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Predicting Illness and Type of Treatment from Digital Health Records

Abstract: The rising costs of healthcare and decreasing size of the working population is
a dire problem in most of the developed world. While it is inevitable that new methods
are costly, it is possible to reduce avoidable expenses by better planning and prevention.
Most hospitals keep digital records of everything that happens to a patient during their
treatment  and  in  Estonia  all  medical  bills  are  also  presented  to  the  Estonian  Health
Insurance Fund (EHIF) for reimbursement. In this work the data from EHIF is used to
build a model that as the first step uncovers the different clinical pathways followed for
the treatment of patients with an illness. As a second step the model is used to predict the
number of patients  that  will  be provided the uncovered treatments  in the future.  The
output of such a model could be a valuable asset for planning resource allocation and
preventative health care.

Keywords:
Process mining, health care, predictive modeling, model based clustering
CERCS: P170

Haiguse ja ravitüübi ennustamine kasutades digitaalseid raviarveid

Lühikokkuvõte:  Kasvavad  kulud  tervishoius  ning  samaaegne  töötava  populatsiooni
kahanemine  on  kriitline  probleem  kõikjal  arenenud  maailmas.  Ühest  küljest  on
paratamatu, et uued ravimid ja meetodid on kallid, on teisest küljest võimalik vähendada
välditavaid  kulutusi  parema  plaanimise  ja  ennetustööga.  Enamik  haiglad  salvestavad
digitaalselt kõik, mis patsiendiga ravi jooksul toimub ja Eestis esitatakse kõik raviarved
ka  Eesti  Haigekassale  (HK)  hüvitamiseks.  Käesolevas  töös  kasutatakse  HK andmeid
ehitamaks  mudelit,  mille  abil  on  võimalik  tuletada  erinevad  raviprotsessid,  mida
patsientide  ravimisel  kasutatakse  ning  samuti  ka  ennustada  patsientide  hulka,  kes
tulevikus  vastavat  ravi  vajavad.  Selline  mudel  võiks  olla  kasulik suunamaks otsuseid
vahendite jaotamisel ja enntustöö suunamisel.

Võtmesõnad:  protsessi  kaevandamine,  ennustav  modelleerimine,  tervishoid,
mudelipõhine klasterdamine

CERCS: P170
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Used abbreviations

EHIF – Estonian Health Insurance Fund

HMM – Hidden Markov Model

ICD-10 – International Classification of Diseases, revision 10

NMF – Nonnegative Matrix Factorization

LDA – Latent Dirichlet Allocation

COPD – Chronic Obstructive Pulmonary Disease

SVD – Singular Value Decomposition
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1 Introduction

Although  in  general  decreasing  costs  accompany  growth  in  efficiency  as  technology

advances, this does not hold true for health care (Kumar, 2011). The rising costs in health

care are a dire and growing problem for all  developed nations regardless of how the

system in the respective country is set up. This puts remarkable strain on the societies as

a whole and therefore solutions that mitigate this problem are greatly needed.

Most  hospitals  today  use  some  sort  of  information  systems  to  collect  and  store

information about their patients in the form of numbers, text and images, with reports

saying that in the US alone the amount of data has reached zettabyte scale. This data

holds immense potential, but is rarely thoroughly analyzed to aid practitioners in their

work or to bring about an increase in the quality of health care in general.

As in Estonia the whole population is covered by state provided health care, the system is

set up so that all medical bills pass through a central organization called Estonian Health

Insurance Fund (EHIF). As a result the data collected by the EHIF contains every health

care  service  provided  to  every  person  in  Estonia.  The  implications  of  this  for  data

analysis  compared  to  a  more  decentralized  system  where  data  is  stored  in  various

information  systems  employed  at  each  hospital  are  astounding.  The  notable  benefits

include the unified naming and pricing scheme for services and analyses and a single data

format. Although as a drawback the granularity of the data is lacking in several aspects -

EHIF  operates an insurance scheme and they collect data that's relevant to fulfilling this

function.  As  a  result  the  data  is  lacking  in  granularity,  meaning  more  detailed

information, such as drug dosages and test results are not available.

This places Estonia in a favorable position regarding health care data analysis as at least

the high level data about the treatment of any illness is available in a unified format for

the whole population. This enables, through careful analysis, both discovering high level

models for the whole population and pointing to areas where more specific data could

help in generating more useful insights. 
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1.1 Objective

The aim of this work create a framework for population based prediction of costs and

other  parameters  related  to  the  treatment  of  illnesses.  The  approach  proposed  here

consists of multiple steps illustrated on Figure  1:

1. Finding different groups of treatments based on the events taking place over the

course of the treatment;

2. Using  the  patients'  history  and  other  relevant  and  accessible  data  to  create  a

prediction model for the likelihood of a person getting the illness;

3. Using  background  information  about  the  patients  with  the  illness  to  create  a

prediction model for the likelihood of a person going to be assigned to any of said

groups;

4. Infer  a  descriptive  and easily  readable  model  of  the  treatment  course  in  said

groups.
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Figure 1:  The planned path and objective of the work. The treatment logs will be used to
find different types of treatment for an illness. From these filtered logs process models

will be mined that give an overview of the procedure used on patients in a group.

Using the historical information about a patient a predictive model can be built, using
both the whole database of logs and filtered logs, that can predict the likelihood of a

patient getting a disease and then the type of treatment they will receive.



This work would result in a workflow, shown on Figure  2, that would enable one to

predict the prevalence of some disease in the population in the future and also obtain

information about the likely future treatment of these patients.

This would allow making better predictions about the future cost and outcome of such

diseases. It is difficult to make accurate predictions about health care as it is a rapidly

changing field with advances in preventive work and treatment happening at a fast pace.

The advantage of the approach used in this work is that knowing the kind of treatment a

patient  is  likely  to  receive  provides  additional  information  about  the  illness  such  as

severity  or  type.  This  information could aid  in  making informed decisions  about  the

possible corrections in the predicted distribution as increase in preventive efforts may

offset some type of the illness while not effecting the others.
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Figure 2: The future use of this work. From the patient history it would be possible
to predict the likelihood of a patient getting a specific disease. Fro the patients
classified as likely to get the illness, it would be possible to predict the type of

treatment they would receive.



1.2  Previous work
The  variability  of  the  data  in  health  care  allows  for  a  multitude  of  approaches  to

prediction and modeling. A lot of work has been done using only clinical data such as

analysis results and genetic information about patients  (Marinov, Mosa, Yoo, & Boren,

2011; Palaniappan & Awang, 2008). These works have shown considerable success in

using  methods from data mining to  identify important  factors  in  the development  of

specific illnesses and predict the risk of developing illness.

In the process  mining side a  lot  of  work has been done regarding process  discovery

(Lakshmanan, Rozsnyai, & Wang, 2013; Lang, Bürkle, Laumann, & Prokosch, 2008; R.

S. S. Mans et al., 2009; R. Mans & Schonenberg, 2008). The aim of these works has

mainly  been  to  discover  the  underlying  processes  in  treatment  and  administration.

Knowledge of such workflows would allow for better planning as it enables calculating

realistic  timelines  and  better  understand  the  frequency  of  occurrence  of  certain

workflows, but measuring conformance could also provide better insight into guideline

planning. Sadly it does appear, that current approaches do not satisfy all the requirements

necessary for effective process discovery from the treatment log data of patients (Yang &

Su, 2014).

The studies that concern predicting the costs in health care vary widely in both the data

and methods used for this purpose. There have been fairly successful reports predicting

high cost patients as a proxy of the actual cost (Moturu, Johnson, & Liu, 2007) and even

the specific monetary value of future health care requirements  (Sushmita et al., 2015).

The latter is also relevant to this work in terms of the underlying data as one of the

datasets used consists of clinical claims.

Previous work on similar datasets has been done in Estonia by the National Institute for

Health  Development  and Raul  Kiivet  (Tonsiver  et  al.,  2014).  Also Estonian Genome

Center  includes  EHIF data  in  the analysis  of  genome data  and EHIF itself  regularly

analyses the data they collect (Estonian Health Insurance Fund & Group, 2015).
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1.3 Outline 

Materials and methods  gives an overview of the data and the methods that are used.

Puts the methodological background into the context of this work.

Results explains the results obtained using the methods previously described.

Discussion  and  future  work provides   summary  of  the  results,  discusses  the

shortcomings, implications and possible further advances of various aspects of the work.

Conclusion  summarizes  the results  and includes  the final  notes  and takeways of  the

work.

