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Predicting Survived and Killed Mutants 

Abstract: 

Mutation Testing is a powerful technique for evaluating the quality of a test suite. During 

evaluation a large number of mutants is generated and executed against the test suite. The 

percentage of killed mutants indicates the strength of the test suite. The main idea behind 

this is to see if test cases are robust enough to detect mutated code. Mutation Testing is an 

extremely costly and time-consuming technique since each mutant needs to be executed 

against the test suite. For this reason, this paper investigates Predictive Mutation Testing 

(PMT) technique to make Mutation Testing more efficient. PMT constructs a 

classification model based on the features related to the mutated code and the test suite 

and uses the model to predict execution results of a mutant without actually executing it. 

The model predicts if a mutant will be killed or it will survive. This approach has been 

evaluated on several projects. Two Java projects were used to assess PMT under two 

application scenarios: cross-project and cross-version. C project was also used to explore 

if PMT can be applied to a different technology. PMT has been evaluated using only one 

version of a C project. The experimental results demonstrate that PMT is able to predict 

execution results of mutants with high accuracy. On Java projects it achieves above 0.90 

ROC-AUC values and less than 10% Prediction Error values. On the C project it achieves 

above 0.90 ROC-AUC value and less than 1% Prediction Error value. Overall, PMT is 

shown to perform well on different technologies and be robust when dealing with 

imbalanced data.  
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Software testing, mutation testing, predictive mutation testing, machine learning 

CERCS: P170: Computer science, numerical analysis, systems, control 

 

Ellujäänud ja tapetud mutantide ennustamine 

Lühikokkuvõte: 

Mutatsioonitestimine on tarkvaratestimises kasutatav meetod hindamaks testikomplekti 

kvaliteeti. Hindamise ajal genereeritakse programmi lähtekoodist suur hulk mutante ja 

jooksutatakse nende peal testikomplekti. Tapetud mutantide osakaal kõigist mutantidest 

näitab testikomplekti headust. Eesmärk on mõista, kas testid suudavad leida muteerunud 

koodi, andes sellega infot testide kvaliteedi kohta. Mutatsioonitestimine on äärmiselt 

kulukas ja aeganõudev meetod, kuna kõikidel mutantidel peab ükshaaval jooksutama 

terve testikomplekti. Käesolevas töös uuritakse ennustavat mutatsioonitestimise meetodit, 

mille toel tõhustada mutatsioonitestimise protsessi. PMT treenib klassifitseerimismudeli, 

kasutades selleks muteeritud koodil ja testikomplektil põhinevaid tunnuseid. Treenitud 

mudeliga ennustatakse, kas mutant tapetakse või jääb ellu, mutanti ennast testikomplekti 

vastu jooksutamata. 

Antud lähenemist katsetati mitme tarkvaraprojekti peal.  Kaht Java keelel põhinevat 

projekti kasutati katsetamaks ennustavat mutatsioonitestimist kahes erinevas olukorras: 

üle mitme projekti ja üle mitme versiooni. C-keelel põhinevat tarkvaraprojekti kasutati 

uurimaks, kas ennustavat mutatsioonitestimist saab rakendada ka teistel tehnoloogiatel 

põhinevatel projektidel. Katsetulemused näitavad, et ennustav mutatsioonitestimine 

suudab ennustada mutantide ellujäämist või tapmist kõrge täpsusega. Java projektidel 
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saadi tulemuseks üle 0.90 ROC-AUC väärtused ja väiksemad kui 10% ennustusvea 

väärtused. C projektil saadi tulemuseks üle 0.90 ROC-AUC väärtus ja väiksema kui 1% 

ennustusvea väärtuse. Üldiselt on näidatud, et ennustav mutatsioonitestimine töötab hästi 

erinevatel tehnoloogiatel ja tuleb toime ka andmetes esinevate ebavõrdsete klasside 

suurustega.  

 

Võtmesõnad: 

Tarkvaratestimine, mutatsioonitestimine, ennustav mutatsioonitestimine, masinõpe 

CERCS: P170: Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine 
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1 Introduction 

1.1 Motivation 
Mutation Testing is a powerful technique for evaluation of the test suite quality [1]. A 
mutant is a variant of the source code where change has been made to a part of the 
code, for example, a certain statement has been altered (mutated). There are 
several different types of mutants that can be generated, but all the changes are very 
small not to affect the overall program. Basically, by creating a small fault in the initial 
program we generate mutants. Each mutant has only one fault. A number of mutants 
are generated in this way from the initial code and executed against the test suite. 
The goal of the Mutation Testing is to assess the quality of the test suite. We expect 
the test suite to be good enough to detect the change to the program by failing at 
least one of the test case. The execution results of the original program and mutated 
program are compared to each other. If the results are the same this means that the 
mutant has survived, otherwise we say that mutant has been killed. In order to 
evaluate the quality of the test suite mutation score can be used. Mutation score is 
defined as a number of killed mutants divided by a number of all mutants. Higher the 
mutation score is the better is the quality of the test suite. 
Although mutation testing is a very useful software testing method, at the same time 
it is highly expensive technique. It requires generation of a large number of mutants 
and execution of each mutant against the test suite. There are many ways to reduce 
the cost of mutant generation, but despite the effort to reduce the cost of mutant 
execution part, it remains costly.  
To lessen the cost of mutant execution a new method was introduced [2, 3] which 
obtains execution results without actual execution of the mutants. Predictive 
Mutation Testing (PMT) is the first method that uses machine learning to predict the 
outcomes of mutant execution. PMT collects easy-to-access features of the mutants 
that have already been executed against the test suite. These mutants can be either 
from an earlier version of the same project or from a different project. Machine 
learning predictive model is trained using the information of the mutants: the features 
collected for each of the mutants and their execution results. Trained model is able 
to predict, without actually executing, the outcome of the mutants of newer versions 
of the same project or mutants of the different project. 
PMT was evaluated under three application scenarios: cross-version, cross-project 
and using only one version of the project. Cross-version and cross-project scenario 
was tested against Java projects, whereas single version scenario was tested on 
Java and C projects. 
For the evaluation of effectiveness of PMT method several evaluation measures are 
used: accuracy, precision, recall, F-measure and AUC-ROC curve. Together they 
indicate how well the model is able to predict the results of mutant execution. Aside 
from above mentioned evaluation measures, there is one other measure that can be 
used. Mutation score is defined as a ratio of the killed mutants to all the mutants. It is 
used to evaluate test suite quality. We can also use it to evaluate how far model 
predictions are from the true results. More precisely, new measure -  Prediction Error 
is defined as the difference between predicted (obtained from the model) and true 
mutation scores. Prediction Error can be used for evaluation of the effectiveness of 
PMT. 
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The experiments show that PMT performs very well under all three scenarios: cross-
versions, cross-project and single-version. PMT achieves above 0.90 ROC- AUC 
values for most of the cases. It achieves best performance under cross-version 
scenario. All Prediction Error values are below 10%. PMT improves efficiency of 
mutation testing for Java and C projects. 
This paper investigates findings of existing paper [2] and tries to investigate new 
ways to further improve PMT. 

 

1.2 Research Questions 
This paper answers two research questions: 

 RQ1: Is it possible to replicate the results of the paper “Predictive Mutation 
Testing” [2] using the same projects but different tools under the cross-version 
and cross-project scenarios? This research question investigates how 
authentic are the results of the original paper.   

 RQ2: Is it possible to transfer the predictive mutation testing method to a 
different technology? More precisely, this research question investigates if 
PMT can be applied to a C project instead of Java project as it was done in 
the original paper. To answer this question, we should answer the following 
questions: 

o RQ2.1: Are the available features comparable in Java and C projects? 
o RQ2.2: Are the results between Java and C projects comparable? 

 

2 Background and Related Work 

2.1 Mutation Testing 
Mutation analysis was initiated in the 1970s and has a long history of advancements. 
It is a process of generated program variants that are called mutants and that have 
mutated part of the code. The aim is to introduce artificial defects in the code. 
Mutation testing uses mutation analysis to help the testing process by evaluating the 
strength of the test suite [4]. When a test can differentiate the behavior of a mutant 
from a behavior of the original program we say that this mutant is ‘killed’, in another 
case we say that this mutant is ‘survived’. Usually, tests examine the output of the 
program, for example, things that program prints or results of assertions. Overall, in 
order for a mutant to be killed, it must cause a program state to be changed. This 
causes the problem of equivalent mutants: the mutants semantically equivalent to 
the original program are called equivalent mutants and they can never be killed. The 
mutated program is behaviorally equivalent to the original one. The detection of 
equivalent mutants is one of the main problems of using mutation testing. 
 
