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An Eye into the Future: Leveraging A-Priori Knowl-
edge in Predictive Business Process Monitoring

Abstract:

Predictive business process monitoring aims at leveraging past pro-
cess execution data to predict how ongoing (uncompleted) process
executions will unfold up to their completion. Nevertheless, cases
exist in which, together with past execution data, some additional
knowledge (a-priori knowledge) about how a process execution will
develop in the future is available. This knowledge about the future
can be leveraged for improving the quality of the predictions of events
that are currently unknown. In this thesis, we present two techniques
- based on Recurrent Neural Networks with Long Short-Term Mem-
ory (LSTM) cells - able to leverage knowledge about the structure of
the process execution traces as well as a-priori knowledge about how
they will unfold in the future for predicting the sequence of future
activities of ongoing process executions. The results obtained by ap-
plying these techniques on six real-life logs show an improvement in
terms of accuracy over a plain LSTM-based baseline.

Keywords:

Predictive Process Monitoring, Recurrent Neural Networks, Linear
Temporal Logic, A-priori Knowledge, Process mining

CERCS: P170- Computer science, Numerical Analysis, Systems,
Control

Pilk Tulevikku: A priori Teadmiste Kasutamine
Äriprotsesside Ennustusseireks

Kokkuvõte:

Ikka leidub juhtumeid, kus lisaks andmetele minevikust, eksisteerib
täiendavaid teadmisi (apriori teadmised) selle kohta, kuidas prot-
sessid teostuvad tulevikus. Neid teadmisi saab kasutada selleks, et
parandada tuleviku ennustusi juhtumitele, mille kohta ei ole olevikus
informatsiooni. Käesolevas töös tutvustame kahte meetodit - nad
põhinevad korduvatel tehisnärvivõrkudel, mis kasutavad Pika Lühi-
ajalise Mäluga (PLM) rakke. Need meetodid kasutavad informat-
siooni protsessiteostusjuhtumite struktuuri kohta ja apriori teadmisi
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protsessi võimalike tulemite kohta, et ennustada järgmisi juhtumeid
protsessi teostuse ahelas. Testides neid meetodeid kuue elulise sünd-
muste logiga näitavad meetodite täpsuse paranemist võrreldes taval-
iste PLM-il põhinevate meetoditega.

Võtmesõnad:
Äriprotsesside Ennustusseire, Rekurrentsed Närvivõrgud, Lineaarne
Ajaline Loogika, A priori Teadmised, Protsessikaeve.

CERCS: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (au-
tomaatjuhtimisteooria)
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1 Introduction

Nowadays, the success of a company is highly correlated with its abil-
ity for businesses to provide superior delivery of services compared to
its rivals. Competition makes companies seek for better management
and organization of their work-flows. Furthermore, technologies have
also evolved, enabling the use of advanced methods for analyses that
were not possible before. To assist business needs, Process Mining
field has evolved. It designs techniques to analyze a performance of
a company from event logs.

Predictive monitoring [26] is a maturing subfield of Process Min-
ing, that deals with online prediction of process outcomes. Predicted
outcomes may be of different nature, that are defined classes, a de-
gree of compliance with respect to a measure, or achieving an objec-
tive.

An example would be predicting the compliance of a process
execution in an insurance company, given the record of past processes
and their compliance outcomes. Given uncompleted traces of the
claims processes, the goal would be to predict if customers will have
the decisions on their claim on time. These predictions are generally
based on: (i) the sequence of activities already executed in the case;
(ii) the timestamp indicating when each activity in the case was
executed; and (iii) the values of data attributes after each execution
of an activity in the case.

Predictive monitoring undergoes rapid development of algorithms
and techniques focused on predicting an outcome (class label of the
process). That would be having some predefined set of classes that
the traces in the log can belong to. For example, the classes could be
”deadline met” and ”deadline violated”. As an example, an issue to
resolution process can have defined maximum 7 days for the process
to be considered successfully resolved. In this setup having the pro-
cess just started, one can understand and predict one of these labels
i.e. if the process will have a delay (a duration higher than 7 days)
or not.

Also, methods that focus on predicting ongoing process execu-
tion are developed. That is predicting the next activities that will
most likely be performed in the sequence after those that already
happened. This thesis focuses on this type of predictions.
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Given past executions of the process (event log consisting of
traces) as a set of feature vectors in classic machine learning, our
aim would be to predict future paths in a process.

However, even if many sophisticated methods [15,30,37] are cur-
rently available for prediction of future paths none of them account
for the prior knowledge that can be additionally available on execu-
tion time.

Indeed, what motivates this thesis is the surmise that past event
logs, or more in general knowledge about the past, is not the only
important source of knowledge that can be leveraged to make pre-
dictions. In many real life situations, cases exist in which, together
with past execution data, some case-specific additional knowledge
(a-priori knowledge) about the future is available and can be lever-
aged for improving the predictive power of a predictive process mon-
itoring technique. Indeed, this additional a-priori knowledge is what
characterizes the future context of execution of the process that will
affect the development of the currently running cases. Think for in-
stance to the temporary unavailability of a surgery room which may
delay or even rule out the possibility of executing certain activities
in a patient treatment process. While it is impractical to retrain
the predictive algorithms to take into consideration this additional
knowledge every time it becomes available, it is also reasonable to
assume that considering it in some way would improve the accuracy
of the predictions on an ongoing case.

While this observation seems plausible and a-priori knowledge
appears to have the potential of improving predictions, its concrete
realization poses interesting challenges: a first challenge is the pro-
vision of actual techniques able to leverage on past event logs and
a-priori knowledge for predicting the sequence of future activities
in ongoing traces. A second challenge is an actual verification that
these techniques can show an improvement in terms of accuracy on
real life logs over a plain baseline that leverages only knowledge from
past events.

Therefore, our work is concerned with the following research
question:

RQ: How can prior knowledge about ongoing process be used to
boost accuracy of predictions of trends of activities?
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In light of this motivation, in Section 5, we provide two tech-
niques based on Recurrent Neural Networks with Long Short-Term
Memory (LSTM) cells [20] able to leverage a-priori knowledge about
process executions for predicting the sequence of future activities of
an ongoing case. The proposed algorithms are opportunely tailored
in a way that the a-priori knowledge is not taken into account for
training the predictor. In this way, the a-priori knowledge can be
changed on-the-fly at prediction time without the need to retrain
the predictive algorithms. In particular, we introduce:

– a Nocycle technique which is able to leverage knowledge about
the structure of the process execution traces, and in particular
about the presence of repetitions of sequences (i.e., cycles), to
improve a plain LSTM-based baseline so that it does not fall into
a local minimum, a phenomenon already hinted in [37] but not
yet solved;

– an A-priori technique which takes into account a-priori knowl-
edge together with the knowledge that comes from historical data.

In Section 6, we present a wide experimentation carried out using
six real-life logs and aimed at investigating whether the proposed
algorithms increase the accuracy of the predictions. The outcome of
our experiments is that the application of these techniques provides
an improvement up to 50% in terms of prediction accuracy over the
baseline. In addition to the core part (Sections 5 and 6), the thesis
contains an introduction to some background notions (Section 2),
a detailed illustration of the research problem (Section 4), related
work (Section 3) and concluding remarks (Section 7).

2 Background

In this section, we report the background concepts useful for under-
standing the remainder of the thesis.

2.1 Event Logs and Traces

Most of the large enterprises and middle sized companies have a lot of
processes being executed. With the rapid development of database
technology and inexpensiveness of data warehouses saving all the
transactional data in the company became a must. Most of this data
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is about processes that are happening in the company. Those range
from core processes such as ”order to cash” and ”issue to resolution”
to additional processes such as managerial processes. The nature of
this information is processlike (sequential) so they are usually being
recorded in the format of logs.