Bibliography  lists  articles,  books  and  software  used  in  this  work  for  reference  is

specifics are required.
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2 Materials and methods

2.1 Data

The data used in this work is a part of a larger dataset that originates from the Estonian

Health Insurance Fund containing all visits to all doctors excluding dentists and general

practitioners, that occurred during the period of 2010-2016. In this work two groups of

illnesses were investigated: malignant neoplasm of the breast  or C50 by  International

Classification of Diseases, revision 10 (ICD-10) nomenclature (WHO, 1992) and J44 or

chronic obstructive pulmonary disease (COPD). The features available for each service

are shortly described in  Table 1.

The choice of the diagnosis was based several factors such as frequency of occurrence,

severity  of  the  illness  and  duration  of  treatment.  Both  diagnoses  can  bring  about  a

number of difficult complications, such as metastasis on the case of breast cancer and

osteoporosis and heart failure in the cases of COPD. This makes this illnesses more likely

candidates for having multiple treatment procedures. The treatment of chosen illnesses is

also short and the cases frequent enough to have a reasonable amount of cases start and

end  during  the  time  period  for  which  data  is  available  –  an  important  factor  for

characterizing the treatment.

The data used in this work was extracted as follows:

1. all bills with the diagnosis code and its subtypes as the principal or secondary

diagnosis were queried from the database;

2. for all patients, all medical bills preceding the initial diagnosis of the illness under

investigation were retrieved (historical bills);

3. for all patients, all illnesses diagnosed with them preceding the initial diagnosis of

the illness under investigation were retrieved.

In the database there were 10,420 patient with the diagnosis C50 and 30,162 patients with

the diagnosis J44. 

As the treatment of these illnesses lasts over a considerable time, most of the cases do not

start or end in the period for which data is available. For purposes explained later in the

work, cases that have a beginning and an end in the scope of the data were separated. 
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There are a total on 16 different reasons for closing a bill used in the dataset. Here we

used four of these. The reason all others were dismissed here is that they indicate either

that the patient was either asked to return at a later date or directed to another doctor –

10

Table 1: The available features for every row in the services table.
year The financial year to which the bill is attributed
bill id Unique identifier for the medical bill
patient id Unique identifier for the patient

age The age of the patient at the time of start of the medical bill
date of birth The date of birth of the patient
sex The sex of the patient
place of residence county of residence of the patient
service provider location parish of the service provider
service provider code unique identifier of the service provider
service provider name name of the service provider
service provider type type of service provider (e.g. hospital,  private clinic) 
service provider type code numerical identifier for the previous feature
doctor specialty code Specialty of the doctor providing the service
doctor specialty name Specialty of the doctor providing the service
unavoidable health care Boolean showing if heath care was avoidable or not
start date Start date of the bill
end date End date of the bill
end code Reason for ending the bill
specialty code Domain code for the treatment
specialty name Domain name for the treatment

continued bill

DRG proportion
total of the service The total cost of the service
amount of the service the amount the service was provided
net total of the service cost multiplied by the amount
principal diagnosis code the principal diagnosis at the time of providing the service
principal diagnosis name the principal diagnosis at the time of providing the service
amount The number of times the service was provided
coefficient1 The coefficient NHIF used to pay for this service
multiple times the service was provided
time of provision of the serv the date at which the service was provided
service type code a group to which the service belongs to
service type name a group to which the service belongs to
days how many days the service was provided for
paid sum how much NHIF paid for the service
service code code of the service provided
service name name of the service provided
type of treatment type of the treatment (ambulatory, stationary...)

Shows whether the bill was made as continuation to a 
previous one

the amount of the bill that is payable using the disease related 
group (DRG) funding method



both of which imply continuation of the treatment.  In this  work the end of a case is

defined as having one of the following reasons for closing the bill:

• patient left on their own volition against the doctor's recommendations;

• death;

• other reasons;

• improvement or convalescence.

2.1.1 Processing
For every patient a a set of background information was produced. This was formulated

as a vector, comprising of the attributes described below.

1. Patient age in days at the time of the initial diagnosis.

2. The sex of the patient;

3. Previous diagnoses – for that purpose the previously extracted set of diagnoses

was used.

4. The exact diagnosis code given under ICD-10 C50 or J44.

5. The specialty codes of all doctors previously encountered.

6. Occurrences of frequent sets of services.

For identifying the frequent sets of services to use as features the services were extracted

from all the historical bills of all the patients. These were treated as transactions and from

these transactions frequent item sets were found using the FPgrowth algorithm (Han, Pei,

& Yin,  2000).   These item sets  or sets  of services  were then used as features in the

background vector as either having occurred in the patients medical history or not. The

thinking behind this is that although some services are very informative on their own,

such as previous surgery for example, but most of the services, such as various blood

tests, might only be informative in sets of services which together indicate some nuances

in the previous treatment of the patient.
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2.2 Process mining
Information systems log enormous amounts of data about the activities they handle in

various processes in various kinds of industries. These logs hold information about the

process that is being carried through and also how well a model characterizes real life. 

Process mining  is a field concerned with extracting knowledge from these event logs

with the aim to improve efficiency and better understand the underlying processes. 

Most of the work in the field has been focused on logs from manufacturing systems and

customer support  (Greco, Guzzo, Pontieri, & Saccà, 2006; Pospíšil, Mates, Hruška, &

Bartík,  2013),  but  recently  more  focus  has  been  given  to  medical  field  and  clinical

process discovery specifically  (Dalianis, Hassel, Henriksson, & Skeppstedt, 2012; Lang

et al., 2008; Yang & Su, 2014).

The field is usually categorized into three types by objective  (W. M. P. van der Aalst,

2011), which are

Discovery – finding a process from the event logs without any prior knowledge of it. 

Conformance -  testing if  the information in the event logs corresponds to the model

under investigation. 

Enhancement –  Similar  to  discovery,  but  in  this  case  the  investigator  has  prior

knowledge in the form of a process model which they aim to improve.

In this work we are interested in process discovery as our interest is finding the different

processes underlying the treatment logs in our disposal.

2.2.1 Event logs
In the context of process mining, event logs, an example of which is shown on Table

Error: Reference source not found, are a type of logs that contain information about the

execution of a process over many instances of such execution. This means the events in

the log are recorded so that (W. van der Aalst, Weijters, & Maruster, 2004):

1. each event refers to a task in the process;

2. each event refers to an instance of the workflow or case;

3. events are totally ordered.

12



In the data used in this work it would seem obvious to use the bill id as a case identifier.

This would result in a distorted image of the logs as new bills are sometimes started in

the middle of the treatment  cycle  for  various  causes like getting assigned to  another

doctor or accounting reasons. For that reason patient id is used as the case identifier so a

case  is  formed  of  services  that  are  provided  to  a  single  patient  in  the  scope of  the

diagnosis  under  investigation and is  ordered by the dates at  which the services were

provided.

The medical process is inherently very varied and the number of different procedures in

the logs very large. It would be of great use if it was possible to disregard the services

that  are  irrelevant  to  the  current  diagnosis  or  if  a  hierarchy existed  using  which  the

services could be merged. Alas no such hierarchy exists for the services used by EHIF

and defining less relevant services is non trivial. 

2.2.2 Discovery
In his work we are most interested in the discovery aspect of process mining as we would

like to infer the process that has generated the logs under investigation. 

While some sources of logs lend themselves well to process discovery algorithms and

produce consistent, well defined process models, some sources contain more variation

and using naïve algorithms on such logs often result in spaghetti-like models, shown on

13

pat_id duration type treatment_profile diagnosis price service kpv
* 5 A A38 C50.3 176.72 3002 *
* 5 A A38 C50.3 193.64 6074 *
* 5 A A38 C50.3 134.42 7903 *
* 5 A A38 C50.3 115.62 66707 *
* 5 A A38 C50.3 140.06 3004 *
* 0 A A38 C50.3 11.42 3002 *
* 2 A A38 C50.3 11.42 3002 *
* 2 A A38 C50.3 12.51 6074 *
* 2 A A38 C50.3 8.66 7903 *
* 2 A A38 C50.3 7.46 66707 *
* 2 A A38 C50.3 9.04 3004 *

Figure 3: An example of an event log using the data used in this work. Here the service
column refers to the task in the process, pat_id – patient id, refers to an instance of the

workflow and the events are totally orderable using the column kpv – date. In this
example the dates and patient id-s are removed for privacy concerns.



Figure 4. This may be the result of either an inherently variable process, different models

producing the logs or both. In the case of health care processes the latter is arguably most

likely. Not only is every patient different, which brings about some variation, but also the

severity and type of the same illness varies and thus different treatment procedures are

required.

