UNIVERSITY OF TARTU

Institute of Computer Science
Computer Science Curriculum

Vitalii Zakharov

Framework for extracting and solving
combination puzzles

Master’s Thesis (30 ECTS)

Supervisor:  Artjom Lind, MSc

Tartu 2017



Framework for extracting and solving combination puzzles

Abstract

This thesis describes and investigates how computer vision algorithms and stereo
vision algorithms may be applied to the problem of object detection. In particular,
if computer vision can aid on puzzle solving. The idea to use computer application
for puzzle solving came from the fact that all solution techniques are algorithms
in the end. This fact leads to the conclusion that algorithms are well solved by
machines, for instance, a machine requires milliseconds to compute the solution
while a human can handle this in minutes or hours. Unfortunately, machines
cannot see puzzles from human perspective thus cannot analyze them. Hence, the
contribution of this thesis is to study different computer vision approaches from
non-related solutions applied to the problem of translating the physical puzzle
model into the abstract structure that can be understood and solved by a machine.

Currently, there is a little written on this subject, therefore, there is a great
chance to contribute. This is achieved through empirical research represented
as a set of experiments in order to ensure which approaches are suitable. To
accomplish these goals huge amount of computer vision theory has been studied.
In addition, the relevance of real-time operations was taken into account. This
was manifested through the Different real-time Structure from Motion algorithms
(SLAM, PTAM) studies that were successfully applied for navigation or augmented
reality problems; however, none of them for object characteristics extraction.

This thesis examines how these different approaches can be applied to the given
problem to help inexperienced users solve the combination puzzles. Moreover, it
produces a side effect which is a possibility to track objects movement (rotation,
translation) that can be used for manipulating a rendered game puzzle and increase
interactivity and engagement of the user.

Keywords: combination puzzles, Rubik’s cube, feature detection, PTAM, DTAM,
SLAM, Tracking and Mapping, Structure from Motion, 3D reconstruction, Kalman
filter

CERCS: P170



Raamistik kombinatoorsete moistatuste tuvastamiseks ja la-
hendamiseks.

Kokkuvote

Selles t06s uuritakse kuidas arvuti ndgemisega seotud algoritme on voimalik ra-
kendada objektide tuvastuse probleemile. Tapsemalt, kas arvuti ndgemist on voi-
malik kasutada péaris maailma kombinatoorsete probleemide lahendamiseks. Idee
kasutada arvuti rakendust probleemide lahendamiseks tulenes téhelepanekust et
probleemide lahenduse protsessid on koik enamasti algoritmid. Sellest voib jérel-
dada, et arvutid sobivad algoritmiliste probleemide lahendamiseks paremini kui
inimesed, kellel voib sama iilesande peale kuluda kordades kauem. Siiski ei vaatle
arvutid probleeme samamoodi nagu inimesed ehk nad ei saa probleeme analiiiisida.
Niisiis selle t66 panuseks saab olema erinevate arvuti nagemise algoritmide uurimi-
ne, mille eesmérgiks on péaris maailma kombinatoorsete probleemide tolgendamine
abstraktseteks struktuurideks mida arvuti on voimeline moistma ning lahendama.

Praegu on antud valdkonnas vihe materiali, mis annab hea voimaluse panusta-
da sellesse valdkonda. Seda saavutatakse labi empiirilise uurimise testide kogumiku
kujul selleks, et veenduda millised ldhenemised on koige paremad. Nende eesmér-
kide saavutamiseks tootati 1abi suur hulk arvuti ndgemisega seotud materjale ning
teooriat. Lisaks voeti ka arvesse reaalaja toimingute tahtsus, mida voib ndaha eri-
nevate litkumisest struktuuri eraldavate algoritmide(SLAM, PTAM) 6pingutest,
mida hiljem edukalt kasutati navigatsiooni ja liitreaalsuse probleemide lahenda-
miseks. Siiski tuleb mainida, et neid algoritme ei kasutatud objektide omaduste
tuvastamiseks.

See t06 uurib, kuidas saab erinevaid lahenemisi kasutada selleks, et aidata va-
hekogenud kasutajaid kombinatoorsete péris maailma probleemide lahendamisel.
Lisaks tekib selle t66 tulemusena voimalus tuvastada objektide liikumist (trans-
latsioon, poorlemine), mida saab kasutada koos virutaalse probleemi mudeliga, et
parandada kasutaja kogemust.

Mairksonad: Kombinatoorsed probleemid, Rubiku kuubik, Huvipunktide tuvas-
tamine, PTAM, DTAM, SLAM, Jalgimine ning kaardistamine, Liikumisest struk-
tuuri eraldamine, 3D rekonstruktsioon, Kalmani filter

CERCS: P170



Acknowledgements

I would like to express my gratitude to the supervisor Artjom Lind as well as the
head of the "Distributed Systems" research group professor Eero Vainikko who
have guided me for this two long years through the complex world of computer
vision field of knowledge. This involved me in multiple research projects that were
the basis for the current thesis and I am really thankful to them.



Abbreviations and Acronyms

IoT Internet of Things

SfM Structure from Motion

OCR Object Character Recognition

PTAM Parallel Tracking and Mapping

SLAM Simultaneous Localization and Mapping
DTAM Dense Tracking and Mapping in real-time
API Application Programming Interface

ORB Oriented FAST and Rotated BRIEF
SURF Speeded Up Robust Features

SIFT Scale-Invariant Feature Transform

FAST Features from Accelerated Segment Test
BRIEF Binary Robust Independent Elementary Features
PnP Perspective-n-Point

kNN k-Nearest Neighbors

SVM Support Vector Machine

SVD Singular Value Decomposition

HSV Hue, saturation and value

RGB Red, green and blue

HPF High-Pass Filters

LPF Low-Pass Filters

FLANN Fast Library for Approximate Nearest Neighbors
CCA Connected Components Analysis

PCA Principal Components Analysis



POI Points of Interest

GLB Greatest Lower Bound
LUB Least Upper Bound

LoG Laplacian of Gaussian

DoG Difference of Gaussian

Ling Language-Integrated Query
GPU Graphics processing unit
CPU Central processing unit
JSON JavaScript Object Notation
OpenCV Open Computer Vision
EmguCV Emgu Computer Vision
OpenGL Open Graphics Library
OpenTK Open Toolkit library

FPS Frames Per Second



Contents

[_Abstractl

[ Kokkuvote]

|  Acknowledgements|

[  Abbreviations and Acronyms|

3

Road map| . . . . . . . . . . .

2 Background and Related work]

R.1

Computer vision| . . . . . . . . ... Lo

[2.1.1 Computer vision’s algorithmic theory| . . . . . . . . . .. ..
[2.1.1.1 Computer vision basics|. . . . . . . .. . ... ...

I2.l,l,2 :‘2!5:]“!254“)1!2“ t);!:)ls::il ..................

2.1.1.4 Tracking and Mapping| . . . . .. .. ... ... ..
[2.1.2  Computer vision’s libraries| . . . . . . . . ... .. ... ...
[2.1.2.1  OpenCvSharp|. . . . . ... ... ... ... ....
2.1.2.2 EmguCV| . . . ... ... ... ...

3  Experiments|

B.1

Sudoku experiment| . . . . . .. ...

3.1.1 Detection and Extractionl . . . ... .. .. ... .. ....

[3.1.3 Flooding| . . . . . ... ... ... ...
[3.1.4  Segmentationl . . . . .. ...
[3.1.5  Optical Character Recognition|. . . . . . . . ... ... ...
I;illl(i !:glllg:lll:ii!!lll ----------------------------

B2

Rubiks cube lines experiment| . . . . . . ... ... ... ..

3.2.1 Contour and corner detectionl . . . . . ... ... ... ...

[3.2.3  Transforming Image|] . . . . . . . . ... ... ... ... ..
[3.2.4  Identifying unique faces| . . . . . . . .. ... .. ... ...

10
11

12
12
12
12
29
32
34
38
38
39
41
42
46



[3.3  Rubiks cube plane intersection-experiment| . . . . . . . . . ... ..

[3.3.1 Bootstrapping| . . . . . . . ... ... oL

[3.3.2 lracking| . . . . . . ...

[References|

[  Appendices|
[ Licensel

70

73

74



1 Introduction

Nowadays computer vision is a widely used technology. It has started developing
since the late 1960s but a real leap into the future has been done in 1990s, when
the algorithms of 1960s got efficient implementations and were widely deployed
due to the technical progress of 1990s. On the other side, hardware world was
rapidly evolving which resulted to the current situation in computer vision field of
research. Today the level of development (Internet of Things ([oT]) devices, smart
phones, tablets and etc.) allow to integrate computer vision tightly into humans
life. There can be enormous amount of examples like parking systems when there
is a camera mounted on a barrier at an entrance of a parking lot and a car number
is recognized with this camera to decide whether the barrier will be opened or not;
cameras mounted on the roads for catching traffic violations; OCR technologies for
analyzing text on images which allows to take a picture of a document and receive
a typed version of it without typing by hand; applications for finding pedestrians
on a road; applications for face recognition, they help to find criminals in the
streets, airports or any public place where cameras are mounted; this list can be
almost infinite.

The demand for these technologies by society motivates researches to develop
new techniques, improve algorithms that already exist and were in use for the past
decade. The previous decade has changed the world drastically, there have been
created dozens of new concepts like social media, video platforms, 3d printing,
cameras in mobile phones and etc. All of these have made a great influence on
a human life. People’s appetite is growing significantly and therefore new enter-
tainment systems appear. Microsoft created Kinect, Sony has Move, Nintendo has
Remote Plus and such kind of tools are based on computer vision however the
technologies beneath them are not ideal. they need to gather a lot of data with a
good quality, proceed complex computations and still the result is not always as
good as expected. Taking into account these facts, there was a motivation to cre-
ate new algorithms and to make attempts for obtaining as much data as possible
of existing hardware.

1.1 Problem statement

Tools mentioned above allow to capture objects movements, recognize patterns
and etc. With their help it is possible to analyze density of an image, create
a 3d reconstruction, control game objects with our hands moving, shaking and
many other inter-activities became real. By looking closer at Kinect and Move it
is clearly seen that they are just an expensive set of sensors for computer vision.
In addition to multiple cameras they have infrared sensors, color sensors, depth
sensors, microphones and etc. All these sets of sensors allow gathering a huge



amount of data. From this perspective, even the simplest algorithms may provide
quite a good result. In contrast, if we do not have such an expensive hardware the
algorithmic part takes the leading role.

There are dozens of different algorithms already invented, some of them are
applicable to the nowadays situations and some of them need an improvement.
Algorithms could have specific purpose at the beginning but with a time they
might be applied to other fields as well as becoming a real breakthrough there.
This thesis will focus on experiments with the algorithms that aim at achieving the
same result as with Kinect or another expensive hardware while having a simple
monocular camera. These experiments are needed for understanding whether it
is possible to build a solution for successful tracking of objects and reflecting all
the changes (rotations, translations) from the real object onto its virtual model
(mapping) on a computer. All existing algorithms have different purposes and
can’t be easily applied to the mentioned problem out of the box.

Towards this end, main research goals of this thesis are:

1. Analyze every existing algorithm that can be applied to this problem.

2. Take the parts of the theory beneath those algorithms and combine them
together.

3. Design a new approach for a mentioned problem based on the main seeds of
the already existing algorithms.

1.2 Contributions

Methodology of this thesis is so called empirical research and it targets to achieve
next goals:

e Examine feature detection methods in computer vision.
e Examine feature classification methods in computer vision.

e Examine theory of stereovision (camera calibration, epipolar geometry, tri-
angulation, pose estimation) in computer vision.

e Analyze theory beneath "Structure from Motion" approach.
e Analyze theory beneath "Tracking and Mapping" approaches.

e Build a framework for tracking and recognizing objects using monocular
camera. Since Rubik’s cube was picked as a simple shape object, using
captured data it will be reconstructed and solved.

10



1.3 Road map

The rest of the master thesis has the following chapters:

Chapter [2 Presents an overview of all the related theory in computer vision:
basic theory as feature detection/classification, basics of stereo vision on example
if a camera calibration, "Structure from Motion" concept overview, "Tracking and
Mapping" concept and its derivatives overview, Kalman filter explanations.

Chapter Contains overview of all experiments with algorithms and their
implementations from the Chapter [2| Includes descriptions of test cases, used
approaches, used ready-implementations or self written ones. Covers testing and
validating results.

Chapter [4 Covers a solution of the mentioned problem based on the results
of the experiments. Self written PTAM based approach covered and reasoned.
Results are validated, pros and cons are presented.

Chapter [5} Overviews the results of the thesis and perspectives of designed
approach.

11



2 Background and Related work

This chapter describes theoretical overview that was done in order to gain enough
knowledge for further applying it to the stated problem.

2.1 Computer vision

The following text is the overview of computer vision algorithms theoretical low-
down. The following material covers theory from the simple manipulation with
digital images, (for instance, blurring) to the complex theory of stereo vision and
Structure from Motion problem.

2.1.1 Computer vision’s algorithmic theory

This subsection covers theoretical material related to the computer vision field of
knowledge.

2.1.1.1 Computer vision basics

Digital images are the first step in any computer vision process. They represent
an electronic snapshots of something that we see, for instance, captured scene by
photo camera or some scanned document and etc. It got used to sample all digital
images as a set of pixels (picture elements or grid of dots, in other words). Any pixel
is represented as a binary value (set of zeros and ones) so these values illustrate
tonality of pixels (white, black, etc.). The binary digits or bits are interpreted and
read by a computer to produce an analog version of the image in order to display
or print it [6].