An event log is a set of traces, each representing the execution
of a process (case instance). Each trace consists of a sequence of
activities, each referring to the execution of an activity in a finite
activity set A.

Definition 1 (Trace, Event Log). A trace σ = 〈a1, a2, ...an〉 ∈ A∗
over A is a sequence of activities. An event log L ∈ B(A) is a multi-
set of traces over the activity set A.

A prefix of length k of a trace σ = 〈a1, a2, ...an〉 ∈ A∗, is a trace
pk(σ) = 〈a1, a2, ...ak〉 ∈ A∗ where k ≤ n; the suffix of the prefix
of length k is defined as the remaining part of σ, that is, sk(σ) =
〈ak + 1, ak + 2, ...an〉 ∈ A∗. For example, the prefix of length 3 of
〈a, c, r, f, s, p〉 is 〈a, c, r〉, while the suffix of this prefix is 〈f, s, p〉.

A cycle in a trace σ ∈ A∗ is a sequence of activities repeated
at least twice in σ (with adjacent repetitions). For example, trace
〈a, b, a, b, a, b, c, d, e, f, g, e, f, g, c, d〉 contains two cycles: 〈a, b〉 (3 rep-
etitions) and 〈e, f, g〉 (2 repetitions).

Practically speaking, the log is a set of process executions (Traces).
Trace is a set of events happened in sequence in a process execution.

The sequence is defined by timestamps. They are the first essen-
tial part of the process. Every correctly stored process must contain
the time stamps of when certain activity was performed.

Trace should have an identification, that is the case ID. Whenever
a real world process starts the new case ID is created. For example,
in the issue to resolution process, the ID refers to a unique number
associated with one instance of the issue raised.

The third essential element of a trace is an Activity label. These
are the names of different activities performed during one instance
of the process. For our example these might be ”issue recorded”,
”decision made”, ”confirmation received”, or ”issue canceled”. These
provide an understanding of what the process is actually performing.

Many other data values can be recorded. A real world example
is shown in the figure 1 from a Dutch hospital log. The figure shows
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one event of the process. This representation refers to the standard
XES [41] to represent logs.

Fig. 1: Trace example, exempt from the BPI11 hospital log [1]

One can see that the timestamp is present and in XES activity
labels are represented through the keyword ”concept:name”.

There are a number of other parameters such as ”org:group”
that shows the department in the clinic, ”Number of executions”
that shows a number of times certain operation was performed and
others. All parameters combined give the best picture of the process
execution, therefore it is important for methods exploiting logs to
use most complete data set possible.

Furthermore, the logs can contain text information such as com-
ments or emails, bringing up the complexity level of the problem.
Text mining methods in conjunction with sequence classification
should be used to bring down the problem [38].

As for example in the hospital log mentioned above, it might be
a parameter with comments from the doctor for patient wellbeing.

In the data based systems, the log can be stored in different struc-
tures. Enterprise Resource Planning (such as SAP, Oracle) systems
have their own data format of journaling the data. It can also be
CSV spreadsheet (figure 2) or XES formatted log (shown in figure
1).

2.2 Process mining

Process mining is a business process management technique that
enables the analysis of processes based on the event logs. The main
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Fig. 2: Trace example (CSV format), exempt from the BPI11 hospital
log [1]

idea is improving business processes based on analysis of the logs of
sequential executions of business processes. This is what makes it
different from the methods established in data mining and business
intelligence which treat the data as a set of distinct events to gather
insights.

The three main tasks performed under the process mining field
are:

– Process discovery: encompasses all methods to discover in-
sights from the past process executions. As an example would
be the issue to resolution process from the insurance company.
Process discovery methods allow building abstract representation
of an event log. The goal of this is to build approximated model
that delivers better insights into the underlined processes. Dis-
covered models can be in forms of BPMN models, Petri nets, and
declarative rules.

– Conformance analysis: it takes existent formalized models and
check them against real logs. In detail, that means that the busi-
ness process analyst has the BPMN model for the process created
(or generated). And now, the goal is to match the real processes
to the model (mostly interest is in doing it on a fly). That is done
in order to check for any deviations the process can have, and if
possible for prevention of undesired behavior.

– Process enhancement: it helps to use logs in order to en-
hance existing process models. The information of the past is
used to change the model based on how the processes are being
performed.
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2.3 Predictive process monitoring

Predictive monitoring is an advancing subfield of Process Mining.
As a subfield of Process Mining, its main focus also lies in exploring
and exploiting the process logs (the process executions). More specif-
ically, predictive monitoring encompasses the methods that deal with
online predictions of process outcomes. The outcome of interest can
be compliance of with a measure (for example in an order to cash
process the measure can be that any of the financial operations that
involve an amount more than 2500 euro, are not performed with-
out confirmation from the top financial officer), achieving objective
(such as in issue to resolution process, if the process will be com-
pleted in under 7 days time), or classifications (giving a label to the
uncompleted trace, such as issue resolved, or not).

In predictive monitoring historical traces are used to train predic-
tive models, then it is used at runtime to predict the future behavior
of a new, unseen ongoing trace. To do this, the information contained
in the current trace prefix is used to query the predictive model and
to get a prediction on the current trace.

Many algorithms are applied to solve the above-mentioned prob-
lems, for example, classic machine learning algorithms as classifica-
tion and clustering [24]. More complex concepts are also used, such
as Markov models [24], time series [23], and deep learning [37,15,42]
approaches.

In order to successfully apply these algorithms, it is necessary to
have a solid understanding of the process log nature. The aspects
that can come into play, are the data types (while the case ID and
activity labels are defined as categorical values, we have to deal with
time stamps that are basically real-valued, also text comments that
are strings or other numerical values such as amounts of money),
stationarity (it usually refers to time series data that have a stable
mean, variance etc. over time. The best example from process logs
is timestamps. One should account that they represent only the mo-
ment in an absolute time scale, while algorithms would only work
if the input will be a relative measure, such as a difference between
timestamps).

Keeping in mind the definition of the business process log from
section 2.1 one can easily find the caveats in the early process mining
approaches, that tend to ignore the data payload, taking into con-
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x〈1〉 x〈2〉 x〈3〉 . . . x〈K〉

h〈1〉 h〈2〉 h〈3〉

. . .
h〈K〉

y〈1〉 y〈2〉 y〈3〉 . . . y〈K〉

Fig. 3: Recurrent Neural Network

sideration only the control-flow (sequence of activities). Some of the
approaches do the opposite, that is consider data, without control-
flow [3,4,32]. In that case, the traces are considered to be simple
sequences. Moreover, methods introduced are usually designed to
work in offline fashion. But, to make more accurate, mature, online
predictions one should leave out neither payload nor control-flow
information.

2.4 RNNs and LSTM

Artificial Neural Networks (or just Neural Networks, NNs) are a well-
known class of discriminative models. In classification tasks, they are
used to model the probability of a given input to belong to a certain
class, given some features of the input. We can describe them in
mathematical terms as follows:

p(y|x) = fNN (x; θ). (1)

In (1), x is the feature vector that represents the input, y is a random
variable representing the output class labels, fNN is the function
modeled by the neural network, and θ is the set of parameters of
such a function to be learned during the training phase.

Recurrent Neural Networks (RNNs, see Fig. 3) are a subclass of
Neural Networks. We illustrate them with the help of an example in
which the classification task concerns the assignment of correct part
of speech – noun, verb, adjective, etc. – to words. If we take the word
“file” in isolation, it can be both a noun and a verb. Nonetheless,
this ambiguity disappears when we consider it in an actual sentence.
Therefore, in the sentence “I have to file a complain” it acts as a
verb, while in the sentence “I need you to share that file with me” it
acts as a noun.