This problem can be partially mitigated by using clever algorithms such as Fuzzy Miner

(Günther & Van Der Aalst, 2007),  but these methods may also remove important, but

rarely occurring  relations  and events  such as  a  specific  kind of  surgery.  It  also does

nothing  to  uncover  the  various  models  that  may  have  generated  the  logs  under

investigation, but tries to explain all the logs with a single model.

For  such  cases  trace  clustering  has  been  attempted,  which  involves  grouping  traces

similar by some metric into groups to get more easily readable models (Bose & van der

Aalst, 2010; Delias, Doumpos, Grigoroudis, Manolitzas, & Matsatsinis, 2015).

2.3 Cluster analysis
Although broadly the diagnosis in either group of the patients in the dataset used in this

work is the same, there are very likely important differences between specific cases. A

part of this difference is of course captured in the specific diagnosis code assigned to the

patient  (C50  and  J44  would  be  called  a  “non-specific  diagnosis”  in  the  ICD-10

hierarchy),  but  these  codes  do  not  always  specify  the  severity  of  the  illness  or  the

specifics of the patient that may cause the case to unfold in a different manner. 

Such differences are likely important in determining the type of the treatment a person

will  receive  and  also  strongly  influence  both  the  outcome  and  the  total  cost  of  the

treatment. It is likely that such information can be inferred from the treatment procedure

14

Figure 4: An example of a "spaghetti model" uncovered from a heterogeneous process.



itself and that using this information it could be possible to find groups of patients that

required  different  type  of  treatment  arising  from differences  in  disease  type  and the

patient's background. 

Cluster analysis is a method for grouping objects under investigation into groups based

on some similarity measure where the objective is to assign group labels to clusters so

that  intra-group  similarity  is  maximized  while  the  similarity  between  groups  is

minimized. This kind of analysis enables inferring the most natural structure of the data

at hand (if there is one) with minimal knowledge about it beforehand. In the context of

this work, the clustering of the cases would serve three purposes:

1. finding  clusters  based  on  treatment  type  would  enable  us  to  characterize  the

clusters such as duration, end result and total expenses of the treatment;

2. it would allow us to infer a process model for different treatment processes of the

illness  to  better  explain  what  happens  to  the  patient  over  the  course  of  the

treatment;

3. it would allow for predicting into which cluster a person is likely to fall.  This

would enable us to predict the possible outcomes and the likely cost of the illness

in the future. The clusters here are important as these also describe the illness

itself and so make it possible to take into account the changes to the treatment in

the future.

2.3.1 Clustering
A multitude of clustering methods have been introduced with their  own benefits  and

drawbacks and while some work better with some type of data than others, it is often up

to the investigator to choose the best method for the data they have. Following (Han &

Kamber, 2006) these can be broadly classified into partitioning, hierarchical, grid-based

and model-based clustering. Often these methods are also combined in an effort to infer

structure in the data under investigation.

Most  clustering  methods  treat  objects  as  points  in  space  and assume that  there  is  a

defined similarity measure to assess the objects being analyzed. In many cases this is the

case and a simple metric such as Euclidean or Manhattan distance ca be used. There are

cases  though,  where  defining  a  usable  distance  metric  is  either  very  difficult  or

impossible.  As previously stated the data used in this work are sequences of medical
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procedures – sequences of discrete values, for which finding a suitable distance metric is

not a simple matter.

2.3.2 Model based clustering
As most data can be represented in a vector form it is easy to think of them as points in n-

dimensional space and use an appropriate distance metric to separate these into groups.

The problem with this approach is two-fold: 

1. some information may get  lost  if  certain types of data  (sequences,  sound) are

handled in such a way;

2. different  groups  of  data  may  have  different  parameters  and  as  such  spatial

closeness may not imply same origin.

These problems can be solved by using model-based clustering. This type of clustering

does not try to group objects into k clusters by similarity, but find the models that are

most likely to have generated the data. Besides being a better fit for certain types of data

the model also provides a better description for the groups that it finds from the data.

The  most  common  models  for  this  purpose  are  Gaussian  mixtures  and  multinomial

models, but for some more complex data such as time series, Markov chains and Hidden

Markov Models (HMMs) have been used widely  (Bicego, Murino, & Figueiredo A.T.,

2003; Panuccio, Bicego, & Murino, 2002; Smyth, 1997). As HMMs are inherently very

suitable for capturing the sequential  nature of medical records,  these are used in  this

work.

Hidden Markov Models

A Hidden  Markov  Model  is  a  method  for  modeling  sequences  and  discovering  the

underlying properties of the process that generates the observable sequences. In the scope

of this work the observable sequence would be the services provided to a patient and the

underlying model would represent the conditions of the illness the patient is suffering. 

An HMM consists of a number of hidden states H, a transition matrix A and an emission

matrix B. At any time point t the model is in a single hidden state. The emission matrix

specifies for each hidden state the likelihood of generating an observed value while the
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transition matrix specifies the likelihood of moving from state  ni to state  nj. A formal

definition can be found in  Table 2 and an illustrative image on Figure 5.

Table 2: The formal definition of an HMM.

Model λ = (A,B)

Number of states I

Number of observations T

A set of states N = {n1, n2, …. ni}

Transition matrix A A = (aij)

Emission matrix B B = (bij)

Sequence of observations Y = (y1, y2, … yt)

Sequence of hidden states Π = (π1, π2, … πn)

The observed values here are the units of the sequence and the hidden states model some

underlying labeling of the process. In this work the observed values could be the services

provided to the patient and the hidden states are the specific issues that lead to providing

these  services.  Rabiner  defines  three  fundamental  problems that  characterize  HMMs:

(Rabiner, 1989) 

1. likelihood – determining the likelihood of an observed sequence using a HMM

 P(Y∣λ) ;
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Figure 5: An illustrative figure of a HMM. The states are A and Band possible emitted
values are 1, 2 and 3. On the edges are the transition probabilities and in the boxes the

emission probabilities of the indicated hidden states.



2. decoding  –  discovering  the  most  likely  sequence  of  hidden  states,  given  a

sequence of observations and a HMM

Π=argmax
π

P(π∣Y ,λ) ;

3. learning – find the transition matrix A and emission matrix B, given a set of sates

N and an observation sequence Y

A ,B=argmax
A ,B

P( A ,B∣N ,Y ) .

For the purposes of using HMMs for clustering, points 1 and 3 are most important, as

here we aim to both find the most likely model for each trace and also learn the most

likely model given the traces assigned to it.  Finding the likelihood is done using the

forward algorithm, while fitting the model is done using the forward-backward algorithm.

Forward algorithm

To find the likelihood of a sequence of observations given a HMM, one needs to compute

the  probability  for  all  possible  sequences  of  hidden  states  for  having  generated  the

observed  sequence.  As  the  number  of  hidden  states  and  possible  values  increases,

calculating this directly quickly turns infeasible

The forward algorithm makes this possible by using dynamic programming. This is done

by computing a dynamic programming matrix f where the rows are hidden states and the

columns are elements of the sequence. An element fk(i) of the matrix f is the probability

of being in state i after the first k observations:

f k ( i )=P ( x1, x2 , ... , x i , π i=k )  

where  πi=k  is  the path through the hidden states  and  xi is  the probability  of the  i-th

element of the observed sequence having been generated by the model.

Using dynamic programming this can be calculated recursively using the probabilities

already calculated for the previous time point:

f k (i )=b ij∑
j=1

N

f j (i− 1 ) a jk

where bij is the probability of emitting element  i at state  j, and  ajk is the probability of

transitioning from state j to state k.
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Forward-backward algorithm

The forward-backward algorithm, or the Baum-Welch algorithm  (Rabiner, 1989) is an

iterative algorithm, which trains both the emission and transition probabilities by iterating

over cycles of computing estimates for both probabilities.

As  our  aim was  to  use  HMMs to  find  optimal  clusters  for  the  models  we used the

following hard-clustering algorithm:

1. k HMMs were initiated randomly – the values in both the transition matrix and

emission matrix were generated randomly;

2. for every trace the probability of having been generated by all of these models

was found;

3. every trace was assigned to the model that most likely generated it;

4. all models were trained with the traces assigned to it.
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Figure 6: An illustration of the forward algorithm. The example has been done for
calculating the probability of a sequence '123' using the model seen on Figure 5. On the
nodes are the probabilities of being at that node at the corresponding time step. At every
state the probability of getting there and emitting the required value is found and stored.
The stored values from the previous time step can be used at the next step reducing the

amount of computation necessary.



5. Repeat steps 2 to 4 until less than 1% of traces change model assignment.

As with any type of clustering there is the issue of choosing the right number of clusters

K, but as HMMs are the models we also must choose the number of hidden states m.