Images have a property called "Bit Depth", its value is constituted by number
of bits used to represent a pixel. Image tonality is dependant on bits depth so the
larger its value the larger variety of possible tones for the pixel. Digital images
could be monochrome (black and white), gray-scale, or color. For example, pixels
in monochrome images are depicted as one bit (zero or one, black and white);
gray-scale images, on the contrary, can be made of multiple bits, usually from two
to eight but can be more. Color digital images are another side of coin, they are
typically represented as a set of bits in range from 8 to 24 or more. Taking the
24-bit images into the view, their values are usually divided into 3 group, first 8
bits for red color, next 8 for green, and last 8 for blue. In case of Red, green and
blue (RGB]) color format, here is a list that shows how possible variety of tones is
dependant on number of bits per pixel:

e 1 bit, (2') = 2 tones

e 2 bits, (2?) = 4 tones

12



3 bits, (2%) = 8 tones

4 bits, (2*) = 16 tones

8 bits, (2%) = 256 tones

16 bits, (2'6) = 65,536 tones

24 bits, (22*) = 16.7 million tones

Computer vision pipeline can be divided into 3 main phases: low-level pro-
cessing where image is converted into another image (blurring, sharpening, thresh-
olding), mid-level processing where image results into set of features (Features from
Accelerated Segment Test (FASTI), Speeded Up Robust Features (SURE]) feature
detection algorithms), high-level processing where features are analyzed and some
data is received (Connected Components Analysis (CCAI)) [31].

Thresholding. In order to remove noise and make gray-scale image more pre-
cise for computer vision it should be thresholded. There are also some algorithms
that can threshold color images but they produce gray-scale images as a result.
There are multiple thresholding algorithms and they produces very different result
due to complexity of computations. There are two the most simplest thresholding
algorithms: global and adaptive thresholding. The first one is very primitive, it
is provided with a threshold value and compares each pixel intensity whether its
larger or lower this value. The intensity of a pixel is calculated as ((R+G+ B)/3)).
Based on the comparison result it replaces pixel intensity with either 0 or max-
imal intensity and this is displayed in figures [T} 2] There are multiple variants
of this operation, it can be binary, inverted binary, truncated, truncated to zero,

threshold to zero and inverted .

el okl Satule sty S ety Salaislsnisintitety Wt
i ¢ : ; . ; i
I I I I I

Figure 1: Global Threshold example [1].

13



Intensit mazxValue, if currentIntensity > tresh
newlntensity =
Y 0, if currentIntensity < tresh

Figure 2: Equation of Global Threshold.

Truncated threshold , on the contrary to binary, replaces only values that
are larger or lower the threshold value, depending on whether operation is inverted
or not, not both at the same time. Figures |3[ and [4] illustrates the computations.

Figure 3: Global Truncated Threshold example [1].

) thresh, if currentIntensity > tresh
newlIntensity = , ) .
currentIntensity, if currentIntensity < tresh

Figure 4: Equation of Global Truncated Threshold.

Threshold to zero is quite similar to the simple threshold but instead of putting
maximal value it keeps the current pixel value. This is illustrated in figures [5| and

PSS S i I

Figure 5: Global Threshold to Zero example [1].

14



Intensit currentIntensity, if currentIntensity > tresh
newlIntensity =
Y 0, if currentIntensity < tresh

Figure 6: Equation of Global Threshold to Zero.

Adaptive thresholding , on the other hand, does not use fixed threshold
value, it computes this value from surrounding pixels, for instance, it takes an
eleven by eleven square where the needed pixel is in the center and computes
threshold value from this block of pixels. The demonstration of this operation can
be seen in figure [7] This algorithm is much slower but it produces much better
results and it is more appropriate for real world tasks, since it works better for
images with varying illumination.

Fig.3- adaptive thresholding zoomed

Figure 7: Adaptive thresholding logic demonstration.

Otsu’s Binarization uses different approach to calculate threshold value, it
works with bi-modal images (histogram has 2 peaks) so the threshold value is
taken approximately in the middle of these two peaks. The figure [§ illustrates
the results of thresholding for images with 2 peaks histograms. The algorithm is
accurate only for bi-modal images, it’s better not to use it for others, results will

be unsatisfying [16].

15



Original Noisy Image fistogram

Global Thresholding (v=127)

Original Noisy Image RlIELOgTEM

Otsu's Thresholding

Histogram

Gaussian filtered Image Otsu's Thresholding

&

Figure 8: Otsu’s Binarization demonstration.

Image Filtering. In computer vision filtering is used to clear images from
noise. There are multiple common types of it: "Salt and pepper" noise that con-
tains multiple randomly located black and white pixels, "Impulse noise" that con-
tains randomly located white pixels, and Gaussian noise where noise is Gaussian-
distributed [33]. One of the most important entities in the image filtering is con-
volution matrix, also known as kernel or mask, which is a small matrix used for
image filtering. It is related to a form of mathematical convolution. In addition,
it should be mentioned that convolution is not traditional matrix multiplication,
even though it is denoted by * (asterisk). It is the process of adding each ele-
ment of the image to its local neighbors, weighted by the kernel. The figure [9
demonstrates 2 matrices convolution process.

a b c 1 2 3
d e fl*[4 5 6| [22]=>G*x1)+(hx2)+(g%3)+ (f*4)+
g h 78 9

l

(€¥5)+ (d*6) + (c*7) + (b*8) + (a®9) (1)

Figure 9: Example of convolution
There are many filters for various purposes developed, some of them are Low-
Pass Filters (LPE]) that are used for removing noise or blurring and High-Pass
Filters (HPE]) used to find edges, etc.

16



In order to blur an image it should be convolved with a low-pass filter mask.
In fact, this operation removes high frequency content, such as noise or edges, for
instance, it may result in edges being blurred. It is important to mention that
edges blurring effect is the result of only some specific techniques.

The Gaussian blur is often used in computer graphics software and as initial
processing step in computer vision algorithms for enhancing images. Applying
this filter to an image is convolving the pixels with a Gaussian function. As a
result, the image with reduced high frequency components effect is produced. The
mentioned action is known as a two dimensional Weierstrass transformation.

1 _a?

G(m):\/me 207 (2)
1 22442

Gla.9) = ge™ )

Figure 10: Gaussian functions for one and two dimensions

The figure [10] illustrates Gaussian functions for one and two dimensions. In
the Gaussian functions x and y represent the distances from the origin in the hori-
zontal and vertical axis while o represents the standard deviation of the Gaussian
distribution. In order to build a convolution matrix two dimensional function is
used to get concentric circles with a Gaussian distribution. The values of this
distribution from the center points are used in convolution matrix.

Median Filtering is quite simple, it computes the median of all the pixels from
the current pixel neighborhood, so called window, and the central pixel is replaced
with this median value. The convolution matrix size for this technique must be a
positive odd integer. This type filtering is effective for removing such kind of noise
as so called "salt and pepper".

Average filtering or Mean filter is very similar to Median but the value for
replacement is computed as the average value for the pixel neighborhood.

Bilateral filtering is significantly different from the others, this filtering tech-
nique removes noise without blurring edges, it preserves them. It makes much
deeper analysis then Gaussian filter, checks pixel intensity or if some of them lie
on the same edge and etc. This filter has a Gaussian filter under the hood for space
domain and also uses a function of pixel intensity differences, that is also a multi-
plicative Gaussian filter component. This analysis helps to keep edges unblurred
while noise is removed but operation is taking some time therefore its much slower
than other competitors.

Ifiltered from the equation |4 is the resulting image; I is the initial image, z is

17



1

rtered(y) = W, > L@ frlll () = 1)) gs(llz: — ) (4)
W= > follI(2s) = 1(@)|[)gs(l]; — ) (5)

Figure 11: The bilateral filter definition and its normalization term

the coordinate of the current pixel; €2 is the neighborhood, so called window, with
x in its center; f,. and gy are two convolution matrices for smoothing and they
could be Gaussian functions.

Morphological transformations are widely used and simple operations based
on the image shape, they are techniques for analysis and processing of geometrical
structures. Initially they were designed for monochrome digital images but nowa-
days they can also be applied to gray-scale image and different spatial structures
as graphs, solids, or meshes. The most common morphological operations are ero-
sion, dilation, opening and closing |27]. The mentioned morphological operations
will be explained in the following text.

A structuring element in morphological transformations is a shape mask. It
can be of any shape or size that can be represented digitally.

Erosion operation moves the boundaries of foreground object away. The
main idea of erosion transformation is similar to soil erosion. This operation can
be described as the window moving through the image, action is similar to 2D
convolution and checks whether all items in the window for the current pixels
are the same value as pixel value itself. If the pixel is 1 and all kernel items are
ones then its value is kept, otherwise eroded to zero. Definitely, this is related to
binary images erosion that is widely used in computer vision. This morphological
operation is useful for removing small white noise objects or for detaching two
connected objects and etc. Figure demonstrates mathematical definition of
erosion for monochrome and gray-scale images. Equation [0] illustrates definition
for binary images where A is an image and B is a structuring element. On the
other hand, equation [7|displays the same for gray-scale images where the image is
denoted as f(), structuring element is denoted as b() and in fimum is the Greatest
Lower Bound (GLBJ).

Dilation, on the contrary, keeps pixel value "1" in case if at least one of the
elements in the neighborhood is "1". This operation enlarges the white space in
the image and usually used straight after erosion. The idea under this action is
that erosion has removed noise and increasing white area won’t bring it back while
it may connect broken parts of objects and restore shrinked objects. Figure

18



AeB= bQBAb (6)

(f ©b)(x) = infimum[f (y) — by — =)] (7)

yeE

Figure 12: Definitions of erosion for binary and gray-scale images

illustrates the mathematical definition of dilation where supermum is the Least
Upper Bound (LUB).

A®B = UA, (8)
(f@b)(r) = Supgzglum[f (y) + by — )] (9)

Figure 13: Definitions of dilation for binary and gray-scale images

Opening is the name for two operations, erosion followed by dilation. Its
mathematical definition is showed in figure [[4 As was mentioned above, it is
useful for removing noise.

AoB=(AcoB)®& B (10)

Figure 14: Definition of opening

Closing is the name of reversed Opening where dilation is followed by erosion.
Its mathematical definition is displayed in figure [I5] Most commonly used in
computer vision for closing little holes in the foreground objects and etc.

AeB=(A®B)OB (11)

Figure 15: Definition of closing

19



Morphological gradient in computer vision is simply a difference between
dilation and erosion of an input image. This operation is useful for edge detection
and segmentation purposes because it creates an image where each pixel value
represents the contrast intensity among neighboring pixels. Figure (16| illustrates
mathematical definition of morphological gradient where f is a gray-scale image
and b is structuring element.

G(fy=feb—-fob (12)

Figure 16: Definition of morphological gradient.

Feature detection and description. In image processing there is no way to
define image features as something exact and there is no universal algorithm to get
them from an image. Usually the definition of features comes from the problem
that is trying to be solved but in general they can be characterized as Points of
Interest (POI) for a given problem. Feature detection is an operation of finding
and analyzing image for some interesting points; it often results in the form of
points, lines, curves, or regions lists. Detection and analyzing operations could be
really time consuming or require large computational power thus feature detection
algorithms could become a part of more high level algorithms so that they are
called only on some localized regions to improve speed and time complexity [37].

Some popular types of features have become very popular and are widely used,
they are edges [32], corners (points of intersection), and blobs (regions of interesting
points). Edges, in general, are defined as points on the edge (boundary) in between
image blobs. Corners are referred as point-like features,however the name is just
used by tradition. In fact those features are not corners at every scenario. They
were developed from the edge detection when people tried to analyze rapid changes
in direction, which is a corner. Blob features are good when images are too smooth
so that corners can’t be detected. These features contain additional information
about image structures in terms of regions, in contrast to how point like features
perform [8].

Feature extraction, on the other hand, is the operation applied to the image
with the information retrieved from the detection step, it proceeds the extraction
of image region around the feature. This action gives a feature descriptor as a
result despite the fact it may consume a large amount of computational power.

Nowadays, many different types of features have been defined, thus many differ-
ent feature detection and extraction algorithms have been developed. The follow-
ing text covers feature detection algorithms such as Canny edge detection, Harris
corner detection, Scale-Invariant Feature Transform (SIET), and etc.

20



Canny edge detection is one of the most popular edge detection algorithms.
It is named by its author, John Canny. This algorithm has multiple stages:
noise reduction, computing intensity gradient, non-maximum suppression, hys-
teresis thresholding [4]. It uses 5 by 5 Gaussian filter to reduce noise because
edge detection operation is very vulnerable to noise. Image is filtered with Sobel
matrix [34] to get horizontal and vertical direction first derivatives which is done
to find edge gradient and direction. Figure [17]illustrates the edge gradient defi-
nition where G, and G, are first derivatives in horizontal and vertical directions.
After this, image is filtered to reduce pixels that might not be components of the
edge. Filtering is done by checking local maximum of the pixel in the direction of
gradient through the neighboring pixels. In short, if the result of this check gives
a local maximum, pixel is kept for the next stage, otherwise put to zero. Binary
image is given in the end of this stage. Last step is analysis of detected edges, they
are filtered (thresholded) on the basis of two thresholding values, minimum and
maximum. If the pixel intensity gradient is larger then maximum, it is marked as
edge, if lower then minimum then discarded. The most interesting case is when
the value lies in between, in this case edges are checked for connectivity with that
are already marked as real edge, if the connection exists they are also marked as
edges, otherwise discarded.

gradient(G) = /G2 + G2 (13)

angle(f) = tan™* (g—i) (14)

Figure 17: Definition of gradient and direction.

Harris corner detection algorithm is developed by Chris Harris and Mike
Stephens. They were one of the earliest researchers who were trying to find corners,
regions in the image where intensity value varies in all directions in the large range
[12]. The idea was to get the difference in intensity in all directions.

E(u,v) =Y wle,y)I(z +u,y+v) — I(z,y)) (15)

z,y

Figure 18: Definition of intensity difference.

For corner detection E(u,v) function is maximized by applying Taylor Expan-

21



sion. This function is demonstrated in figure[18 where w(z, y) is a window function,
I(x + u,y + v) is a shifted intensity and I(x,y) is the current intensity. This was
done to create a score function that will determine whether the corner is in the
window or not. Eigenvalues A\; and A\, are retrieved from the matrix created in the
process of maximizing E(u,v) and these define what region is corner. The region
is determined to be an edge when its score is less then zero, that happens when
A1 >> Ay or A\ << A9, which means that the difference between them should be
significant. On the contrary, if the score is large, which happens when lambdas
are large and approximately equal, region is determined as a corner [13|. Scoring
function is illustrated in the figure [19

R = XX — k(A + Xo)? (16)

Figure 19: Definition of the Harris scoring function.

