

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Nurlan Kerimov

Designing a robust and portable workflow for
detecting genetic variants associated with

molecular phenotypes across multiple studies
Master’s Thesis (30 EAP)

Supervisor(s): Kaur Alasoo, PhD

Tartu 2019

1

Title: Designing a robust and portable workflow for detecting genetic variants associated with

molecular phenotypes across multiple studies

Abstract:

Quantitative trait locus (QTL) analysis links variations in molecular phenotype expression levels

to genotype variation. This analysis has become a standard practice to better understand molecular

mechanisms underlying complex traits and diseases. Typical QTL analysis consists of multiple

steps. Although a diverse set of tools is available to perform these individual analysis, the tools

have so far not been integrated into a reproducible and scalable workflow that is easy to use across

a wide range computational environments. Our analysis workflow consists of three modules. The

analysis starts with quantification of the phenotype of interest, proceeds with normalisation and

quality control and finishes with the QTL analysis. For phenotype quantification and QTL

mapping modules we developed pipelines following best practices of the nf-core framework. The

pipelines are containerized, open-source, extensible and eligible to be parallelly executed in a

variety computational environments. For quality control module we developed a script which

automatically computes the measures of quality and provides user with information. As a proof of

concept, we uniformly processed more than 40 context specific groups from more than 15 studies

and discovered at least one significant eQTL for more than 9000 genes. We believe that adopting

our pipelines will increase reproducibility, portability and robustness of QTL analysis in

comparison to existing approaches.

Keywords: pipeline; workflow; bioinformatics tools; workflow framework; QTL mapping;

containerized pipeline

CERCS: B110 Bioinformatics, medical informatics, biomathematics, biometrics

2

Pealkiri eesti keeles Töökindla ja teisaldatava töövoo väljatöötamine molekulaarsete tunnustega

seotud geneetiliste variantide tuvastamiseks mitmetest andmestikest

Lühikokkuvõte:

Kvantitatiivse tunnuse lookusteks (quantitative trait locus, QTL) nimetatakse geneetilisi variante,

millel on statistiline seos mõne molekulaarse tunnusega. QTL analüüs võimaldab paremini aru

saada komplekshaiguseid ja tunnuseid mõjutavatest molekulaarsetest mehhanismidest. Tüüpiline

QTL analüüs koosneb suurest hulgast sammudest, mille kõigi jaoks on olemas palju erinevaid

tööriistu, kuid mida ei ole siiani kokku pandud ühte lihtsasti kasutatavasse, teisaldatavasse ning

korratavasse töövoogu. Käesolevas töös loodud töövoog koosneb kolmest moodulist: huvipakkuva

tunnuse kvantifitseerimine (i), andmete normaliseerimine ja kvaliteedikontroll (ii) ning QTL

analüüs (iii). Kvantifitseerimise ja QTL analüüsi moodulite jaoks kasutasime Nextflow töövoo

juhtimise süsteemi ning järgisime kõiki nf-core raamistiku parimaid praktikaid. Mõlemad töövoo

moodulid on avatud lähekoodiga ning kasutavad tarkvarakonteinereid, mis võimaldab kasutajatel

neid lihtsalt laiendada ning jooksutada erinevates arvutuskeskkondades. Kvaliteedikontrolli

teostamiseks ning andmete normaliseerimiseks arendasime välja skripti, mis automaatselt arvutab

välja erinevad kvaliteedimõõdikud ning esitab need kasutajale. Juhtprojekti raames viisime läbi

geeniekspressiooni QTL analüüsi 15 andmestikus ja 40 erinevas bioloogilises kontekstis ning

tuvastasime vähemalt ühe statistiliselt olulise QTLi enam kui 9000 geenile. Loodud töövoogude

laialdasem kasutuselevõtt võimaldab muuta QTL analüüsi korratavamaks, teisaldatavamaks ning

lihtsamini kasutatavaks.