Usually for choosing the right number of clusters methods like comparing intra-cluster

variance against extra-cluster variance or the silhouette method could be used, but these

methods assume a distance metric of some sort. As the data used in this work consist of

sequences of discrete values, defining a distance metric suitable for this purpose is a non

trivial task. For this reason Bayesian information criterion (BIC)  (Schwarz, 1978) and

cross validation are used here to aid in choosing the number of clusters. 

BIC is a method for model selection and in essence chooses the model that provides the

most benefit without introducing too much complexity. It is formally defined as:

BIC=k ln (n ) −2 ln ( L )

where  k  is  the  number  of  free  parameters,  n is  the  number  of  data  points  and L is

likelihood of the model.  In the literature Akaike information criterion (AIC)  (Akaike,

1974) has also been used for similar purposes, but the choice here was made in favor of

BIC as it prefers simpler models.

The same approach was used to find the optimal number of hidden states m.

2.4 Topic modeling
The nature of the data used in this work makes clustering in this way a bit less trivial. In

the data used in this work the precision with which the time a service was provided can

be pinpointed is one day and  the sequence of events during one day is unknown. In very

rare cases only one service was provided in a day so the total ordering of the services

cannot be done. This poses two problems:

1. the sequence of events in a day may be important and this information is lost

2. the  number  of  services  provided in  one  day is  not  equal  and this  may cause

anomalies.

The first problem can be mitigated by sorting the services in a uniform manner so that if

the same set of services is provided during a day these would be considered equally. This
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does not mitigate the problem of different number of services though and it is possible

that this produces artifacts of its own. To address the problem of varying number of tasks

topic modeling was used as preprocessing.

Topic modeling is a method for extracting the main themes or topics from a collection of

documents, usually a collection of texts. The algorithms that do this are probabilistic and

analyze the frequency of the words in the texts to assign a topic or a mixture of topics to

every text. Although mainly used for modeling texts, many other applications have been

found for these methods such as pattern finding in images and social networks  (Blei,

2012).

In the context of current work this could be used in a number of ways. The simplest

approach would be to assign a single, most likely topic to each day as the treatment phase

that  generates  the  set  of  services  provided,  and  try  to  model  the  sequence  of  these

principal topics. The problem with such an approach is that the sequence of events would

have to be mostly described by a single topic or a lot of information about the day would

get discarded while disregarding the less prevalent topics of the day.

A little more complex model could be treating the topics as sets of services, as can be

easily done in the case of nonnegative matrix factorization (NMF). Each day could be

considered a fixed size set of topics such as  {A, B, C} and the model would attempt to

describe each day as such a combination. The model describes the data better, but is more

complex than the first option and requires defining a specific loss function.

As topic modeling algorithms output a fixed size mixture for each sample, it would also

be reasonable to attempt to describe each day as the specific mixture of the available

components.  This  is  by  far  the  most  computationally  difficult  task  of  the  three  and

requires the most data, but would also most accurately describe the data.

From the discussed options  the first  and the last  were attempted with  different  topic

modeling algorithms.

2.4.1 Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) is a probabilistic generative method that attempts to

model every text as a collection of topics while a topic itself is a distribution over words

(Blei et al., 2003). 
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While all topics are distributions over the same fixed vocabulary different probabilities

the distributions are  different.  For  example in  this  work the vocabulary is  the list  of

services  provided  to  the  patients  at  a  hospital  and  a  topic  could  be  for  example

“admission” or “surgery”.  In the admission topic services pertaining to reception and

some initial tests like bloodwork would be assigned higher probabilities, while radiation

therapy  would  be  less  likely  to  occur.  LDA assumes  that  these  topics  are  known

beforehand and all the documents are generated from these using the following process:

1. a distribution over topics is chosen randomly;

2. for every word in the document:

1. a topic is chosen using the distribution produced in the first step;

2. a word is chosen randomly from the distribution of the topic;

The method assumes that all documents have been generated in this manner and are thus

a mixture of these topics. As in actuality the topic structure is hidden and the texts are

observed, the objective is to reverse the generative process and use the documents as

evidence to find this hidden structure.

In the case of LDA there is the matter of choosing a good value of topics. As perplexity is

a measure often used to assess how well a number of topics describe the text, we used

this as the likelihood in BIC estimation. To do this we split the cases by day and treated

the set of procedures in one day as a document. When topics were generated we used

these to label each day with a topic. LDA assigns a mixture of topics to each day so the

most influential topic was chosen for each day. If there was no clearly dominant topic for

the day a “no-topic” label was assigned to the day.

2.4.2 Nonnegative matrix factorization
NMF has been used both for topic modelling and dimensionality reduction [CITATION].

As shown on Figure 7 it is a matrix factorization technique, meaning it tries to construct a

factorization of the form V=WH , while minimizing the reconstruction error.  As the

matrices have sizes  n×k and  k ×m and the number  k  is up to the user to choose,

this method can be used as a compression method when choosing a k smaller than n or m.

(Seung & Lee, 1999). As computing exact NMF is NP-hard (Vavasis, 2010) in this work

an implementation described in (Lin, 2007) is used.
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In the current work the rows of the matrix V are the visits made by the patients and the

columns are all the services provided to them. Each row is a vector of services provided

to a patient during one day. An example of the resulting matrix can be seen in  Table 3.

As the name implies the method poses a constraint that all elements in matrices W and H

must be nonnegative and thus NMF will not find results that exclude factors from the

original matrix. As all the combinations are additive, the result can intuitively be thought

of as separating the features into k groups of features. This makes NMF very suitable for

solving the aforementioned problems, as using it makes it possible find the latent groups

of services and at the same time provides, for each day, a composition of these k groups.

In  this  work  k was  chosen  so  that  it  would  be  possible  to  discover  groups  of

approximately 5-10 features. The rationale here is that the groups of services provided at

hospitals would most likely be at around this size and this also corresponds well to the

average number of services provided in a day. 
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Figure 7: An illustration of nonnegative matrix factorization. V is the n×m  matrix
being factorized into smaller matrices W and H of sizes n ×k and k ×m

respectively (Qwertyus, 2013).

Table 3: Table showing a sample of the matrix being factorized. There is a row for each
day a patient was provided medical services. The columns correspond to the services
provided and for each row the number of times a service was provided to the patient

during that day is stored. 
kpv 5 7 ... 923O 999O

* 0 0 ... 0 0
* 0 1 ... 0 0
* 2 0 ... 0 0
* 0 0 ... 0 0
* 0 0 ... 0 3
* 0 0 ... 1 0
* 0 0 ... 0 0



2.5 Classification

As the aim of this work is to create a system that would require as little fine tuning as

possible, the classification algorithms were chosen to be as robust as possible, with a

reputation of requiring little parameter optimization and being easy to use.

2.5.1 Random forest
Random forests were first introduced by Breiman (Breiman, 2001) and the algorithm is

an ensemble method that can be used for both classification and regression tasks. 

As many ensemble methods, random forest combines the predictions of multiple weak

learners to build a single good classifier. In the case of random forest these classifiers are

decision trees. Each tree is trained with approximately 2/3 of the data available while the

rest of the samples are considered out-of-bag data and used to evaluate both the error of

each tree and importance of each variable (Breiman, 2001).

The last point makes random forests very useful for our purposes and in health care data

analysis in general. If a system is supposed to give answers to help humans make better

decisions in a critical field such as health care, it is of utmost importance that the system

is also able to explain its suggestions as well as possible. From a random forest model it

is  possible  to  extract  the  relevance  of  each  parameter,  which  lets  the  user  better

understand why it made the predictions it did. This is useful as both reassurance to the

user and it may also point out good predictors, which could otherwise be overlooked by

humans. 

2.5.2 Gradient Boosted Trees

Gradient  boosted  trees  (Friedman,  2001) is  similar  to  random forest  as  it  is  also  an

ensemble of decision trees, but the principles behind fitting the trees is slightly different.

In a random forest the trees are fitted in parallel with them being independent of each

other. Gradient boosted trees on the other hand is a greedy algorithm that trains each next

tree to better classify the samples with which the previous ones had trouble with.

The algorithm can be described in the following steps:

1. train a weak learner on the data;
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2. calculate the loss and reweigh the examples by giving extra weight to examples

that the current ensemble has trouble with;

3. train a new learner on the newly weighed examples;

4. add the tree to the ensemble and repeat from step 2 until instructed.

The algorithm is prone to over fitting so it is important to limit the individual trees to a

very small size. It is not uncommon for the individual trees to have two leaves.