12



This simple example shows that for some tasks the classification
at a certain time-step t depends not only on the current input (i.e.,
“file”) but also on the input (i.e., the part of the sequence) seen so
far. The tasks that share this characteristic are said to be recurrent.
Natural Language tasks are a typical example of recurrent phenom-
ena.

In mathematical terms, let us write x〈1〉, ...,x〈K〉 to indicate an
input sequence of K time-steps, represented by the superscript be-
tween angle brackets. In this way, at each time-step t, the conditional
probability of a given input to belong to a certain class is described
by

p(y〈y〉|x〈t〉, ...,x〈1〉) = fRNN (x〈1〉, ...,x〈t〉; θ). (2)

RNNs have been proven to be extremely appropriate for mod-
eling sequential data (see [18]). As shown in Fig. 3, they typically
leverage recurrent functions in their hidden layers, which are, in turn,
composed of hidden states. Let h〈t〉, with

h〈t〉 = h(x〈t〉,h〈t−1〉; θh); (3)

be the activation of the hidden state at the t-th time-step. h is a
so-called cell function, parameterized over a set of parameters θh to
be learnt during the training, and accepting as inputs the current
input x〈t〉 and its value at the previous time-step h〈t−1〉. The activa-
tion of the hidden state is then mapped (using a linear map) into a
continuous vector of the same size as the number of output classes.
All the elements in such a vector are greater than zero and their
sum is equal to one. Therefore, this vector can be seen as a proba-
bility distribution over the output space. All these constraints can
be easily achieved specifying the generic equation (2) by means of a
softmax function:

p(y〈y〉|x〈t〉, ...,x〈1〉) = softmax(Wh〈t〉 + b); (4)

where the weight matrix W and the bias vector b are parameters to
be learned during the training phase.

Among the different cell functions h (see equation (3)) explored
in the literature, Long Short-Term Memory (LSTM) [20] shows a
significant ability to maintain the memory of its input across long
time spans. This property makes them extremely suitable to be used
in RNNs that have to deal with input sequences with complex long-
term dependencies such as the ones we consider in this thesis.
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2.5 RNNs with LSTM for Predictive Process Monitoring

In order to provide predictions on the suffix of a given prefix (of
a running case), state-of-the-art approaches for predictive process
monitoring use RNNs with LSTM cells. The most recent and per-
forming approach in this field [37] relies on an encoding of activity
sequences that combine features related to the activities in the se-
quence (the so called one-hot encoding).

One-hot encoding is actually the v ∗m sized matrix, where each
row represents one step of a business process. One-hot is because
the table can only contain the binary value of one or zero (even
though some extended versions of one-hot encoding are used to add
information of features such as time [37]).

Even though the table is usually large and not so efficient memory-
wise, it is suitable for neural networks computations (as most of the
operations are multiplications, it’s easy to multiply and add ones
and zeros).

If we turn the log from figure ?? into the one-hot encoding it
will have representation shown in table 1 (we use only control-flow
in this example, that is the activity label).

A SUBMITTED A PARTLYSUBMITTED A DECLINED
e1 1 0 0
e2 0 1 0
e3 0 0 1

Table 1: Example of One-hot encoding

Given the set A = {a1A , . . . amA
} of all possible activities, an

ordering function idx : A → {1, . . . , |A|} ⊆ N is defined on it, such
that aiA <> ajA if and only if iA <> jA, i.e., two activities have the
same A-index if and only if they are the same activity. For instance, if
A = {a, b, c}, we have idx : A→ {1, 2, 3} and idx(a) = 1, idx(b) = 2
and idx(c) = 3. Each activity ai ∈ σ is encoded as a vector (Ai) of
length |A|+ 3 such that the first |A| features are all set to 0, except
the one occurring at the index of the current activity idx(ai), which
is set to 1. The last three features of the vector pertain to time: the
first one relates to the time increase with respect to the previous
activity, the second reports the time since midnight (to distinguish
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between working and night time), and the last one refers to the time
since the beginning of the week.

A trace is encoded by composing the vectors obtained from all
activities in the trace into a matrix. During the training phase, the
encoded traces are used for building the LSTM model. During the
testing phase, a (one-hot encoded) prefix of a running case is used
to query the learned model, which returns the predicted suffix by
running an inference algorithm. Algorithm 1 reports the inference
algorithm introduced in [37] and based on RNN with LSTM cells
for predicting the suffix of a given prefix pk(σ) of length k. The
algorithm takes as input the prefix pk(σ), the LSTM model lstm
and a maximum number of iterations max and returns as output
the complete trace (the prefix and the predicted suffix). First, the
prefix pk(σ) is encoded by using the one-hot encoding (line 5). The
resulting matrix is then used for feeding the LSTM model and getting
the probability distribution over different possible symbols that can
occur in the next position of the trace (line 6). The symbol with the
highest probability is hence selected from the ranked probabilities
(line 7). Then, a new trace is obtained by concatenating the current
prefix with the new predicted symbol (line 8). In order to predict the
second activity, the one-hot encoding of the new prefix is computed
and used to recursively feed the network. The procedure is iterated
until the predicted symbol is the end symbol or a maximum number
of iterations max is reached (line 10).

Algorithm 1 Inference algorithm for predicting the suffix of pk(σ)

1: function PredictSuffix(pk(σ), lstm, max)
2: k = 0
3: trace = pk(σ)
4: do
5: traceencoded = encode(trace)
6: next symbol probs = predictNextSymbols(lstm, traceencoded)
7: next symbol = getSymbol(next symbol prob, traceencoded)
8: trace = trace · next symbol
9: k = k + 1

10: while (not next symbol == end symbol) and (k <max)
11: return trace
12: end function
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Testing set is used to evaluate the algorithm. Using prefixes of a
chosen size, trained model is used to predict the continuations. Then
predicted suffixes are aligned with real suffixes of the input traces
using evaluation metrics.

As an evaluation metrics, predictive business monitoring adopted
known in NLP community Damerau-Levenshtein similarity metric [11].
Damerau-Levenshtein similarity is defined as normalized Damerau-
Levenshtein distance. The distance is computed by counting the min-
imum number of operations needed to change one trace into another.
Those operations are an insertion of a missing event, deletion of an
event, substitution of a single event, or transposition of two consec-
utive events.

2.6 Linear Temporal Logic

Linear Temporal Logic [29] (LTL) is a modal logic with modalities
devoted to describing time aspects. Classically, LTL is defined for
infinite traces. However, to describe the characteristics of a business
process, we use a variant of LTL defined for finite traces (since busi-
ness processes are supposed to complete eventually). We assume that
activities occurring during the process execution fall into the set of
atomic propositions. LTL rules are constructed from these atoms by
applying the temporal operators © (next), ♦ (future), � (globally),
and t (until) in addition to the usual boolean connectives. Given
a formula ϕ, ©ϕ means that the next time instant exists and ϕ is
true in the next time instant (strong next). ♦ϕ indicates that ϕ is
true sometimes in the future. �ϕ means that ϕ is true always in the
future. ϕt ψ indicates that ϕ has to hold at least until ψ holds and
ψ must hold in the current or in a future time instant.

2.7 Beam search

Beam search is a heuristic search algorithm, based on the principle
of exploring graph of possible solutions using the most promising
node. It is built for dealing with large search spaces. Specifically, it
orders all partial solutions with some heuristic measure; keeps only
a small portion of the most promising solution and expands them to
get the complete solution.

Beam search is used in areas such as machine translation[22].
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The algorithm is used to find sequences with certain characteris-
tics that are conceptualized by evaluation function.

There are few variants of this algorithm, two of which will be
thoroughly explained here: The best-first and the breadth-first.