Võtmesõnad: töövoog, QTL analüüs, töövoo raamistik, konteinerdamine

CERCS: B110 Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika

3

Table of Contents
1. Introduction ... 5

1.1. Terms and Notions ... 5

1.2. Biological Background .. 6

1.2.1. Central Dogma of Molecular Biology .. 6

1.2.2. Quantifying RNA-seq Transcription... 8

1.2.3. Genetic variation ... 9

1.2.4. Genome-Wide Association Studies (GWASs) ... 10

1.2.5. Quantitative Trait Locus (QTL) Mapping .. 10

1.2.6. Colocalisatin ... 12

1.3. Project Overview ... 13

2. Bioinformatics Pipelines ... 15

2.1. Properties of Pipelines ... 15

2.1.1. Reproducibility (Replicability) ... 15

2.1.2. Portability .. 17

2.1.3. Scalability ... 17

2.1.4. Dependency Isolation.. 18

2.1.5. Parallelisation .. 20

2.1.6. Reusability .. 21

2.2. Comparison of Pipeline Frameworks and Design Decisions ... 22

2.2.1. Classification of Pipelines... 22

2.3. Pipeline Requirements of the Project ... 25

2.3.1. Comparison of Most Popular Frameworks ... 26

2.3.2. Pipeline Design Decisions .. 28

3. Quantification Pipeline ... 28

3.1. Quantification Methods ... 29

3.1.1. Gene Expression Quantification ... 30

3.1.2. Transcript Usage Quantification ... 31

3.1.3. Exon Expression Quantification ... 31

3.1.4. Alternative Splicing Usage Quantification ... 32

4

3.2. Pipeline overview... 32

4. Quality Control and Normalisation ... 34

4.1. Principal Component Analysis (PCA) ... 35

4.2. Multidimensional Scaling (MDS) .. 37

4.3. Sex-specific Gene Expression Analysis ... 39

4.4. Sequence-genotype Matching (MBV analysis) ... 40

5. QTL Mapping Pipeline ... 43

5.1. Description of QTL Mapping Process ... 44

5.2. Pipeline Overview .. 44

5.3. Pipeline Implementation Details .. 47

5.3.1. Containerisation and Conda support ... 47

5.4. Pipeline Input and Output Description .. 48

5.4.1. Input Preparation ... 48

5.4.2. Description and Interpretation of Pipeline Output .. 50

6. Conclusions ... 50

7. References ... 51

8. Appendices .. 61

9. License .. 63

5

1. Introduction

1.1. Terms and Notions

Deoxyribonucleic acid (DNA): A molecule carrying genetic information and composed of four

nucleotides (cytosine [C], guanine [G], adenine [A] or thymine [T])

Ribonucleic acid (RNA): A molecule primarily created on basis of DNA code and also composed

of four nucleotides (cytosine [C], guanine [G], adenine [A] or uracil [U]). RNA has various

biological roles in a cell.

Nucleotide: organic molecules that serve as building units of DNA and RNA

Genomic variant: a difference in a specific position between genotypes of two organisms

belonging to the same species

Single Nucleotide Polymorphism (SNP): genomic variant which occurs as a substitution of single

nucleotide

Gene: a sequence of nucleotides in DNA or RNA that codes for a molecule that has a function.

Transcript: one of the possible versions of the gene sequence.

Genomic feature: a genomic region with some annotated function. (e.g. gene, transcript, exon)

Expression: Abundance of the specific genomic feature in a specified biological environment

Sample: Genetic material obtained from a specific source (e.g. human, tissue)

Phenotype: The set of observable characteristics of a sample (e.g. gene and exon expression levels)

Genotype: The genetic constitution of an individual organism.

Metadata: A set of data that describes and gives information about other data.

Computation node: A set of configured hardware in order to serve computational power

Computation cluster: A set of computation nodes

Job (Task): A computational activity to be executed in computation node and requiring pre-defined

amount of computational power.

Executor (Job scheduling system): A software to orchestrate execution of tasks in the computation

cluster.

Execution environment: An environment equipped with necessary software in order to execute

tasks.

6

1.2. Biological Background

Bioinformatics is a multidisciplinary field which needs the expertise of biologists, software

engineers and computer scientists (Brass, 2000). To make efficient tools for biologists, software

engineers and computer scientists should understand the basics of the domain they are working in.

Thus, knowledge of the central dogma of molecular biology, Genome Wide Association Studies,

Quantitative Trait Loci mapping and colocalisation is essential.

1.2.1. Central Dogma of Molecular Biology

In molecular biology, molecular functions are mostly performed by proteins. These large and

complex molecules are required for the structure, function and regulation of organism’s tissues.

The abundance or structure of the specific protein in human cells can provide information about a

specific trait (e.g. disease) (Dermitzakis, 2008; Emilsson et al., 2008; Liu, Gershon, & Kelsoe,

2017). The idea of the central dogma describes the process of protein production from genetic

code. This unidirectional process consists of two main steps: transcription and translation, and

can be described as DNA ⇨ RNA ⇨ Protein (Figure 1.1).

Figure 1.1. High level representation of central dogma of molecular biology.

Figure obtained from molecular biology curriculum of KhanAcademy1.

