuracy 98.1 %

Nucleus pixel precision 85.8 %

Nucleus pixel recall 82.4 %

Pre-processing steps were essential for successful segmentation. Without contrast

enhancement, the network predicted all pixels to be background.

34

 Raw microscopy images Ground truth segmentations U-net predictions
C

ro
p
p
ed

 i
m

ag
e,

 m
id

d
le

C
ro

p
p
ed

 i
m

ag
e,

 c
o
rn

er

F
u
ll

 i
m

ag
e

Figure 18. Binary prediction on brightfield images using U-net architecture on full images.

Qualitatively, small debris is occasionally predicted as nuclei (Figure 18, top row). Although

the network generated errors there, they are easy to fix with conventional algorithms. For

example, every white blob can be extracted from the mask and their surface area in pixels

calculated. Then, based on size, the outlier pixel regions may be removed to increase

accuracy.

The U-net model is small enough to be incorporated into future software products without

inflating the software package size. Its final unpacked size is 14.1 MiB.

35

4.3 Mask-RCNN architecture

Both DeepCell and U-net are tools for semantic segmentation. Usually, their outputs need

to be further processed by conventional algorithms to separate nuclei for additional analysis.

Mask-RCNN produces a separate mask for every nucleus from its input image which

reduces postprocessing efforts and complexity (Figure 12).

On average, training takes 920 seconds per epoch of 600 images. Current best model is

trained for 120 epochs in total.

 Raw microscopy images Ground truth segmentations Mask-RCNN predictions

C
ro

p
p
ed

 i
m

ag
e,

 m
id

d
le

C
ro

p
p
ed

 i
m

ag
e,

 c
o
rn

er

F
u
ll

 i
m

ag
e

Figure 19. Binary prediction on brightfield images using Mask-RCNN architecture on full

images. Output instance segmentations are flattened to semantic segmentations for easier

visual comparison with ground truth.

36

Table 3. Speed and accuracy of Mask-RCNN segmentation on brightfield images

 Brightfield images

Prediction time per image 5.6 s

Overall test accuracy on a test set of 504

images

94.4 %

Nuclei pixel accuracy 70.5 %

Background pixel accuracy 97.7 %

Nucleus pixel precision 80.7 %

Nucleus pixel recall 70.5 %

Mask-RCNN's 94.4% overall accuracy did not outperform U-net (Table 2, Table 3).

Qualitative analysis of the output images shows that Mask-RCNN does not predict small

extranuclear debris (Figure 19). In contrast, it has problems with low nucleus pixel recall

rate (Table 1). A possible reason for this is that the ResNet feature extractor is not trained

well enough or is incapable of detecting nuclei in such modality. The other possible culprit

might be the algorithm that dismisses proposal boxes. When two nuclei are close in a way

that their bounding boxes overlap a lot, then one box and hence its future segmentation is

removed (Figure 14). This processing step is designed into the architecture to avoid

generating several proposals for a single object in the feature map, but its assumptions are

not always valid in our application.

In addition, Mask-RCNN is more than fifty times slower than U-net (5.6 s vs 0.1 s,

respectively). This is especially important given all times provided in this thesis are

produced on a GPU, and would be much larger on CPUs. Although the measurements vary

from experiment to experiment, a rough estimate is that running the Mask-RCNN prediction

on a single image would take nearly a minute on a CPU.

37

5. Discussion

U-net brightfield segmentation results were demonstrated to and discussed with potential

future users. PerkinElmer clients who work with nuclei detection and segmentation

expressed intention to apply developed models for their brightfield experiments as soon as

possible.

Despite all the progress achieved while working on this thesis, there are still many ideas that

did not fit into the scope of current thesis. A few ideas came from a nuclear segmentation

focused Kaggle competition and after its end in its discussion forums [54]. Kaggle

participants revealed methods they used to get high scores on the leader board. A few of

those can also be used to further develop brightfield segmentation solution.

From semantic segmentation to instance segmentation

The U-net method proposed in this thesis for tackling brightfield image analysis produces

semantic segmentations. For quantitative analysis we would need every nucleus segmented

as a separate object in the image. In the dataset our U-net was trained on, most of the nuclei

are separate blobs and can be separated using simple computer vision algorithms. In cellular

images with more overlapping cells or in cases where nuclei are close together (e.g.

polynuclear cells), the current solution will perform worse, as it lacks the ability to separate

adjacent objects by drawing boundary lines.