On the other hand, Jianbo Shi and Carlo Thomasi in 1994 wrote a paper called
"Good features to track" [19], where they suggested to take another scoring func-
tion which gave much better results in comparison with Harris Corner Detection.
The idea was to compare results of scoring function to a threshold value. In their
version, the determined region is a corner only if both A\; and Ay are larger then
the score, which is minimum from both lambda values. This is illustrated in figure
201

Figure 20: Definition of the Shi-Tomasi scoring function.

is an algorithm authored by David Lowe in 2004 and described in the ar-
ticle "Distinctive Image Features from Scale-Invariant Keypoint" [22]. The author
has created it due to the scale problems for corner detection in already created
algorithms, while corner remains a corner after rotation, scaling breaks the logic.
Algorithm contains 5 stages: scale-space extrema detection, key point localization,
orientation assignment, key point descriptor and key point matching. First of all,
it uses different windows to detect key points with different scale and it uses scale-
space filtering for this. Laplacian of Gaussian (LoGl) is used as a blob detector
with a scale parameter . Then it searches for the local maxima through scale-
space and results into a list of tuples (x,y, o) that can be a potential key points.

22



Since the [LoGl is a bit costly operation uses Difference of Gaussian (Do)
as it is less computationally expensive and, in fact, is [LoGI's approximation. It is
done by getting difference of blurring image with two different values (o). After
is complete, scale-space is searched for a local extrema and if it is found, that
is a potential key point. Paper gives some optimal values retrieved by empirical
research, o value is 1.6, and another o is 1.6v/2. Potential key points are found but
they are not accurate enough.To get more precise location of extrema algorithm
uses Taylor series expansion of scale-space and compares intensity of current ex-
trema with threshold value thus if the intensity is lower then threshold value the
key point is rejected. It also uses similar to Harris Corner detection edge filtering
since is not good at that and discard those key points whose ration is greater
then a threshold. Next, in order to be invariant to image rotation, each key point
is assigned with orientation. To achieve this orientation histogram covering 360
degrees is created. The next step is creation of key point descriptor from the 16 by
16 neighborhood of the current key point. This region is divided into 16 sub-locks
where for each an orientation histogram is created. It also performs the number
of operations to be resistant to illumination changes, rotation changes and etc.
Total of 128 bin values are represented as a vector to be the definition of a key
point descriptor. The last step is key points matching, that is done by identifying
the nearest neighbour. Due to the number reasons like noise or others the second
nearest match may be very close to the first one and in this case ratio between
them is taken and depending on its value they might be rejected or not [17].

In 2006 3 people, Herbert Bay, Tinne Tuytelaars, Luc Van Gool created a
replacement for [SIFT] called SURFI [15]. This algorithm brings speed improvement
at each step of For the fist step, it goes much deeper and approximates
[LoGl with box filter, which is a convolution filter. This type of operation has some
advantage: easily calculated with a help of integral images, can be performed in
parallel for different scales. During orientation assignment it uses wavelet responses
in both directions. It also estimates the dominant orientation as a sum of all
responses in the orientation window with angle of 60°. Since many tasks do not
require rotation invarience, SURK] has a concept called Upright-SURF or U-SURF
where there is no orientation findings that speeds up the process by 15%. On the
feature description step it uses wavelet responses again in both directions. The
neighborhood of the key point is divided into 4 by 4 sub-regions and for each of
them it forms a vector from wavelet responses.

The definition of the vector formed from wavelet responses is displayd in the
figure 21} This results into the feature descriptor with 64 dimensions but [SURE]
also has an extended 128 dimension version where ) d, and ) |d,| are computed
separately for d, < 0 and d, > 0, the same is done for ) d, and ) |d,| depending
on d, sign.

23



v=(dn Y4 S 1d) S 1d) (18)

Figure 21: Definition of the vector formed from wavelet responses.

also has a great improvement which is a use of a sign of Laplacian.
It allows to distinguish bright blobs on dark background and the opposite situa-
tion. During matching, it uses minimal information, compares features by having
the same type of contrast, which allows to do matching faster without reducing
performance [18|. Figure [22 depicts matching.

O O can do match
. . can do match
() @ nomatching

Figure 22: Surf matching example

All mentioned features detection algorithms are not fast enough to be used
in real time tasks, one of examples is Simultaneous Localization and Mapping
(SLAM)). In 2006 Tom Drummond and Edward Rosten have written an article
"Machine learning for high-speed corner detection" where they proposed new al-
gorithm called [FAST] [7].

The idea is pretty simple, it takes a circle of 16 pixels around the current pixel
and if at least n of them are contiguous and one of two requirements must be met:
intensities of n pixels must be larger then the sum of the current pixel (center of
created circle) intensity and threshold value or these intensities must be less then
difference of the current pixel and threshold value. Only in case these regiments
are met it implies that the pixel is a corner. Figure [23]illustrates [FAST] intensity
checkups. To improve the speed it also has a concept of a high-speed test to reject
more non-corners then it already dose. It takes only 4 pixels, first it takes 1-st
and 9-th and if they meet the condition next couple of 5-th and 13-th are checked.
Only to those who passed high-speed test full check is applied. The method has
its pros and cons so to fix some of cons machine learning non-maximal suppression
is used.

Machine learning part of algorithm works as follows, it takes a set of images
from the same domain and extract features as described before then forms vectors

24



of 16 surrounding pixels for each feature point in all images from the set. Then it
divides the vector into 3 sub vectors under [19 conditions. After that decision tree
classifier is applied to these sub-vectors using the knowledge of whether feature
point is a corner or not, let this value be K. It picks some value z which yields
the information measured by the entropy of K. This is applied to each sub-vector
recursively until the entropy becomes zero. This decision tree is used afterwards
for fast feature detection. Applying machine learning helps to get better perfor-
mance in cases when number of contiguous pixels is less then 12 and to improve
not optimal pixel’s picking mechanism. There is also one additional option that
improves feature detection and it is rejecting unnecessary feature points in loca-
tions where more then one feature were found way too close to each other. This
is done by applying non-maximal suppression where depending on value of score
function V', which is the sum of absolute differences between current feature point
and its 16 surrounding pixel values, features are discarded or not. [FAST]is at least
twice faster then other algorithms however it is strongly influenced by the presence
of noise in the image. It can be adjusted by the threshold value.

darker, if I, < I, —thresh
Sposz = § similar, if I, —thresh < I,.,, < I, + thresh (19)
brighter, if I,_., > I, +thresh

Figure 23: FAST feature state conditions.

Binary Robust Independent Elementary Features (BRIEF]) was pub-
lished by Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua in
2010 [23|. This algorithm brings a significant improvement to the way how features
are matched. In fact, it is not a fully functional feature detection algorithm, it is
only matching already found features thus have to be used in tandem with some
feature detection algorithm. and use vectors as feature descriptors but
they take enormous amount of space, 256 bytes per feature which is not sufficient
for embedded systems, for instance. These vectors can be compressed to binary
string that can be used to match features with Hamiltonian distance which is a
simple XOR on bit count operations. Unfortunately compression does not solve
the problem of memory consumption because it still has to compute descriptors.
Here comes [BRIEF], it can find this binary strings without actually finding feature
descriptors. In order to do this, it uses unique algorithm to get a set of location
pairs from the smoothed image patch. Iterating over this set it compares elements
of pairs and compares their intensity, depending on the result of comparison it
creates a bit-string of zeroes and ones. Afterwards, Hamiltonian distance can be

25



used to match the results.

In 2011, Vincent Rabaud, Ethan Rublee, Kurt Konolige and Gary Bradski
from "OpenCV Labs" created an alternative to and [SURE] They described
it in the paper called "ORB: An efficient alternative to [SIFT] or SURF" [38]. The
main attractiveness of Oriented FAST and Rotated BRIEF (ORB)) is that
it is free from patents while is good as and SURE In fact, it uses [FAST] for
key points detection and by applying Harris corner it finds N best points. It also
uses [BRIEF] as the feature descriptor. To fix the issues with rotations for both
[FAST] and BRIEF] it suggests some additional computations. As an improvement
to [FAST] to get the rotation the algorithm computes the direction vector from
the corner point to the intensity weighted centroid with this corner placed in the
center. For BRIEF] it controls the process according to key points orientation. For
a set of binary tests at some location it creates a matrix, with a size twice larger
then the set, with coordinates of pixels. Afterwards using the orientation of key
point it computes rotation matrix. In addition, it uses multi-probe local sensitivity
hashing instead of original version of it for matching. The algorithm is good for
inefficient devices with low computational power [25].

Matchers are algorithms for checking feature descriptors for similarity. Query
descriptor can be compared with all other descriptors via Brute Force approach or
use other algorithms with better heuristic like k-Nearest Neighbors (KNN|) or Fast
Library for Approximate Nearest Neighbors (FLANN]). The main problem is that
each matcher can’t work with all feature descriptors. For instance simple
can’t work with bit strings as descriptors while with locality sensitive
hashing index can do this [9].

The most popular combinations of feature detector, extractor and matcher are
[SURE with SURE] and [FLANN], with [STET] and [FLANN] with [ORB
and Brute force, with [BRIEE] and Brute force. [FAST] can be used as a feature
detector in all these combinations.

Brute-Force matcher simply takes the descriptor of some feature from the first
image and compares it with all other features descriptors from the second image
using distance calculation so the closest feature is its match.

[FLANNIis used for large data-sets because it provides much better performance
then Brute force. It consists of a set of algorithms for nearest neighbour search so
that those algorithms are optimized to be faster.

Homography, in computer vision, is a relation between two point’s sets from
the same planar surface which is true for the pinhole camera model. It can be
computed with knowledge of camera parameters so that rotation and translation
information can be extracted. This information is useful in many tasks; they are
augmented reality, navigation and etc |10].

In computer vision, machine learning techniques are widely used. One of them

26



is classification, analyzing new observed features for belonging to some defined
categories. The process of creating those categories is also known as clustering.

In pattern recognition, the [kKINNJ is a non-parametric method used for classi-
fication and regression. In both cases, the input consists of the k closest training
examples in the feature space. The output depends on whether is used for
classification or regression. algorithm is one of the simplest algorithms in
machine learning. It is used for classification and regression and belongs to a type
of lazy learning algorithms, which means that the function is just approximated
but all the computations are delayed until classification begins. The idea beneath
is quite simple, to classify the object it takes into consideration the majority of
votes from the object k neighbours, while £ is user-defined. This means that the
object will be labeled with the most repeated class through out the neighborhood.
During the training phase algorithm only stores the feature vectors and labels of
classes retrieved from training data. Two commonly used distance metrics in the
algorithm are Fuclidean and Hamming depending on what should be classified,
for example, Hamming is used for text classification.

Support Vector Machine (SVM]) algorithm was developed by Vladimir
Vapnik and Alexey Chervonenkis in 1963 but in 1992, Bernhard Boser, Isabelle
Guyon and Vladimir Vapnik suggested a way to make nonlinear classifier.
[SVM]as it is known today, with soft margin, was published in 1995 by one of its ini-
tial authors, Vapnik, and Corinna Cortes [5]. algorithm is a set of controlled
learning models used to analyze data for regression and classification analysis.
With a help of training data this algorithm builds a model that can classify new
samples to one of the two categories. Thus it is linear binary classifier however
with a help "kernel trick" it performs implicit mapping to a high-dimensional fea-
ture spaces and can become non-linear classifier. In addition, it can work with
unlabeled sample data with a help of support vector clustering algorithm. In gen-
eral, are very useful for working with text, especially handwritten, because
they make pre-labeling stage unnecessary. They also show high search accuracy
after multiple runs of relevance feedback.

Connected components analysis or labeling is a category of algorithms that
are used to identify and analyze connected set of pixels. In general it is done by
taking binary image and producing another image where each pixel is marked for
belonging to some group, object on the image represented as a blob of connected
pixels |2]. Figure [24] illustrates connected components.

There are many various algorithms for the connected component analysis.
Some of them can keep whole image in memory, which is not suitable for low-
performance computers, and process one component at a time while moving across
the image. On the other hand, there are some algorithms that can process very
large images while working only with some blob at a time, keeping some piece of

27



Figure 24: A binary image with 5 connected components denoted with white areas.

image in the memory but not the whole image.

1 11213
2% 3|/4]*]5
4 6178

Figure 25: Scan-line order.

Recursive labeling algorithm works as follows, it take binary image and negates
it to make all pixels with value 1 to be —1, this is done to distinguish unprocessed
pixels from the labeled, whose label is 1. After that it takes pixel with —1 value
and assigns it a new label then it searches for a neighbour and recursively repeats
the process. Pixel neighbours are returned according to the pattern specified on
the figure 25] which is scan-line order.

Row by row labeling algorithm or Two-pass algorithm is based on connected
components algorithm for graphs [30]. It performs two passes, in the first one it
records equivalences and marks pixels with temporary labels. Before the second
pass it analyses binary relations from the stored equivalences to generate equiv-
alence classes of the relation. Afterwards, in the second pass it reassigns pixels
with its equivalence class instead of temporary value. Figure [26| demonstrates la-
beled binary image where each cell of the right grid contains the number of its
component.

28



1y1j0(1}{1}j1jo{1yy1j1{0{1}j1}1(0]|2
1(1]0{1}{0j1}j0(11]1{0|1]0]1[0]|2
ry1y1(1(0{0j0y14ff1}j1}{1j1,0(0]0]2
0/0({0J010]0]0O|2][O[OJO|0]0O0]0|0]2
111 (1(0|1|01(|3]3|3|3/0[4]0]2
0/0]0(1|0]1/0[1(/0]0OJ0[3[0]|4]0]2
1/1]0{1]0]0]0O(1}|5]|5[0]3]0]0[0]2
1(1]0{1](0j1]1(1}5|5[0]3]0]2[2]2

Figure 26: Grid representations of binary image and it’s labeled version.

2.1.1.2 Stereovision basics

Stereo vision is a field of computer vision and its purpose is to provide information
about 3D structures on digital images. This is achieved by comparing some feature
points of scene taken from two views at the same time. In traditional way it is done
by a stereo camera, which is, basically, two cameras placed horizontally within
specific distance, as human eyes. This technique allows to get relative distance
from a camera to the object on the scene. This information is also known as
relative depth information which is represented as disparity map [14].