Mutants are the altered version of the original code. Thus, there exist transformation 
rules called ‘mutant operators’. These rules dictate how the changes should be made 
in the program. For example, the conditionals boundary mutator replaces the 
relational operators <, <=, >, >= with their boundary counterpart.  
In mutation testing systems mutant operators are largely chosen to be not too easy 
to detect and minimize generations of equivalent mutants. For example, PIT [5] is a 
state of the art mutation testing system and it uses 7 mutant operators by default: 
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1. Conditionals Boundary (replaces the relational operators with their boundary 
counterpart) 

2. Increments (replaces increments with decrements and vice versa) 
3. Invert Negatives (inverts negation of integer and floating point numbers) 
4. Math (replaces binary arithmetic operations with another operation) 
5. Negate Conditionals (mutates all conditionals found) 
6. Return Values (mutates the return values of method) 
7. Void Method Calls (removes method calls to void methods) 

Based on the language of the program different sets of mutant operators can be 
chosen. After choosing mutant operators they are used to generate mutants for the 
analysis. The aim of mutation testing is to detect weak parts of the test suite and 
improve them. To evaluate test suite strength, it is necessary to have some kind of 
evaluation measure. Mutation score is defined as the ratio of killed mutants to all the 
mutants. This score is a good measure in case all mutants have equal value but this 
is not always the case. There exist types of mutants that boost the mutation score 
excessively high and makes it hard to interpret. One of such mutant is equivalent 
mutant which is described above. Another such mutant is redundant mutant. 
Redundant mutants exist in forms of duplicated and subsumed mutants. Duplicated 
mutants are equivalent to each other but not with original program. Whereas 
subsumed mutants are the mutants that are jointly killed when other mutants are 
killed. If we remove this kind of mutants this does not affects test generation process 
but it will affect mutation score. Since identifying equivalent and redundant mutants 
is not an easy task, this makes it hard to evaluate the test suite quality based on 
mutation score.  
 

2.2 Practical application: safety-critical systems 
Safety-critical systems are the systems whose failure can cause loss of life, 
significant property damage, or damage to the environment. They must follow safety 
standards. Safety standards provide recommendations for the creation of a system 
that achieves a defined safety integrity level (SIL). 
Testing plays a major role in the verification and validation of safety-critical system 
development. There are many recommendations by safety standards about testing 
approaches but they do not provide instructions on how these approaches should be 
applied in practice. 
There is very little research done using the mutation testing technique for safety-
critical systems [6]. An example of such a paper [7] is done by Ramler, Wetzlmaier 
and Klammer. They investigate the applicability and usefulness of using mutation 
testing technique to help increase the quality of a test suite for safety-critical software 
systems. Mutation analysis has been applied to the system and 75,043 mutants 
were generated out of which 27,158 survived test execution. 200 live mutants have 
been further studied manually by engineers and based on their discoveries existing 
test suite was improved. Engineers found that those 200 mutants contained 24% 
equivalent mutants and 12% duplicated mutants. They also found a weak spot in the 
testing approach and improved the test suite. While improving test suite two new 
faults were discovered in the code. 
Their findings show that mutation testing is a useful technique for measuring test 
suite quality. In addition, it can be used to determine faults in the test cases that are 
hard to discover otherwise. 
 

http://pitest.org/quickstart/mutators/#INCREMENTS
http://pitest.org/quickstart/mutators/#INVERT_NEGS
http://pitest.org/quickstart/mutators/#MATH
http://pitest.org/quickstart/mutators/#NEGATE_CONDITIONALS
http://pitest.org/quickstart/mutators/#VOID_METHOD_CALLS


8 
 

2.3 Predictive mutation testing 
Mutation testing is known as computationally expensive technique. Predictive 
mutation testing is a new predictive method to help reduce the cost of executions of 
mutation testing [2]. This is the first approach that predicts the results of mutant 
execution without executing mutants against the test suite. More precisely, this 
approach trains a classification model using a set of features related to mutants and 
tests. Once the model is trained it is used to predict the results of mutants (killed or 
survived) without their executions. In the paper, the authors evaluated PMT on 163 
real-world projects. The results show that PMT offers the reduction of execution cost 
in exchange for small accuracy loss. 
Two application scenarios were used for evaluation: cross-version and cross-project. 
Evaluation measures used to assess the predictive ability of the model are precision, 
recall, F-measure, and AUC. Furthermore, prediction error was calculated as a 
difference between predicted and real mutation score. The results show that PMT is 
very effective under the cross-version scenario. It achieves over 0.90 precision, 
recall, F-measure and AUC. Whereas under cross-project scenario it achieves over 
0.85 AUC and lower than 15% error on predicting mutation scores. Moreover, PMT 
was shown to be more efficient than traditional mutation testing. 
In the paper, they select features based on PIE theory [8] using three categories of 
the features: execution, infection and propagation. Execution features are related to 
the mutated statement being executed by tests. Infections features are related to the 
program state being affected by the execution of the mutated statement. Lastly, 
propagation features are related to the infected program state being propagated so 
that it affects the output of the program and makes it distinct from the original 
program output. 
Random Forest was the choice for the classification model. Besides Random Forest 
they also used Naïve Bayers, SVM and J48 to see if they performed better than 
Random Forest. 
Two different strategies of balancing the data were applied to check if they can 
improve the performance of the PMT: cost-sensitive and under-sampling. 
As for the implementation they used several tools. PIT and Major tools were chosen 
for mutation testing since Major is widely used and PIT is efficient. Cobertura was 
chosen to collect coverage related features. The infection features were collected 
straight from the mutation testing tools. For extraction of propagation features, they 
developed their own tools. Finally, for the machine learning part they used Weka 
machine learning library. 
For the evaluation of PMT 9 base java projects were used and evaluation was 
extended on another 154 projects. All of them passing their Junit tests. 
In the end, authors were able to demonstrate that PMT makes mutation testing more 
efficient in the exchange of small accuracy loss. The experimental results of 163 
real-world Java projects reinforce this statement. 
The extended version of this paper [3] also includes the results of investigations of 
the contribution of 14 individual features, comparison of different categories of 
features, predictability of the mutants under PMT and ways to further improve the 
effectiveness of PMT. 
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3 Methodology 
 

Mutation testing is believed to be an expensive technique to use. To lessen the cost 
of executions of the mutants PMT was introduced. PMT predicts mutation testing 
results without executions of the mutants itself. Execution results can be either killed 
or survived. Since there are only two possible options of mutant execution, in 
machine learning their classification can be seen as a binary classification problem. 
PMT treats this problem as a binary classification and builds a machine learning 
model based on some easy-to-access features and the results of mutant executions. 
First is it necessary to execute mutants against the test suite and save their outcome 
(killed or survived). Besides, some easy-to-access features should be collected for 
each mutant. PMT uses these features and execution results to build a classification 
model. Once new mutants are generated the classification model can predict 
whether a mutant will be killed or survived based on the same easy-to-access 
features as used during the training of the model. Note that features should be easy 
to collect to be able to obtain them quickly. 
In the process of building a machine learning model, there are two main phases. The 
first phase is to determine which features should be collected for a mutant (Section 
3.1). These features should be related to the execution result. Furthermore, features 
should be easy to access because of the efficiency reason. The second phase 
determines which machine learning algorithm to be used to build a prediction model 
(Section 3.2). A chosen algorithm should be able to learn from training data and 
make predictions with high accuracy. On top of these two phases, an imbalanced 
data issue was also investigated (Section 3.3). 
 

3.1 Feature selection 
Feature selection is done using PIE analysis technique: propagation, infection and 
execution analysis.  This technique is related to mutation testing and estimates 
program characteristics that can affect the program’s computation. The idea behind 
the PIE analysis is not to detect if there is a fault in the program, but instead, it 
identifies locations in the program where faults are likely to stay undetected by the 
test suite. PIE analysis estimates three program characteristics that can affect the 
behavior of the program, therefore they can be used as the conditions that need to 
be satisfied for a mutant to be killed. The first condition is execution: a mutated 
statement needs to be executed by the test. The second condition is infection: 
execution of the mutated statement affects the program state and therefore mutant is 
identified. The third condition is propagation: infected program state returns output 
that is distinct from the original program output. The values of above-mentioned 
conditions can be obtained for each mutant. According to those values, we can 
predict the results of mutant execution. These three conditions give us information 
about a mutant and its outcome. They are the features that describe each mutant 
and therefore can be used for the result prediction. So in the end, we have three 
different categories of features. The following subsections describe each feature 
category in detail. 
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3.1.1 Execution features 

The execution feature category consists of features that are related to the execution 
of a mutated statement. These features should describe if a mutated part of the 
program was executed.  
 
In Java language projects two such features can be found:  

 numExecuteCovered 

 numTestCovered  
numExecuteCovered indicated how many times a mutated line of the program is 
executed by the test suite. As for numTestCovered it indicates how many tests from 
the test suite reach a mutated method of the program. To identify these values first, 
an original program must be executed against the whole test suite and record how 
often each statement is executed and how many tests execute it. Based on the data 
collected we can calculate values of two above features for each mutant. 
 
In C language project only one such feature can be found:  

 numTestCovered  
numTestCovered indicates how many tests from test suite cover a mutated method 
of the program. 
 