One idea that can fix the above-mentioned problem is to modify initial training data to make

the network predict nuclear pixels and the border between adjacent nuclei. A loss weight

map (Figure 20) derived from ground truth masks can force a network to learn to keep cells

separate from each other on the image [38]. It is computed as

 𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0 × exp (−
(𝑑1(𝑥) + 𝑑2(𝑥))

2

2𝜎2
)

(4)

where x is a pixel value to be computed, wc is a weight map that is balancing class

frequencies, d1 and d2 are distances to nearest and the second nearest cell border, w0 is a

scalar value for the weight range, which in case depicted on Figure 20 is 10, and 𝜎 is picked

to be 5 pixels [38]. Each pixel on the map is assigned a value based on ground truth masks.

Pixel is assigned a bigger value when it is close to two different cell borders and a smaller

38

value when it is far from borders. This technique is used in the original U-net paper for

separating cells but it can be applied for nuclei, too.

After a forward pass through the network the output activation map is multiplied with the

loss map and only then the final loss is calculated. This multiplication before loss calculation

adds the loss weight map to the computation graph and thus makes possible for

backpropagation algorithm to find which filter values contributed to the loss in critical

border areas, and adjust them accordingly. In a way, this added multiplication layer acts as

a filter that has the same size as its input feature map. However, the parameters of this weight

map are different for every image passing the neural network and are not learnable thus

cannot be changed by backpropagation.

segmentation mask pixel-wise loss weight map

Figure 20. Segmentation mask of cells and a loss weight map generated from it [38].

Instead of using the loss weight map, predicting two separate channels is possible. We could

generate a separate discrete border annotation channel for the ground truth masks. Border

masks will only be generated between touching objects, not on the outer edges of them, as

otherwise the network would easily learn to generate separating lines in non-ambiguous

places, for example outer edges of objects, and perform badly in critical places, between

adjacent nuclei. Furthermore, the width of nuclei separating border areas would be bigger

as the sizes of nuclei they are separating increases. In practice, it proves to be harder to

separate bigger nuclei that are close to each other. [55]

This idea was proposed by one of the winners of the Data Science Bowl 2018 [55], team

“Topcoders”. They trained the network with two different mask channels with one

containing nuclei and the other one internuclear borders. The network predicts objects and

borders separately and these two prediction channels are combined into one image (Figure

21).

39

input image to network output image from network

Figure 21. "Topcoders" winning solution example segmentation on Data Science Bowl

2018. [55]

In addition, “Topcoders” did not use a standard U-net architecture, but instead a pre-trained

deep encoder Resnet101 as the encoder part for U-net (Figure 10a) [55]. Although this may

have benefits in terms of accuracy, it likely also has drawbacks with respect to speed. It

would be worthwhile to experiment with this architecture in the future for direct

performance comparison with approaches introduced in this thesis.

Toward better memory management and input image handling

The U-net model implemented as part of this thesis only operates on 1080x1080 pixel

images. Although it can segment an image in 0.109 seconds, it consumes a lot of memory.

On an NVIDIA Tesla P100 GPU with 12 GB of RAM, training and inference allow only a

batch size of one or will otherwise run out of memory. In addition, if future images are of

different resolutions, this network will fail to process them.

There are a few solutions that allow to mitigate these problems. First, networks could

segment on smaller input dimensions thus speeding up the process. To enable processing of

big images the inputs can be resized before and after (Figure 22). Although this would lose

information and accuracy it would increase speed and consume less memory.

Input image

1080x1080
Resize to

512x512

Resize to

1080x1080

Model

input – 512x512

output – 512x512

Output

segmentation

1080x1080

Figure 22. Potential solution for faster segmentation and lowering RAM consumption.

40

Another possibility is to divide input images into smaller sections to be segmented

separately. It would lower overall speed since more passes of the network must be conducted

depending on the image and crop sizes. On the other hand, it would keep accuracy the same

and reduce memory consumption. After segmentation the smaller parts would be merged

together to form a final output (Figure 23). To reduce edge effects, the cropped segments

can be partially overlapping.

Utilisation of multiple focal planes for richer information

All brightfield experiments in this thesis were carried out on data containing only single

focal plane images. In some cases, it is difficult to extract necessary information for

segmentation from a single focal plane as shown on Figure 24a. In this example there is a

cellular monolayer flipped on top of another one. We can see that cellular structures cannot

be distinguished well because of blurriness and distortion. In addition, Figure 24c indicates

poor performance of our U-net segmentation on this image.

a) b) c)

Figure 24. A challenging segmentation example. a) Brightfield image has been c)

segmented by our developed U-net model but compared to b) ground truth is missing

many nuclei.