There are few steps that precede finding of depth information because images
taken by camera could contain some distortions and etc. The first and the most
important step is to calibrate cameras with their intrinsic parameters to make it
function as a single system. This operation will provide extrinsic parameters of
the camera, which is rotation and translation vectors of the camera. Calibration is
achieved by showing calibration grid to the camera which looks like a chessboard.
It is used because size of squares should be known and the grid pattern is simple
for detection. Calibration grid is depicted in the figure 27]

Figure 27: Calibration grid.

29



The results of calibration process are used to rectify images so that both im-
ages are changed in order to be projections to the same real world plane. Rectified
images significantly reduce computations that are needed to get the 3D informa-
tion from the scene. This refers to epipolar geometry (stereo vision) geometry. It
describes relations between projections and 3D points that comes from the assump-
tion that camera corresponds to the pinhole camera model. This model describes
already mentioned relations from the ideal pinhole camera perspective. Pinhole
is a light proof box with a tiny hole from one side thus pinhole camera does not
have any lens, as a result, it produces inverted image. Figure [2§|illustrates pinhole
camera logic. From the nature of the camera, model does not take into considera-
tion any kind of distortions caused by lens and etc. To correct the lens distortion
pixel to real 3D coordinates transformation can be used.

[

Figure 28: Pinhole camera model.

Epipolar constraints between two cameras are described by essential and fun-
damental matrices. Essential matrix can be thought as a pre-step before funda-
mental matrix. One limitation of the essential matrix is that it can be used only
with calibrated cameras however if the cameras are calibrated it can be used to
get relative orientation in the cameras space and to find 3D position of pairs of
points. It is possible to extract rotation and translation vectors with this method
using Singular Value Decomposition (SVD]). On the other hand, fundamental ma-
trix deals with the uncalibrated cameras. In case of having fundamental matrix
and camera calibration information it is possible to get essential matrix for further
processing. Figure 29 shows essential matrix equation described in the "Multiple
View Geometry in Computer Vision" book [see |14, p257] where K is the intrinsic
camera parameters.

E=K"FK (20)

Figure 29: Equation of Essential matrix

In a simple stereo-vision system depth of a point can be easily found with

30



an equation [21| where f is a focal length of the camera, b is a distance between
cameras, d is a distance between corresponding points, also known as disparity.

Depth = fxb/d (21)

Figure 30: Formula of the point depth.

To determine the 3D point coordinates by two or more its 2D projection so
called triangulation is used. It is much easier to do if the images are rectified but
even if they are not they can be transformed to match the requirements.

sz%,qu?,Y:vé (22)

Figure 31: Equations of 3D point’s coordinates.

If the baseline is known (line CC’ from the figure [32)), 3D coordinates could
be found with the equation 22| where B is a baseline, D is a disparity, f is a focal
length, v and v are column and row with the origin in center of the image. Figure
represents triangulation process.

CI

Figure 32: Triangulation illustration.

31



2.1.1.3 Structure from motion

Structure from motion problem is the case of finding a set of 3D points with
projection matrices and translation vectors for corresponding views from the set
of images. This process is a 3D reconstruction from a sequence of images.

Sequential methods are widely used, they are iterative thus reconstruction is
done partially, step by step. The process starts with the first image, when the new
image is registered algorithm processes new portion of data, performs triangula-
tion and adds new 3D data to the reconstruction model. Initialization is usually
achieved by finding fundamental matrix from the first two views and decomposing
it [36].

These methods have some complications, first of all, they require huge amount
of corresponding points per each image in a sequence. Usually seven or more
correspondences must be present at three or more views. Large set of images
require too much computational power in order to process these. Secondly, there
is a number of structure and motion combinations that are not appropriate for
the mentioned methods. These cases might be the camera rotation without any
translation or planar scenes. It is impossible to avoid those cases without an
expert planning on how to take pictures for the structure from motion sequence
[35]. However grouping of pictures by the feature similarities might be a partial
answer to the raised problem.

The most common strategy for registering images is epipolar constraints. It
is achieved by using the correspondence of the image from the current view to
the image of the previous view. Essential matrix is typically used but intrinsic
camera parameters must be known. Its decomposition gives relative camera orien-
tation and translation vector. Figure |33|illustrates iterative nature of incremental
structure from motion.

-e---e
3D-Model*, , °

Figure 33: Demonstration of incremental structure from motion [35].

32



On the other hand, factorization methods do the job simultaneously. These
methods belong to the family of batch methods. factorization based linear
methods have been created for many affine camera models like orthographic, para-
perspective or weak perspective and etc. These methods distribute reconstruction
error among all measurements but, unfortunately, they are not applicable for the
real world situations because camera lenses have too wide angle thus cannot be
approximated as linear [206].

Lastly, after receiving initial estimations for 3D points and projection matrices
it is needed to minimize function cost with the non-linear iterative optimization.
This optimization is called bundled adjustment. It, basically, refines camera and
structure parameters initial estimations to get those parameters that predict the
locations of features among all images in the most efficient way.

min = Z Z vi;d(Q(ag, b;), xij) (23)
7 i=1 j=1

Figure 34: Bundle adjustment minimization function.
In the equation a is a vector that parametrizes camera and b is a vector

for 3D point so that Q(a;, b;) is the prediction of ¢ point projection onto j image.
Euclidean distance is represented as d(, ) where its parameters are vectors.

33



2.1.1.4 Tracking and Mapping

Tracking and Mapping is somewhat a logical group that unites multiple algorithms
under the hood. For instance, real-time Structure from Motion is also referred to
as monocular which is a group of tracking and mapping algorithms.

approximately solves the problem of building and updating the map of
environment; at the same time it computes and keeps track of the object position
in the environment, e.g. robot [3].

Maps are used to determine a position in space and for a graphic representation
of a terrain plan or for navigation. They are used to assess the actual location by
recording information obtained from the perception form and comparing it with
the current set of representations. The contribution of maps to the assessment of
the current location in space increases with a decrease in the accuracy and quality
of space sensing sensors. Maps reflect the type of space fixed at the time of their
construction. It is not at all necessary that the kind of space will be the same at
the time of using the maps.

The complexity of the technical process of determining the current location
and the construction of the map is due to the low precision of the instruments par-
ticipating in the calculation of the current location. The method of simultaneous
localization and mapping is a concept that connects two independent processes
into a continuous series of sequential computations. In this case, the results of one
process are involved in the computation of another process.

: -~ m \‘t;:? Em;'
Larnmark o -
o, <> [ ‘

B List

GI’-.‘ﬁﬂ"mr‘:d Mt A _.‘. _..-. -
Xk Liks 7 ‘ Q
X - a

Lk % - 5
ST AN
- -
Robot e,
£

£ irrinbeg "”

<&

Figure 35: SLAM demonstration.

Monte Carlo methods and Extended Kalman Filter are often used in approx-
imation process. These statistical approximation methods estimate object’s pose

34



and map environment parameters probability functions. Set-membership methods
generate a set where object’s pose and map approximation are contained. These
methods are based on interval constraint propagation which is used for propa-
gating uncertainties if the error data is represented as intervals. Already known
Bundle adjustment can also be used for a better map reconstruction based on
simultaneous estimations of object poses and landmarks positions.

group of algorithms usually used in robotics, self-driven cars,and etc.
Despite this fact, it is still an open field of research since current solutions are not
ideal.

Methods for finding camera pose in an unknown environment were already
developed by adapting monocular SLAMl The two most known algorithms are
EKF-SLAM and FastSLAM 2.0 but they are incremental which means that
tracking and mapping operations are done one after another in a single pipeline.
This leads to an update of every landmark and camera position at every frame.
While this approach might be suitable for robotics it is not good enough for hand-
held camera. This statement is argued by the fact that robot is able to move at a
stable constant slow speed and for the hand it is not that easy to do. On the other
hand, robot usually uses more data then just camera to build map with SLAMIL
Errors generated during the work-flow of hand-held monocular can cause
the corruption of generated maps in the mentioned iterative methods.

Frame-by-frame SLAM Parallel Tracking and Mapping
Easy! :-)
Find features @ Find features '/

Update camera pose and entire map (Many DOF) Update camera pose (6-DOF)

Draw graphics Draw graphics

Time

Update map

Figure 36: [SLAM| and [PTAM] work-flow comparison.

Since none of mentioned approaches was robust enough for hand-held case for
the augmented reality usage, Georg Klein and David Murray developed [PTAMIL
It offers the approach where tracking and mapping processes are not linked to-
gether so that they can be executed in parallel. It makes tracking probabilistically
independent from mapping thus any tracking method can be used, for instance,
authors used coarse-to-fine with robust estimator.

[PTAM] initialization should be performed before tracking begins. Initialization

35



Rotation only: WRONG x Translation: CORRECT J

Figure 37: [PTAM] initialization.

movement of the camera must include slight translation, just rotating camera
will fail it. Decoupling of tracking and mapping allows algorithm not to process
each frame since the algorithm is not iterative. Selective processing of frames
is necessary for rejecting those with redundant information, for example, similar
frames when camera is not moving. This selectivity helps to speed up the algorithm
in comparison with iterative methods. The fact that key-frames are not following
each other one by one means that processing can be done not within a strict
real-time but should be finished by the time when new key-frame is added [21].

On the other hand, bundle adjustment replaces incremental mapping. It was
chosen because of its successful usage in real-time visual odometry and tracking
same as it is well-proven instrument in Structure from Motion. The initial map
is built with five-point algorithm. Tracking is achieved by applying local bundle
adjustment to the n most recent camera poses where n is set manually to achieve
real-time performance. Building long-term map makes this algorithm different
in comparison with other solutions. This map is built so that feature points are
visited over and over again thus it can perform full-map optimization. In addition,
2D features tracking was not efficient enough for initialization step thus authors
decided to rely on epipolar feature search.

On the contrary, there is another algorithm aiming to solve the same problem as
[PTAM] its name is Dense Tracking and Mapping in real-time (DTAM]). Authors
claim that dense methods for tracking and mapping can provide more accurate
and robust results in comparison with other world perception models based on
features. In contrast with other real-time monocular algorithms it builds
dense 3D model and uses it for camera pose tracking [29].

In fact, to track the camera motion at each frame, since it is iterative algorithm,

36



.......

Figure 38: Estimating depth map from the bundle of images.

it uses dense frame alignment to compare to the already build scene dense model.
At each new frame the dense model is expanded and modified with the help of the
dense textured depth maps. The texture-mapped model is generated from depth
maps, they are created with the help of multi-view stereo and dense reconstruction
from a set of images.

In addition, photometric information is gathered sequentially in order to solve
depths maps incrementally. The authors have done this with the help of non-
convex optimization and accelerated exhaustive search in order not to loose small
details.

The way of how [DTAM] tracks camera pose is more robust then its competitors
and at least as good as feature-based ways of doing that. This happens because
dense model is capable of handling occlusions and scale operations. Everything has
its pros and cons so do the dense models, they perform worse because of motion blur
or unfocused camera. Algorithm performs very good for local illumination changes
while it is not robust for global illumination changes. Normalized cross correlation
measure was also used for better handling of local and global illumination changes.

After bootstrap is done system becomes self-supported. Authors believe that
people do not understand the power of dense methods for tracking and reconstruc-
tion even though they bring a lot of workarounds for feature-based algorithm’s
problems. It was also claimed that dense methods are the most robust and accu-
rate because of the ability of matching at every pixel.

37



2.1.2 Computer vision’s libraries

This section describes studied .NET libraries used for computer vision program-
ming and mathematical operations.

2.1.2.1 OpenCvSharp

OpenCvSharp is one of many C# OpenCV’s wrappers. It has been created by
the japanies developer nicknamed "shimat". This project is opensource and li-
censed under BSD 3-Clause License. This wrapper is good for its similarity to
the classical C++ Application Programming Interface (API) of Open Computer
Vision though it easy to translate C++ samples to C# without major
changes. It was modelled close to the native C++ [API as much as possible.

Almost all classes of this library implements I Disposable interface and that
means there is no need to think of unmanaged resources as in C+-, no memory
leaks and etc. OpenCvSharp does not force users to stick to object-oriented work
flow, if user wants to, it is possible to use functional style that is native for[OpenCV]
Library also includes transformation of images to .NET bitmaps that
simplifies image manipulations.

It can be used on both Windows and Linux but for Linux it is only possible
via Mono Framework. In general, any platform that Mono supports can be used.

// Edge detection by Canny algorithm
using OpenCvSharp;

public class Program

{

public static void Main()

{
Mat source = new Mat("image.png", ImreadModes.GrayScale);
Mat target = new Mat();

Cv2.Canny(source, target, 50, 200);

using (new Window("Source image", source))

using (new Window("Target image", target))
Cv2.WaitKey();

Figure 39: OpenCvSharp Canny edge detection sample.

As it can be seen from figures 39 and [0] [APIls are very similar but C-++
requires more code to write for the same operation but it is quite easy to translate
these samples in both ways due to their similarity.

38



#include ...
using ...

int main(int arg, charsx argv)

{
string image name = "someimage.jpg";
Mat source, source _gray;
Mat target, detected edges;
source = imread(image name.c_str(), IMREAD COLOR);
cvtColor(source, source gray, COLOR_BGR2GRAY);
Canny(source_gray, detected _edges, ...);
target = Scalar:: all (0);
source.copyTo(target, detected _edges);
namedWindow( "Display window", WINDOW _AUTOSIZE);
imshow("Source image", source);
imshow("Target image", target);
waitKey(0);
return 0;
}

Figure 40: C++ OpenCV API Canny edge detection sample.

2.1.2.2 EmguCV

Emgu Computer Vision is one of the most mature and complete
wrappers for the .NET platform. For the open source projects it is
free if the project source code will be contributed to the open source community
with the right to share it with anyone. This is done under GNU GPL license v3.
On the contrary, for the private use commercial licence have to be bought.

This framework is cross platform thus it can be used almost on every known
platform such as Windows, Linux, Mac OS X, iOS, Android and Windows Phone.
The whole implementation was written in pure C# thus all the header files were
ported.