 

3.1.2 Infection features 

The infection feature category identifies features corresponding to the infection that 
the mutated statement is causing in the program state. Changes in the program state 
depend on changes made to the mutated statement, consequently, we need a 
feature that describes the type of mutated statement before it was mutated and how 
was it modified. 
 
In Java language projects following two features can be found: 

 typeStatement 

 typeOperator 
The feature typeStatement indicates what type of statement was mutated. For 
example, it can be a conditional statement or return statement. The second feature 
typeOperator indicates what kind of mutation was done on the statement. 
 
 
Apart from the above features in C language project, one additional feature can be 
obtained 

 Mutation 
Mutation indicates actual replacement for the mutated source code element. 

 

3.1.3 Propagation features 

The final category, propagation features, contains features that are related to the 
propagation of infected program state. This category investigates characteristics that 
are related to the complexity of the program. If a program is complicated, then there 
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is a high possibility that the program state produced by the mutated statement alters 
program output. 
 
In Java language projects following features can be obtained to detect how much 
infected program state can spread and affect program output: 

 McCabe Cyclomatic Complexity 

 Method Lines of Code 

 Nested Block Depth 

 Depth of Inheritance Tree 

 Number of Children 

 Afferent Coupling 

 Efferent Coupling 

 Instability 
McCabe Cyclomatic Complexity indicates exactly what it says: McCabe complexity 
of the mutated statement. Method Lines of Code feature describes the number of 
lines of code in the mutated method. Nested Block Depth refers to the depth of 
nested blocks in the mutated method. Depth of Inheritance Tree shows what is the 
length from mutated class to the root class. Number of Children describes how many 
subclasses the mutated class has. Afferent Coupling (Ca) indicates how many 
classes outside of the mutated package depend on classes inside the package. 
Efferent Coupling (Ce) indicates how many classes inside the mutated package 
depend on classes outside the package. Lastly, Instability is calculated using the 
previous two features: Ce/(Ce+Ca). 
 
In C language project we have different features: 

 McCabe Cyclomatic Complexity 

 Branches 

 Loops 

 Maintainability 

 Sloc 

 Lines 

 Operands 

 Operators 

 Unique_operands 

 Unique_operators 

 Volume 
McCabe Cyclomatic Complexity is the same as above. Branches describe the 
number of branches, for example, the number of if statements in the tested function. 
Loops indicates the number of loops, for example, the number of for statements in 
the tested function. Maintainability refers to the maintainability index. Sloc indicates 
the number of source code lines without blank lines. Lines indicates the number of 
source code lines with blank lines. Operands indicates the number of total operands. 
Operators indicates the number of total operators. Unique_Operands is the number 
of distinct operands. Unique_Operators is the number of distinct operators. Volume 
describes Halstead complexity. 
 
All the above features are related to the complexity of the program to see how much 
can the infected state will spread. In addition to this, several other features can be 
identified that will help to predict if a mutant will be killed or survived. The features 
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that are related to the outcome of the program and show if the test suite has the 
ability to detect differences between a mutant and original program output. In some 
cases, if the program does not return anything and there are no other ways of 
checking if the program works as expected we cannot detect if the execution result 
of a mutant is different from that of the original program execution result. 
For this reason, we might consider using the following additional features. 
In java language test assertions can be obtained as well as type of return values. 
The list of features related to checking the program execution result is following: 

 numMutantAssertion 

 numClassAssertion 

 typeReturn 
numMutantAssertion indicates the number of assertions in the test methods that 
cover each method. numClassAssertion indicates the number of assertions in the 
test class that covers the mutated class. typeReturn is the return type of the mutated 
method. 
 
In C language there is a return type but there are no assertions. Instead of 
assertions several other features can be used: 

 numMutationAssertions_iparam 

 numMutationAssertions_oparam 

 numClassAssertions 
numMutationAssertions_iparam is a substitute measure using a number of in 
parameters asserted by the test alongside with numMutationAssertions_oparam 
feature which is a substitute measure using a number of out parameters asserted by 
the test. These two features substitute numMutationAssertion feature. 
numClassAssertions is also substitute measure using all asserted parameters for all 
tested functions in the same C file. 
 
 
The feature list of C project that differs from the Java project feature is the following: 

 Mutation: an actual replacement of the mutated source code element 

 cfileId: tested C file (70 unique value) 

 methodId: tested function/method in the C file (45055 methods) 

 Line: line location of the mutated source code element  

 Column: column location of the mutated source code element 

 branches: number of branches, e.g. if statements, in the tested function 
(source code metric) 

 loops: number of loops, e.g. for statements, in the tested function (source 
code metric) 

 maintainability: maintainability index (source code metric, maintainability index 
calculates an index value between 0 and 100 that represents the relative ease 
of maintaining the code)  

 operands: number of total operands (source code metric, used to compute 
Halstead volume) 

 operators: number of total operators (source code metric, used to compute 
Halstead volume) 

 unique_operands: number of distinct operands (source code metric, used to 
compute Halstead volume) 
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 unique_operators: number of distinct operators (source code metric, used to 
compute Halstead volume) 

 volume: Halstead complexity (source code metric) 
 
For the rest of the features the names are different from Java project features. Below 
is the description of the common features: 

 typeOfMutant:  types of mutant operators. (typeOperator in Java) 

 numTestCovered: number of tests covering the mutated line 
(numTestCovered in Java) 

 numMutationAssertions_iparam: number of assertions by testMethod 
(substitute measure using number of in parameters asserted by the test) 

 numMutationAssertions_oparam: Number of assertions by testMethod 
(substitute measure using number of out parameters asserted by the test) 
Note that 2 above feature are replacement of numMutantAssertion in Java. 

 numClassAssertions: number of assertions in the whole test class (substitute 
measure using all asserted parameters for all tested functions in the same C 
file) (numClassAssertion in Java) 

 typeReturn: return types. (typeReturn in Java) 

 mccabe: Cyclomatic complexity (source code metric, used to indicate the 
complexity of a program) (McCabe Cyclomatic Complexity in Java) 

 sloc: number of source code lines without blank lines (source code metric)  

 lines: number of source code lines with blank lines (source code metric) 
Above two feature are similar to Method Lines of Code in Java 

 

 

3.2 Machine learning algorithm 
Machine learning is an important part of PMT. The classification model is trained 
based on the training data and used afterwards for predictions. The trained model 
needs to predict if a mutant will be killed or survived, so we have only to classes of 
target values. Therefore, this is a binary classification problem. Training data 
consists of the mutants which already have been executed against the test suite and 
hence we have the results of executions for all the mutants. The model makes 
predictions on new mutants and classifies them as either killed or survived. There 
are a variety of classification methods but in this paper only Random Forest and 
Support Vector Machine (SVM) methods were used. 
Decision Trees are building blocks of Random Forest. The Decision Tree classifier 
chooses a feature at a time that splits the instances into two groups where instances 
of different groups are as distinct from each other as possible and instances in the 
same groups are similar. Random Forest creates a large number of decision trees 
based on a randomly selected subset of the training set. In order to make a 
prediction on a test instance, it aggregates votes of each individual decision tree and 
predicts the class with the most votes. It is important that decision trees have low 
correlations between them. The reason for this is that while some trees make wrong 
predictions many other trees make correct predictions. Hence, as a group, they will 
be able to make the correct prediction. 
SVM, on the other hand, uses a different approach. The main idea is to find a 
hyperplane in an n-dimensional space that separates data instances (where n is the 
number of features). There are many possible hyperplanes that can separate two 
classes data instances. SVM chooses the one with the maximum margin. In other 
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words, the one with the maximum distance between the instances of different 
classes. 
 

3.3 Data balancing methods 
In mutation testing the number of killed and survived mutants are usually different 
from each other hence we have unbalanced data issue. Mostly there are more killed 
mutants then survived which is an uneven distribution of classes. There are several 
methods in machine learning to deal with unbalanced data.  
One of the strategies is under-sampling. Under-sampling has several different 
methods. One of the simple methods is random under-sampling for the majority 
class. This method removes instances of majority class randomly and uniformly. It 
can lead to information loss if essential instances are being removed but if instances 
of majority class are near to each other this method has a good result. 
Another good strategy for unbalancing data is cost-sensitive learning. Cost-sensitive 
learning assigns a higher cost to the misclassification of minority class and therefore 
minimizes total cost. For example, Random Forest is designed to minimize overall 
error rate, therefore it focuses on maximizing the accuracy of majority class 
predictions and results in lower accuracy predictions for the minority class. Weighted 
random forest assigns weights to both classes but minority class has larger weight. 
This means the misclassification cost is higher. 
 

3.4 Implementation 
For mutation testing PIT tool was used. PIT is state of the art mutation testing 
system for Java. More precisely, PIT runs unit tests on automatically modified 
versions of the code. Modified code has some faults introduced in it so the result 
should be different from the original program result and this should cause unit tests 
to fail. If none of the tests fail, then the test suite needs improvement. Justification for 
the choice of PIT tool is that it is fast, easy to use and results are easy to interpret. 
 