Output

segmentation

1080x1080

Input image

1080x1080
Divide

image

540x540

540x540

540x540

540x540

Model

input – 540x540

output – 540x540

Combine

segmentations

Figure 23. Potential solution for lowering RAM consumption while maintaining high accuracy.

41

There is additional information about cells on different focal planes. At such scales cellular

structures start to function as minuscule lenses. For example, if we are focusing the

microscope under the sample we might see brighter spots which indicate nuclei (Figure 25a).

Because of their shape they act as converging lenses and increase light density below them

if it is shined from above. Modern microscopes can take pictures of brightfield samples by

focusing on different heights measured from the sample [56]. Every focal level contains

different information. From the middle image in Figure 25 there is hardly any nuclear

structure seen and we can see the benefit of other focal planes for nuclear segmentation.

a) b) c)

Figure 25. The same is cell photographed from different focal distances: focus of a) is

where the light is converged by the nucleus, b) has focus where the nucleus’ converging

effect is not visible, and c) is focused at a section where converging light rays from

nucleus have diverged after focal point shown in a).

Instead of using neural networks on brightfield images taken from a single focal plane we

can use several planes as different image channels. The network could learn to acquire

necessary features from these planes and use them to produce its final segmentation. Perhaps

this would help to increase nuclei recall in the future.

42

6. Conclusions and Summary

Microscopy data is being generated at an accelerating pace. Thanks to high throughput

microscopy and screening hardware, biologists and pharmaceutical industry can generate

more images than ever before. Although development in the image analysis field has been

rapid, biologists need additional tools to make their work more efficient.

Annotating nuclei in cellular images gives researchers a plethora of information ranging

from counting cell numbers in microplates to laying groundwork for cell phenotyping

further down an imaging pipeline. Despite having widely adapted tools for fluorescent

image segmentation, for example CellProfiler [24] and Harmony software [25], we still lack

industrial solutions for brightfield images.

Brightfield microscopy is faster, cheaper, and less invasive for living cells. For imaging it

does not need complex sample preparation or expensive chemicals, and it does not induce

cellular stress or death. The task of brightfield image segmentation has not been possible

with conventional computer vision algorithms so far. Including deep learning models into

cellular sample analysis could open new research methods and save thousands of hours of

manual segmentation work. The model that has been implemented as a part of this thesis

proves that complex brightfield images can be successfully segmented with machine

learning models.

Three different neural network architectures were tested for segmentation: DeepCell, U-net,

and Mask-RCNN (Appendix I). DeepCell's pixel-by-pixel classification proved to be very

slow and inaccurate on brightfield images. Mask-RCNN solution was on average almost

thirty times faster and 2.6 % more accurate. U-net performs the best regarding both accuracy

and speed being about fifty times faster than Mask-RCNN, and having 1.9 % fewer pixel-

level errors.

We conclude that on brightfield images the U-net model is producing the best results. In

addition, U-net model’s size on disk is compact enough to be incorporated into existing

software. There are many ways to further develop the proposed segmentation method, for

example by optimizing memory consumption, making the system input volume size

invariant, and using several brightfield focal stacks to achieve more accurate results. The

method developed in this thesis is ready for first tests by PerkinElmer’s software engineers.

43

7. Bibliography

[1] “Brightfield Microscopy Overview,” Nikon, [Online]. Available:

https://www.nikoninstruments.com/en_EU/Learn-Explore/Techniques/Brightfield.

[Accessed 14 05 2018].

[2] “Medical Dictionary,” [Online]. Available: https://medical-

dictionary.thefreedictionary.com/fluorescence+microscopy. [Accessed 14 05 2018].

[3] “Dictionary,” [Online]. Available: http://www.dictionary.com/browse/nucleus.

[Accessed 14 05 2018].

[4] “Common Objects in Context,” [Online]. Available: http://cocodataset.org/#home.

[Accessed 14 05 2018].

[5] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in The Brain,” Psychological Review, 1958.

[6] A. Gołda, “Introduction to neural networks,” [Online]. Available:

http://home.agh.edu.pl/~vlsi/AI/intro/. [Accessed 14 05 2018].