In general, is on of the best wrappers for the .NET but it has its pros
and cons. If the advantages were already mentioned its disadvantages are still
hidden. The main issue is that has its own enums and some methods
that do not match with those of original C++ [APIl This fact makes translating
some code samples a hard task or sometimes even impossible. From the figure [4]]

39



using System;

using Emgu.CV;

using Emgu.CV.CvEnum;
using Emgu.CV.Structure;

namespace HelloWorld

public class Program
{
public static void Main(string[] args)
{
String winl = "Test Window";
CvInvoke.NamedWindow(win1);

Mat img = new Mat(200, 400, DepthType.Cv8U, 3);
img.SetTo(new Bgr(255, 0, 0).MCvScalar);

//Draw "Hello, world." on the image using the specific font
CvInvoke.PutText(

img,

"Hello, world",

new System.Drawing.Point(10, 80),

FontFace.HersheyComplex,

1.0,

new Bgr(0, 255, 0).MCvScalar);

CvInvoke.Imshow(winl, img);
CvInvoke. WaitKey(0);
CvInvoke.DestroyWindow(winl);
}
}
}

Figure 41: EmguCV hello world application sample.

it can be seen that common syntax is made in the functional way thus it is easier
to understand it to the C++ [API people.

40



2.1.2.3 Accord.NET

Accord NET is a framework for machine learning, mathematical statistics, basic
scientific computing and computer vision entirely made with C#. It includes classi-
fication algorithms (SVM], decision trees, neural networks, deep learning and etc.),
regression algorithms (linear regression, polynomial regression, logarithmic regres-
sion, logistic regression and etc.), clustering algorithms (K-Means, Mean-Shift,
Gaussian Mixture Models and etc.), algorithms for distribution analyses.

In general, Accord. NET was created to extend features of the AForge. NET
created by Andrew Kirillov for the .NET Framework in 2006. However in 2012
Andrew announced the end of support for the AForge. NET thus Accord NET
absorbed most of the original AForge.NET code into its code-base and continued
to develop and support the code under Accord. NET name.

double[] A =
{1’ 2’ 3}7
{6’ 2’ 0}7
{0, 0, 1}
b

/ Singular value decomposition
var svd = new SingularValueDecomposition(A);
var U = svd.LeftSingularVectors;
var S = svd.Diagonal;
var V = svd.RightSingularVectors;

Eigenvalue decomposition
var eig = new EigenvalueDecomposition(A);
var V = eig.Eigenvectors;
var D = eig.DiagonalMatrix;

LU decomposition
var lu = new LuDecomposition(A);
var L. = lu.LowerTriangularFactor;
var U = lu.UpperTriangularFactor;

Figure 42: Accord.NET decomposition samples.

As can be seen from the figure Accord. NET includes a huge amount of
different mathematical extensions for the standard .NET value types thus hav-
ing a single .NET matrix a value decomposition can be done in 1 line of code.
This library has such type of helpers for the enormous amount of mathematical
operations.

41



2.2 Kalman filter

Kalman filter is one of the most known and used set of mathematical tools for
sensor’s noise influence reduction. It was named after the author of "A New
Approach to Linear Filtering and Prediction Problems" [20] R. E. Kalman. Tthis
filter is a set of mathematical equations designed to solve the predictor-corrector
estimation problem and its huge advantage is that it minimizes estimated error
covariance. Advantages in digital computing and simplicity made this filter very
practical and provoked an extensive research in the field of navigation.

Generally, Kalman filter can be used in any dynamic system where some uncer-
tain information exists. This filter is making educated guesses about the next step
of the system based on mathematical model of the system. Even when noisy data
interferes with the real measurements Kalman filter does a great job on guessing
what is really going on in the system. Due to the nature of Kalman filter it is
an ideal tool for dynamic, changing systems. The reason is absence of require-
ments for huge amounts of memory or computational power since it only needs to
store previous step state in order to compute the prediction and current measure-
ments to adjust current system state. All of that is done by a set of mathematical
equations thus it makes Kalman filter a great tool for real time and embedded
systems.

Kalman filter vision

Kalman filter requires mathematical description of the system with its parameters
and it assumes that these parameters are Gaussian distributed and random. Every
parameter has the most likely state which is a mean of the random distribution and
range of uncertainty values, variance. One more important thing about parameters
is that they must be correlated which means that one parameter can be used
to find another one. Kalman filter aims at getting as much information from
uncertain measurements as possible. It describes correlation of parameters with
so called covariance matrix. This matrix is symmetric and its values are degrees
of correlation between two parameters states where these parameters are taken
depending on the indices of the matrix value. Covariance matrix is often labelled
as . Figure 43| illustrates covariance matrix.

As a next step, filter must somehow predict the next step depending on the
previous one without knowing which state is real and which is not. This is done
by prediction matrix F which should transform estimation of one state to the pre-
dicted one assuming that the original state was real. This manipulations leads
to covariance matrix changes, if all values in the distribution are multiplied by
prediction than new covariance matrix will be computed as multiplication of pre-
diction matrix by covariance matrix and by transposed prediction matrix. This is

42



Gy — [ position } (24)

velocity
P, = [Em’ va] (25)
vp VU

Figure 43: Example of covariance matrix with position and velocity parameters.

represented in the figure

Gy = Frip (26)

P, = Fy, P, F (27)

Figure 44: Example of computing the next step state and covariance matrix equa-
tions.

Extraneous known influence

In the real world it might happen that the system is affected by something not
related to the systems inside world, for instance, hole in the road that will affect
the way car goes or the wind blowing at some region. This knowledge of some ex-
ternal factors that may affect system can be described mathematically and added
to the prediction calculation as a correction. They are expressed as control vec-
tor and matrix multiplied together. This is illustrated in teh figure [{5] Control
vector contains known outside parameters, for example, speed of the wind, and
control matrix contains changing parameters, for example, time delta between two
moments on the time-line.

Figure 45: Example of expanded system state prediction equation.

43



Extraneous unknown influence

It also might happen that factors of influence are not known and they cannot be
described as control matrix and vector. In this case it is possible to model some
uncertainty around the predicted state. This influence is treated as noise with some
covariance but because of multiple possible next step noisy predictions they are
treated as a single Gaussian blob with different covariance but same mean. Thus,
in order to get expanded system covariance matrix that takes into consideration
possible noise it is needed to add noise blob covariance to the system covariance.
This is shown in the figure [46]

P, = FkPkAFkT + Qp (29)

Figure 46: Example of expanded system covariance matrix equation.

The new uncertainty is predicted with the previous one plus some correction
on the current uncertainty from the environment.

Prediction correction using measurements

System may contain several sensors that are giving some indirect information about
its state. Data from sensors is not the same as data tracked by Kalman filter. One
fact about filter is that it is very good for handling sensor noise. Here comes
sensor matrix that transforms the predicted state to a sensor reading prediction.
The next step is computing the most likely state based on predicted state Gaussian
distribution and sensor reading Gaussian distribution. To get the most likely state
it needs to understand if two probabilities are both true. The first one is that sensor
reading is estimated measurement and the second one is that the previous estimate
is the reading that should come from sensor. To get the most accurate estimate
it multiplies those two Gaussian blobs and receives their intersection which is the
estimate and the best guess.

W= i + K (i — 4ip) (30)

Y =2 K Y, (31)

Figure 47: Example of the new mean and covariance matrix equations.

44



This new estimate is the Gaussian blob with its own mean and covariance. To
get these mean and covariance matrix two formulas are used [30] and [31]

From the figures [47], and 9] K is a Kalman gain that is computed from
modeled sensor matrix Hj, system covariance matrix P, and the covariance of
uncertainty (sensor nose) Ry.

K' = P.H (H P.HI + R;,)™* (32)

Figure 48: Example of Kalman gain equation.

From the equation [33 z; is the mean of the estimated sensor distribution and it
is equal to the reading from the sensor. All of these manipulations are the update
stage of Kalman filter.

fk/ = ‘%k + f(vl(zfg - kak) (33)

P, = P, — K'H, P, (34)

Figure 49: Example of the final estimation equations.

Conclusion

To implement linear Kalman filter it is only needed to implement predict and
update equations. After each time and measurement update pair, the process is
repeated with the previous estimates used to project or predict the new estimates.
The recursive nature is one of the very appealing features of the Kalman filter,
its implementations are much clear and practical than an implementations of a
Wiener filter that was designed to operate with all of the data directly per each
estimate. The Kalman filter instead recursively evaluates the current estimations
for all of the past measurements. For nonlinear systems Extended Kalamn filter
is used. It linearizes measurements and predictions of Kalman filter about their
mean.

45



2.3 Outcome

In this chapter many different topics were covered. Computer vision basics such as
thresholding, filtering, image processing were described. Multiple feature detection
algorithms such as [SURF] and were studied. In addition, the overview of the
Kalman filter was presented. This material was written to prepare the reader for
the next chapter where computer vision experiments are covered.

46



3 Experiments

This chapter contains detailed description of multiple experiments using knowledge
from the Chapter [2] implemented with the [OpenCV]s wrapper libraries.

3.1 Sudoku experiment

The research has been started from the Sudoku Solver project. It was
created with Python as it is the tool with lowest entry threshold. This project
requirements were perfect for starting, they allowed to understand computer vision
basics deeper and showed how to map existing practises onto the problem of object
detection. Furthermore, not only the object detection but also the object character
recognition was covered in it [42].

3.1.1 Detection and Extraction

In order to extract a Sudoku grid it should be found first. For this purpose some
assumptions had to be made. The assumption was formulated as following: Sudoku
grid should cover from 60% to 100% of the observed image. As a starting point
image was converted to black and white with adaptive thresholding as the most
suitable approach. The next step was contours detection and iteration over them.
Contours were filtered with some specified threshold value and only closed contours
were interesting for the process. In order to make the application more human
independent it was able to change upper and lower thresholding bounds if the
needed contour was not found with the default values. Maximal area filtering
was used to get the largest contour from the list of all detected ones. Polynomial
approximation was applied to detect whether the largest contour is appropriate.
This manipulations allowed to get straight lines in the contour and if four of them
were found their intersections were returned as corner points. These points were
assumed to be the corners of the Sudoku grid.

Linear transformation was used for the proper extraction of Sudoku’s grid with
detected corners. This approach has some limitation related to the quality of an
image. If the image quality is poor, Sudoku grid borders are broken into pieces or
do not exist. In this case grid’s corners extraction becomes impossible. However,
for the good quality image this algorithm is very sufficient because it performs well
and it is reliable enough.

3.1.2 Transformation

To transform the currently extracted square shape image the perspective transfor-
mation was applied. Perspective matrix is constructed with the corners found on
the previous step and the new image dimensions computed at this stage.

47



Figure 50| displays two equations with 8 unknown variables. To find unknowns
the system of 8 equations should be created (four per each equations). Constructed
system makes possible to map points from distorted image to a flat square image.

b
x:ax—i- Y+ c (35)
gr +hy+1
_drt+ey+tc

y—gx—l—hy—l—l

Figure 50: Perspective transformation equations.

3.1.3 Flooding

Initially this stage was done as coloring all the small connected components into
the background color of the image. However, it was changed to[OpenCV[s method
fastNIMeansDenoising because it removes noise from the image. Parameters
were found empirically to get the best results and performance. This method
created partially blurred imaged thus it was necessary to threshold image in order
to get the binary image. Image at this stage was inverted, it means background
was black and numbers with lines were white.

3.1.4 Segmentation

This part of the program is responsible for determining where the numbers on
the image are. Usually segmentation is the hardest part of the OCR process.
However, in this case, software should process standard 9 by 9 Sudoku, which
grid is square and its size is already known, thus there is no need to do complex
segmentation operations. But even in case of none-standard grid it was possible
to do the segmentation with Hough-lines algorithm, that would make the process
universal. For time reasons it was decided to stick to the 9 by 9 grid. It was cut
into 81 equal pieces. Then all the pieces were checked whether they contained a
number or not. In order to do this there was area selected so that it was half of the
size of the piece and was centered. If the sum of the pixels inside was equal to 0 it
means that it was empty. Otherwise, piece of the image was processed in order to
find all contours by picking the middle point. Algorithm works as follows, it tries
to find the biggest contour that is at the same time the closest to the center point.
Found contour is supposed to be a number. Then it expands the size of the search
window until some bounding value. Segmented images are stored in the matrix of
image arrays and "None"’s are sent to the OCR stage.

48



3.1.5 Optical Character Recognition

The purpose of the OCR is to take an image, process it and return characters that
are presented in the image. Every recognition algorithms has steps:

1. Determine input image features
2. Train a classification algorithm with some training data.
3. Classify input image

Images may have different parameters (shape, color scheme, borders and etc.).
Before classifying it is needed to bring all the images to the same standard (shape,
binary color). For this purpose images were re-sized to some specified size and
image matrix was vectorized because vector must represent an image in the classi-
fication algorithm. Optimal size of the image was chosen by experiment. For [SVM]
classification pixel values were changed to zero for black and one for white. Here
the feature vector was composed explicitly of pixel values of the binary image. No
additional feature extraction was applied. That was done because classifica-
tion algorithm requires that kind of representation. KNN| classification algorithm
was also used for experiment purposes. Both algorithms gave almost the same
results.

(Classification of Sudoku numbers was done as follows, the multi-dimensional
matrix of segments was created. It has some numbers or 'NONE’ objects as its
values. Afterwards, it was reshaped to a vector and passed to the classification
stage. Classification algorithm, from its side, returns the label of the classified
image, that is the needed number.

3.1.6 Conclusion

This project gave a good understanding of computer vision algorithms and their
purpose on the real example. Since the exploration of computer vision was started
from scratch such kind of a project was necessary to gain needed background.

Python implementation has shown itself as a good approach. Built approach
behaved as expected for the images with medium or high quality. For the low
quality images results were not that good but the success rate was still more than
30%. As can be seen from figures |51| and 52| Sudoku grid was properly extracted.
Lastly, all numbers on the grid were recognized and reprojected back onto the
image.

49



Figure 52: OCR result displayed on the extracted grid.

3.2 Rubiks cube lines experiment

This project is a continuation of the previous experiment described in Section
Ideas developed for Sudoku were extrapolated on a Rubik’s cube face detection
problem as they are assumed to be similar in some sense [41].