In the human body, all cells have the same DNA, however the amount of transcribed RNA is

different. The amount of transcribed RNA from a specific gene determines the gene expression

level, which directly affects protein abundance produced from the same gene. Although each cell

can express (activate, turn on) majority of the genes, some cell types can additionally express

specific genes and repress (unexpress, turn off) others (Ramsköld, Wang, Burge, & Sandberg,

2009). The behaviour of expressing and repressing the genes is called gene regulation. Gene

1
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-

rna/a/overview-of-transcription

https://paperpile.com/c/wYdAjq/hhDFx
https://paperpile.com/c/wYdAjq/xxqV4+kgCf7+LUDTn
https://paperpile.com/c/wYdAjq/xxqV4+kgCf7+LUDTn
https://paperpile.com/c/wYdAjq/vDpHR
https://paperpile.com/c/wYdAjq/vDpHR
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription

7

regulation plays an important role in cell development, functionality and adaptation to the

environment. Genes are regulated in different patterns, for example, muscle cells have to look and

function differently from a brain cell or liver cell. Although we know that gene regulation is vital

for life, this complicated process is not fully understood yet2. Gene regulation most commonly

occurs at the transcription level, however it can be effective in any step of gene expression.

Transcription is the process of producing messenger RNA (mRNA) from DNA. One strand of

the DNA double helix acts as a template for the construction of a matching complementary RNA

strand. A molecular machine called the RNA polymerase binds to a promoter region of a gene with

the help of transcription factors, and starts to copy a sequence of the gene to an RNA molecule.

In eukaryotic cells (e.g. human cells), the transcribed RNA molecule in this stage is considered

“immature” RNA (a.k.a. pre-mRNA or primary transcript), and needs to go through modifications

(RNA processing) to become a mature mRNA. These modifications are splicing, capping and

polyadenylation (poly-A tail addition), and are the main events which designate the content of

mature mRNA.

A pre-mRNA contains exons (regions in genes which will become a piece of mature mRNA) and

introns (regions which do not survive the RNA processing modifications). In the splicing process,

introns are removed and exons are joined in order to form mRNA from pre-mRNA. Splicing occurs

in the nucleus of the cell, either during the transcription process or immediately after transcription

is completed. Sometimes alternative splicing occurs, where splicing process creates different

sequences of mRNA by varying the exon composition of pre-mRNA (J. Chen & Weiss, 2015; Y.

Wang et al., 2015). When alternative splicing happens, different combinations of exon and intron

usage result in production of a variety of proteins and other gene products (Figure 1.2). Alternative

splicing is not a random process. It is regulated by regulatory protein molecules and often depends

on genetic variants within or nearby the transcribed gene.

Other two steps of pre-mRNA processing are five-prime capping (5’ capping) and three-prime (3’)

end tail polyadenylation. The 5’ end of the transcribed gene is the side where the transcription

starts and capping of this side happens shortly after the transcription is initiated. A special molecule

is added to the 5’ end to make mRNA more stable and mature to be able to undergo the translation

process. Polyadenylation (poly(A)) on the other hand, is the addition of multiple adenine bases to

specific (poly(A)) site in the 3’ end of the newly transcribed pre-mRNA. This process is also vital

for stability and translation of the mRNA, because the tail of the mRNA is shortened overtime and

absence of poly(A) tail can result in degradation of the mRNA before reaching the translation.

Usually, protein coding genes have multiple polyadenylation sites, so poly(A) tail can be added in

any of them and change the content of mRNA. This phenomenon, called alternative

polyadenylation, makes it possible to produce different mRNAs from one gene that are different

in their 3’ ends, eventually ending up with production of different proteins. Alternative promoter

2
 https://ghr.nlm.nih.gov/primer/howgeneswork/geneonoff

https://paperpile.com/c/wYdAjq/nqDs0+XDYcV
https://paperpile.com/c/wYdAjq/nqDs0+XDYcV
https://ghr.nlm.nih.gov/primer/howgeneswork/geneonoff

8

usage (choice), on the other hand, is another regulatory event, which defines the first exon of a

gene to be transcribed (Figure 1.2) (Ayoubi & Van De Ven, 1996; Kimura et al., 2006).

Translation is the process where a mature mRNA is decoded in order to build a protein or a

subunit of a protein. In eukaryotes (organisms whose cells have a nucleus), it happens outside of

the nucleus by ribosomes with the help of transport RNA (tRNA). Although gene expression can

also be regulated at the translation level (Wilkie, Dickson, & Gray, 2003), we will not discuss this

further, because the RNA sequencing data used in this thesis measures mRNA abundance.

1.2.2. Quantifying RNA-seq Transcription

RNA sequencing (RNA-seq) data are essentially a collection of text strings representing nucleotide

sequences. To produce this data, mature mRNA is extracted from the cell, fragmented,

complementary DNA (cDNA) fragments made and then sequenced with a high-throughput

sequencing machine (Marioni, Mason, Mane, Stephens, & Gilad, 2008) (Figure 1.3). High-

throughput sequencing machines produce short sequences of basepais, called sequencing reads.

To extract interpretable information from the experiment, the reads need to be aligned to the

reference sequence to quantify the relative counts of specific phenotypes. For instance, to quantify

gene expression, the reads should be aligned to the reference genome sequence of the

corresponding species (Figure 1.3).

Figure 1.2. Symbolic representation of alternative splicing,

alternative promoter and alternative polyadenylation events.