[7] L. Jacobson, “Introduction to Artificial Neural Networks - Part 1,” [Online].

Available: http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-

neural-networks-part-1/7. [Accessed 14 05 2018].

[8] B. Dolhansky, “Artificial Neural Networks: Mathematics of Backpropagation (Part

4),” [Online]. Available: http://briandolhansky.com/blog/2013/9/27/artificial-neural-

networks-backpropagation-part-4. [Accessed 14 05 2018].

[9] D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional

architecture in the cat's visual cortex,” The Journal of Physiology, 1962.

[10] K. Fukushima, S. Miyake, “Neocognitron: A new algorithm for pattern recognition

tolerant of deformations and shifts in position,” Physica A: Statistical Mechanics

and its Applications, 1982.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D.

Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural

Computation, 1989.

[12] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in NIPS'12 Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, 2012.

[13] “Data Science Challenges,” Consortium for Open Medical Image Computing,

[Online]. Available: https://grand-challenge.org/All_Challenges/. [Accessed 14 05

2018].

[14] “Mask R-CNN for object detection and instance segmentation on Keras and

TensorFlow,” Matterport, [Online]. Available:

https://github.com/matterport/Mask_RCNN. [Accessed 14 05 2018].

[15] A. Karpathy, “Software 2.0,” [Online]. Available:

https://medium.com/@karpathy/software-2-0-a64152b37c35. [Accessed 14 05

2018].

[16] A. Canziani, A. Paszke, E. Culurciello, “An Analysis of Deep Neural Network

Models for Practical Applications,” arXiv, 2016.

44

[17] “ImageNet Challenge,” [Online]. Available: http://www.image-net.org/. [Accessed

14 05 2018].

[18] C. Angermueller, T. Pärnamaa, L. Parts, O. Stegle, “Deep learning for computational

biology,” Molecular Systems Biology, 2016.

[19] T. Pärnamaa, L. Parts, “Accurate classification of protein subcellular localization

from high throughput microscopy images using deep learning,” bioRxiv, 2016.

[20] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S.

Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P. C. Nelson,

J. L. Mega, D. R. Webster, “Development and Validation of a Deep Learning

Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs,”

Innovations in Healthcare Delivery, 2016.

[21] M. Mattiazzi Usaj, E. B. Styles, A. J. Verster, H. Friesen, C. Boone, B. J. Andrews,

“High-Content Screening for Quantitative Cell Biology,” Trends in Cell Biology,

2016.

[22] E. Meijering, “Cell Segmentation: 50 Years Down the Road,” IEEE Signal

Processing Magazine, 2012.

[23] K. A. D. F. L. P. W. Jones, “Computational biology: deep learning,” Emerging

Topics in Life Sciences, 2017.

[24] “Cell Profiler Image Analysis Software,” [Online]. Available: http://cellprofiler.org/.

[Accessed 14 05 2018].

[25] “Harmony High Content Imaging and Analysis Software,” PerkinElmer, [Online].

Available: http://www.perkinelmer.com/product/harmony-4-6-office-hh17000001.

[Accessed 14 05 2018].

[26] “Labeling Nuclear DNA Using DAPI,” 2011. [Online]. Available:

http://cshprotocols.cshlp.org/content/2011/1/pdb.prot5556.full. [Accessed 18 05

2018].

[27] E. C. Jensen, “Types of Imaging, Part 2: An Overview of Fluorescence Microscopy,”

The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology,

10 2012.

[28] H. Giloh, J.W. Sedat, “Fluorescence microscopy: reduced photobleaching of

rhodamine and fluorescein protein conjugates by n-propyl gallate,” Science, 1982.

[29] L. L. Drey, M. C. Graber, J. Bieschke, “Counting unstained, confluent cells by

modified bright-field,” Biotechniques, 2013.

[30] “PerkinElmer global website,” [Online]. Available: http://www.perkinelmer.com/.

[Accessed 20 05 2018].

[31] A. Karpathy, “CS231n Convolutional Neural Networks for Visual Recognition,”

[Online]. Available: http://cs231n.github.io/convolutional-networks/. [Accessed 14

05 2018].

[32] V. Nair, G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in ICML'10 Proceedings of the 27th International Conference on

International Conference on Machine Learning, 2010.

[33] “Max Pooling,” [Online]. Available:

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling. [Accessed 14 05

2018].