Best-first variation of Beam search Best-first search explores
the solution space following the most probable solution first. The
algorithm exploits a tree structure, in which each node maintains its
state as open and closed (open state means that the node of the tree
was not visited yet, and can be explored in the next iteration, while
closed means that the node was already visited). The algorithm as-
sumes that all nodes are open at the initialization and, after visiting
the nodes marks them as closed.

The pseudo code for the algorithm described in the listing 2.

Algorithm 2 Best first search
1: initialize the initial state as OPEN
2: while OPEN set is not empty do
3: Take the best node from the list (call it N), and make it CLOSED
4: if N is a solution then
5: success, return the solution traced back
6: end if
7: Expand node N (find all successors)
8: for all node of the successors do
9: if node is not in CLOSED then

10: apply evaluation function f to the node
11: node as OPEN
12: end if
13: end for
14: end while

On the first line, the graph is initialized by adding initial state
to the set of OPEN states. Second line starts the loop, that finishes
when the solution found (according to evaluation function), or the
tree was fully explored (no events are left in OPEN set). Next, on line
3, the best (according evaluation function f) element is chosen, and
moved from OPEN set to CLOSED. On lines 4-6 algorithm checks if
chosen element represent a solution. If not on the line 7 all successors
of the element are found. The remaining of the pseudo code reports
exploring those succcessors and adding them to the list of OPEN
nodes.
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Different evaluation functions can be used for the task. The de-
cision is made upon the specifics of the problem, and it directly
influences the effectiveness of an algorithm. The example of the eval-
uation function can be the count of events if we need the prediction
to be short, or if the predicted sequence is conformant with a defined
rule.

Breadth-first variation of Beam search The breadth-first search
begins with an empty node and explores the search space in the
breadth-wise order. This type of beam search operates using few pri-
ority queues instead of tree structures as in the previous approach.

The algorithm is reported in the pseudo code listing 3 (all el-
ements in priority queues are stored with priority based on some
evaluation function)

The algorithm starts with defining two priority queues on line 1.
On line 2, the element given as an input is appended to first queue.
The third line defines the condition that calculations will stop that
is if the solution tree has reached its bottom (the priority queues
s1 and s2 are empty). Line 4 starts the while loop that will iterate
over all elements in s1. Lines 5-9 describe that each element from s1
either a solution (in that case line 7 returns it) or the next elements
are predicted (based on the elem) and top beamsize elements are
chosen to be added to the s2 queue. On line 11, the algorithm is reset
for the next step of the beam search. Only best beamsize elements
are chosen (others are discarded).

Algorithm 3 Breath-first Beam search
1: define two empty priority queues, s1 and s2
2: add the initial element to s1
3: while solution is not found do
4: while s1 is not empty do
5: get element elem from s1
6: if solution found then
7: success
8: end if
9: expands elem and write beamsize-elements to s2

10: end while
11: initialize s2 with the beamsize best elements from s1
12: end while
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Both the beam search algorithms use the same tactic: they cut
the search space as to keep only the most probable and better per-
forming prospective solutions. These algorithms are different, and
depending on the nature of the problem they can have very different
performance.

3 Related Work

In the following sections, the techniques and algorithms used in re-
cent papers on predictive process monitoring that are considered as
a state of the art to the problems of interest will be described. These
approaches are also discussed in terms of their suitability to be used
for predicting trends of activities using a-priori knowledge.

The methods are ordered in a chronological manner, each has a
description of how it relates to the above-mentioned problem and a
short discussion on the results and applications.

Firstly, we start off by giving a short overview of early approaches
concerning predictive monitoring. Secondly, the state of the art meth-
ods based on Complex Symbolic Sequences Encodings will be de-
scribed. Finally, the overview of Deep learning based algorithms for
predictions will be given, and it will be specified that there are no
algorithms yet, that encompass the online prediction of process out-
comes with A-priori knowledge.

3.1 Early approaches

In the early applications of business process monitoring, few mathe-
matical models were brought to the field. The first were Petri nets [40].
Petri nets prove to be a very robust tool for a range of problems in
process mining. They are used for conformance checking, process
discovery, and process monitoring. In particular, the Petri nets were
used for predictions of the business process duration [31].

Petri nets have few important properties such as having a formal
semantics. Also, they are simple models and have graphical nature.
Their properties are mathematically investigated.

Kang and Jung [21] propose a new approach for monitoring the
progress of ongoing processes and predicting probable performances
and routes. Their contribution is based on the use of Formal Concept
Analysis (FCA) for monitoring business processes. They propose an
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alternative approach to Petri nets for visualizing the ongoing pro-
cesses and predicting the future evolving (next activities) of ongo-
ing processes by introducing concept lattice and reachability lattice.
Also, to the first group of works, we can associate the work in [4].
In this work, the authors present a set of approaches in which an-
notated transition systems, containing time information extracted
from event logs, are used to: (i) check time conformance; (ii) predict
the remaining processing time of incomplete cases; (iii) recommend
appropriate activities to end users working on these cases.

In [17], an approach for predicting business process performances
is presented. The approach is based on context-related execution
scenarios discovered and modeled through state-aware performance
predictors. In [27], the authors present a technique for predicting
the delay between the expected and the actual arrival time of cases
pertaining to a transport and logistics process. In [33], queue theory
is used in order to predict possible delays in process executions.

Another group of works in the literature focuses on approaches
that generate predictions and recommendations to reduce risks. For
example, in [9], the authors present a technique to support process
participants in making risk-informed decisions with the aim of re-
ducing process risks. Risks are predicted by traversing decision trees
generated from logs of past process executions. In [28], the authors
make predictions about time-related process risks by identifying and
leveraging statistical indicators observable in event logs that high-
light the possibility of transgressing deadlines. In [35], an approach
for Root Cause Analysis (RCA) through classification algorithms is
presented. These methods would suffer from low accuracy if applied
in accordance of the problem stated. They usually state the proba-
bility of the process to ”derail”, but not predicting the full sequence
of events.

In the next section, the state of the art approaches with special
process-log encoding are described.

3.2 Prediction with Complex Symbolic Encoding for
structured and unstructured content

The second group of approaches focused on predicting the outcome
(e.g., the satisfaction of a business objective) of a case can be clus-
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tered together as the methods that exploit Complex Symbolic Se-
quences encodings of the process log.

Complex Symbolic Sequences are introduced [24]. They allow to
capture a lot information about a log. Complex Symbolic Sequence
is basically ordered list of vectors, where each vector is a subset of
some alphabet inferred from the log.

When Complex Symbolic Sequences are used instead of Simple
Symbolic Sequences (encoding that focuses solely on activity labels)
for dealing with prediction problems, the complexity space of the
prediction problem grows substantially. This suggests using new and
more complex approaches to work with them.

Some of the base lines of working with complex symbolic se-
quences use index-based encodings, and index latest payload encod-
ings mentioned in following paper [24].

To exemplify this approach for encodings let’s again take a look
at the log in figure ??. The Complex Symbolic Sequence form of this
log will have following representation:

concept : n1 .. concept : name3 org : resource1 .. org : resource3 time : timestamp1 ..
tr1 A SUBMITTED .. A DECLINED 112 .. 10929 2011-12-12T16:06:11 ..
tr2 .. .. .. .. .. .. ..

Table 2: Example of Complex Symbolic Sequence encoding

Complex Symbolic Sequences allow us to encode a real log, in
order to capture as much information as possible while having a
structure that easily can be used with standard machine learning
algorithms.

In [24] the authors explore different types of encodings, called
index-based encodings. They also give an alternative model called
HMM-based encoding. HMM-based encoding is a direct extension
to index-based, that takes into account the coefficients of the built
HMM model for every possible outcome. In particular for binary
classification, the log is split into two parts (according to the class)
and two HMM models are built.

Basically, they look at the log, and construct a feature vector of
the form:
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Where si, i = 1, u are static features, eventij is an activity la-

bel event class at each position, and hjik are the dynamic features
associated to each event.