Figure is obtained from (J. Chen & Weiss, 2015) study.

https://paperpile.com/c/wYdAjq/bSlEV+v79mq
https://paperpile.com/c/wYdAjq/Ncgpd
https://paperpile.com/c/wYdAjq/yXgRs
https://paperpile.com/c/wYdAjq/nqDs0

9

Figure 1.3. Visual summary of RNA-seq data sequencing and alignment. Figure obtained

from RNA-seq wikipedia article3 and is available under CC BY 4.0 license4

Reads produced by the sequencing machines are usually stored in the FASTQ file format (Figure

1.4).

1.2.3. Genetic variation

The human genome is 3.1 billion nucleotides long and there are two copies of each chromosome.

Any two individuals differ from each other at 0.5% of the loci, which means there are differences

in more than 100 million locations (a.k.a. genetic variants). Each variant can have either reference

3
 https://en.wikipedia.org/wiki/RNA-Seq

4
 Thomas Shafee [CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)]

Figure 1.4. Example of a read in FASTQ file. First line: unique identifier, second line: sequence of bases, third

line: optional unique ID repetition with description, fourth line: quality values for sequence of bases in line 2.

https://en.wikipedia.org/wiki/RNA-Seq

10

or alternative allele inherited from one of the parents. Since humans have two sets of each

chromosome (diploid, one inherited from the mother and another from the father), there are three

possible value combinations of the inherited variant (1000 Genomes Project Consortium et al.,

2015). For instance, in Table 1.1 variant with ID chr1_1301656_T_C has a reference allele of

nucleotide “T” and alternative allele of nucleotide “C” in the reference genome. Hence, three

possible inheritance combinations are “TT”, “TC” and “CC” (“CT” is the equivalent of “TC”).

The sample (e.g. donor, person) indicated with ID “geno_275” has two reference alleles (e.g. “TT”,

homozygous) inherited from the parents, and does not inherit alternative allele for this variant. The

same person has one copy of both reference and alternative alleles for the variant

chr1_1302799_C_A (e.g. “CA”, heterozygous). Genotypes can be measured using genotyping

microarrays or whole genome sequencing. Genotype data is typically stored in variant call format

(VCF, (Danecek et al., 2011)) files (Table 1.1).

1.2.4. Genome-Wide Association Studies (GWASs)

The main goal of human genetics is to find genetic risk factors for the specific traits (e.g. diseases).

There are a number of different tools, study designs and technologies to identify these risk factors.

GWAS is an observational study of genetic variants in a specific cohort of individuals, which aims

to find if any genetic variant is associated with a particular trait (e.g. disease). If a new genetic

association is identified, researchers can contribute this finding to the pool of associations for

future use by the community. This tremendous database helps researchers to come up with better

strategies to detect, treat or prevent various diseases (Buniello et al., 2018). GWASs have been

continuously grown over the past fifteen years into a great resource. While interpreting the

complexity of human diseases is an essential objective, it is not the only target of human genetics.

Pharmacology is a major beneficiary of GWAS. Pharmacogenetics studies associations of DNA

sequence variations with drug metabolism and efficacy along with negative effects (Bush &

Moore, 2012). This type of genetic studies have led to establishment of a new field called

personalised medicine that aims to fit healthcare to individual patients based on their genetic

information and other biological parameters.

1.2.5. Quantitative Trait Locus (QTL) Mapping

Another method for identifying associations between phenotypic data (traits) and genotypic data

is quantitative trait locus (QTL) analysis. This statistical method attempts to clarify genetic bases

of variation in complex traits. The phenotypic data in QTL analysis are quantitative traits which

Table 1.1. Visual representation of two variants in VCF file format.

CHR POS ID REF ALT QUAL FILTER INFO FORMAT geno_275

1 1301656 chr1_1301656_T_C T C 100 PASS --- GT 0|0

1 1302799 chr1_1302799_C_A C A 100 PASS --- GT 1|0

https://paperpile.com/c/wYdAjq/42scP
https://paperpile.com/c/wYdAjq/42scP
https://paperpile.com/c/wYdAjq/6wjqN
https://paperpile.com/c/wYdAjq/qDg0z
https://paperpile.com/c/wYdAjq/M2RKF
https://paperpile.com/c/wYdAjq/M2RKF

11

can include aspects of morphology (e.g. weight, height); behavior (e.g. aggression, stress);

physiology (e.g. blood pressure, oxygen saturation levels); as well as molecular phenotypes (e.g.

gene expression levels, splicing events). If the abundance of a quantitative trait can be associated

with a specific genetic variant in the genome, then this association can help to understand certain

diseases associated with the quantitative trait. This process of associating quantitative traits with

the genotype is called QTL mapping. Whereas phenotypes are represented by quantitative traits,

genotype information is usually represented as molecular markers, such as single nucleotide

polymorphisms (SNPs), polymorphic insertions or deletions (indels) or larger structural variants