As  a  gradient  boosting  method  this  algorithm  introduces  learning  rate  as  an  extra

parameter, but it is still comparatively simple to use and serves as a comparison to the

effectiveness of random forest.
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3 Results

3.1 Topic modeling

To process the data with both LDA and NMF it was transformed to a matrix where each

row corresponds to a day for a patient and every column is a service. There are as many

columns as there are services provided under the diagnosis, which are 1020 for C50 and

1628 for J44. An example is shown in  Table 4. The values in every cell correspond to the

number of times the service was provided during this day to this specific patient.

For finding the number of topics suitable for LDA perplexity was used with cross

validation as a measure of goodness. For this the dataset was separated into two while

keeping the test set size at 10% of the whole data. We tested various numbers of topics

and recorded the perplexity measures, shown on Figure 8. The results of the experiment

were similar for both the patients with the diagnosis C50 and J44 and 10 topics were

chosen as the optimal number.

After fitting the topics, a distribution over these topics was assigned to every visit by

every patient. For most of the visits the best topic could be easily chosen, but when no

clearly dominant  topic could be found a label of “no-topic” was assigned to the visit.
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Table 4:  Table showing an example of how the data was formatted for NMF and LDA.

service_code pat_id kpv 5 7 ... 923O 999O
0 * * 0 0 ... 0 0
1 * * 0 0 ... 0 0
2 * * 0 0 ... 0 0
3 * * 0 0 ... 0 0
4 * * 0 0 ... 0 0



For NMF an intuitive number of 200 components was chosen, the rationale being that

every component would most likely contain 5-10 services and 200 components would

satisfy that condition for both datasets.

3.2 Clustering

As two different preprocessing methods are used on the data, the structure of the HMMs

must correspondingly be different to accommodate that. In the case of LDA it is fairly

straightforward as every state in the HMM simply emits the main topic of the day or the

“no-topic” label if  there is none. As NMF produces are 200 values for each day, a a

multivariate gaussian HMM was used with 200 covariates.

To find the optimal number of hidden states H and number of models K, multiple values

for both were tested and BIC was calculated based on the log likelihood of the model. 
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Figure 9: A random selection of five traces over topics from the patients with diagnosis J44.
For each day a patient visited the doctor a topic is recorded. “10” corresponds to the day

where no single topic could be selected.

Figure 8: The perplexity values at various n topics. The graph indicates that 10 topics

provides the most optimal results.



3.2.1 Choosing the parameters

The data sets in all cases were split 80/20 to training and test sets, model was trained on

the training set and then the log probability of the test set was found. This log-probability

was used to compute the BIC values shown on Figure 10. From the figures it is evident

that no conclusions about a suitable number of hidden states can be drawn from the BIC

values. The reason for the apparent linear growth here is that the complexity penalty

component of BIC completely overpowers the increase in the likelihood of the model. 

This is not uncommon when using BIC as the penalty term is dependent on the number of

any chosen parameters. The increase in the likelihood of the model may be proportional

to  the  increase  in  complexity  induced  by  the  larger  number  of  parameters  ,  but  the

constant in front of the penalty term may cause it to completely drown it.

As such, the log likelihoods themselves were investigated and the corresponding plots

can be seen on Figure  11.  As expected,  the increase in  log-likelihoods is  very small

indeed and completely nonexistent in the cases where NMF was used a preprocessing

method  (There  is  a  difference  in  the  sixth  decimal).  The  result  from  NMF  is  very
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Figure 10: The BIC values of the clusterings of the two datasets using two different
preprocessing methods. The penalty of BIC completely overpowers the increase in the

model likelihood and no conclusions can be made about the hidden state selection.



unexpected  and  the  most  prudent  conclusion  to  draw  from these  results  is  that  our

approach using NMF is not valid here and we should not proceed with this method. As

such, going forward only the results from LDA based clustering is reported. 40 and 20

hidden states were chosen for models for J44 and C50 respectively.

The number of models  k was chosen in a similar manner to the number of states. The

experiments were with the traces from LDA using various values of k. The results can be

seen on Figure 12. Judging from the plots 3 models were used for both diagnoses.
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Figure 11: The log likelihoods of the models at different numbers of hidden states.

Figure 12: The log likelihoods of the different numbers of models.



3.2.2 Visualizing the clusters

To visualize the clusters a number of parameters of interest were chosen by which to

compare the clusterings. A number of diagnosis end codes were chosen, shown in  Table

5. There are a total of 16 different end codes and the basis of this selection was that all

other codes concern directing the patient to another doctor or setting the next visit and are

thus not indicative of the result of the case.

Besides the codes also the length of the treatment, the number of services provided to a

patient  and  the  average  cost  of  the  whole  treatment  were  selected  as  attributes  for

comparison.  The  described  attributes  make  the  assumption  that  the  case  has  already

found its end so only cases that have a beginning and an end in the time frame the data is

available for were used for computing these attributes.

Table  5: Table showing the reasons for closing a treatment bill and the corresponding
codes.

Code Description
9 Left on own volition
10 Death
11 Other reasons
15 Convalescence

The resulting plots for both COPD and breast cancer can be seen on Figures 13 and 14

respectively, the cluster sizes for both diagnoses are shown in  Table 6. The clusters are

fairly distinctive in regards to the measured parameters and strikingly the clustering for

both diagnoses look very similar with regards to the cost/duration/length scale.

For J44 there is a clear separation of difficult  and simple cases as there are almost no

cases resulting in death in the first cluster, the cases are far shorter, cheaper and require

less services on average. In contrast the proportion of cases resulting in death in relation
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Table  6: Table showing the number of traces in each cluster for both diagnoses. The
columns marked “total” display the total number of available traces assigned to each
cluster. The marking “full traces” denotes the number of traces assigned to the specified
cluster that both begin and end in the time frame for which data is available.

Diagnosis J44 total C50 total J44 full traces C50 full traces

Cluster 1 16 529 4 090 5 232 307

Cluster 2 2 872 3 544 246 156

Cluster 3 10 763 2 657 1 508 168
to convalescence changes drastically for the other two clusters. The other two clusters

could be described as the difficult with the second one, while far smaller than the other

two clusters, contains the most fatal cases with the ratio of convalescence to death being

turned on its  head in  relation to the other  two clusters and the costs  skyrocketing to

several times that of the cases in other clusters.
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Figure 13: Figure visualizing the clustering of traces with diagnosis “J44”. 

The left hand plot shows the distribution over the possible end codes with the y-scale
showing the proportion of all cases.

The right hand plot shows the distribution over the chosen parameters. The left y-scale
shows the average duration in days and average length in number of services while the

right y-scale shows the average cost in euros.



The clusters are similar in the case of C50 in the sense that cluster 1 contains the “simpler

cases”  with  proportionally  fewer  cases  resulting  with  death  and  cases  being  cheaper

overall and requiring less services on average, while the other two clusters represent the

more  difficult  scenarios.  There  is  a  significant  difference  though,  in  the  two clusters

representing the more difficult  cases. The most obvious is that all  the clusters are of

similar size so that if in the case of J44 the worst case was more of a rare situation, in the

case of C50, the number of cases in cluster 2 even exceed the number of cases in the less

sever cluster 3. 

For both diagnoses there is a high number of cases ending for “other reasons”. For a

person outside the domain, this result is difficult to interpret, but could provide some

useful insight to a person with more knowledge about the actual treatment procedure of

the illness as for some illnesses there may be a few more common reasons for ending

treatment with this specific code.
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Figure 14: Figure visualizing the clustering of traces with diagnosis “C50”.

The lefthand plot shows the distribution over the possible end codes with the y-scale
showing the proportion of all cases.

The righthand plot shows the distribution over the chosen parameters. The left y-scale
shows the average duration in days and average length in number of services while the

right y-scale shows the average cost in euros.



3.3 Discovering the clinical pathways

Measuring the parameters as in the previous section gives us an idea of the differences

between the clusters, but does little to explain the cause of the differences. Here process

discovery is used to discover the underlying clinical pathways that correspond to each

previously found cluster.

Even though clustering the traces drastically reduces the number of unique services that

would be used to build the models, which makes the models a lot easier to understand,

there is room for improvement in reducing the number of services. This is especially true

in the more difficult cases as the reason why these cases take so much more time and

money  to  treat  and  have  a  higher  chance  of  not  ending  with  recovery,  are  the

complications accompanying the main diagnosis. 

The  complications  are  myriad  and  range  from infections  to  cancer.  These  additional

conditions require a host of services to treat and increase the complexity of the pathway.

Simplifying  this  is  a  difficult  matter  as  the  aim  is  to  produce  a  pathway  that  is

informative, but at the same time not overwhelming. 

Attempts were made at filtering the services using rules, combining services based on

similarity and using the Fuzzy Miner algorithm to automatically abstract away clusters of

services.