In [38] the authors extends this encoding with textual, unstruc-
tured content. For this purpose they exploit methods from text min-
ing, to extract features from textual attributes. These encodings are
used with classification methods.

When Complex Symbolic Sequence encoding needs to have tex-
tual data encoded as additional parameters. A text knowledge ex-
traction techniques, as described below are used.

First data is preprocessed is three steps: tokenized, normalized,
and lemmatization is made.

Next step is encoding. The most used methods [38] are: Bag-of-
n-grams, Naive Bayes log count ratios, Latent Dirichlet Allocation
topic modeling, and Paragraph vector.

After one of these methods of text encoding is chosen, the corre-
sponding vector is appended to the index-based encoding.

This representation also has its downsides, even though it cap-
tures much more information. It is impossible to represent the com-
plete log in this way because one needs to limit the number of events
in the traces to some definite number. In our example in the table 2
the trace length was chosen to be 3. This puts a limitation on the
power of this encoding.

Before mentioned approaches focus on binary classification of the
traces. The problem we are solving is different as instead of predict-
ing a binary outcome of the first N events, we predict the next
events. That makes the number of choices bigger (from 2 in binary
classification to K as a number of different possible next events).
The methods described in this section, if generalized to capture the
prediction of next events, would become unusable.

3.3 Deep learning approaches

Recently, deep learning methods became exceptionally popular in
research and industry communities. Business Process Management
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is not an exception [42,37,15]. Recent papers suggest state of the art
performance on the prediction of next events and time features of
the current trace.

Due to the nature of the problem, i.e. sequence to sequence pre-
diction, the recurrent neural networks are most exploited. The main
motivation for this type of neural networks is currently the problems
in Natural Language Processing, such as speech recognition[19], or
translation[36].

The paper by Verenich [42], suggests the use of Recurrent Neural
Networks with sliding windows. Sliding windows is using N events
to predict the next one (to predict event k + 1, k..(N + k) events
are used). The paper by Evermann[15] proposes the use if RNN net-
works with LSTM cells with two hidden layers, 500 dimensions, and
20 steps. They use batches of 20 to train the RNN with back prop-
agation. The evaluation was made on the BPI2012, BPI2013 data
sets. They argue that the results with this approach are comparable
to state of the art based on clustering and annotating transition sys-
tem approaches. Also, the paper [16] suggest developed a software
suite for prediction tasks using deep learning and TensorFlow [5].

The most recent paper by Tax [37] uses RNN with LSTM cells to
predict the next events. They achieve state of the art performance on
most of the logs evaluated. In order to predict next event and time,
they use one-hot encoding for event sequence, and few time features
(such as the difference between time-stamps, time from midnight,
time from the beginning of the week). Using these features they
construct a vector to be fed into a recurrent neural network. They
are looking for functions f 1

a and f 1
t that are basically the probability

distributions over all possible trace continuations. Also, as they now
have basically two sequences to train with, that are the sequence
of events, and the sequence of time values, the paper suggests the
different possible RNN architectures (As shown on figure 4).

The problem investigated in this paper falls best into the prob-
lems discussed in this section i.e., into the set of very recent efforts
aiming at predicting the sequence of future activities given the activ-
ities observed so far. We will exploit the state of the art architecture
offered by [37] in order to build a model able to leverage A-priori
knowledge.
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Fig. 4: Possible neural network architectures [37]. Single task layers
(a), shared multitask layers (b), or n+m shared layers (c).

4 The Problem

Predictive process monitoring methods use past process executions,
stored in event logs, in order to build predictive models that work at
runtime to make predictions about the future. Among the different
types of predictions about an ongoing case, such as the remaining
time or the fulfillment of a predicate, we can find the prediction of the
sequence of future activities. This type of predictions can be useful in
the scenario where some planning and resource allocation are needed
for the running case. For instance, the hospital management can be
highly interested in predicting the future activities of patients to be
able to best organize machines and resources of the hospital.

Nonetheless, predicting sequences of activities is a quite complex
and challenging task, as the longer the sequence is, the more difficult
is to predict the most far-away activities. While predicting the se-
quence of future activities entirely from past execution data may be
difficult, in real world scenarios, we often observe that some a-priori
knowledge about the future of the running process executions exists

24



and could hence be leveraged to support the predictive methods and
improve their accuracy.

For instance, in the hospital example, new medical guidelines
may provide new knowledge on the fact that two treatments are not
useful if used together in order to cure a certain disease, or that a
certain screening is required in order to perform a specific surgery,
or also that if a patient is allergic to a specific treatment she will
never go to take it.

Also, the exemplary knowledge known a-prior might be the weather
information for an agricultural company that does the harvest. Knowl-
edge about problems with diesel supplies can help a company to
project on how their real processes concerning harvesting will un-
fold. For example assuming they are having delays with a supply in
the middle of harvesting season, the machinery usually used will not
be able to perform needed operations. So inferring the incapability
to use them will help to predict the real unfold of the processes. That
could help the management to guide their choices to best account
for the new circumstances.

Therefore, if this type of problems could be accurately solved it
can bring much more benefits to the companies. For example, it can
be also used for simulation purposes. For example a big insurance
company, that deals with thousands of claims per day could decide
that they need some changes such as cutting down jobs. Now they
will have a capability to predict what will happen under the assump-
tion of job cuts, and that could provide better insights. So besides
classical qualitative methods of business process management that
use BPMN models to analyze the changes my means of queuing the-
ory or simulation, one would have one more instrument in the toolkit.
This algorithm would enable a process owner to use some proposed
changes as a-priori knowledge, and after predicting the continuations
of the traces make further analysis.

Given the practical motivations for the problem at hand let’s dive
once more into the research question identified.

RQ: How can prior knowledge about an ongoing case be used to
boost the accuracy of predictions of trends of activities?

Here we decompose the research question into chunks to better
understand the problem stated. Boost accuracy of prediction means
to develop an approach that will have better performance than the
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current state of the art. Trends of activities means that we are inter-
ested in finding the suffix of the current ongoing process execution.
Ongoing case means that we will have prior knowledge on the in-
ference time. Therefore we aim at understanding whether and how
a-priori knowledge can be leveraged in order to improve the accu-
racy of the prediction of the (sequence of the) next activity(ies) of
an ongoing case in a reasonable amount of time.

This a-priori knowledge can be expressed in terms of LTL rules.
For instance, in the hospital example, LTL can be used for defining
the following rules:

1) treatmentA and treatmentB cannot be both used within the
same course of cure of a patient:

¬(♦treatmentA ∧ ♦treatmentB) (5)

2) screeningC is a pre-requisite to perform surgeryD:

(¬surgeryD t screeningC) ∨�(¬surgeryD) (6)

3) treatmentB cannot be performed on this course of cure (e.g.,
because the patient is allergic to it):

¬♦treatmentB (7)

For example, being aware of the fact that treatmentA and treatmentB

can never be executed together could help in ruling out a prediction
of treatmentB whenever we have already observed treatmentA and
vice versa.

Formally, given a prefix pk(σ) = 〈a1, ..., ak〉 of length k of a trace
σ = 〈a1, ..., an〉 and some knowledge K(σ) on σ, the problem we
want to face is to identify the function f such that f(pk(σ),K(σ)) =
sk(σ).

5 The Solution

Predicting the suffix of a given prefix is a problem that is tack-
led by state-of-the-art approaches that make use of LSTM-based
RNNs [15,37] (see section 2.5 and 3.3). We hence start from these
approaches and build on top of them to take into account a-priori
knowledge.
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Before presenting our approach, we need to observe that a basic
solution that can be used to leverage a-priori knowledge for mak-
ing predictions is the one provided by the inclusion of the a-priori
knowledge in the data used for training the prediction model. How-
ever, this solution would raise a main practical problem: since the
a-priori knowledge can in principle change from case to case, this
would require retraining the model for each prediction, thus ham-
pering the scalability of the predictive system. A smarter approach
is hence required for taking into account a-priori knowledge when
predicting the future path of an ongoing case.