(Mackay, 2009). Another powerful feature of QTL studies is the ability to analyse associations in

various contexts. Quantitative traits can be affected by several properties such as environment,

sex, diet, cell type, experimental time point or any external stimulus. QTL mapping enables

researchers to observe the effect of a specific SNP in a specific context which can be compared to

the effect of the same SNP in another context. For example, the same allele can increase the

expression of one gene in monocytes but might not affect the regulation of the same gene in B

cells (Figure 1.5). The output of the QTL mapping process is called summary statistics, because it

summarises the association information by containing p-values (probability of observing an

association under the null hypothesis of there is no association), effect sizes and standard errors of

Figure 1.5. Cell type specific effect of the allele to the gene expression. a) T allele of rs2223286

variant is associated with decreased expression of SELL gene in B cells, but increased expression

in Monocytes. b) T allele of rs738289 variant is associated with decreased expression of MGAT3

gene in B cells but does not affect regulation in monocytes. Same allele does not affect regulation

of SYNGR1 gene in B cells but downregulates the expression of it in monocytes. Figure is

obtained from (Fairfax et al., 2012).

https://paperpile.com/c/wYdAjq/w9YQe
https://paperpile.com/c/wYdAjq/GzWne

12

it5. Ultimately, summary statistics are compared to variants associated to disease in order to find

if they are colocalised.

1.2.6. Colocalisatin

QTL analysis is becoming increasingly popular in genetic research and they are an excellent

complement to GWASs. GWASs have become a very powerful method to identify genetic variants

associated with a complex disease. Nonetheless, most of the significant loci identified by GWASs

are in the non-coding regions of the genome. This makes it challenging to understand the molecular

mechanisms underlying these associations (Visscher, Brown, McCarthy, & Yang, 2012). On the

other hand, QTL studies identify candidate SNPs associated with molecular traits, such as gene

expression or splicing, but these associations cannot be easily related to the higher level organismal

phenotypes (e.g. diseases). Several algorithms have been developed to colocalise information of

eQTL SNPs and GWAS candidate SNPs to deduce the information between disease and gene (J.

Wang, Zheng, Wang, Li, & Deng, 2019). The underlying idea is that if an allele is more common

in disease carrier samples and at the same time this allele is found to be associated with the

expression of particular genes, then it is likely that these genes influence the disease risk through

changed expression (Figure 1.6).

Usually there is no single genetic variant in GWAS and QTL associations, but multiple correlated

variants, simply because they are inherited together. This fact makes difficult to assess if the

disease and quantitative trait are regulated by the same causal variant. Thus, Giambartolomei et al.

(Giambartolomei et al., 2014) developed a statistical methodology to assess if the two associations

are consistent (GWAS and QTL associations) with a shared causal variant. As a result, this method

enables to infer associations between quantitative traits and disease by using GWAS and QTL

summary statistics (Figure 1.6).

5
 https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html

Figure 1.6. Association map between genetic variants, quantitative trait and disease.

Colocalisation uses QTL and GWAS associations to associate a quantitative trait to

a disease by finding probable causal variants.

https://paperpile.com/c/wYdAjq/7YoA
https://paperpile.com/c/wYdAjq/e0USK
https://paperpile.com/c/wYdAjq/e0USK
https://paperpile.com/c/wYdAjq/VRT1X
https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html

13

1.3. Project Overview
The work in this thesis contributes to the eQTL Catalogue6, a collaborative project between the

University of Tartu and the European Bioinformatics Institute. The aim of the project is to compile

the largest catalogue of genetic variants associated with different transcriptional quantitative traits

(gene expression, alternative splicing, transcript usage and exon expression) across tissues, cell

types and cellular contexts. In the project, we aim to process quantitative trait expressions and

genotype data from more than 23,000 biological samples across more than 18 distinct studies and

40 distinct biological contexts (“QTL groups”), all of which need to be processed separately for

QTL mapping (Table 1.2 and Appendix 1). These groups are mostly formed of combinations of

cell types and conditions (e.g. applied stimuli) of samples. For example, a study by Alasoo et al.

(Alasoo et al., 2018) exposed human macrophages to Salmonella and IFNγ (interferon gamma)

stimulations and detected eQTLs whose effect sizes changed after stimulation (response eQTLs).

With the comparison of different QTL groups they were able to uncover novel molecular

mechanisms concerning the response of immune cells to environmental stimuli. Ultimately, the

catalogue allows researchers to query any disease-associated variant to identify associated target

genes across a range of tissues, cell types and conditions, leading to better hypotheses about

possible disease mechanisms.