Mutation data was collected from PIT tool. The report contains the location of the 
mutant and the execution results of each mutant. Execution results are 4 different 
types: killed, lived, no coverage and timed out. A mutant is killed if at least one test 
will fail during the execution of this mutant. A mutant is called lived if none of the test 
fails during its execution. No coverage means none of the tests exercised the line of 
the mutated code hence none of the tests fail during its execution. Time out means 
that mutated code causes an infinite loop, for example, removing the increment from 
a counter in a for loop can cause a time out. PIT reports also used mutation 
operators for each mutant which can be used as a typeOperator feature.  
 
For the collection of features, several tools were used and gathered data was 
combined. numExecuteCovered feature was extracted using OpenClover coverage 
tool. OpenClover is a tool for measuring code coverage for Java projects. It collects 
metrics of the code to detect the most untested areas of the application as well as 
find the riskiest parts of code. 
 
To extract propagation features using metrics plugins is the easiest way in Eclipse. 
This plugin calculates several different metrics for the code during the build cycle. 
Following metrics data can be used to obtain the values of the features: 

 Number of Children (numChildren) 
 Depth of Inheritance Tree (depInheritance) 
 Nested Block Depth (depNestblock) 
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 Method Lines of Code (LOC) 
 McCabe Cyclomatic Complexity (infoComplexity) 
 Afferent Coupling (Ca) 
 Efferent Coupling (Ce) 
 Instability (instability) 

Note, Method Lines of Code is a total number of lines of code inside method bodies, 
excluding blank lines and comments.  
The feature typeReturn is also included in OpenClover report. 
  
Test coverage data was extracted using PIT tool again. It has one parameter called 
exportLineCoverage which if indicated “true” will export line coverage data. The 
exported file contains the list of tests that cover each method. From this file feature 
numTestCovered was calculated. Since this file contains information for the methods 
and not for lines, numTestCovered was calculated as the number of tests that cover 
the mutated method. 
Finally, assertion features were simply collected by analyzing code. 
 
All the machine learning part of the project was done using python 3. Training the 
classification models and evaluation of trained models. 
 
Feature collection on C project was done by Software Competence Center 
Hagenberg (SCCH). Collected data was given to me. Mutants were generated using 
Milu tool. 
 

3.5 Used projects 
Since this is a replication of the existing paper [2] the same projects were used for 
the evaluation of PMT. Out of 9 base projects mentioned in the paper 2 were used to 
replicate the results of the paper: Java apns (apns) and Linear Algebra for Java 
(la4j). Java apns is a Java client for Apple Push Notification service. This library aims 
to provide a highly scalable interface to the Apple server. la4j is an open-source Java 
library. It provides Linear Algebra primitives (matrices and vectors) and algorithms.  
For each of the projects, the same commits were used from their github pages that 
were used in the paper. apns and la4j projects were used for the cross-version and 
cross-project scenarios and different versions of the project were gathered. Each 
version is at 30 commits distance from each other. Information about all versions of 
the projects are presented in Table 1 and Table 2. "C." letter at the beginning of the 
column name means that these values were extracted from the OpenClover report. 
Likewise, "P." means that this value was extracted from the paper [2]. Columns 
“P.SLOC” and “C.NCLOC” are exactly the same as it is expected because they 
present the numbers of lines of executable code of the same project. Column "Test 
run" was extracted from eclipse tool and shows the number of tests of each version. 
“P.Test”  is the same as “Test run” but extracted from OpenClover tool. “Test run” 
and “P.Test” differ in some cases for apns project which should not be the case. The 
reason behind this is that one test was removed from the test suite because it was 
failing on the original program and prevent PIT from executing. Column “default 
Mutants” shows the number of mutants generated by PIT with the mutation operator 
parameter indicated to default. Column “All Mutants” shows the same number but 
mutation operator parameter indicated to all. Column “Killed Mutants” is the number 
of killed mutants of “All Mutants” and “Distribution” shows the number of “Killed 
mutants” divided by the number of “All Mutants”. Table 3 and Table 4 show the 
changes between each versions of projects. 
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Version C. NCLOC P. SLOC 
Test 
run P. Test 

default 
Mutants 

All 
Mutants 

Killed 
Mutants Distribution 

v0 666 666 64 65 143 526 374 0.71 

v1 859 859 64 65 233 789 463 0.59 

v2 1221 1221 67 66 338 1107 534 0.48 

v3 1221 1221 67 67 338 1107 529 0.48 

v4 1288 1288 74 75 365 1162 590 0.51 

v5 1503 1503 84 87 416 1398 809 0.58 

Table 1 Information of apns project 
 

Version C. NCLOC P. SLOC 
Test 
run P. Test 

All 
Mutants 

Killed 
Mutants Distribution 

v0 5810 5810 245 245 8846 4025 0.46 

v1 6804 6804 353 353 9862 4581 0.46 

v2 7074 7074 396 396 10248 4795 0.47 

v3 7264 7264 463 463 10705 5261 0.49 

v4 8202 8202 581 581 11531 7006 0.61 

v5 8035 8035 621 621 11646 7083 0.61 

v6 7086 7086 625 625 10870 7080 0.65 

Table 2 information of la4j project 
 

 

versions 
changed 

files addition deletion 
 

changes 

v0-v1 25 785 217 193 

v1-v2 34 1.321 232 362 

v2-v3 3 37 19 0 

v3-v4 21 533 214 67 

v4-v5 28 1363 344 215 

Table 3 Changes between two successive commits of apns project 
 

 

versions 
changed 

files 

v0-v1 994 

v1-v2 270 

v2-v3 190 

v3-v4 938 

v4-v5 167 

v5-v6 949 

Table 4 Changes between two successive commits of la4j project 
 
C project is the software of a safety-critical industrial system from the existing paper 
[5]. The embedded software controls the electrical and mechanical components of 
the overall mechatronic system. The embedded software system consists of a real-
time operating system, platform-specific libraries and an application structured in 30 
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domain-specific components. The whole system is written in the C programming 
language. The application has about 60,000 LOC (lines of code). Component sizes 
range between 400 and 7,000 LOC. Mutation testing produced 75,043 mutants of 
which 27,158 passed test execution. 
 

3.6 Evaluation of the model 
The effectiveness of the classification models is evaluated using the following 
evaluation metrics: Accuracy, Precision, Recall, F-measure, AUC and Confusion 
Matrix. Beside, PMT can also be used to predict the mutation score of the project 
based on the ration of the mutants predicted as killed to all the available mutants. 
Prediction error calculates the difference between true mutation score and mutation 
score calculated using predicted results of mutants. 
 
Accuracy is the ratio of a number of correct predictions to the total number of test 
set instances. This is a good measure only if there are an equal number of instances 
presented from each class. 
 
Precision is the number of true positive instances (instances that were correctly 
predicted as positive) divided by the number of positive instances predicted by the 
classifier. 
 
Recall is the number of true positive instances divided by the number of instances 
that should have been identified as positive. 
 
F-measure F1 Score is the Harmonic Mean between precision and recall. It tries to 
find a balance between precision and recall. It shows how precise and robust is the 
classifier. The higher value means the better performance of the model. 
 
 
Area Under Curve(AUC) is one of the most widely used metrics for evaluation. This 
measure is usually used for binary classification problems. AUC is the area under 
the curve of plot False Positive Rate vs True Positive Rate at different points in [0, 1]. 
True Positive Rate is the number of positive data points that are correctly classified 
as positive, divided by the number of all positive data points. False Positive Rate is 
the number of negative data points that are incorrectly classified as positive, divided 
by the number of all negative data points. The higher value means the better 
performance of the model. 
 
Confusion Matrix as the name indicates generates a matrix as output and 
describes the complete performance of the model. It is a base for other metrics. 
Calculates true positive, false positive, true negative and false negative values of 
predictions. 
 
Prediction Error is the difference between the mutation score calculated on test 
data and the mutation score calculated on predicted results of mutants of test data. 
the mutation score is the ration of the mutants predicted as positive (killed) to the 
number of all available mutants. 
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4 Results 
This section presents the results of the research questions. 4.1 section answers the 
first research question: if it is possible to reproduce the results of the existing paper 
[2]. The performances under two application scenarios are displayed: cross-version 
and cross-project. In addition to replication results, several new ideas were 
investigated under the cross-version scenario. 4.2 section answers the second 
research question: if it is possible to transfer PMT to C language project. The 
performance of C project is presented under a single-version scenario. First, the 
performance of C and Java projects using the same set of features are displayed 
(section 4.2.1). Second, the results of both projects with all their available features 
are presented (section 4.2.2). Furthermore, several features of C project were 
chosen to investigate how good results can be received using only those features. 

4.1  Results for RQ1: Replication (Java) 
To answer the RQ1 this section presents the performances of two Java projects 
(apns and la4j) under cross-project and cross-version scenarios. In addition to 
replication results several new ideas were investigated under cross-version scenario:  

 Fine-tuning classification model parameters  

 Effects of removing mutants with no coverage 

 Applying two balancing technique to imbalance data (after removing mutants 
with no coverage) 

 Addition of location feature. 
 