20



3.2.1 Contour and corner detection

Contour detection was covered in the previous step but in this case there were some
issues to be solved. From the beginning, it was an issue that edges of the cube
are not very clear thus face extraction with the biggest contour is not an option.
On the contrary, small contours of face pieces were detected with higher success
rate. Therefore, they were used for face detection. So as the next step, the closed
contours with proper approximation of 4 corners were picked. These contours were
supposed to be diffused square pieces of cube’s face. The mentioned operations
still were not able to filter all duplicates. They occur from time to time if
detects a couple of different contours for the same object. To reject unnecessary
contours, all of those with almost the same center of mass were removed but one.
In order to find a face it is not enough to find contours. Diagonal of these small
contours were computed and if 9 diagonals exist and located at the same angle to
horizon their contours assumed to be face’s pieces. The following action is to find
the extremums or top-left, top-right, bottom-left, bottom-right points. The found
extremums are expected to be the face’s corners.

3.2.2 Extraction

The corner detection is covered in the previous subsection thus at this point 4
detected corners should to be passed to the next stage to apply linear transforma-
tion. As a result, plane image of the face will be stored. This approach has the
limitation for an input. It is not possible to detect the face corners if an image or
a video quality is poor or contours are broken. These circumstances will fail face
extraction. However, if the source quality is sufficient then this algorithm performs
well because of its simplicity and performance.

3.2.3 Transforming Image

At this stage the same approach as in the Sudoku experiment was used. The same
set of equations was used to transform the image. The system of equations from fig-
ure 0| makes mapping of points from distorted image to a flat square image possi-

ble. To achieve this[OpenCV[s Get Perspectivelrans form and WarpPerspective
methods were used for applying perspective transformation to the source.

3.2.4 Identifying unique faces

There are many possible options to check images for similarities like feature match-
ing, color histograms, cross correlation, euclidean distance. Looking at a cube it is
clear that there are no specific features on it, only colored pieces. The other case
is the observation problem, the cube can be shown in different orientations. From

51



the observations made, color histograms was chosen as a best choice to distinguish
faces. All uniquely detected faces were stored in the list and compared with ev-
ery newly detected face. In order to achieve this images were converted to Hue,
saturation and value (HSV)) to calculate the histogram and normalize the results.
To compare images correlation was used and performed well. For example, if the
correlation is more than 0.6 it is assumed that faces are too similar thus the new
one has to be rejected as already found. This algorithm is a simple one however
the empirical research showed that it works as expected.

3.2.5 Color detection

Color detection is nearly the easiest part of the program. In order to detect
color representation for each piece of a cube face it should be segmented into n
equal squares, since the 3 by 3 Rubik’s cube was used. The segmentation operation
produces nine pieces and this approach cannot handle larger cubes. After the piece
of the face is cut out, the center pixel data and intensity are taken. The
extracted data is collected into specific data structure and this is the end of the
process. Extracted [RGBl colors are mapped to the new data structure in order to
convert it to the Rubik’s cube 3D model for solving and rendering purposes.

3.2.6 Conclusion

This project was a continuation of the Sudoku ideas projected onto the Rubik’s
cube. At this stage single faces were extracted correctly but some faces extraction
might fail due to illumination conditions. In fact, cube’s surface may be different
and it means that when the light falls on the surface it may be reprojected and
create color distortions thus it brakes edge detection. Under the good illumination
conditions corners of faces and pieces colors are extracted correctly. From the
figure [53| it is clearly seen that this approach is applicable for the given problem.

52



Figure 53: Detected and extracted face sample with distorted colors.

3.3 Rubiks cube plane intersection-experiment

At this point, there was an idea to use planes as an alternative to contours ap-
proach. [PTAM]l was chosen for finding planes and in future it could become the
mechanism for an object tracking due to its nature [39].

3.3.1 Bootstrapping

This step is the first one and the most important. It, firstly, stores initial data,
for instance, extracted key points from the first image, gray-scale representation
of the first image and sets the pipeline to move on. Next it should analyze images
from a video stream or an image sequence by comparing it to the first image stored
in memory. As a result 3D point cloud is created, actually its simplified version.
In addition, is the algorithm for augmented reality thus it is possible to
project different objects onto the detected surface.

Optical low and homography filtering.

Optical flow algorithm is used within this solution in order to detect key points
location in the next view using previous views. After that the algorithm checks
if 80% of the points have survived and if not it stops bootstrapping and says
that tracking has failed. If this condition is satisfied and more than the specified
number of points are tracked then algorithm homography is used for filtering.
Using the mask it checks how many points have survived homography in order to
filter the bootstrapped and tracked key points again. This is done to achieve the
most precise computations using only the most effective key points. Afterwards,
it checks camera motion by comparing key points stored in memory with the

23



currently tracked ones. To analyze if the motion is sufficient it uses [OpenCV]s
function estimateRigidTransform. If all the conditions are met it moves to the
next step.

Extracting essential matrix from fundamental.

During this step it finds fundamental matrix using the bootstrapped and tracked
key points. In computer vision, the fundamental matrix is a 3 by 3 matrix that
relates corresponding points in stereo images. Then it filters key points again. The
next step is computing essential matrix. In computer vision, the essential matrix
is a 3 by 3 matrix, with some additional properties, which relates correspond-
ing points in stereo images assuming that the cameras satisfy the pinhole camera
model. The algorithm needs to have intrinsic parameters of the camera before it
starts the work because it does not include calibration part. Intrinsic parameters
are physical camera parameters like focal length and etc. To compute essential ma-
trix it multiplies transposed intrinsic matrix by fundamental matrix and multiplies
this by intrinsic matrix, not transposed. This matrix is needed to extract camera
rotation and translation in relative perspective from the bootstrapped image to
the current one. In order to do this it decomposes essential matrix with [SVDI
Decomposition results into 2 possible rotation matrices and 2 possible translation
vectors. If the determinant of the first rotation matrix plus 1.0 f is less than 1e—09
than algorithm changes signs of all numbers of the essential matrix and computes
decomposition again. Then it proceeds to the next step.

Triangulation of points.

At this stage the assumption is made. Its essence is that the both views (images)
extrinsic parameters matrix are composed of the rotation matrices and translation
vectors. The constructed matrix is 3 by 4. However, generates 2 rotation
matrices and 2 translation vectors. Thus the algorithm has to create four possi-
ble extrinsic matrices for the second view (camera) in order to triangulate until
the correct one is found. It might happen that algorithm fails if the triangula-
tion results will be wrong for all 4 tries. In order to triangulate, it normalizes
bootstrapped and tracked key points coordinates. Afterwards, it proceeds trian-
gulation and computes status by checking z component of the points. Key points
are filtered by this status array. After that the reprojection error is computed. If
the error is not acceptable it runs triangulation again with different set of rotation
and translation components. However, if the error is acceptable it goes to the next
step where it finds the plane.

o4



Finding a plane using 3d point cloud.

This step contains Principal Components Analysis (PCAJ). This analysis is nec-
essary because it allows to get 3D structure information. It is used for plane’s
normal extraction in order to proceed key points filtering again. If more than 75%
of key points belong to the same plane the bootstrap tracking is considered to be
finished.

3.3.2 Tracking

This stage is final for the [PTAM] part of this solution. It computes optical flow
for the key points that passed triangulation. is the augmented reality
algorithm hence it requires the logic to compute projection matrix in order to
render something on the plane. In order to do this it solves Perspective-n-Point
(PnP)). The main difference between the real and this simplified version
is that the real one can track all captured key points even if they are out of the
camera view. On the contrary, the described approach just removes all unseen key
points until the minimal amount exists and in the end it terminates. The suggested
simplification significantly reduced time for implementation and understanding of
the algorithm work flow.

3.3.3 Planes for a corner detection

The idea behind the PTAMI usage was to find all contiguous planes where every
3 of them with 90 degrees angle between each other create a Rubik’s cube angle.
For this purpose, this triplets are used to find planes intersections (cube’s corners).
Using the triangulated data it is possible to find 3D coordinate for any 2D point
in the specific view.

Figure 54: Example of planes intersection, cube’s corner.

95



These manipulations are useful in two senses, they allow to find a Rubik’s cube
corners and to track those corners in the 3D space, however it requires algorithm
modification. Figure |54]illustrates 3 planes intersection with the underlined corner
point.

3.3.4 Conclusion

Algorithm performed very well for finding and tracking a single Rubik’s cube face
but it showed pretty bad results for the continuous running of the algorithm to find
contiguous planes. The reason for that is illumination. The algorithm was able to
find one, two or three random planes in a row but it definitely brakes somewhere
in the middle. This causes problems for triangulation stage, since the algorithm
world space is relative to the first bootstrap thus if the algorithm fails the next
bootstrap will become new first bootstrap. In simple words, algorithm is lost and
it has to start from the beginning. It is possible to modify this algorithm to handle
such type of problems but this topic is out of thesis scope.

o6



4 Contribution

This chapter contains detailed description of the final project road map; displaying
how the ideas tried in the Chapter [3] were applied to develop "Framework for
extracting and solving combination puzzles".

4.1 Design

Design of the approach for combination puzzles detection and extraction was not
a trivial task. It was decided to use Rubik’s cube as it is a simple cubic structure.
While it was easy to generate ideas meanwhile it was hard to prove that those
ideas can survive experiments due to the quality of the image and large variety
of algorithms that give good results in different situations. The design of this
project contained multiple separate stages to complete the final goal. They were
extraction, mapping, solving and displaying the solution using 3D model. There
was also tracking opportunity idea due to similarities of solutions for extraction
and tracking [40].

Extraction

This is the hardest, from the research point of view, problem since it is related to
the computer vision field of knowledge. There are a large variety of approaches
to deal with extraction. It could be done using feature points or using contours
and different line algorithms, blobs, histograms and etc. This work is an empirical
research thus it was decided to try different approaches to see what fits better.
The first try was the Sudoku solver project where all the basics of computer vision
were studied and tested. That project was a starting point and the place where
contour detection for a square field detection was applied. It contained everything
from detection to extraction and transformation. The Sudoku ideas were the first
option to the assigned task. The next step was to find out how to do the same
for a Rubik’s cube face detection. The last idea was "Tracking and Mapping"
group of algorithms. There are [SLAM] [PTAM] and many others included
to this category. Those algorithms were picked for the research because they
allow to analyze 3D structures and the cube is also a 3D structure. The thoughts
behind this were to find and track cubes faces because they are planes. Having
6 perpendicular planes their intersections could be found. They are eight points,
cube’s corners. Knowing all corners and the cube faces tracking allows to find if 4
corners are presented at the current view. This is achieved by projecting 3D points
at each view. Hence, it is possible to extract the rectangle constructed with these
points. There is also a simplified idea of using [PTAM] for face extraction. It can
be supposed that the image mostly contains a cube thus any plane that is found

o7



is a cube face. To extract it the blob that includes all tracked key points should
be found. This approach is open for research because this blob can be found in
many possible ways.

Tracking

"Tracking and Mapping" algorithms have tracking idea in their kernel. While for
the extraction stage only their 3D analysis was necessary they made tracking of
a cube using a video possible. There is also such a powerful tool for reducing
measurement noise as a Kalman filter. Due to the predicting and updating nature
this algorithm can be used as the tracking helper because when the face is not
seen in the image Kalman filter can still predict where it would appear until it sees
it again to update its model under the hood. Unfortunately, this topic is mostly
derived from the previous one and does not affect any further steps thus it is not
that critical for the following research.

Mapping

This stage is a bridge between computer vision, rendering and solving parts of the
project. There is some structure that represents the Rubik’s cube. On the other
hand, there are 6 extracted faces and they should me mapped to that structure
in order to do something with them. Mapping options vary depending on the
picked extraction options. Using the contour way of extraction there is a list
of 6 independent faces images while "Tracking and Mapping" allows to analyze
corner positions and to know the relations between faces. Hence, for the contour
extraction way there should be some way to map faces correctly to the model. Since
the color extraction is the next step for both options it can be used for position
analysis. The colors of middle pieces have strict positions in relation to others thus
it is easy to find where the face should go. However, there is another problem, it
is a face orientation. Mapping faces as they were extracted is a bad idea because
with wrong orientation it will build wrong cube with impossible color combinations
and it will not be possible to solve it while it is still possible to display this figure.
The possible face orientation can be done in two ways also. There is an option
to analyze possible cubies (some face pieces that form a cube piece) and to put
new faces in correspondence with other already mapped faces. The second option
is to map faces randomly and run some algorithm to detect whether this cube is
correct (could be solved in the end). If the result is "No" then rotate faces and try
all possible combinations. This might be time consuming but will definitely give
the result without any previous knowledge of possible relations between the face
pieces.

o8



Solving

This part of the project might be thought as an easy one but it is not true. There
are many different options to solve a cube and the implementation difficulties vary
depending on the chosen algorithm. The first to think of might be brute-force
algorithm if for a 2 by 2 cube it is possible, for a 3 by 3 Rubik’s cube it might
take years to find the solution. Thus it is better to look at existing solutions. The
algorithm for beginners was picked because it contains a small amount of formulas
to know for solving a cube from scratch. This choice is argued by the fact that,
for instance, Fridrich method contains 119 formulas and while it gives shorter and
quicker solution it is hard to implement it without knowing all the formulas. To
deal with this it is needed to run the formulas on the cube model depending on
its state.

Rendering

Rendering might be easy if you dealt with it before. This field of knowledge same
as computer vision requires some mathematical background to be used. This stage
also contains a couple of options how to be solved. The first one is to use Open
Graphics Library that requires some time to understand the technology
and start using it. Another option is to implement simple software rendering
engine that does not use Graphics processing unit (GPU]) but rather uses Central
processing unit (CPU]) to render an image. This process is much more interesting
while it still gives you some background for further usage of [OpenGI] for example.

4.2 Implementation

Implementation was done using .NET C# and its wrappers for library. It
could be easily reasoned by the fact that it is better to deal with the complicated
tasks using the tool that you know and can use to reach the goal. On the contrary,
Ci# is a great tool with many convenient helpers to make implementation quicker
and less painful. Multiple wrappers were used in the implementation on
different stages of development process. OpenCvSharp was good enough on the
whole way before, however, it was not able to do specific operations for the
code base. Thus was applied later as a replacement for OpenCvSharp.