In the next sections, we first introduce an enhancement, called
Nocycle, of state-of-the-art approaches for overcoming the issues
encountered with traces characterized by a high number of cycles
(Section 5.1). We then describe a further extension called A-priori
technique that allows us to take into account a-priori knowledge
expressed in terms of LTL rules (Section 5.2).

5.1 Learning from Trace Structures

By experimenting the LSTM approach on different event logs, we
found that event logs with traces containing a high number of repe-
titions of cycles perform worse than others, as also observed in [37].
This is mainly due to the fact that frequent repetitions of a cycle
cause an increase in the probability distribution of the back-loop,
i.e., the connection between the last and the first element of the
cycle. To overcome this problem, we propose to equip Algorithm 1
with an additional function in charge of weakening such a back-loop
probability. This function works as follows: first, the current trace is
analyzed in order to discover possible current cycles; and second, this
information is used for preventing the prediction of a new repetition
of the loop. More in detail:

1. For each prefix pk(σ) = 〈a1a2 . . . ak〉 of size k, the algorithm
checks if there are j (j >= 2) consecutive occurrences of a cycle
c = 〈ac1 . . . acs〉, such that the last activity of the prefix corre-
sponds to the last activity of the cycle idx(ak) = idx(acs);

2. j is then used to correct the distribution over different possible
activities that can occur in the next position by decreasing the
probability of the first activity of the cycle ac1 to occur again. To
decrease this probability, the algorithm uses a coefficient, function
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of the number of cycle repetitions j, as a weight to adjust the
probability distribution. Examples of formulas that can be used
for this purpose are j2 or ej.

In simple words, the Nocycle technique looks for the current
cycle. Figure 5 shows how the inference algorithm would choose the
next event for prediction. Then figure 6 shows how the algorithm
without Nocycle technique would choose next event, even though
the cycle is present. If the technique applied, figure 7 shows that
the probability to choose the event starting the cycle is diminished.
After three times cycle is repeated (Figure 8) the algorithm predict
a second most probable event, by this going out of the cycle.

Fig. 5: How the next event is chosen

Fig. 6: How the next even standardly chosen (cycles present)

Algorithm 4 reports the pseudo-code of the Nocycle technique.
Similarly to Algorithm 1 presented in Section 2.5, it takes as input
a prefix pk(σ), the trained LSTM model lstm, and the maximum
number max of iterations allowed. Then, it returns as output the
complete trace (the prefix and the predicted suffix). In particular,
the algorithm adds to the state-of-the-art Algorithm 1 the weak-
enProb procedure described above to find cycles in the trace and
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Fig. 7: Next event chosen after the e2 applied for cycle size 2

Fig. 8: Next event chosen after the e2 applied for cycle size 3

decrease the probability of the first activity of the cycle to occur
again at the end of a repetition. The resulting vector of weakened
probabilities is hence used for getting the next symbol as in the basic
procedure.

Algorithm 4 Nocycle extension for predicting the suffix of pk(σ)

1: function PredictSuffixNoCycle(pk(σ), lstm, max)
2: k = 0
3: trace = pk(σ)
4: do
5: traceencoded = encode(trace)
6: next symbol prob = predictNextSymbols(lstm, traceencoded)
7: weak next symbol prob = weakenProb (trace, next symbol prob)
8: next symbol = getSymbol(weak next symbol prob, traceencoded)
9: trace = trace · next symbol

10: k = k + 1
11: while (not next symbol == end symbol) and (k < max)
12: return trace
13: end function
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5.2 Learning from A-priori Knowledge

The overall idea for leveraging a-priori knowledge for predictive mon-
itoring is simple: (i) we use the LSTM approach to get the possible
predictions for an ongoing trace; this can be done, because the step
by step output of a recurrent neural network is basically a proba-
bility distribution over next events in the trace. (ii) we rank them
according to the likelihood of the prediction; and (iii) we select the
first prediction which is compliant with the LTL rules describing
the a-priori knowledge. However, although RNN inference algorithms
are not computationally expensive per se, building all the possible
predicted suffixes could be costly and inefficient. It is the standard
problem of algorithms that rely on storing data in tree structures,
where the growth of a tree is exponential. That is exactly the case
here, independently of how many continuations of the trace are cho-
sen at each step (let’s day N steps), each next step of predictions
will produce N i nodes. Even for few iterations it is computationally
and memory-wise not feasible to use this strategy.

Therefore, the alternative investigated in this paper leverages,
on top of state-of-the-art LSTM techniques, the approach classically
used in statistical sequence-to-sequence predictions in translation
tasks [39], i.e., the beamSearch algorithm. The beamSearch works
by the partial ordering of the probability trees, that is by exploring
the search space, only taking the most promising branches. (As ex-
plained in section 2.7) In particular, we use the RNN architecture
with LSTM cells and training system proposed in [37]. Then, in the
testing phase, to predict a certain suffix, we use a new inference
algorithm (A-priori), which explores the probability space using
beamSearch to cut the branches of the LSTM model which bring to
predictions that are not compliant with the a-priori knowledge.

Algorithm 5 reports the pseudo-code describing the A-priori
algorithm. It takes as input the prefix pk(σ), the available a-priori
knowledge K(σ), and the trained LSTM model lstm, together with
three parameters: (i) bSize, which is the number of possible next
symbols returned by algorithm (limiting parameter for a beam search
inside of A-PRIORI procedure); (ii) maxSize, which is the maxi-
mum number of branches that can be explored by A-priori at the
same time; and (iii) max, which is the maximum number of allowed
iterations.
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Algorithm 5 A-priori algorithm for predicting the suffix of pk(σ)

1: function A-priori(pk(σ), K(σ), lstm, bSize, maxSize, max)
2: h = 0
3: prefixes = {pk(σ)}
4: while k ≤ max and not empty(prefixes) do
5: candidates next = predictPrefNextSymbols(lstm, prefixes, bSize)
6: top candidates = topRank(candidates next, maxSize)
7: for all candidate in top candidates do
8: if last symbol(candidate) <> end symbol then
9: push(candidate, prefixes)

10: else
11: if check(candidate, K) then
12: return candidate
13: end if
14: end if
15: end for
16: h = h+ 1
17: end while
18: end function

Fig. 9: Beam search based algorithm, step 1

Fig. 10: Beam search based algorithm, step 2
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Fig. 11: Beam search based algorithm, step 3

To describe the algorithm we will use the graphics. Figure 9 shows
in green the prefix of the trace, and the pink are the 5 predicted next
events. Their scores are displayed inside the circles. In the next step
(figure 10), the algorithm ranks the predicted events and chooses
bSize traces (in the exemplary case it’s 2). The next step (figure 11),
predicts the next events for all possible traces saved. Then these
traces are combined together in one pool and also ranked with re-
spect to the evaluation function(figure 12) and next bSize events are
chosen. After the check on the LTL formula approves the predicted
sequence, and end symbol is predicted, the process stops, and the
sequence is returned (every node keeps a link to its parent node, so
reconstruction of the whole trace is not an issue).