4.1.1  Cross-project 
Cross-project scenario uses latest versions of each project and trains classification 
model using mutants from one of the project and evaluates it on another projects. In 
the paper [2] they used 9 base projects. They use mutants from one of the project as 
a test and mutants from all the remaining projects as a train set. Since we have only 
two java projects, cross-project evaluations were done using latest versions of each 
project. Classification model was built on one of the project and evaluated on 
another project. For example, apns project was used to build the model and la4j 
project was used to test it and vice versa. The results are presented in Table 5 for 
two configurations of Random Forest: with default parameters and after fine tuning of 
some parameters. The same experiment results from the paper [2] are displayed in 
Table 6 for comparison. Their results are produced using Random Forest with 
default parameters.  
 

parameter 
fine-tuning 

train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

no apns-la4j 0.691 0.866 0.515 0.646 0.858 22.1 

yes apns-la4j 0.756 0.848 0.675 0.751 0.88 11.2 

no la4j-apns 0.873 0.846 0.954 0.897 0.919 7.4 

yes la4j-apns 0.888 0.846 0.986 0.911 0.923 9.6 

Table 5 The results of Random Forest under cross-project scenario 
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Sub. Prec. Recall F. AUC Err. 

lafj 0.888 0.876 0.869 0.876 10.72% 

apns 0.897 0.884 0.884 0.935 8.72% 

Table 6 The results of Random Forest under cross-version scenario from the paper 
[2] 

 

As we can see in the above tables some metrics values are very close to each other 
even though different train sets were used for building the models. Apns project 
evaluation metrics (3rd and 4th row in Table 5) are more close to the paper [2] 
results (2nd row in Table 6). This might be the result of training data size since la4j 
has a larger number of mutants than apns project. Therefore, the model had more 
training data and was able to learn better. However, la4j project results are far from 
the paper [2] results. This outcome is expected because the model was trained using 
apns project which has a small number of mutants. It is obvious that the model was 
not able to be as good.  
 

4.1.2 Cross-version 

4.1.2.1  Replication results 

The cross-version scenario uses already executed mutants of earlier versions of the 
program and collects easy-to-access features to build a classification model. PMT 
uses the trained model to predict mutation testing results of newer versions of the 
project without executing the mutants. There are two different ways of cross-version 
approach. 
 
In the first case, the classification model is trained using mutants of one version of 
the program and applied to the mutants of the next version of the program to make 
predictions. In other words, to apply PMT to a version of the program, the 
classification model needs to be trained using an immediate previous version of this 
program. Mutants of the version (v) of the program are the test set while mutants of 
the previous version (v-1) are used as a training set to build the classification model. 
The detailed experimental results are presented in Table 7 for two different 
configurations of PIT tool [5]. The first configuration generates mutants using the 
“Default” group of mutators and the second configuration creates mutants using the 
“All” group of mutators. PIT has a parameter named mutators and passing the name 
of a group in this parameter will generate all types of mutants from that group. In 
further experiments “All” group of mutators is used.  
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Project Mutators 
train-
test Accuracy Precision Recall 

F-
measure 

ROC-
AUC Pred.Error 

apns 

Default 
Mutators 

v0-v1 0.944 0.934 0.979 0.956 0.979 3 

v1-v2 0.938 0.903 0.982 0.941 0.956 4.4 

v2-v3 0.935 0.917 0.951 0.933 0.967 1.8 

v3-v4 0.904 0.906 0.911 0.909 0.976 0.3 

v4-v5 0.923 0.934 0.934 0.934 0.976 0 

All 
Mutators 

v0-v1 0.932 0.92 0.968 0.943 0.965 3 

v1-v2 0.915 0.883 0.949 0.915 0.974 3.6 

v2-v3 0.933 0.917 0.945 0.931 0.982 1.4 

v3-v4 0.921 0.898 0.953 0.924 0.976 3.1 

v4-v5 0.911 0.951 0.891 0.92 0.974 3.6 

la4j 
All 

Mutators 

v0-v1 0.886 0.859 0.877 0.868 0.96 0.9 

v1-v2 0.931 0.908 0.937 0.922 0.983 1.4 

v2-v3 0.899 0.85 0.945 0.895 0.953 5.1 

v3-v4 0.853 0.904 0.819 0.86 0.936 5.2 

v4-v5 0.905 0.893 0.928 0.91 0.955 2.1 

v5-v6 0.928 0.9 0.977 0.937 0.979 4.6 

Table 7 The results of Random Forest for default mutants and all mutants 
 
As Table 7 shows PMT performs exceptionally well under this application scenario. 
All the Prediction Errors are below 6% and most of the metric values are above 0.90. 
These results also show that PMT has similar metrics values on different projects. 
 
For comparison Table 8 presents results from the paper [2] devoted to PMT 
performance for the same experiment that is presented in Table 7. In the paper, they 
used the Random Forest algorithm and the naive imbalanced data for building the 
prediction model. Column “Sub” shows the name of a project. Column “changes” 
correspond to the differences between the numbers of lines of code of two versions 
of the program. All the metric measures are self-explanatory. Column “Err” indicates 
to Prediction Error.  
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Sub. Ver. changes Prec. Recall F. AUC Err. 

apns v0-v1 193 0.949 0.949 0.949 0.988 2.05% 

v1-v2 362 0.915 0.914 0.914 0.983 2.10% 

v2-v3 0 0.966 0.966 0.966 0.997 0.35% 

v3-v4 67 0.947 0.946 0.946 0.992 1.89% 

v4-v5 215 0.925 0.925 0.925 0.981 1.36% 

la4j v0-v1 994 0.913 0.911 0.911 0.968 2.73% 

v1-v2 270 0.945 0.945 0.945 0.991 1.90% 

v2-v3 190 0.912 0.908 0.908 0.968 5.27% 

v3-v4 938 0.841 0.826 0.829 0.935 -7.48% 

v4-v5 167 0.914 0.913 0.911 0.96 4.50% 

v5-v6 949 0.927 0.926 0.925 0.972 4.43% 

Table 8 The results of Random Forest from the paper 
 
According to Table 8 Prediction Errors are all below 6% and most of the metric 
values are above 0.9. These results are quite similar to the results in Table 7. All the 
metrics are very close to the ones from the paper for both Java projects. More 
precisely, F-measure values differ maximum by 0.05 and minimum by 0.001, ROC-
AUC values differ maximum by 0.03 and minimum by 0.001. Prediction errors are 
very close too. Overall, this means that the replication of results for this part was 
successful. Small differences between values are expected because the conditions 
of the experiment were not exactly the same. For example, different tools were used 
for building classification models.  
 
In the second version of the cross-version scenario, the impact of version intervals 
on the performance is investigated. The first version of a project is used as the train 
set and all the other versions are used as test sets. The classification model is 
trained using the first version of the program. The trained model is used to make 
predictions for the mutants of newer versions of the program.  
Detailed results are shown in Table 9. ROC-AUC values are all above 0.90, all the 
other metrics values are above 0.82 and prediction error values are below 9%. Note 
that as version difference increases ROC-AUC value decreases. This is an effect of 
changes between the versions, more changes are made to the project more different 
versions are. This effect is shown in Figure 2 and Figure 1. For comparison, the 
results of the same experiment from the paper [2] are presented in Figure 3 for both 
java projects. 
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Project train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

apns 

v0-v1 0.944 0.934 0.979 0.956 0.979 3 

v0-v2 0.92 0.879 0.977 0.925 0.959 5.6 

v0-v3 0.893 0.832 0.975 0.898 0.951 8.3 

v0-v4 0.896 0.849 0.974 0.907 0.948 7.7 

v0-v5 0.899 0.879 0.959 0.917 0.95 5.3 

la4j 

v0-v1 0.886 0.859 0.877 0.868 0.96 0.9 

v0-v2 0.883 0.85 0.886 0.868 0.955 1.8 

v0-v3 0.871 0.829 0.901 0.864 0.931 3.9 

v0-v4 0.831 0.896 0.784 0.836 0.922 6.9 

v0-v5 0.849 0.868 0.834 0.851 0.926 2.1 

v0-v6 0.849 0.846 0.886 0.865 0.914 2.6 

Table 9 The results of Random Forest showing Impact of version intervals 

 
 

Figure 2 Effect of version intervals on ROC-
AUC of apns project 
 

Figure 1 Effect of version intervals on ROC-
AUC of la4j project 

Figure 3 Effect of version intervals on ROC-AUC from paper [2]  
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Table 9 shows that PMT performs very well even when versions are very different 
from each other. This means that a model can be trained on a version and used to 
make predictions on the several following versions with high accuracy.  
The effect of intervals shown in Figure 2 and Figure 1 also demonstrates the 
accuracy of replication of the results by being so close to the results presented in the 
paper [2] shown in Figure 3. The values on the graphs are close to each other for 
both projects. Using two different projects also supports finding. Apns project ROC-
AUC values simply decrease so the replicated results are close to original ones. 
Whereas la4j replicated values act the same way as original ones and reinforce the 
reliability of replication results.   