All various logic units were split into the separate static classes for exact pur-
poses. The project was also split into some set of library projects in order to
separate [OpenCV] Rubik’s cube and rendering code bases. The project is called
framework thus every library can be easily substituted with another one. The
project contains 2 modules for camera calibration with [EmguCV]

99



Extraction

Extraction logic is contained in RubiksCube.OpenC'V project and its FaceDetector
and FaceFExtractor classes. The work-flow is as follows, FaceDetector calls an-
other utility class ContourUtil to find specific contours. These contours are those
who passes specified in the configuration threshold values and whose approxima-
tion shows 4 corners and convex structure. Afterwards, found contours are distin-
guished by the center of mass, it means that contours with similar or close enough
center of mass are rejected to keep only one of them. This is done with
method Cv2.Moments and specific C# Language-Integrated Query code,
see figure

var matched countours = ContourUtil.FindContours(copy);
matched countours = matched countours.Distinct(...(x, y) =>
{

double mx = GetMassCenter(x);

double my = GetMassCenter(y);

double dx = Math.Abs(mx.X my.X);

double dy = Math.Abs(mx.Y my.Y);

double distance = Math.Sqrt(dx * dx + dy * dy);

return mx == my || distance < 5 && distance > 0;
1)) .ToList();

Figure 55: Linq code that filters contours by center of mass.

After that, filtered contours are checked for having the same angle to the hori-
zon. With 9 distinct contours under the same angle it is supposed that 9 face’s
pieces are found. They form a cube face thus it is needed to find 4 extremums of
the group that are supposed to be face’s corners. If some points appear to be the
same or to close then additional filtering logic is applied. It is needed to extract
the found face thus FaceExtractor utility class is called to extract Mat
class containing extracted and transformed in perspective face’s image. With the
help of FaceUniquenessDetector utility class the extracted Mat object is checked
for its originality.

Mat faceHsv = face.CvtColor(ColorConversionCodes. BGR2HSV);

Mat faceHistogram = new Mat();

Cv2.CalcHist(new Mat[] { faceHsv }, channels, new Mat(), faceHistogram, 2, histSize,
ranges, true, false);

Cv2.Normalize(faceHistogram, faceHistogram, 0, 1, NormTypes.MinMax, 1, new Mat());

Figure 56: OpenCV code to calculate histogram.

60



It is done with[OpenCV|Cv2.CalcHist and Cv2.CompareHist methods (figure
56]), in short. If the correlation between the current face and any of the previous
ones is too high, the current face is not unique. The last step is extracting colors
from unique faces and forming some data structure to pass it to the next stage.
ColorsExtractor utility class is used to extract colors, see figure [57]

Mat sub = new Mat(face, new Rect(i x subWidth, j * subHeight, subWidth, subHeight));
var intensity = sub.At<Vec3b>(centerX, centerY);

byte blue = intensity . Item0;
byte green = intensity .Item1;
byte red = intensity .Item2;

Figure 57: OpenCV code to extract RGB data.

It has to segment a face into specified (in the configuration) number of pieces
and take color probe from the center pixel of each piece in order to convert it to the
.NET Color class. Later this colors are compared to six possible cube face colors
and converted to the closest to them using ClosestColor Hue of ColorsExtractor,

see figure [58|

public static Color ClosestColorHue(Color target)

{
var huel = target.GetHue();
var diffs = Colors.Select(n => GetHueDistance(n.GetHue(), huel));
var diffMin = diffs.Min(n => n);
var index = diffs. ToList().FindIndex(n => n == diffMin);
return Colors|index|;
}

Figure 58: code that computes cube’s color from the detected color.

Finally, extracted colors are sent to be mapped to the Rubik’s cube operational
and rendering models. On the other hand, PTAM] was another implemented algo-
rithm but since its code was initially written in C4++ and some currently unsup-
ported libraries it was decided to write another simplified version of PTAML It does
not allow to track key points when they are out of the view however while camera
sees them everything is as designed. All main stages are included. [PTAM] like
approach is implemented in RubiksCube.OpenCV.TestCase PtamLile Algorithm
class split into 3 main stages: bootstrapping, bootstrap tracking and tracking.
The most interesting for extraction stage is bootstrap tracking logic. Firstly, it
computes optical flow with CvInvoke.CalcOptical FlowPyr LK, then it validates
if enough key points survived optical flow (see figure [9).

61



CvInvoke.CalcOpticalFlowPyrLK (prevGray, currGray, Utils.GetPointsVector(trackedFeatures),
corners, status, errors, new Size(11, 11), 3, new MCvTermCriteria(30, 0.01));
if (CvInvoke.CountNonZero(status) < status.Size * 0.8)
throw new Exception("Tracking failed.");

Figure 59: EmguCV code that computes Optical Flow.

Homography validation follows next to check how many key points survived
at the current step in comparison with the initial value. If the value fails thresh-
old, the process is considered to be failed. Secondly, stereo vision approaches
are used. The implemented solution estimates the rigid transformation with
Cvlnvoke.Estimate RigidI'rans form to validate camera motion between boot-
strapped image and the currently observed. If the motion is sufficient it performs
points triangulation. It is very interesting process, implemented in OpenCvUtilities
class. It finds fundamental matrix with CvInvoke.FindFundamentalMat (see
figure and checks how many key points survived.

Mat f = new Mat();

VectorOfByte status = new VectorOfByte();

CvInvoke.FindFundamentalMat(trackedFeaturesPts, bootstrapPts, f, FmType.Ransac,
0.006 * maxVal, 0.99, status);

var fMat = new Matrix<double>(f.Rows, f.Cols, f.DataPointer);

int inliersNum = CvInvoke.CountNonZero(status);

Figure 60: EmguCV code that computes fundamental matrix.

Afterwards, essential matrix is computed from the intrinsic camera parameters
and fundamental matrix. Essential matrix is decomposed with (see figure
and two rotation matrices and two translation vectors are produced. These
results are mixed into four possible projection matrices. To check what projection
matrix is correct the triangulation procedure is run until the matrix is found.

CvInvoke.SVDecomp(e, w, u, vt, SvdFlag.ModifyA);
rl = u *x wMat * vt;

r2 = u * wMatTranspose * vt;
um.GetCol(2).CopyTo(t1);
um.GetCol(2).CopyTo(t2);

Figure 61: EmguCV’s SVD.

This process is also very important, at this point 3D points are projected back
to the image and re-projection error is computed. This error helps to understand

62



how many points have survived and successfully been triangulated. Hence, they
can be used for tracking. Finding 3D points is important because the aim is to
find information about face’s plane in 3D space.

Mat projected = new Mat();

CvInvoke.PCAProject(trackedFeatures3Dm, mean, eigenvectors, projected);

var projectedMatrix = new Matrix<double>(projected.Rows, projected.Cols, projected.
DataPointer);

projectedMatrix.GetCol(2).Set Value(0);

projectedMatrix.CopyTo(trackedFeatures3Dm);

Figure 62: EmguCV’s PCA.

With the help of [PCAl using CvInvoke.PC ACompute (see figure ??) it finds
eigenvectors and mean of the known 3D point matrix. Afterwards, [PCAlof Accord
library is used because EmguCV does not return eigenvalues. Retrieved data is
used to find planes normal and its inliers (3D points that lie in the same plane).
Described analysis is what was needed for extraction logic.

Tracking

[PTAMllike approach makes tracking possible. In comparison with bootstrap track-
ing of a plane simple tracking is done much easier. It also uses optical flow with
the same code base as in the previous step. The difference is that it does not need
to triangulate points again. It uses already found 3D points and their 2D positions
on the current image.

Mapping

Extracted colors should be mapped to the cube model in order to solve and render

it. Data is mapped to ScrarchEngine.Libraries. RubiksCube.Models. RubiksCube M odel
class that represents a Rubik’s cube in the project. This model has multiple meth-

ods for rotating cube’s layers, flipping it or checking for cubes consistency. The
mapping also includes face orientation analyses implemented through the iterative

face orientation checkup. Faces positions are simply determined on the basis of

their central pixels relation.

Solving

Beginner solving algorithm was implemented to solve any 3 by 3 Rubik’s cube.
BeginnerSolver class is inherited from BaseSolver thus new solver can be easily
created and applied. To simplify and replace solution hard-coding the declarative

63



JavaScript Object Notation (ISONJ) structure was created. Solution formulas now
could be written in where the name of the formula, its phase, state that
should be to run the formula and moves are written in the specific globally known
notation.

"Name": "Up Front cubie on right|front",
"Phase": "FirstCross",
"IsFinal": true,
"StateFrom": {
"Right": |
[ null, null, null |,
[ "Up", null, null |,
[ null, null, null |
I,
"Front": |
[ null, null, null |,
[ null, null, "Front" |,
[ null, null, null |

|
1,

"Moves": "F"

}

Figure 63: Example of json formula declaration.

As can be seen from the listing [63] the state is declared as face’s 2-dimensional
array. This array should contain related face’s names at specific positions. For
instance, from the above listing, Up-Front cubie is on the Right-Front sides thus
it is written like this and if the cube front layer will be rotated clockwise the cubie
will be placed where it should be. IsFinal flag displays that this algorithm puts
cubie in its place and no more formulas should be used after this. In other cases,
the solver will run formulas until the cubie is in place. On the other hand, this
notation is not yet perfect, since algorithms are for humans, cube must be
flipped and rotated to run formulas when handling cube at some specific position.
Currently, it is necessary to write some code within the solver class inherited from
BaseSolver for specific algorithm stages or flips, they cannot be reflected in
yet.

64



Rendering

To render the cube self-written software rendering engine oriented on cube was
used. RenderingControl was created with inheritance from UserControl. This
class includes rendering and mouse handling split into partial classes. This class
encapsulates rendering and updating loops with abstract Update() and Render()
methods used to write the logic of the game. Rendering control allows to zoom
and rotate displayed image. To render the cube the RubiksCubeModel is split
into cubies, imitating real puzzle pieces and each of them is converted to the
3D cube while only visible pieces are colored (others are black). Every cube is
rotated with respect to its position, it means with respect to layers containing it.
These manipulations are performed in GenerateCubes3D and the result is a list of
3D cubes with specific positions and rotations in 3D space. Afterwards, cubes are
projected on the screen. At each step of update loop described transformation code
is performed to translate RubiksCubeM odel to the list of polygons represented as
Face3D in order to be rendered with render loop.

4.3 Validation

Design and implementation details were described in the previous two sections.
Theoretical ideas and its implementation with specific technologies were covered.
Now its time to describe results achieved through the long way of research.

Extraction

Extraction was the most challenging stage of the whole process. Contours usage to
find a face of a cube showed good results if the illumination condition are sufficient
enough. Contours detection is very prone to the influence of illumination. If
the light is falling on glossy Rubik’s cube surface at specific angles the detected
contours might be broken and this will fail face detection for this image. On
the contrary, PTAMI like approach tracks key points with optical flow and is also
affected by illumination however it is also influenced by the smoothness of motion.
Both approaches can be used to succeed the extraction but it may take some
time, maybe even too much for a regular user. Contours approach was chosen
as more sufficient solution because of multiple reasons. The first one, it could be
even applied to a limited amount of separate images. The reason for this is that
contours detection does not require any motion however it needs the image with
sufficient quality in order to find all needed contours. The second reason to choose
it was detection speed since to extract a face the algorithm needs to capture only
one image with appropriate state.

On the other hand, PTAM] requires to capture multiple faces in order to get

65



Figure 64: Contours approach face extraction process.

their intersections that are cube’s corners. This has not given wanted results
because runs bootstrap tracking to analyze motion and to get plane’s in-
formation. This operation should be performed per each plane (e.g. face). To find
cube’s corners that will have position with respect to each other the system should
compute rotations and translation from the first successfully detected plane which
is the ground point for this relative system. If the algorithm fails in the middle
then everything should be started from scratch. Even though, it is possible to
store the current system state it have not given any results at the current stage.

Figure 65: [PTAM]| approach face extraction process.

In addition, extracted faces were checked if they were already seen before with
the histogram comparison. If the face is approximately taking the same amount
of space in an image then the correlation is pretty high and the code produces
almost 100% success rate. Sometimes, illumination conditions distort face colors
though two different colors might be considered to be the same. In this case one

66



face will never be confirmed and the process will never stop because it is waiting
for 6 unique faces to be detected in order to go further. To conclude, from a video
perspective, contours approach can be used with any video while the success rate
is close to 70%. [PTAMs planar solution gives insufficient results, the only chance
to get needed results is to use real time video when operator can control camera
motion per each face but not randomly rotated cube in the video. On the contrary,
the second [PTAMl-based solution can be used as the appropriate solution, however,
its bootstrapping also requires user control of motion. Thus, it was rejected.

Tracking

In comparison with extraction, tracking task is much more suitable for
like approach. Since continuous faces detection has been failed a cube cannot be
tracked with this approach. From the other point of view, cube rotation can be
tracked only using single face that can be easily done with PTAMl Generally,
[PTAM] like approach that has been implemented is not suitable for this because it
cannot remember tracked key points when they disappear from the camera view.
With the help of modified PTAMlbased solution and Kalman filter it can be pos-
sible to simulate cube rotation tracking by a static camera capturing smoothly
rotating cube in front of it. Stereo vision practices used in will think the
camera is rotating around the object thus rotation and translation data can be
extracted and changed in order to be cubes rotation and translation representa-
tions. Kalman could be used to predict tracked key points positions when they
fade away from the camera view and when the camera sees them again Kalman
updates its state. This will allow to render 3D model rotation on a screen very
smoothly and continuously. Described techniques are theoretically studied and
proved to be possible.

Rendering

Software rendering was successfully implemented with the described in [4.1] ap-
proach. In fact, it showed pretty good performance for 3D Rubik’s cube model
rendering, full 30 Frames Per Second (FPS). Model can be zoomed and rotated
without any performance drops. Unfortunately, software rendering cannot be used
to render complex 3D models from thousands of polygons or to render a scene be-
cause it will not be possible to keep sufficient FPS. The reason is that [GPUl is
not used, everything is done by [CPUl Since the project is a framework, ren-
dering library can be replaced with any other, for instance, using Open Toolkit

library (OpenTK]) which is the most popular .NET wrapper.

67



Figure 66: Rendered cube model.