45

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, “Dropout:

A Simple Way to Prevent Neural Networks from,” Journal of Machine Learning

Research, 2014.

[35] D. P. Kingma, J. L. Ba, “Adam: A Method for Stochastic Optimization,” in ICLR,

2015.

[36] N. S. Keskar, R. Socher, “Improving Generalization Performance by Switching from

Adam to SGD,” arXiv, 2017.

[37] D.A. Van Valen, T. Kudo, K. M. Lane, D. N. Macklin, N. T. Quach, M. M.

DeFelice, I. Maayan, Y. Tanouchi, E. A. Ashley, M. W. Covert, “Deep Learning

Automates the Quantitative,” Computational Biology, 2016.

[38] O. Ronneberger, P. Fischer, T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” 2015.

[39] K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask R-CNN,” arXiv, 2017.

[40] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Rich feature hierarchies for accurate

object detection and semantic segmentation,” arXiv, 2014.

[41] R. Girshick, “Fast R-CNN,” arXiv, 2015.

[42] S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” arXiv, 2016.

[43] Yuthon, “Notes: From Faster R-CNN to Mask R-CNN,” 26 04 2017. [Online].

Available: https://www.yuthon.com/2017/04/27/Notes-From-Faster-R-CNN-to-

Mask-R-CNN/. [Accessed 14 05 2018].

[44] “Detectron,” Facebook AI Research (FAIR), [Online]. Available:

https://github.com/facebookresearch/Detectron. [Accessed 14 05 2018].

[45] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition,”

arXiv, 2015.

[46] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, “Feature Pyramid

Networks for Object Detection,” arXiv, 2017.

[47] W. Abdulla, “Splash of Color: Instance Segmentation with Mask R-CNN and

TensorFlow,” [Online]. Available: https://engineering.matterport.com/splash-of-

color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46.

[Accessed 21 05 2018].

[48] “Matterport Mask-RCNN implementation,” [Online]. Available:

https://github.com/matterport/Mask_RCNN. [Accessed 14 05 2018].

[49] “Keras: The Python Deep Learning library,” [Online]. Available: https://keras.io/.

[Accessed 14 05 2018].

[50] “NVIDIA cuDNN,” [Online]. Available: https://developer.nvidia.com/cudnn.

[Accessed 14 05 2018].

[51] “High Performance Computing Center,” University of Tartu, [Online]. Available:

https://www.hpc.ut.ee/en_US/web/guest. [Accessed 14 05 2018].

[52] “High Performance Computing Center's specifications,” University of Tartu,

[Online]. Available: https://www.hpc.ut.ee/en_US/web/guest/rocket-

cluster?inheritRedirect=true. [Accessed 14 05 2018].

[53] “Python Imaging Library ImageEnhance Module,” [Online]. Available:

https://pillow.readthedocs.io/en/3.0.x/reference/ImageEnhance.html#imageenhance-

module. [Accessed 18 05 2018].

46

[54] “Data Science Bowl 2018,” Kaggle Inc, [Online]. Available:

https://www.kaggle.com/c/data-science-bowl-2018. [Accessed 14 05 2018].

[55] “[ods.ai] topcoders, 1st place solution on Data Science Bowl 2018,” [Online].

Available: https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741.

[Accessed 14 05 2018].

[56] “Opera Phenix™ High-Content Screening System,” [Online]. Available:

https://www.perkinelmer.com/lab-

solutions/resources/docs/BRO_011289_01_Opera_Phenix.pdf. [Accessed 21 05

2018].

47

Appendix

I. Combined test results with different architectures for nuclear

segmentation

 DeepCell on

fluorescence

images

DeepCell on

brightfield

images

U-net on

brightfield

images

Mask-RCNN on

brightfield

images

Segmentation

time per image

on a GPU

104.5 s 104.2 s 0.109 s 5.6 s

Overall pixel

accuracy

97.1 % 91.8 % 96.3 % 94.4 %

Nucleus pixel

accuracy

92.4 % 72.3 % 82.4 % 70.5 %

Background

pixel accuracy

97.7 % 94.4 % 98.1 % 97.7 %

Nucleus pixel

precision

84.1 % 63.2 % 85.8 % 80.7 %

Nucleus pixel

recall

92.4 % 72.3 % 82.4 % 70.5 %

48

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Sten-Oliver Salumaa,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Convolutional Neural Networks for Cellular Segmentation,

supervised by Leopold Parts and Dmytro Fishman,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