3.3.1 Fuzzy Miner
At first, attempts were made at using Fuzzy Miner on the logs as they were. For testing

purposes we chose cluster 3 from the J44 cases as this had the largest number of distinct

events – 422. 

There are two principal software packages used for process mining tasks that have Fuzzy

Miner implemented: ProM  (Verbeek, Buijs, van Dongen, & van der Aalst,  2010) and

Disco  (Fluxicon, 2017). Here Disco has been chosen. Disco allows setting parameters

that effect the work of the Fuzzy Miner algorithm, such as the percentage of events and

connecting  edges  to  display.  When  displaying  all  the  events  the  resulting  model  is

unreadable, as shown on Figure 15. The reasonable level at which to show the model is

very dependent on the logs and thus on the diagnosis and cluster. This makes this part of

the process hard to automate. A reasonably sized model for obtaining an overview of the

process  is  found  at  2.6%  of  the  traces,  shown  on  Figure  16 .  This  looks  more
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comprehensible,  but  this  most  likely  removes important  data,  as  the  most  significant

edges that lead to closing a case start from triage and “Eriarsti korduv vastuvõtt” - repeat

reception by a specialist doctor.   

To alleviate this problem a set of rules were devised, shown in  Table 7, by looking at the

set of 422 services to merge services where the nuances may not be that important for a

general understanding of the clinical pathway underlying the care given to patients in a

cluster. Such merging is not ideal as it requires human input, but as the hierarchy for the

services that is available in the data is very limited this was explored as an option. As a

more easily automatable steps we also removed all events pertaining to transportation and
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Figure 16: A process model found using Disco. Nodes limited to 2.6% edges to just the
most significant ones.

Figure 15: Figure showing the process model used in cluster 3 of diagnosis J44 with all
events and edges displayed. This is what is called a “spaghetti model” in the field of

process modeling.



reception and events that occur in less than 1% of the cases as these are most likely not

representable of the cluster under investigation.

The resulting model discovered after such simplification is shown on Figure 19.

Although not evaluated by and expert in the field the model looks fairly comprehensible

and informative about what happens to patients over the course of the treatment such as

complications that develop over the course of the treatment, likely reasons for admission

and the events prior to the end of the case.

Using  this  method  models  were  found  for  all  the  clusters  for  both  diagnoses.  The

pathways for patients with diagnosis J44 are shown on Figures  17,  18 and  19 and the

pathways for patients with diagnosis C50 are shown on Figures 20, 21, 22 and 23.

As the number of services that were merged or pruned differed with the clusters,  the

parameters  for  the  Fuzzy  Miner  algorithm  were  separately  tuned  for  each  graph

generated. 

Table  7: Table showing the rules generated by hand to merge similar services in the
treatment logs.

Source Target

Contains “Anesteesia” ANESTEESIA

Anything with service  category  is  “VERI
JA VERETOOTED”

LAB

Contains “Recovery” RECOVERY

Contains “Intensiivravi” INTENSIVE CARE

Contains “taastusravi” REHABILITATION

Contains “kemoteraapiakuur” CHEMO

Contains “kasvaja” and “operatsioon” TUMOR SURGERY

Contains “triaaž” TRIAGE

Contains “infektsioon” or “nakkus” INFECTION

35



36

Figure 17: Clinical pathway for cluster 1 of diagnosis J44 on logs filtered with manually
defined rules. There is a seemingly separated segment consisting of tuberculosis and a
lung disease on the right side of the graph. This is in fact connected to the rest of the
process, but fuzzy miner deemed the connecting edges insignificant and these are thus

removed from the graph.

In this pathway the main pathways seem to be centered on cardiology and cancer besides
COPD itself.
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Figure 18: Clinical pathway for cluster 2 of diagnosis J44 on logs filtered with manually
defined rules.

The pathways for this cluster are noticeably more complex, with more complications
related to respiratory organs and heart. Interestingly, cancer seems to have much less

importance in this cluster.
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Figure 19: Clinical pathway for cluster 3 of diagnosis J44 on logs filtered with manually
defined rules.

Principal complications seem to be the same as in cluster 2.
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Figure 20: Clinical pathway for cluster 1 of diagnosis C50 on logs filtered with manually
defined rules. This cluster has the proportionally highest survivability and we can see
from the model that the paths don't lead back meaning that recurrence of the cancer is

rare among these patients.
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Figure 21: Clinical pathway for cluster 2 of diagnosis C50 on logs filtered with manually
defined rules. A closeup of the events where the text is too small to read is shown on

figure 23.

Here a rather surprisingly clear pathway can be seen as the patients go through surgery
then chemotherapy and may or may not go through such repeated cycles depending on

the possible recurrence of the cancer.
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Figure 22: Clinical pathway for cluster 3 of diagnosis C50 on logs filtered with manually
defined rules.  A closeup of the events where the text is too small to read is shown on

figure 23.

Similar in nature to cluster 2 with the additional unspecified complications in the field of
internal medicine.
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Figure 23: A closeup of a bundle of events from the clinical pathway graph for clusters 2
and 3 of diagnosis C50.

The closeup is a set of services concerning partial or total mastectomy.



3.4 Predicting illness and type of treatment
The predictions are made in two steps:

1. Predict the number of people getting the illness.

2. Predict the the treatment these patients are going to receive

If these two steps are reasonably accurate, the results could be used to predict the likely

number of future patients and estimate the burden they will  place on the health care

system through costs and treatment requirements. 

For the people that  already have the illness,  defining their  treatment  history is  fairly

straightforward: everything preceding the initial diagnosis of interest is treatment history.

This is not possible for people who never got ill during the time range available for this

research. To create a reasonable treatment history for these patients, a limit was imposed

at 1st January 2015 and everything preceding that date was considered treatment history.

The whole known treatment history could not be used for these patients, as they might

have fallen ill instantly after the point where data is available. So the assumption was

made that if they have not fallen ill after at 1st January 2015, then they can be considered

healthy people for the purposes of predicting the illnesses. The treatment histories found

using this method were combined with the histories of the verified ill patients found as

described previously. 

To build the feature vector for each patient all previous diagnoses including secondary

diagnoses,  specialty  codes  of  the  doctors  and  provided  procedures  were  extracted  in

addition to the age and sex of the patient. These were then processed in various ways.

As the diagnoses are fairly specific under ICD-10, the number of different diagnoses was

too large for practical purposes. As ICD-10 is hierarchical structure it is possible to group

the diagnoses, but to control loss of information singular value decomposition (SVD)

(Lange,  2010) was used as  dimensionality  reduction  instead.  For  that  a  vector  of  all

possible  diagnoses was composed for  every patient,  TF-IDF was performed on these

vectors, the resulting matrix was normalized and finally SVD applied to this matrix. On

Figure 24 the cumulative explained variance of these components is shown. Judging from

these images the first 200 components were used as features.
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All  services  provided to  a  patient  during one day were considered a  transaction and

frequent  item sets  were  mined from these  transactions.  For  that  FPgrowth algorithm

(Srikant & Agrawal, 1996) was used with parameters shown in  Table 8. 

Table  8: FPgrowth parameters.  Only sets if  items containing at least two items were
considered and were considered frequent only if the item set was in at least 2% of all
transactions being mined.

minimum number of items 2

minimum relative support 2%

Then  for  each  patient  the  frequencies  of  all  mined  item  sets  were  found  and  these

frequencies were used as features.

The specialty codes of the doctors were counted and used “as is” without any further

processing. 

3.4.1 Predicting the number of people getting the illness

Predicting  the  people  who  will  get  ill  from  the  whole  population  is  a  complicated

classification problem as the classes are very uneven. There are in total more than 1.3

million patients so the number of actual patients is two orders of magnitude smaller in
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Figure 24: Cumulative explained variance of the components of the SVD performed on 
the diagnoses. 200 component point is marked as the one chosen.



case of both diagnoses. To mitigate this issue the classes were weighed while training the

random forest classifier.

The results of the classification for both diagnoses using both random forest classifier and

gradient boosted trees are shown on Figures 25, 26, 27 and 28 and the metrics from the

classification are shown in  Table 9. As the classes are highly imbalanced, the accuracy

score  is  rather  meaningless,  but  the  confusion  matrices  and  ROC  curves  are  more

informative and indicate that the classifier is far above random.

We see that for both diagnoses the model classifies roughly half of the people who get ill

as healthy, which is an issue, but it never wrongly classifies a healthy person as ill. For he

purposes  of  this  work,  this  means  that  the  classifier  will  strongly  underestimate  the

number of people that will get sick in the future.