 
The default model used in this section is Random Forest classifier with default 
parameters. All the 14 features are collected and used for 6 versions of apns project 
and 7 versions of la4j project. The list of features and their importance is shown in 
Figure 4 and Figure 5. Feature Importance values are extracted from the model 
which was trained on the first version (v0) of the program and evaluated on the 
second version (v1). Categorical features are: typeReturn and typeOperator. One-
hot encoding was used to convert categorical features into numeric. Categorical 
feature importance was averaged in order to get the overall importance. 
 

 
 

Figure 4 Feature importance of apns project 

Figure 5 . feature importance of la4j project 



24 
 

 

 
 
As we can see from the above figures feature importance is similar between 
replicated results and original results. The first two most important features are 
numExecutedCovered and numTestCovered. These two features are related to the 
test suite so it is logical that they contribute more than other features. 
 
As mentioned above, PIT has 4 different execution results of mutants. Binary 
classification requires to have only two different labels: positive and negative. 
Because of this 1 (positive) is defined as killed and 0 (negative) is defined as 
survived. The data also contains no coverage and time out labels. To solve this 
problem, no coverage was converted as survived since no test covers such mutants 
they will survive test executions. Whereas time out was converted as killed because 
time out itself means that there is an infinite loop. Hence program behavior is 
different from the original program behavior and this means that such mutants will be 
detected.  
 
Note that information about the mutants that are not located in any method are 
discarded from the dataset because some features cannot be extracted for them. For 
example, OpenClover generates feature numExecutedCovered only for method lines 
and not for other lines. If a class code contains a member variable declaration a 
mutant can be generated for such code but obviously, those lines of code do not 
have return type or method lines of code. Even though OpenClover does not 
produce numExecutedCovered for such lines of code, there might be some tests that 
cover it. Therefore, these types of mutants cannot be treated as not covered. 
Overall, information for those kinds of mutants cannot be obtained. The best way 
from this situation is to remove them from training and testing data. Their number is 
quite insignificant. For the first version of the apns project, only 14 such mutants are 
detected and removed. 
 

Figure 6 Feature importance from the paper [2] 
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 From this point on the dataset used for training and testing is the one generated with 
the “All” group mutator operators. The justification for this choice is that there is no 
big difference between the performance of classifiers trained using the dataset of 
“All” and “default” mutator operators. “All” mutator operators generate more mutants 
and those mutants also include the ones generated by “default” mutator operators. 
For instance, all mutator types and their counts of the first version of apns project are 
presented in Figure 7. 

 

Besides Random Forest classifier, there are several other classifiers that can be 
used for this type of problem. In this paper, SVM is used to see if it can perform 
better and make better predictions than Random Forest classifier. Using all the 14 
features SVM is evaluated on apns project. Default parameters values are left. The 
results of the SVM are displayed in Table 10. 
 

classifier train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

SVM 

v0-v1 0.765 0.93 0.78 0.848 0.846 13.7 

v1-v2 0.777 0.859 0.865 0.862 0.698 0.6 

v2-v3 0.771 0.944 0.758 0.841 0.9 15.7 

v3-v4 0.812 0.878 0.893 0.886 0.722 1.4 

v4-v5 0.821 0.92 0.869 0.894 0.782 4.8 

Table 10 The results of SVM on apns project 
 

Figure 7 “All” group mutator types and their 
counts 
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From the results of SVM on apns project it is clear that Random Forest gives better 
performance. SVM has very unsteady performace according to ROC-AUC values 
and Prediciton Errors. The paper [2] also says that it performs much worse than 
Random Forest base on all evaluation measures. 
The replication of the paper [2] results ends here. As we have seen, the results of 
two application scenarios can be successfully replicated: cross-project and cross-
version. Since cross-version scenario was performed under the similar conditions it 
has much closer results to the paper [2]. Overall, these finding prove that PMT is 
very effective for evaluating test suite quality. PMT is able to predict the execution 
results of mutants without their executions and it does this with high accuracy. 

 

4.1.2.2  Fine tuning classifier parameters 

Fine-tuning Random Forest classifier parameters can improve performance. To 
identify the best combination of parameter values for a model a set of possible 
values are chosen and given to the model for training. Several models are trained 
using combinations of parameter values. The best estimator is the model with the 
highest values of ROC-AUC measure. 
The best estimator was found with the following parameters: max_depth = 15, 
max_features = 20, n_estimators = 200. The evaluation of this classification model is 
presented in Table 11 alongside Random Forest results from the paper [2] on the 
right side of the table (AUC and Err metrics). 
 

train-
test 

Accuracy Precision Recall 
F-

measure 
ROC-
AUC 

Pred.Error AUC Err. 

v0-v1 0.932 0.923 0.963 0.943 0.982 2.5 0.988 2.05% 

v1-v2 0.924 0.895 0.955 0.924 0.978 3.3 0.983 2.10% 

v2-v3 0.938 0.92 0.953 0.936 0.989 1.7 0.997 0.35% 

v3-v4 0.923 0.888 0.969 0.927 0.981 4.6 0.992 1.89% 

v4-v5 0.92 0.944 0.916 0.93 0.979 1.7 0.981 1.36% 

Table 11 Metrics values of Random Forest on apns project 
 
Tools used for extracting features are different as well as tools used for machine 
learning part (Machine learning part was done using Jupyter Notebook). However, 
the ROC-AUC metric values differ only by 0.02 value and Prediction Error values are 
very similar.  
 
According to the results from Table 11, if we set several parameter values of 
classification model the performance improves (based on ROC-AUC measure) 
compared to using default parameter values (results presented in Table 7 with “All” 
mutators). Consequently, this estimator is used for further experiments. Feature 
importance of the best estimator is presented in Figure 8. As we can see they are 
similar to the ones where model is trained with default parameters. 
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Figure 8 Feature importance of Random Forest on apns project 

 

4.1.2.3  Effect of removing mutants with no coverage 

When there is a mutant with no coverage it is easy to say that it will survive because 
there is no test that covers it. Because of this, it can be useful to inspect the effect of 
removing such mutants from the dataset. All the mutants that have label no coverage 
are removed. For example, out of 526 mutants of the first version (v0) of the apns 
project, only 433 are left. The distribution of killed mutants is 0.86%. This means that 
the majority of the mutants are killed. This causes feature importance to change 
greatly and the performance to decrease slightly. Table 12 present the effect of 
removing mutants with no coverage. Random Forest was trained on the first version 
of apns project and evaluated on the second version. ROC-AUC value decreased by 
0.055 and Prediction Error increased by 1.1. New feature importance is presented in 
Figure 9. The most important feature numExecuteCovered had the value of 
importance higher than 0.35 when no coverage mutants were included in the training 
dataset. Since now all the mutants are covered numExecutedCovered decreased 
and it is below 0.14. Table 13 and Table 14 present the Confusion Matrix of both 
models. As we can see the majority of the survived mutant are removed but despite 
this, classifications of other mutants are quite good.  
The motivation behind this experiment is that there is no need to predict the 
execution results of a mutant with no coverage. It can be classified as survived. This 
means that they can be removed from the training dataset for big projects and make 
the training process faster.  
The result of this experiment shows that even without mutants with no coverage 
good results can be obtained. 
 

no 
coverage 
mutants 

train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

included 
v0-v1 0.932 0.923 0.963 0.943 0.982 2.5 

removed 
v0-v1 0.905 0.925 0.965 0.945 0.927 3.6 

Table 12 
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true/predicted Survived Killed All 

Survived 289 37 326 

Killed 17 446 463 

All 306 483 789 

Table 13 Confusion matrix of Random Forest on apns project. Mutants with no 
coverage mutants are included 

 

true/predicted Survived Killed All 

Survived 49 36 85 

 Killed 16 447 463 

All 65 483 548 

Table 14 Confusion matrix of Random Forest on apns project. Mutants with no 
coverage mutants are removed 

 

4.1.2.4  Balancing the data 

In mutation testing it is preferable to have a false alarm (misclassifying a mutant as 
survived while it is in fact killed) rather than no alarm (misclassifying a mutant as 
killed while it is in fact survived). Survived mutants correspond to the bugs in the 
code, hence failing to detect survived mutants is the same as failing to detect hidden 
bugs in the code. 
 
When no coverage mutants are removed from the dataset, the distribution of classes 
killed and survived becomes very unbalanced. For example, after removing such 
mutants from the first version of the apns program distribution of killed mutants 
becomes 86%. For mutation testing problem it is critical to correctly classify survived 
mutants. Survived mutants indicate parts of the test suite that need to be improved. 
Most classification algorithms do not work well on imbalanced data problems 
because they try to minimize the total error rate rather than pay more attention to the 
minority class. This paper investigates two different techniques for handling 
imbalanced data: under-sampling and cost-sensitive learning. The results of both 
approaches are presented in Table 15 alongside the result of row imbalanced data. 
The aim to correctly classify more survived mutants was achieved using balancing 
techniques. The confusion matrices show this in Table 16. 