The eQTL Catalogue is, in essence, a set of QTL summary statistics. To produce QTL summary

statistics, raw data should be processed through two distinct procedures: quantification and QTL

mapping. Since multiple datasets and QTL groups from various studies are involved in the project,

they should be processed uniformly to reduce technical biases and variability between datasets.

The fact that datasets are big in volume (more than 250 Terabytes) and they should be processed

by QTL groups necessitates to have a scalable and robust processing method. Additionally, this

6
 https://ensembl.github.io/eQTL-Catalogue-website/

Table 1.2: Subset of studies we processed with the pipeline. The QTL group is the combination of cell type

and condition for each study. For example, BLUEPRINT study has 3 QTL groups and Alasoo_2018 study has

4. Studies: Alasoo_2018, BLUEPRINT (L. Chen et al., 2016), GEUVADIS (Lappalainen et al., 2013),

Nedelec_2016 (Nédélec et al., 2016), Quach_2016 (Quach et al., 2016), TwinsUK (Buil et al., 2015).

Study Donors Samples Cell types Conditions QTL group count

Alasoo_2018 84 336 macrophage
naive, IFNγ, Salmonella,

IFNγ+Salmonella
4

BLUEPRINT 197 608 monocyte, T-cell, neutrophil naive 3

GEUVADIS 462 462 LCL naive 1

Nedelec_2016 171 503 macrophage naive, Salmonella, Listeria 3

Quach_2016 200 970 monocyte
naive, LPS, R848, IAV,

Pam3CSK4
5

TwinsUK 433 1364 LCL, skin, fat, blood naive 4

https://paperpile.com/c/wYdAjq/KZL3w
https://ensembl.github.io/eQTL-Catalogue-website/
https://paperpile.com/c/wYdAjq/Gdism
https://paperpile.com/c/wYdAjq/iJWLc
https://paperpile.com/c/wYdAjq/c2Laa
https://paperpile.com/c/wYdAjq/aJuqX
https://paperpile.com/c/wYdAjq/ah6GY

14

method should support addition of new datasets to the project. The method should also enable to

process the data in parallel and should support usage of computational clusters. Taking into

account all the mentioned requirements, we decided to develop a bioinformatics pipeline to

perform both quantification and QTL mapping procedures.

A key contribution of the thesis is the development of a robust and portable data analysis pipeline

that can be run across diverse computational environments. The pipeline allows us to uniformly

process large datasets in a parallel, scalable and reproducible manner. Additionally, developed

pipelines are extremely portable which enables to process data hosted on public and private clouds

without the need to download the data locally. This is especially important for the CINECA

project7, in which we will jointly analyse gene expression data from multiple large national cohorts

such as BIOS (Zhernakova et al., 2016) and the Estonian Genome Center (Lepik et al., 2017) where

sensitive individual-level genetic data cannot leave country boundaries.

The thesis consists of six chapters. In chapter 2, I will explain the properties of modern

bioinformatics pipelines, classification of the pipeline frameworks and pipeline design decisions.

Then, I will describe each step of QTL mapping analysis in detail. In Figure 1.7 the high-level

representation of QTL summary statistics generation (QTL mapping analysis) from raw RNA-seq

reads and genotype data is shown. Chapter 3 will contain descriptions of supported quantification

methods and technical overview of the developed quantification pipeline. After quantification, a

number of quality control steps should be performed to ensure the high quality of the processed

data. Post-quantification quality control measures will be extensively described in chapter 4.

Finally, I will explain all the details of QTL mapping pipeline in chapter 5, including an overview

of the pipeline, description of the QTL mapping process, description of inputs and outputs, and

decisions made about the technical implementation. The thesis will end with explanations of

conclusions of the related work and list of the used studies’ references.

7
 https://www.ebi.ac.uk/about/news/press-releases/CINECA-facilitates-transcontinental-human-data-exchange

Figure 1.7. High level representation of QTL analysis steps.

https://paperpile.com/c/wYdAjq/ptLCq
https://paperpile.com/c/wYdAjq/Sd1Vz
https://www.ebi.ac.uk/about/news/press-releases/CINECA-facilitates-transcontinental-human-data-exchange

15

2. Bioinformatics Pipelines

Due to fast developments in technology, the cost of DNA sequencing has decreased significantly

since the Human Genome Project (Lander et al., 2001) and the 1000 Genomes project (1000

Genomes Project Consortium et al., 2015; Siva, 2008) were completed. Now the whole human

genome can be sequenced for less than $1000. Based on this factor and other technological

advances, biological data is being generated in large volumes, and it has been accepted as a big

data field for several years (Y. Li & Chen, 2014). The future of genomics data alone is predicted

to exceed other big data related fields such as astronomy, YouTube and Twitter by the year 2025

(Stephens et al., 2015).

To cope with increasing volumes of genomics data, better and more efficient processing techniques

are required. To satisfy these requirements, new tools are constantly being developed by academic

institutions, private companies and government-funded organisations. In data analysis,

reproducibility is required to enable the validation and consistency of the study results.