What is very surprising is the fact that both algorithms are more accurate when predicting

breast cancer. With little specialist knowledge in the medical field, one would assume that

predicting breast cancer would be more difficult than COPD and this does hold true when

using  random  forest  classifiers,  but  the  difference  evaporates  when  using  gradient

boosted trees.
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Figure 25: Confusion matrices of predicting the likelihood of people getting ill using
random forest classifier. Graphs for both diagnoses J44 and C50 are shown. The

matrices are normalized over rows.



Table 9: Metrics of the classification of the likelihood of people getting ill. As the classes
are highly unbalanced the accuracy metric is not very informative and the others are
slightly skewed as well.

J44 - RFC J44 - XGB C50 - RFC C50 - XGB

Accuracy 99.07112% 99.29104% 99.61377% 99.75317%

Recall 89.04961% 91.29143% 84.2341% 90.72961%

F1 86.667% 87.21789% 77.23235% 85.78549%
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Figure 26: ROC curves for the prediction of likelihood of people getting ill using random
forest classifier. Graphs for both diagnoses J44 and C50 are shown.

Figure 27: Confusion matrices of predicting the likelihood of people getting ill using
random forest classifier. Graphs for both diagnoses J44 and C50 are shown. The

matrices are normalized over rows.
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Figure 28: ROC curves for the prediction of likelihood of people getting ill using 
gradient boosted trees. Graphs for both diagnoses J44 and C50 are shown.



We also looked at the feature importances for both diagnoses, which are shown on Figure

29 while the corresponding legend for the service names are shown in Table 10. It can be

observed that age plays a far more important role in predicting J44. Also interesting to

note is that services provided pay an important part only for predicting J44 while these
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Figure 29: Graphs showing the feature importances for the initial classification task of
categorizing how many people will get sick overall. The services marked with “SVD” are
the features that were found when performing LSA on the diagnosis vectors built from the

treatment histories of the patients. The legend for mapping the service codes to service
names is shown in Table 10



are relatively irrelevant for predicting C50. The specialty of the doctor only shows up in

the most relevant 40 features for predicting C50.

The feature importance graph also shows us that while previous diagnoses play little part

in predicting J44, most of the services seem to be tests and other procedures related to

assessment  of  the  patient's  health.  This  might  indicate  that  while  the  diagnoses

themselves play a smaller part, the guesses of the medical practitioner, reflected in what

they test for, are more important.
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Table 10: Table for mapping service codes to service names. Accompanies Figure 29.
0 Kreatiniin, uurea, kusihape*
1 Eriarsti esmane vastuvõtt
2 Ensüümid: ALP, ASAT, ALAT, LDH, CK, GGT, CK-Mba, alfa-amülaas*

3
4 Eriarsti korduv vastuvõtt
6 C-reaktiivne valk
7 Naatrium, kaalium, kaltsium*
11 Elektrokardiograafia koos kompuuteranalüüsiga
12 Kolesterooli fraktsioonid: HDL, LDL*
13 Bilirubiin, konjugeeritud bilirubiin*
14 Röntgeniülesvõte rindkere piirkonnast (üks ülesvõte)
14 Röntgeniülesvõte rindkere piirkonnast (üks ülesvõte)
16 Bioloogilise materjali aeroobne külv põhisöötme(te)le
18 Uriini sademe mikroskoopiline uuring
25 Kompuutertomograafia natiivis (iga järgmine piirkond)
29 Täismahus ehhokardiograafia
32 Kompuutertomograafia kontrastaine 10 ml
34 Silmapõhja uuring kolmepeegliläätse või Volke luubiga
35 Kompuutertomograafia natiivis
35 Kompuutertomograafia natiivis
37 Mikroorganismi samastamine üksikute biokeemiliste või immunoloogiliste reaktsioonide abil
38 Spirograafia
39 Ravimitundlikkuse määramine diskdifusiooni meetodil kuni kuue preparaadi suhtes
41 Kompuutertomograafia kontrastainega
42 Kompuutertomograafia kontrastainega (iga järgmine piirkond)
44 Järelravi
48 Silmade refraktsiooni uurimine autorefraktomeetri abil
52 Röntgeniülesvõte alajäsemetest (kaks ülesvõtet)
63 Diagnostilisel või ravi eesmärgil organi/õõne punktsioon
65 Bioloogilise materjali aeroobne külv lisasöötme(te)le
66 Röntgeniülesvõte lülisamba piirkonnast (kaks ülesvõtet)
70 Bronhodilataatortest
71 Otomikroskoopia

Aneemia-, südame-, kasvajamarkerite määramine, haigustekitajate uuringud, antikehade, 
vitamiinide ja ensüümide määramine immuunmeetodil*



3.4.2 Predicting type of treatment

The same features were used to predict the distribution of patients into clusters. As with

the previous classification task the classes are again unbalanced, but the situation is a lot

less severe than was in the case of predicting the number of people who would get sick at

all. The largest difference in size is between clusters 1 and 2 of J44, with the number of

patients in either being 16529 and 2872 respectively. The results from the classification

are shown on Figures 30 and 31, the classifier metrics can be found in  Table . Classes

were again weighed when using random forest classifier, but the prediction accuracy for

the second cluster of J44 was still lacking.

In the case of C50 classifying patients in the third cluster seems to be very difficult which

corresponds well to the clinical pathways shown earlier, where the differences between

the first and second cluster were rather clear, but the differences between the third and

fourth were hard to see. 

The fact that the classifier seems to prefer clustering the cases between two clusters rather

than the three we have,  may indicate  that  our  choice of  clusters  may not  have  been

appropriate. Especially as for both illnesses one of the clusters   It should be kept in mind

that in this work very high level data is used – no lab results, other measurements or

treatment outcomes are used. It seems reasonable to hypothesize that given more precise

data about the treatment the classification accuracy could be improved.
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Figure 30: Classification results using random forest classifier. The second and smallest
cluster is the most difficult to predict in the case of J44. 



Table  11: Metrics from both classifiers and diagnoses. RFC stands for random forest
classifier and XGB stands for gradient boosted trees. XGB gets slightly better results on
both diagnoses, especially at recall.

J44 - RFC J44 - XGB C50 - RFC C50 - XGB

Accuracy 67.78256% 68.54491% 52.71845% 55.92233%

Recall 48.87862% 50.18704% 46.83285% 52.83515%

F1 48.95388% 50.04882% 50.02193% 53.8613%

The feature importances were also extracted from the random forest classifier and the

most important 40 features are shown on Figure 32. The sets of services were coded as

the names are too long to reasonably graph and a legend for both diagnoses is presented

in  Table 12. 

For both diagnoses the most influential predictor by far is age, which is to be expected.

This is  especially  true for breast  cancer  where also surprisingly no feature related to

previous diagnoses even makes it onto the figure. Also most of the more important sets of

services previously provided to the patients, contain a mammography, and x-ray of the

chest or other related services.
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Figure 31: Classification results using gradient boosted trees. The results are better than
those from random forest classifier, but not very drastically and the weaknesses are the

same on both algorithms.



For COPD the other features have a bit more of significance and also most of the features

in  the  top40,  shown on the  figure  are  related  to  previous  diagnoses.  Here  the  more

relevant  sets  of services also contain a  visit  to  the doctor  and some service that was

performed during this visit. It serves as a nice sanity check that the sex of the patient is
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Figure 32: Feature importance plots when classifying patients into their respective
treatment clusters. The features marked with numbers are coded sets of services. The

legend for decoding the sets is shown in  Table 12.