Figure 9. Feature importance of Random Forest on apns project 
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Balancing 
technique 

train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

under-
sampling 

v0-v1 0.752 0.963 0.734 0.833 0.869 20.1 

cost 
sensitive 
learning 

v0-v1 0.892 0.935 0.937 0.936 0.924 0.2 

none v0-v1 0.905 0.925 0.965 0.945 0.927 3.6 

Table 15 The results of balancing techniques on apns project 
 

 

under-
sampling 

true/predicted Survived Killed All 

Survived 72 13 85 

Killed 123 340 463 

All 195 353 548 

cost 
sensitive 

true/predicted Survived Killed All 

Survived 55 30 85 

Killed 29 434 463 

All 84 464 548 

none 

true/predicted Survived Killed All 

Survived 49 36 85 

Killed 16 447 463 

All 65 483 548 

Table 16 Confusion matrixes of balancing techniques 
 
Table 15 shows that out of 2 balancing techniques cost-sensitive method performs 
much better according to all the metrics. The performance of a model without any 
balancing also performs well and achieves similar results as the cost-sensitive 
method but Confusion matrixes of both methods show that balancing helps to 
correctly classify more mutants as survived. For this reason, the cost-sensitive 
approach was chosen to use for further experiments. 
 

4.1.2.5  Location as a feature 

Each line of the code has the same coverage from the test suite. For each 
statement, there might be several mutants generated. For such mutants, test-related 
features are the same because they are located at the same place in code. From the 
above experiments, we learned that test-related features are important during 
predictions. Is it interesting to see if a location feature can be a good indicator of the 
outcome of a mutant execution. For example, if there are two mutants generated on 
the same line and the execution result is known for one of them can we say that the 
second mutant will have the same outcome or not. This paper investigates if the 
addition of the location feature will affect performance. 
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The location of the mutant consists of information about package, source (file), class, 
method and line in which this mutant is located in the application code. Features 
related to the test suite contain information for each method, therefore including the 
line information in the location feature becomes less important. Statistics were 
collected for each line and analyzed. The results show that the mutants on the same 
line mostly have the same execution result. Based on these findings the location 
feature was added to the feature set. Note that the location feature is added as a 
four different feature: package, source, class and methodName. They are all 
categorical features. For converting categorical features into numeric three 
approaches were used: 
 

 One-hot encoding 

 Replacing the variables by the respective frequencies counts of the variables 
in the column 

 Label encoding  
 
The results of all three techniques are presented on Table 17. ROC-AUC values are 
around 0.92 and the Prediction Errors are around 2%. Compared to the results 
without location feature all the metrics are very close.  
 

encoding train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

one hot v0-v1 0.898 0.928 0.952 0.94 0.913 2.2 

frequencies v0-v1 0.894 0.926 0.95 0.938 0.918 2.2 

labels v0-v1 0.898 0.93 0.95 0.94 0.916 1.8 

no location 
feature 

v0-v1 0.892 0.935 0.937 0.936 0.924 0.2 

Table 17 The results of three different encoding of categorical features and the 
results without location feature 

 
Feature importance for all three encoding approaches is presented in Figure 10, 
Figure 11 and Figure 12. One-hot encoding feature importance is hard to estimate 
since all the newly added features have many different values. Averaging them gives 
very low importance values shown in Figure 10.  
As we can see in all these figures location feature has high values of importance. 
Using frequency encoding class, source and methodName are the most important 
features after numExecutedCovered, numTestCovered and numMutantAssertion 
which all are test related features. This finding supports the idea that location can be 
a good indicator of the execution results of mutants. 
 
For future experiments, the frequency encoding approach was chosen according to 
ROC-AUC measure which is slightly higher than others.  
Note that Java projects have two other categorical features: typeReturn and 
typeOperator. One-hot encoding is used for them. Since there are only several types 
of them using one-hot encoding will not add too many features after encoding. 
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Figure 10 The feature importance of one hot encoding 

 
Figure 11 The feature importance of frequency encoding 
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Figure 12 The feature importance of label encoding 

 
 

4.2 Results for RQ2: Transfer PMT from Java to C 
This section answers the second research question. 4.2.1 section presents the 
results of C and Java projects under the same conditions (using the same classifier 
and same feature set). 4.2.2 section presents the general results of C and Java 
projects (using all their features). 
The process of feature extraction for C project is different from that of Java project. 
All the tools used for collecting features are different. Machine learning part is the 
same for both projects. 24 unique features were extracted for C project. Distribution 
of survived and killed mutants is 0.57%, more precisely, out of 58432 mutants 33419 
are killed. Categorical features are typeOfMutant, typeReturn, location and Mutation. 
The location feature is given in a form of a string that represents location hierarchy: 
package and class that mutant is located in. All categorical features are converted 
using one-hot encoding. For all the experiments except one C project data is divided 
into train and test sets. 80% is train and 20% is test set. Train data has 46745 
mutants and Test data has 11687 mutants. 

4.2.1 Common features of C and Java projects 

C and Java projects have several features in common. This shows that the features 
of C project and Java project are comparable. From both projects similar feature can 
be extracted.  
In this section, only those common features are used to build the Random Forest 
models and evaluate them. Note that not all the chosen features are the same as 
what was used in Java projects but they are similar. Chosen features from C project 
are: 

• typeOfMutant (typeOperator) 
• numTestCovered (numTestCovered) 
• numMutationAssertions_iparam (numMutantAssertion) 
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• numMutationAssertions_oparam (numMutantAssertion) 
• numClassAssertions (numClassAssertion) 
• typeReturn (typeReturn) 
• mccabe (McCabe Cyclomatic Complexity) 
• sloc (Method lines of code) 
• lines (Method lines of code) 

 
Random Forest was trained on apns Java project and C project using default 
parameters. For apns two versions were used: the first version for training and the 
second for evaluation. Single C project version was used and the data was divided 
into train and test sets. The outcome of the models is presented in Table 18 with the 
results of the same experiment performed on the Java project. The feature 
importance of both projects is presented in Figure 13 and Figure 14. The Confusion 
Matrixes of both models are shown in Table 19. 
 

Language train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

Java v0-v1 0.88 0.927 0.931 0.929 0.917 0.4 

C 80%-20% 0.734 0.789 0.736 0.762 0.822 3.9 

Table 18 Java and C project results of common feature set 
 

 
Figure 13 Feature importance of Random Forest on C project 

 

 
Figure 14 Feature importance of Random Forest on apns Java project 
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Java 

true/predicted Survived Killed All 

Survived 51 34 85 

Killed 32 431 463 

All 83 465 548 

C 

true/predicted Survived Killed All 

Survived 3608 1329 4937 

Killed 1781 4969 6750 

All 5389 6298 11687 

Table 19 Confusion Matrixes 
 

As we can see on Table 18 apns performance is better than C project. This might be 
a result of using cross-version approach for Java project. Since the model is trained 
using similar mutants that might help the performance. Whereas for C project single 
version is used and so model might have not seen similar mutants. Feature 
importance of both projects are very different from each other which indicates that 
different languages has different characteristics and if numTestCovered is important 
for Java project it does not mean that it will be as important for C project.  
 
Java project (apns) has a much less number of mutants than C project. Therefore, 
two versions of the program are used to evaluate PMT for Java. Besides, C project 
data does not contain mutants with no coverage so they were removed from the 
Java project data as well. To make the conditions similar for each project cost-
sensitive balancing was used for Java project because after removing no coverage 
data train set contains much more killed mutants than survived. Whereas in C project 
both classes have a similar number of mutants. In addition, all the 6 versions of Java 
project were used under the single version scenario. The data of each version was 
divided into a train (80%) and test (20%) sets and evaluated. For C project dataset 
was split into two sets 5 times. Each time different size train and test sets were 
generated. All the results are presented in Table 20. 
 