Following pseudo code algorithm 5, the algorithm iterates over a
priority queue of prefixes, which is initialized with the input prefix
pk(σ) (line 3) and that is used for regulating the number of branches
to be explored. For each prefix in prefixes, bSize (< maxSize)
possible next activities are predicted (by means of the predict-
NextSymbols procedure of Algorithm 1) and for each prefix bSize
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Fig. 12: Beam search based algorithm, step 4

new traces are obtained by concatenating the prefix with the cor-
responding bSize predicted next activities (line 5). In this way, the
algorithm generates |prefixes| ∗ bSize traces. In order to limit the
search space, the algorithm ranks the predicted traces based on their
estimated probability1 and takes only the top maxSize ones (line 6).
For each of these traces (line 7), if the last symbol predicted is not
the end symbol, the trace is added to prefixes (line 9). Otherwise,
if the trace is complete, the algorithm checks if it is compliant with
the LTL rules in K(σ) (line 11). In this case, the trace is returned
(line 12). The algorithm is then iterated until the queue of prefixes
is empty or the maximum number of iterations max is reached (line
4).

The method A-priori used in the evaluation is the initial al-
gorithm combined with the Nocycle algorithm. To incorporate

1 Note that, in order to prevent overflow in the computation, the estimated prob-
ability for sequences of activities is computed as the sum of the logarithm of the
probabilities of the next activities rather than as the product of the probabilities of
the next activities.
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the Nocycle technique in the algorithm 5, line 5 method predict-
PrefNextSymbol is updated to account for the cycle removal. Before
returning candidates next the current prefix is analyzed, and if a
cycle is found, the next candidates with changed probabilities are
returned.

5.3 Implementation

Algorithms 4 and 5 have been implemented in Python 2.6. In par-
ticular, the Keras [8] and TensorFlow [5] libraries have been used for
neural networks. The LTL checker [2] for checking the compliance
of traces to LTL rules is instead based on automata and written in
Java [43]2). As the problem of compatibility arose having Java and
Python parts, the Py4J library[10] was used as a gateway to access
Java code from Python. The full source code is available on github3.
The link given contain detailed readme with instruction on how to
reproduce all experiments on any machine.

6 Evaluation

In this section, we provide an evaluation of our predictive business
process monitoring techniques based on a-priori knowledge. In par-
ticular, we compare the proposed approaches and the most perfor-
mant state-of-the-art approach [37] and check: (i) whether the No-
cycle algorithm leveraging knowledge about the structure of the
process execution traces (and in particular about the presence of
cycles) actually improves the predictions; and (ii) whether the A-
priori algorithm is able to leverage a-priori knowledge to improve
the performance of the LSTM model.

6.1 Event Logs

For the evaluation of the techniques, we used six real-life event logs.
Four of them were provided for the BPI Challenges (BPIC) 2011 [1],
2012 [13], 2013 [34], and 2017 [14], respectively. We also used two
additional event logs, one pertaining to an environmental permit
application process (“WABO”), used in the context of the CoSeLoG

2 The LTL checker is taken from the open source code of ProM process mining suite.
3 https://github.com/yesanton/Process-Sequence-Prediction-with-A-priori-knowledge
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Log #Tr. #Act. avg-TL avg-CR Spars.

EnvLog 937 381 41 0.14 0.4066
HelpDesk 3804 9 3.6 0.22 0.0024
BPIC11 911 424 54 5.05 0.4654
BPIC12 9 658 6 7.5 1.35 0.0006
BPIC13 7 554 13 7 1.45 0.0017
BPIC17 31 508 26 18 0.46 0.0008

Table 3: The event logs

project [7] (EnvLog for short in this paper), and another containing
cases from a ticketing management process of the help desk of an
Italian software company (Helpdesk 4 for short). The logs containing
less than 2 activities were filtered out, as they do not contribute to
the evaluation. We briefly describe datasets in the following.

1. Environment permit log (EnvLog) contains data from a Dutch
municipality5. The cases are the application process of the envi-
ronment permits.

2. Helpdesk is a dataset containing events from a ticketing man-
agement process of the help desk of an Italian software company.
The process consists of 9 activities, and all cases start with the
insertion of a new ticket into the ticketing management system.
Each case ends when the issue is resolved and the ticket is closed.

3. BPIC11 log is a real-life log taken from Dutch Academic Hospi-
tal. The cases of the log correspond to the Gynaecology depart-
ment of the hospital. Phases (traces) consist of the diagnosis and
treatment of a patient. Some attributes are repeated as the pro-
cedures could take place few times. As the log contains sensitive
information it was anonymized.

4. BPIC12 log6 This log is part of the BPI 2012 challenge, a real-
life log, taken from a Dutch Financial Institute. The process of
the event log is an application process for a personal loan or
overdraft within a global financing organization.

To enable comparison with state-of-the-art, the same filtering
procedure as described [37,6,15] is applied to the log.

4 https://data.mendeley.com/datasets/39bp3vv62t/1
5 https://data.4tu.nl/repository/uuid:e8c3a53d-5301-4afb-9bcd-38e74171ca32
6 http://data.4tu.nl/repository/uuid:3926db30-f712-4394-aebc-75976070e91f.
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5. BPIC13 log7 is a log by Volvo IT in Belgium. The log consists of
an incident and problem management from the Volvo ”VINST”
system.

6. BPIC17 log8 is a log of a process taken from Dutch financial
institute. In particular, the process we used is related to a loan
application.

The characteristics of these logs are summarized in Table 3. For
each log, we report the total number of traces, the number of activity
labels (i.e., the size of the activity set of the log), the average trace
length (avg-TL), the average number of repetitions of all cycles in
the log (avg-CR), and the ratio between the number of activity labels
and the number of traces, indicating the sparsity of the activity labels
over the log.

Having a look at table 3, one can see the difference in characteris-
tics of the logs. Environment Permit and BPIC11 are logs with a very
long traces. They also have a large event alphabet size (299 and 355
respectively). Moreover BPIC15 has a big number of cycles in the log
(5.05 per trace). Due to these characteristics, we expect these logs to
have inferior results, as the in sparse solution space, machine learn-
ing algorithms generally have poor performance. BPIC12, BPIC13,
BPIC17, and HelpDesk logs expectingly will have good performance
because they contain lots of traces whilst having small alphabet size.
Moreover, the traces BPIC12 and BPIC13 should be most benefited
by the Nocycle technique, as they contain a number of cycles per
trace.

6.2 Extraction of LTL rules

For testing with an a-priori algorithm, we need to establish the
knowledge for every log. In order to provide unbiased knowledge and
reproducible results, we decided not to handpick the LTL formulas
but to establish a strict procedure for finding them instead.

Also, we wanted to test the algorithm with rules that differ in
complexity, or ”strength”. With this in mind we defined 2 conjunc-
tive rules describing a strong a-priori knowledge and a weak a-priori
knowledge, which respectively strongly and weakly constrain the

7 http://www.win.tue.nl/bpi/doku.php?id=2013:challenge
8 http://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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traces. In particular, we discovered rules of type ♦A (which imposes
the occurrence of A) for defining the weak a-priori knowledge and
rules of type �(A → ♦B) ∧ ♦A (which imposes the occurrence of
both A and B and that every occurrence of A is followed by an
occurrence of B) for defining the strong a-priori knowledge.

So we derived the a-priori knowledge on the traces of the testing
set as follows:

1. We randomly selected 10% of traces of the testing set (in order
not to find rules that are 100% satisfied in the whole testing set).

2. We used the DeclareMiner ProM plug-in [25] to discover LTL
rules satisfied in the set chosen at step 1 (Figure 13 shows the
LTL extraction from DeclareMiner).
– For the weak a-priori knowledge, we randomly selected from
the discovered rules one, two or three 9 rules of type ♦A and we
composed them into a single conjunctive formula.
– For the strong a-priori knowledge, we randomly selected one,
two or three rules from the discovered rules of type �(A→ ♦B)∧
♦A and we composed them into a single conjunctive formula.
The schematic form of the rules used in the evaluation is reported
in Table 4, where - for the sake of readability - we replace the
original activity names with single characters.