The services marked with “SVD” are the features that were found when performing LSA
on the diagnosis vectors built from the treatment histories of the patients.



represented among the features of COPD while it is absent from the important features

for breast cancer.
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Table 12: Legend to use with the feature importance plots for both diagnoses shown on Figure 32. 
# C50 J44

0 Eriarsti esmane vastuvõtt

1 Kreatiniin, uurea, kusihape*
2 Kreatiniin, uurea, kusihape* C-reaktiivne valk

3 Naatrium, kaalium, kaltsium*
4 C-reaktiivne valk Eriarsti esmane vastuvõtt
5 Eriarsti korduv vastuvõtt Naatrium, kaalium, kaltsium*
6 Bilirubiin, konjugeeritud bilirubiin* Elektrokardiograafia koos kompuuteranalüüsiga

7 Eriarsti korduv vastuvõtt
8 Elektrokardiograafia koos kompuuteranalüüsiga Bilirubiin, konjugeeritud bilirubiin*
9 Röntgeniülesvõte rindkere piirkonnast (üks ülesvõte) Röntgeniülesvõte rindkere piirkonnast (üks ülesvõte)

10 Rinnanäärme ultraheliuuring (üks rind)

11

12 Hüübimisjada sõeluuringud: PT, APTT*

13 Mammograafia, üks rinnanääre kahes sihis

14 Kolesterooli fraktsioonid: HDL, LDL*
15 Pehmete kudede ultraheliuuring (üks piirkond) Kolesterool, triglütseriidid*
16 Vaginaalne ultraheliuuring Spirograafia

17 Bronhodilataatortest

18 Kompuutertomograafia kontrastaine 10 ml

19 Kolesterool, triglütseriidid*
20 Silmapõhja uuring kolmepeegliläätse või Volke luubiga Bioloogilise materjali aeroobne külv põhisöötme(te)le

21 Kompuutertomograafia natiivis (iga järgmine piirkond)
22 Iga järgnev jämenõelabiopsia Kompuutertomograafia kontrastainega
23 Kompuutertomograafia kontrastainega Glükohemoglobiin

24 Silmapõhja uuring kolmepeegliläätse või Volke luubiga
25 Silmade refraktsiooni uurimine autorefraktomeetri abil Silmade refraktsiooni uurimine autorefraktomeetri abil

26 Kompuutertomograafia natiivis
27 Kompuutertomograafia kontrastaine 10 ml Uriini sademe mikroskoopiline uuring
28 Kompuutertomograafia natiivis Raud, magneesium, fosfaat*
29 Kompuutertomograafia natiivis (iga järgmine piirkond) Sisehaigused

30 -

31 -

32 -
33 - Kõhu- ja vaagnapiirkonna ultraheliuuring

Aneemia-, südame-, kasvajamarkerite määramine, 
haigustekitajate uuringud, antikehade, vitamiinide ja 
ensüümide määramine immuunmeetodil*

Ensüümid: ALP, ASAT, ALAT, LDH, CK, GGT, CK-Mba, 
alfa-amülaas*

Ensüümid: ALP, ASAT, ALAT, LDH, CK, GGT, CK-Mba, 
alfa-amülaas*

Aneemia-, südame-, kasvajamarkerite määramine, 
haigustekitajate uuringud, antikehade, vitamiinide ja 
ensüümide määramine immuunmeetodil*

Sõeluuringud, hormoonuuringud, haigustekitajate 
uuringud immuunmeetodil*

Jämenõelabiopsia või punktsioon ultraheli või röntgeni 
kontrolli all

Harvaesinevad ja kinnitavad uuringud, erakorralised 
analüüsid immuunmeetodil*

AB0-veregrupi ja Rh(D) kinnitav määramine (AB0-
grupp määratud nii otsese kui ka pöördreaktsiooniga)

Fibriini laguproduktide uuringud: fibriini D-dimeerid, 
fibriini monomeerid*

AB0-veregrupi määramine patsiendi identifitseerimisel 
või erütrokomponentide kontrollil

Erütrotsütaarsete antikehade sõeluuring kahe 
erütrotsüüdiga
Sõeluuringud, hormoonuuringud, haigustekitajate 
uuringud immuunmeetodil*

Kompuutertomograafia kontrastainega (iga järgmine 
piirkond)

Papanicolaou meetodil tehtud ja skriinija hinnatud 
günekotsütoloogiline uuring

Kompuutertomograafia kontrastainega (iga järgmine 
piirkond)

Hematoksüliin-eosiin värvinguga pahaloomulisuse 
diferentseeringuga biopsiamaterjali uuring (1 blokk)

Erütrotsütaarsete antikehade sõeluuring kahe 
erütrotsüüdiga
AB0-veregrupi ja Rh(D) kinnitav määramine (AB0-grupp 
määratud nii otsese kui ka pöördreaktsiooniga)
Mikroorganismi samastamine üksikute biokeemiliste või 
immunoloogiliste reaktsioonide abil



4 Discussion and future work

4.1  Preprocessing the data
In an effort to create a framework for population based prediction of costs and

other parameters related to the treatment a number of approaches were used for data

processing, clustering, process discovery and classification.

Due to the specifics of the data at hand some level of preprocessing was required and

LDA and NMF were chosen for this purpose. Different approaches were used for both

preprocessing methods and from the results it is observable that of these two only LDA

approach seems to give meaningful results. It should be noted though, that not all the

possible uses of NMF, discussed in the methods section, were attempted. It is possible

that some of these approaches, such as treating each day as a fixed size combination of

sets of services, would give better results. It could also be beneficial to look at other

dimensionality reduction or embedding methods used for example in text analysis.

4.2  Clustering
HMMs were used as the models for clustering with the rationale of taking into account

the sequential information about the treatment. This approach seems to work fairly well

at uncovering the underlying treatment procedures as is suggested by the characterization

of the clusters by our chosen parameters on Figures 13 and 14.  This also supported by

the reasonable predictability of the clusters and the discovered process models which are

clearly differentiable.

But  it  is  clear  that  input  from  a  domain  expert  would  be  of  great  help  here.  An

experienced practitioner would most likely be acquainted with the typical cases for an

illness and this knowledge could be used either as a prior to the number of treatment

groups to be inferred from the data or as a validation method for the clustering method.

4.3  Process discovery
The  expert  knowledge  would  also  be  of  great  use  in  generating  and  describing  the

process models. On a high level these can be to some extent understood without expert
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knowledge, but as shown on the figures in the results section, this requires abstracting

away some details both with rules and the Fuzzy Miner algorithm.

An expert  could  be  of  great  use here  in  two ways.  Firstly,  their  input  would enable

creation of better rules or even a hierarchy for merging the events to a manageable level.

Secondly they would better understand the nuances of the treatment shown on a process

model and could give a better description to it.  Better understanding of the predicted

models is critical if they are to provide a support for decision making with regards to

health care spending such as directing resources to prevention.

4.4  Predicting
The section of this work dealing with predictions is separated into to parts: predicting

falling ill and predicting the type of treatment received. The results from both sections are

notable, especially considering the type of data used in this work: high level billing data

with no information about test results or other more detailed parameters.

The  engineered  features  in  the  form  of  components  from  performing  SVD  on  the

diagnoses and theitem sets mined from the provided services, worked reasonably well.

From the  results  it  can  be  seen  that  previously  provided  services  are  a  much  better

predictor of J44 than for C50 for which most of the predictive power lies in previous

diagnoses and the specialties of the doctors visited. Also of notice is that C50 can be

predicted almost the same accuracy as J44, which is surprising as one would expect that

cancer is a more difficult to predict illness compared to a chronic disease. This may be

the case for only this type of cancer as breast cancer is often screened for and information

about the screening could make prediction of breast cancer much easier than others.

The  prediction  accuracy  was  not  as  high  when  predicting  the  treatment  type  of  the

patients.  This  may  result  from  multiple  factors  such  as  less  than  ideal  clustering,

inherently difficult classification problem and too high level data. The latter issue could

be  improved  by  more  thorough  feature  engineering  and  investigating  what  other

attributes could be gained from the data, but at one point there would be a limit to the

accuracy we can get from billing data. The possible advantages of more detailed data can

be seen from the fact that a lot of the item sets that have high predictive power include a

type of screening or testing. It seems likely that including the result of these screenings

would improve the results.

55



It could also be of interest to make an attempt at unpacking the SVD components to get a

better understanding into what diagnoses in the medical history could be important in

assessing the risk of a patient.
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Conclusion
The objective of this work was to create a framework for population based prediction of

costs and other parameters related to the treatment. An important problem in the context

of  constantly  rising  health  care  costs  and  diminishing  working  population.  For  that

purpose it was necessary to develop a method for both discovering the various treatment

types from the data and for predicting the number of people who are likely to become ill

and be treated according to each of these treatment types.  The work was done using

billing data from EHIF for the period of 2010-2017 and two diagnoses: C50 and J44,

were used as example diagnoses.

The results show that creating such a framework from this type of data is feasible. It is

possible to cluster these treatment processes and discover the likely underlying clinical

procedures. Although this process would most likely benefit from input from a domain

expert.

The results also show that it is possible to predict, with limited accuracy, the number of

people  likely  to  fall  ill  based  on  previous  treatment  history  and  little  background

information about the patient. The accuracy of these predictions is of course dependent

on the illness as some illnesses are more predictable from previous treatment history.

There are indications that given more granular data it would be possible to increase this

accuracy in a meaningful way.

Using such a framework could serve useful to planning resource allocation in health care

as it would provide information about the number of people receiving a certain kind of

treatment, what the treatment costs and how long it lasts on average and what services are

provided to the patients during their treatment. This could help in estimating the future

costs in health care and indicate the optimal prevention methods to which to allocate

resources.
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