Mapping and Solving

Mapping and solving parts are tightly coupled, both of them performed well. How-
ever, mapping is a stage where extracted cube’s faces data should be analyzed and
mapped to the correspondent positions. On the other hand, mapping is a challenge
to design the data structure. This structure must be suitable for usage with both
stages: solving and rendering. This data should allow cube’s layers rotation and
changing cube’s orientation. All the goals were accomplished thus all basic Ru-
bik’s cube operations can be performed with the model. Solution adapters were
designed to operate with the model from the mapping stage. Developed
declarative notation appeared to be a very convenient tool to notate large amount
of formulas in text files and the code base become a dozen times smaller or even a
hundred times. Unfortunately, Rubik’s cube human targeted solution algorithms
may contain such manipulations that cannot be easily described within the de-
signed notation. Nevertheless, the current implementation showed 100% success
rate.

LD'LF ~
Flip Vertical in Clochwise
BO2B"

F2

Flip Vertical in Clockwise
BD2ZB'

LD'LF

Flip Vertical in Clockwise
BD2B

F2

Flip Vertical in Clochwise

RDZR

D
DFD'F
Flip Vertical in Clockwise h

Figure 67: Solving random cube example.

68



5 Conclusion

The current project is representing a deep research in the field of computer vision
with its complex algorithms and stereo vision concepts. Kalman filter was analyzed
for suitability to the current problem. The program was developed in C#. It
can extract data about a Rubik’s cube, build cube’s model, solve and render it.
The extraction part is not giving incredible results however it works as expected.
Contours approach for face detection was the most stable due to its simplicity.
On the other hand, PTAMlbased blob solution was accepted as a working one,
however, it has a limitation at bootstrapping stage thus it is rejected for usage in
the final application. In addition, PTAMMbased plane solution was rejected due
to its pipeline complexity. The current solution fails to detect planes one by one
without restarting. Hence, the Kalman filter usage is postponed for the time when
[PTAMI will be adopted to match the requirements of the assigned task.

On the other hand, PTAM] and Kalman are not rejected as the solution itself.
Self-written [PTAM] solution requires multiple modifications to be able to store
the state of the pipeline. In addition, it should be updated in order to track
bootstrapped but unseen key points. This changes will be the field for Kalman
filter usage.

a5 Form1 - m} X

Dimensions
® 3D
O 2

Recognize Reset Shuffle

et
LD'LF A
Flip Vertical in Clockwise

BD2E

F2

Flip Vertical in Clockwise

BD2E

LD'LF

Flip Vertical in Clockwise

BD2B

F2

Flip Vertical in Clockwise

RDZR

D
DFDF
Flip Vertical in Clockwise A

Figure 68: Window of the program.

As can be seen from the figure [68] the program has two buttons for solving.
They are "Next" and "Solve", next button provide step by step solution displaying
though user can solve the cube sitting in front of computer. Solve button, on the
contrary, tries to solve and display the result immediately, if the cube is correct
and can be solved. There is a possibility to solve a cube using logged (line by line)
solution formulas in the specific text area.

69



References

[1] Basic Thresholding Operations. URL: http://docs.opencv.org/2.4/doc/
tutorials/imgproc/threshold/threshold.html.

[2] Binary Image Analysis. URL: https ://courses . cs . washington . edu/
courses/cse373/00au/chcon.pdf.

[3] Oussama Khatib Prof. Bruno Siciliano Prof. Springer Handbook of Robotics.
2008, pp. 871-889.

[4] Canny Edge Detection. URL: http://docs . opencv.org/trunk/da/d22/
tutorial_py_canny.html|

[5] Vapnik V. Cortes C. “Support-vector networks”. In: (1995). DOI: 10.1007/
BF00994018.

[6] Cornell University Library/Research Department. Moving Theory into Prac-
tise. Digital Imaging Tutorial. 2000-2003. URL: http://preservationtutorial.
library.cornell.edul

[7] Tom Drummond Edward Rosten. “Machine learning for high-speed corner
detection”. In: (2006). URL: https : // www . edwardrosten . com/ work /
rosten_2006_machine.pdfl

[8] UW CSE vision faculty. Features and Image Matching. URL: https : //
courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf.

[9] Feature Matching. 2014. URL: http://docs.opencv.org/3.0-beta/doc/
py_tutorials/py_feature2d/py_matcher/py_matcher.html#matcher,

[10] Feature Matching + Homography to find Objects. 2014. URL: http://docs.
opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_feature_
homography/py_feature_homography.html#py-feature-homography.

[11] Adrian Kaehler Gary Bradski. Learning OpenCV. 2008. URL: http://wuw.
bogotobogo.com/cplusplus/files/0OReilly’20Learning/200penCV.pdf.

[12] Harris Corner Detection. 2014. URL: http: //docs . opencv . org/3.0-
beta/doc/py_tutorials/py_feature2d/py_features_harris/py_
features_harris.html#harris-corners.

[13] Harris corner detector. URL: http : / / docs . opencv . org/2 .4 /doc/
tutorials / features2d / trackingmotion /harris _detector /harris _
detector.html.

[14] R. L. Hartley and A. Zisserman. Multiple View Geometry in Computer Vi-
sion. Second. Cambridge University Press, ISBN: 0521540518, 2004.

70


http://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/threshold/threshold.html
https://courses.cs.washington.edu/courses/cse373/00au/chcon.pdf
https://courses.cs.washington.edu/courses/cse373/00au/chcon.pdf
http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html
http://docs.opencv.org/trunk/da/d22/tutorial_py_canny.html
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/BF00994018
http://preservationtutorial.library.cornell.edu
http://preservationtutorial.library.cornell.edu
https://www.edwardrosten.com/work/rosten_2006_machine.pdf
https://www.edwardrosten.com/work/rosten_2006_machine.pdf
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf
https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect6.pdf
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html#matcher
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html#matcher
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html#py-feature-homography
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html#py-feature-homography
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html#py-feature-homography
http://www.bogotobogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf
http://www.bogotobogo.com/cplusplus/files/OReilly%20Learning%20OpenCV.pdf
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_harris/py_features_harris.html#harris-corners
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html
http://docs.opencv.org/2.4/doc/tutorials/features2d/trackingmotion/harris_detector/harris_detector.html

[15]

[16]

[17]

18]

[19]

20]

21

22]

23]

[24]

[25]

[26]
27]

28]

Tinne Tuytelaars Herbert Bay and Luc Van Gool. “SURF: Speeded Up Ro-
bust Features”. In: (2006). URL: http://www.vision.ee.ethz.ch/ surf/
eccv06.pdf.

Image Thresholding. URL: http://docs . opencv . org/trunk/d7/d4d/
tutorial_py_thresholding.html.

Introduction to SIF'T (Scale-Invariant Feature Transform). 2014. URL: http:
//docs . opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_
sift_intro/py_sift_intro.html#sift-intro.

Introduction to SURF (Speeded-Up Robust Features). 2014. URL: http://
docs . opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_
surf_intro/py_surf_intro.html#surf.

Carlo Tomasi Jianbo Shi. “Good Features to Track”. In: (1994). URL: http:
//www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf.

Rudolph Emil Kalman. “A New Approach to Linear Filtering and Predic-
tion Problems”. In: Transactions of the ASME-Journal of Basic Engineering
82.Series D (1960), pp. 35-45.

Georg Klein and David Murray. “Parallel Tracking and Mapping for Small
AR Workspaces”. In: (). URL: http : //www . robots . ox . ac . uk/ “gk /
publications/KleinMurray2007ISMAR.pdf.

David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”.
In: (2004). URL: https://www.cs.ubc.ca/ lowe/papers/ijcv04.pdf.

Cristoph Strecha Michael Calonder Vincent Lepetit and Pascal Fua. “BRIEF":
Binary Robust Independent Elementary Features”. In: (2010). URL: https:
//www.robots.ox.ac.uk/ vgg/rg/papers/CalonderLSF10.pdf.

Daphne Koller Michael Montemerlo Sebastian Thrun and Ben Wegbreit.
“FastSLAM: A Factored Solution to the Simultaneous Localization and Map-
ping Problem”. In: (2002). URL: http://www.aaai.org/Papers/AAAT/
2002/AAAT02-089.pdf.

ORB (Oriented FAST and Rotated BRIEF). 2014. URL: http://docs .
opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_
orb.html#orbl

Bill Triggs Peter Sturm. “A factorization based algorithm for multi-image
projective structure and motion”. In: (). DOI: 10.1007/3-540-61123-1_183.

A. Walker R. Fisher S. Perkins and E. Wolfart. Morphology. 2003. URL:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm.

Richard E. Woods Rafael C. Gonzalez. Digital Image Processing. Addison-
Wesley, 1993.

71


http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html
http://docs.opencv.org/trunk/d7/d4d/tutorial_py_thresholding.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html#sift-intro
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html#sift-intro
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html#sift-intro
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html#surf
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html#surf
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html#surf
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
http://www.ai.mit.edu/courses/6.891/handouts/shi94good.pdf
http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2007ISMAR.pdf
http://www.robots.ox.ac.uk/~gk/publications/KleinMurray2007ISMAR.pdf
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/CalonderLSF10.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/CalonderLSF10.pdf
http://www.aaai.org/Papers/AAAI/2002/AAAI02-089.pdf
http://www.aaai.org/Papers/AAAI/2002/AAAI02-089.pdf
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html#orb
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html#orb
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_orb/py_orb.html#orb
http://dx.doi.org/10.1007/3-540-61123-1_183
http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm

[29]

130]

[31]
32]

[33]

[34]
[35]

[36]
137]

[39]
[40]
[41]
[42]

Steven Lovegrove Richard Newcombe and Andrew Davison. “DTAM: Dense
Tracking and Mapping in Real-Time”. In: (). URL: https://www.robots.
ox.ac.uk/ vgg/rg/papers/newcombe_davison__2011__dtam.pdfl

A. Rosenfeld and J. Pfaltz. “Sequential operations in digital picture pro-
cessing.” In: Journal of the Association for Computing Machinery (1966),
pp- 471-494.

Linda Shapiro. Computer Vision Basics. 2006. URL: https://courses.cs.
washington.edu/courses/cseb76/06sp/notes/Basicsl.pdf.

Linda Shapiro. Edge Operators. 2006. URL: https://courses.cs.washington.
edu/courses/cseb76/06sp/notes/Basics3. pdf.

Smoothing Images. URL: http://docs.opencv.org/2.4/doc/tutorials/
imgproc/gausian_median_blur_bilateral filter/gausian_median_
blur_bilateral_filter.htmll

Sobel Derivatives. URL: http://docs.opencv.org/2.4/doc/tutorials/
imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html.

Chris Sweeney. Structure from Motion (SfM). 2016. URL: http : / / wuw .
theia-sfm.org/sfm.html.

Richard Szeliski. Computer Vision: Algorithms and Applications. 2010.

Understanding Features. 2014. URL: http://docs.opencv.org/3.0-beta/
doc/py_tutorials/py_feature2d/py_features_meaning/py_features_
meaning.html#features-meaning.

Kurt Konolige Vincent Rabaud Ethan Rublee and Gary Bradski. “ORB:
an efficient alternative to SIFT or SURF”. In: (2011). URL: http: //www.
willowgarage.com/sites/default/files/orb_final.pdf.

Vitalii Zakharov. “Puzzle games (like Rubik’s cube) solver Q3”. In: (2016).
Vitalii Zakharov. “Puzzle games (like Rubik’s cube) solver Q4”. In: (2017).
Vitalii Zakharov. “Rubik’s Cube Solver”. In: (2016).

Vitalii Zakharov. “Sudoku solver”. In: (2015).

72


https://www.robots.ox.ac.uk/~vgg/rg/papers/newcombe_davison__2011__dtam.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/newcombe_davison__2011__dtam.pdf
https://courses.cs.washington.edu/courses/cse576/06sp/notes/Basics1.pdf
https://courses.cs.washington.edu/courses/cse576/06sp/notes/Basics1.pdf
https://courses.cs.washington.edu/courses/cse576/06sp/notes/Basics3.pdf
https://courses.cs.washington.edu/courses/cse576/06sp/notes/Basics3.pdf
http://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html
http://www.theia-sfm.org/sfm.html
http://www.theia-sfm.org/sfm.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_meaning/py_features_meaning.html#features-meaning
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_meaning/py_features_meaning.html#features-meaning
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_features_meaning/py_features_meaning.html#features-meaning
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf

Appendices

A Rubik’s cube solver source code
Vitalii Zakharov. https://bitbucket.org/Lewis945 /rubikscubesolver

73



License

Non-exclusive licence to reproduce thesis and make thesis
public

I, Vitalii Zakharov,

1. herewith grant the University of Tartu a free permit (non-exclusive licence)
to:

1.1 reproduce, for the purpose of preservation and making available to the
public, including for addition to the DSpace digital archives until expiry
of the term of validity of the copyright, and

1.2 make available to the public via the web environment of the University
of Tartu, including via the DSpace digital archives until expiry of the
term of validity of the copyright,

of my thesis
Framework for extracting and solving combination puzzles

supervised by Artjom Lind
2. I am aware of the fact that the author retains these rights.

3. T certify that granting the non-exclusive licence does not infringe the intel-
lectual property rights or rights arising from the Personal Data Protection

Act.

Tartu, 18.05.2017

74



	Abstract
	Kokkuvõte
	Acknowledgements
	Abbreviations and Acronyms
	Introduction
	Problem statement
	Contributions
	Road map

	Background and Related work
	Computer vision
	Computer vision's algorithmic theory
	Computer vision basics
	Stereovision basics
	Structure from motion
	Tracking and Mapping

	Computer vision's libraries
	OpenCvSharp
	EmguCV
	Accord.NET


	Kalman filter
	Outcome

	Experiments
	Sudoku experiment
	Detection and Extraction
	Transformation
	Flooding
	Segmentation
	Optical Character Recognition
	Conclusion

	Rubiks cube lines experiment
	Contour and corner detection
	Extraction
	Transforming Image
	Identifying unique faces
	Color detection
	Conclusion

	Rubiks cube plane intersection-experiment
	Bootstrapping
	Tracking
	Planes for a corner detection
	Conclusion


	Contribution
	Design
	Implementation
	Validation

	Conclusion
	References
	Appendices
	License