Reproducing the results is easy, if the analysis is performed in a single computer, using a software

containers such as Docker (Merkel, 2014) and Singularity (Kurtzer, Sochat, & Bauer, 2017), and

tools like Jupyter Notebooks (Perez & Granger, 2007) and Rmarkdown (Allaire et al., 2016).

However, genomic data analysis usually has to be run in parallel on compute clusters. This analysis

has multiple steps that need to be abstracted and coordinated according to the computation

environment (execution environment, cluster queue systems, software dependencies etc.).

Eventually, results computed in parallel need to be collated together as output of analysis. In the

bioinformatics field, this process is called a pipeline or a workflow. In addition to reproducibility

of the results and task parallelisation, the most important requirements for modern pipelines are

reusability, portability and dependency isolation.

2.1. Properties of Pipelines

To process genomic data, researchers usually shepherd files through a series of specific steps. The

set of these steps is called a bioinformatic pipeline. Modern pipelines need to have the following

properties to meet the requirements of modern research.

2.1.1. Reproducibility (Replicability)

Processing a dataset at different times, with same set of parameters should produce the same (or

consistent) results, independent of location and computational environment. This property is

known as reproducibility of the results and modern pipelines are expected to support it. Nowadays

the major scientific journals require to publish data and code to assure reproducibility of the study

results (a.k.a. “reviewable research”, (Stodden, Borwein, & Bailey, 2013)). This requirement is

reasonable since otherwise, it would not be possible to verify the results presented in the

publication. The concept of reproducibility is usually referred to in terms of “provenance” (Gil et

al., 2007; Kanwal, Khan, Lonie, & Sinnott, 2017) which in pipeline circles refers to the origins of

https://paperpile.com/c/wYdAjq/hbkmC
https://paperpile.com/c/wYdAjq/IEZJm+42scP
https://paperpile.com/c/wYdAjq/IEZJm+42scP
https://paperpile.com/c/wYdAjq/xiVoG
https://paperpile.com/c/wYdAjq/3IhNb
https://paperpile.com/c/wYdAjq/GRgpW
https://paperpile.com/c/wYdAjq/ZuBbc
https://paperpile.com/c/wYdAjq/0lGQ6
https://paperpile.com/c/wYdAjq/96mDx
https://paperpile.com/c/wYdAjq/BVYMO
https://paperpile.com/c/wYdAjq/p9YjH+79ffA
https://paperpile.com/c/wYdAjq/p9YjH+79ffA

16

input data, tools, results and intermediates (Leipzig, 2018). Replicating (reproducing the results)

an experiment in a location and operator agnostic manner is a key element in modern science

(Kulkarni et al., 2018). To reproduce the results of a bioinformatics study, the data needs to be

accessible and the tools, together with the step-by-step guidelines to reprocess the data, need to be

available (Usability and archival stability of computational tools).

Data availability - Genomic data and its privacy are concepts which need very careful attention,

since misuse of the data can have serious consequences. Genomics is a relatively new field, and

with the development of biotechnology and increases in computational power, findings are

happening more frequently in comparison to the previous century. It is not known what can be

done with the genetic data of the donor in the future and that is why it should be kept according to

donor’s consent. Taking this potential power of genomic data into consideration, usually, data is

separated according to donor’s consent to access levels: open access data which is publicly

available for anyone to use and managed (controlled) access data which needs special permission

for usage. Hence, if the experiment involves controlled access data, corresponding permissions

must be obtained to replicate the experiment.

Usability and archival stability of computational tools - After obtaining the data to be

reprocessed, the main challenge of replicating an experiment is technical. Usually the problem is

one of the two following aspects:

1. The software used in the experiment is not available or can not be installed. A recent

comprehensive analysis of 24,490 bioinformatics software resources published from 2000

to 2017 showed that 26% of the tools needed for reproduction were not accessible at all,

24% of accessible software failed to install and 49% were deemed “hard to install” (Mangul

et al., 2018). This empirical study also found that the publications introducing new software

have significantly more citations if they provide an accessible and easy installation process.

2. The exact guidelines about usage of the software involved in the experiment are

unavailable. Usually in bioinformatics data analysis, command-line tools are used, where

each tool executes a specific job according to provided parameters. Providing different

parameters or not providing the needed parameters can lead to generation of different

results. Hence, the information about how exactly the software was used in the experiment

should be provided in order to achieve consistent results. If the used software has multiple

released versions, it is important to specify which version was used in the experiment, in

order to ensure the consistency of results.