Since there are many differences between these projects the most similar cases are 
C project with naïve Random Forest and Java project with the single version with 
balanced Random Forest and no coverage mutants removed. According to the 
results of this case, C project ROC-AUC is 0.822 when divided into 80-20% of a train 
and test sets. With the same division, this result is closest to Java project v2 which 
has 0.803 value and it is farthest from v5 value 0.736. This proves that using 
common conditions gives similar results. 
Table 20 answer to second research question. The results between Java and C 
projects are comparable when testing under the same conditions. Using the similar 
set of feature and classification models. For all versions of apns project ROC-AUC 
values are less then C project values. 
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Language balanced train-test Accuracy Precision Recall 
F-

measure 
ROC-
AUC 

Pred.Error 

Java 

no 

v0-v1 0.876 0.925 0.929 0.927 0.878 0.4 

v1-v2 0.863 0.893 0.942 0.917 0.895 4.4 

v2-v3 0.889 0.916 0.947 0.931 0.945 2.7 

v3-v4 0.873 0.922 0.922 0.922 0.916 0 

v4-v5 0.899 0.939 0.946 0.942 0.893 0.6 

yes 

v0-v1 0.874 0.921 0.931 0.926 0.892 0.9 

v1-v2 0.86 0.909 0.918 0.913 0.886 0.8 

v2-v3 0.881 0.933 0.917 0.925 0.936 1.4 

v3-v4 0.883 0.936 0.919 0.927 0.907 1.5 

v4-v5 0.886 0.947 0.921 0.934 0.907 2.4 

yes 

v0 (80%-
20%) 0.897 0.901 0.986 0.942 0.8 8 

V1 (80%-
20%) 0.827 0.903 0.894 0.898 0.772 0.9 

V2 (80%-
20%) 0.789 0.868 0.868 0.868 0.803 0 

V3 (80%-
20%) 0.767 0.829 0.87 0.849 0.764 3.8 

V4 (80%-
20%) 0.779 0.897 0.821 0.857 0.785 6.9 

V5 (80%-
20%) 0.824 0.881 0.91 0.895 0.736 2.7 

C no 

90%10% 0.746 0.766 0.814 0.789 0.821 3.7 

80%-20% 0.734 0.789 0.736 0.762 0.822 3.9 

70%-30% 0.741 0.753 0.815 0.783 0.818 4.7 

60%-40% 0.741 0.76 0.803 0.781 0.818 3.2 

50%-50% 0.738 0.76 0.793 0.777 0.815 2.5 

Table 20 The results PMT on C and Java projects 
 

4.2.2  Performances of C and Java projects 

This section presents an evaluation of PMT on C project. For the evaluation, all the 
available 24 features were used to build Random Forest classification model. The 
results are shown in Table 21 and Table 22. alongside with apns Java project 
results with all its features and mutants with no coverage removed since in C project 
there are no such mutants. The ROC-AUC values are almost the same for both 
projects and Prediction Errors are close. These results indicate that if we use all the 
resources available for different languages (C and Java) similar results can be 
obtained. 
  

Language train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

Java v0-v1 0.894 0.926 0.95 0.938 0.918 2.2 

C 80%-20% 0.841 0.86 0.867 0.863 0.916 0.5 

Table 21 The results PMT on C and Java project 
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Java 

true/predicted Survived Killed All 

Survived 50 35 85 

Killed 23 440 463 

All 73 475 548 

C 

true/predicted Survived Killed All 

Survived 3982 955 4937 

Killed 901 5849 6750 

All 4883 6804 11687 

Table 22 Confusion matrixes  
 
 
Figure 15 presents feature importance of C project. As we can see the most 
important features are Column and Line which indicate location of a mutant in a 
code. numMutationAssertions are quite important feature as well and the most 
important feature related to test suite. Most of the feature are different from Java 
project ones. In Java projects when mutants with no coverage are removed the most 
important feature has similar values as Column feature does in C project. 

 
Figure 15 feature importance of C project 

 
Overall, some of the features of C and Java projects are comparable and the results 
indicate that performances are comparable as well. 
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4.2.3  Feature selection of C project 

This section investigates the effect of using only several features for C project. The 
motivation behind this is to see how good results can be obtained using only several 
features. According to the previous experiment results out of 24 features several 
location features are dominating: Column, Line, methodId, cfileId and lineInMethod. 
Because of this reason those location features were chosen for training. Besides 
these location features some test-related feature were added: 
numMutationAssertions_iparam, numMutationAssertions_oparam and 
numClassAssertions. Lines and sloc features are related to location feature so they 
were added also. In total 10 features were used. Furthermore, cfileId and methodId 
were dropped, used only 8 features for training. Lastly, only location features were 
used for training: Column, Line, methodId, cfileId and lineInMethod. The results are 
shown in Table 23. Their feature importance is in Figure 16. As we can see we can 
obtain almost the same performance using only several important features. This 
finding can greatly help PMT. Collecting only 10 or 5 features is much easier than 
collecting 24 features. Besides location feature are very easy to collect, unlike test 
related features. For test-related features, like numExecutedCovered, OpenClover 
needs to be executed.  
Using only a few features can improve the efficiency of PMT with a small loss of 
accuracy and findings of this experiment supports this claim. 
 

features train-test Accuracy Precision Recall F-measure ROC-AUC Pred.Error 

all 80%-20% 0.841 0.86 0.867 0.863 0.916 0.5 

10 80%-20% 0.864 0.865 0.906 0.885 0.916 2.8 

8 80%-20% 0.867 0.868 0.908 0.888 0.919 2.7 

5 80%-20% 0.861 0.863 0.904 0.883 0.91 2.8 

Table 23 Feature selection results of C project 
 

 
Figure 16 Feature importance of C project 
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5 Discussions 
 

This section provides analysis of results of research questions. More precisely, it 
discusses the replication results of PMT, as well as its ability to be applied to a 
different technology. 
 
The results of the paper [2] were successfully replicated. Under the cross-version 
application scenario all the metrics are very close to the ones from the paper for both 
Java projects. More precisely, F-measure values differ maximum by 0.05 and 
minimum by 0.001, ROC-AUC values differ maximum by 0.03 and minimum by 
0.001. Prediction errors are very close too. The effect of intervals shown in Figure 2 
and Figure 1 also demonstrates the accuracy of replication results by being so close 
to the results presented in the paper [2]. In the cross-project scenario I have used 
only one project for training and yet the results are surprisingly accurate. For 
example, a model build on apns project and evaluated on la4j has ROC-AUC value 
0.858 and the same model from the paper [2] has 0.876. The difference is less than 
0.03. The same is true for the model trained on la4j and evaluated on apns. For this 
model prediction errors are different by 1.32. All these findings support that the 
results of the original paper are authentic and it is possible to replicate them. 
 
Several features can be collected for both Java and C projects. Since there are 
many differences between these projects the most similar cases are C project with 
naïve Random Forest and Java project with the single version with balanced 
Random Forest and no coverage mutants removed. According to the results of this 
case, C project ROC-AUC is 0.822 when divided into 80-20% of a train and test sets. 
With the same division, this result is closest to Java project v2 which has 0.803 value 
and it is farthest from v5 value 0.736. This proves that using common features gives 
similar results.  
 
For the general evaluation of PMT on C and Java projects, we should look at the 
results of each project using all their available feature sets. As mentioned above C 
project only includes mutants with coverage so the results should be compared to 
Java project with removed no coverage mutants. This comparison is presented in 
Table 21. ROC-AUC values differ only by 0.002. Prediction errors are very low for 
both projects and all the other metrics values high. Based on this finding it is clear 
that PMT can be transferred to C language. This opens new possibilities for PMT. It 
can be applied to C projects and obtain good predictions of execution results. This 
reduces the cost of execution mutants and makes PMT useful for developers who 
need to obtain the execution results quickly in exchange for small accuracy loss. 
 
This paper investigates the performance of PMT using Java and C projects. In the 
future, it can be also applied to other technologies like python for example. To see if 
characteristics of languages affect their feature sets or test-related features. If PMT 
can be more effective on another technology. In the future cross-language approach 
can also be investigated but it probably will not perform very well unless evaluated 
using large datasets.  
 
Using only one version of C project is not enough proof that PMT will perform well on 
a different project. Several projects can be collected and investigated. Furthermore, 
in order to obtain better results on C project several versions of the same project can 
be used for analysis. In this case, I was given C project data and I was given only 
one version. So this limited my options. 
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Also, feature selection can be performed to detect what is the smallest feature set 
that can achieve similar results as it can be obtained using all the features. Less 
feature collection needs less time. This improves the efficiency of PMT. This 
research was able to find 5 features that can achieve such a result for C project. The 
same can be done for Java project. Even though it might be the result of the 
importance of the features. In C project most important features are related to 
location so using those features resulted in really good performance of the model. 
Because of the time issue, this approach will be studied in the future. 
 

6 Conclusions 
 
This thesis has focused on the replication of an existing paper [2]. Different parts of 
this paper were replicated and the obtained results support its findings. The same 
versions of programs and the same PIT tool were used. They helped greatly to make 
results as close to the original ones as possible. The replication of the cross-version 
approach was done in the same way: using the immediate previous version of a 
program for training and using the first version of a program for training. All the 
results indicate that the findings in the paper are genuine. The cross-project 
approach was done in a slightly different way. Instead of using 8 base projects for 
training only 1 project was used. Despite this, the results are very good.  
 
This paper applied PMT to C project and was able to achieve very good 
performance. Predictions made by classification models is an accurate and fast way 
to generate the execution results of mutants. The results of C project are competitive 
to the results of Java project. In addition, this thesis shows that the same results can 
be obtained using only 5 features from the feature set of C project. Using only 
location-related features works well. It achieves more than 0.90 ROC-AUC value and 
Prediction Error is below 3%. 
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