3. Starting from strong and weak a-priori knowledge, we built a
strong a-priori testing set and a weak a-priori testing set, respec-
tively composed of the subsets of traces of the testing set that
satisfy strong and weak a-priori knowledge.

6.3 Experimental Procedure

In order to evaluate the techniques presented in the paper, we adopted
the following procedure. For each event log:

1. We divided the event log into two parts: a training set composed
of the 67% of the whole event log and a testing set, composed
of the remaining 33%.

2. The we extract LTL rules as described in section 6.2

9 Depending on the sparsity of the log (see table 3), as a general rule if the sparsity
is little (less than 0.001) we choose one rule, if sparsity is very high (more than
0.45) we choose three rules. These parameters were determined by experimentation,
allowing formulas to be satisfied on around 50% of the testing set
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Fig. 13: Declare Miner in action

3. we compared Nocycle and A-priori10 against a baseline pro-
vided by the technique presented in [37]. For each technique, we

10 We set bSize to 3 and, for the coefficient in charge of weakening the probabilities of
activities in a cycle, we used the exponential formula (ej , where j is the number of
cycle repetitions).
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Log A-priori Strong A-priori Weak

EnvLog �(a→ ♦b) ∧ ♦a ∧ �(c→ ♦d) ∧ ♦c ♦a ∧ ♦c
HelpDesk �(e→ ♦f) ∧ ♦e ♦e
BPIC11 �(g → ♦h) ∧ ♦g ∧ �(i→ ♦l) ∧ ♦i ∧ �(m→ ♦n) ∧ ♦m ♦i ∧ ♦h ∧ ♦o
BPIC12 �(p→ ♦q) ∧ ♦p ♦p
BPIC13 �(r → ♦s) ∧ ♦r ∧ �(t→ ♦r) ∧ ♦t ♦s ∧ ♦r
BPIC17 �(u→ ♦v) ∧ ♦u ♦u

Table 4: The a-priori knowledge.

computed: (i) the length of the predicted suffixes; and (ii) their
similarity with the prediction ground truth measured using the
Damerau-Levenshtein similarity [11].

The experiments have been performed interchangeably on both a
GPU Tesla K40c and on a conventional laptop with Code i5 CPU.
As for the LSTM training settings we used the ones identified by
Tax et al. [37] as it has been shown to be the most performing ones
for facing the problem of predicting sequences of future activities.11

The time required for training the LSTM neural network is about 2
minutes per epoch using the GPU and 15 minutes using the CPU.
The inference time for Nocycle is about 0.1-2 seconds per trace
(depending on the log), whereas the inference time for A-priori is
4 times higher on average.

6.4 Results and Discussion

Tables 5 and 6 report, for each event log, the performances of the
two techniques we propose on the strong a-priori and weak a-priori
testing sets. The results for both testing sets are compared with
the baseline presented in [37]. For each log, we provide the average
Damerau-Levenshtein similarity between the predicted sequence (in
square brackets, its average length) and the ground truth length
of the traces (column ”Groundtruth”). The best average Damerau-
Levenshtein similarity for each log is emphasized in gray. Column
”Tested” reports the number of traces tested while column ”Prefix”
specifies the range of the prefix lengths used for the specific event
log.

11 We used an architecture characterized by two LSTM layers. The algorithm used is
the Adam learning algorithm with categorical cross entropy loss and the dropout
coefficient has been set to 0.2.
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Log Baseline Nocycle A-priori Groundtruth Tested Prefix
EnvLog 0.250 [17.4] 0.250 [17.4] 0.070 [95.00] 29.40 80 19− 22
HelpDesk 0.551 [1.44] 0.551 [1.44] 0.831 [2.36] 3.00 576 2− 5
BPIC11 0.204 [199.00] 0.281 [199.00] 0.274 [198.00] 117.11 144 13− 16
BPIC12 0.071 [47.07] 0.387 [6.86] 0.416 [7.53] 10.95 1 548 2− 5
BPIC13 0.116 [100.80] 0.502 [14.71] 0.596 [6.13] 7.15 3 209 2− 5
BPIC17 0.448 [11.78] 0.448 [11.78] 0.510 [15.14] 16.01 10 153 6− 9

Table 5: Prediction results on the strong a-priori testing set

Log Baseline Nocycle A-priori Groundtruth Tested Prefix
EnvLog 0.246 [18.22] 0.246 [18.22] 0.084 [89.91] 31.31 108 19− 22
HelpDesk 0.551 [1.44] 0.551 [1.44] 0.747 [2.14] 3.00 576 2− 5
BPIC11 0.220 [199.00] 0.292 [199.00] 0.282 [197.4] 112.66 450 13− 16
BPIC12 0.100 [48.08] 0.263 [6.81] 0.264 [7.00] 8.33 3 179 2− 5
BPIC13 0.130 [95.19] 0.459 [14.92] 0.569 [5.14] 5.85 4 364 2− 5
BPIC17 0.448 [11.78] 0.448 [11.78] 0.469 [14.00] 16.01 10 153 6− 9

Table 6: Prediction results on the weak a-priori testing set

The tables and figure 14 show that the proposed algorithms out-
perform the baseline in most of the logs (specifically, the figure shows
the trend of the techniques performances with a change of a prefix.
As one can see that sometimes lines on the plot perfectly overlap
meaning that on some logs the weak and strong formulas do not
make a difference). The presence of cycles in the logs has a strong
impact on the performance of the Nocycle algorithm. In particu-
lar, if the logs have an average number of cycle repetitions smaller
than 0.5, as in the case of EnvLog, HelpDesk, and BPIC17, then No-
cycle does not show any improvement over the baseline. Therefore,
we can conclude that Nocycle correctly deals with the presence of
cycles in the logs to improve the predictions.

A-priori perform worse on logs EnvLog and the BPIC11. The
reason for this can be explained by the fact that, in these two logs, ac-
tivity labels are sparse with an unusually high number of labels with
respect to the number of traces. Indeed, Table 3 shows that the ratio
between the number of activity labels and the number of traces (col-
umn 8) for these logs is higher with respect to the other logs. We can
also notice that the availability of highly constraining rules in the a-
priori knowledge improves the performance of A-priori. Therefore,
we can conclude that A-priori is able to correctly leverage a-priori
knowledge in a way that it performs better when the activity set
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Fig. 14: Plots of prediction results

of the log is not particularly large (and the log does not contain
sparse behaviors) and when the a-priori knowledge constrains more
the process behavior.

7 Conclusions

In the thesis, we have presented two techniques based on RNNs with
LSTM cells able to leverage knowledge about the structure of the
process execution traces as well as a-priori knowledge about their
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future development for predicting the sequence of future activities
of an ongoing case. In particular, we show that opportunely tailoring
LSTM-based algorithms it is possible to take into account a-priori
knowledge at prediction time without the need to retrain the pre-
dictive algorithms in case new knowledge becomes available. The
results of our experiments show that Nocycle correctly deals with
the presence of cycles in the logs and A-priori is able to correctly
leverage a-priori knowledge in a way that it performs better with
logs characterized by a low degree of sparsity of activity labels and
when the a-priori knowledge constrains the behavior of the process
more.

Future work will include: (i) dealing with more complex forms
of a-priori knowledge. In particular, we aim at addressing a-priori
knowledge on activities and on their data payload, as well as dy-
namic knowledge that can evolve in the future of an ongoing case,
or include other ways of representing the knowledge; (ii) extending
the proposed algorithms to leverage a-priori knowledge also for other
types of predictions; (iii) extending the experimental evaluation espe-
cially focusing on the investigation of metrics for evaluating the influ-
ence on the predictions of the different degrees of freedom/strength
of the a-priori knowledge; and (iv) inserting the presented techniques
in predictive business process monitoring frameworks such as the one
discussed in [12].
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