Therefore, reproducibility is an essential issue especially because pipelines use several tools. Each

tool in the pipeline should be accessible and usage of it should be human-readable and

understandable (explanation comments can be added if the code is not self explanatory, e.g.

explanation of each parameter used). A pipeline can become useless if even one of the tools is not

available or produces inconsistent results.

https://paperpile.com/c/wYdAjq/G2C59
https://paperpile.com/c/wYdAjq/cufbj
https://paperpile.com/c/wYdAjq/tvpkO
https://paperpile.com/c/wYdAjq/tvpkO

17

2.1.2. Portability

In data science fields the primary resource is the data itself. It is understandable that some

organisations do not want to share this valuable resource publicly. In genomics, in addition to the

value of the resource, there are also legal duties to protect the sensitive data of research

participants. For these reasons, some authors and institutions simply are not allowed to share their

genetic data. Genetic data analysis is an incredibly dynamic field, which continuously produces

new methods, and there is the potential to generate new discoveries by applying new or different

analysis methods to already existing data. Genetic data generated (sequenced) with one scientific

question in mind can often be used for another study even if it was not initially generated for it

(Denk, 2017). However, sometimes, it is challenging to overcome the legal issues to get raw

genetic data, and that is where the portability of the pipeline plays a vital role. For instance,

sometimes genomic data cannot be moved outside of a country due to local data protection laws.

In this case, renting private clouds within the borders of the country and performing the

computation there with a portable pipeline is an eligible option. Because, even if the sharing of

raw data is not allowed, the summary-level data analysis results generated from the raw data can

often be shared with third party organisations or even published publicly, since it is impossible to

deduce the donors’ private information from the generated results.

Portability is also appreciated when in an organisation an existing infrastructure changes or some

other organisation with different technical infrastructure wants to use the pipeline. Being able to

publish and re-use existing pipelines can significantly improve the efficacy of the data analysis

process, because researchers do not have to reimplement the same pipelines from scratch and can

spend more time on interpreting the results. For instance, nf-core (Ewels et al., 2019) is a

community curated initiative which provides portable and ready-to-use pipelines for public use.

2.1.3. Scalability

Each step of the pipeline has specific hardware resource requirements such as memory, time and

number of needed compute processors (CPU cores) in order to successfully process the specified

data. When the specified set of resource requirements and data to be processed becomes available

for executing the step (process) of the pipeline, a task scheduler (e.g. job scheduling systems of

high performance computing cluster) reserves resources and performs the step. Usually, the

resource needs of software used in the pipeline are in a linear relationship with the input file size.

When the needed resources become very large to handle because of the size of the input file,

software sometimes provides additional options to divide the input file into chunks and process

them in a parallel manner with less resources but as multiple individual tasks. Therefore, if the

functionality of the software can scale according to the volume of the input data then the software

is considered to be scalable. Since the pipeline in essence is a set of tools used in a specific

configuration, all the tools used in the pipeline should be scalable in order to consider a pipeline

as scalable (Fjukstad & Bongo, 2017).

https://paperpile.com/c/wYdAjq/cNimb
https://paperpile.com/c/wYdAjq/9zWIj
https://paperpile.com/c/wYdAjq/IJiBz

18

2.1.4. Dependency Isolation

It is very common to use existing tools and libraries in software development. That is how a

developed software becomes dependent on other software. Moreover, if any of the dependencies

have special needs like a specific operating system or environment, dependent software also

inherits these needs. When it comes to bioinformatics pipelines, the situation is similar, especially

when pipelines are script wrappers which use a number of external tools to process and analyse

data in a structured and efficient manner. Accessibility and stability of software tools used in the

pipeline increase according to their level of dependency isolation. Consequently, pipelines with

highly isolated dependencies provide better portability and replicability features.

We have classified the dependency isolation levels according to their degree from not isolated to

highly isolated.

1. No isolation - This is the case when the dependencies and environment needed for the

execution of the pipeline are only documented in a relevant chapter of the pipeline

documentation file and it is assumed that the needed tools are waiting in a “ready to use”

state in the specific environment the pipeline is designed for. Consequently, any change to

the software environment can cause the pipeline to fail (Baggerly & Coombes, 2009;

Ioannidis et al., 2009) or generate inconsistent results due to different versions of the

software tools used (Piccolo & Frampton, 2016). Typically, single script file pipelines are

good examples of this, where all tasks and their order, environment-dependent

configurations, and parameters of tools used in the tasks are defined in a single file. Thus,

if the working environment changes, the change of the pipeline file becomes inevitable.

2. Isolate workflow logic from the execution environment - When the pipeline is hardcoded

to communicate with a specific cluster environment, running it in a different environment

takes a lot of effort. However, if the workflow logic and execution environment

configuration are isolated, it requires no change in the workflow logic. Usually, workflow

frameworks offer easy-to-set configuration options to run the pipeline in a different

execution environment. This isolation level still requires manual installation of software

required by the pipeline, but isolation between workflow logic and the execution

environment is guaranteed. It means that if a user has a workflow and the needed

dependencies are installed, a pipeline can be executed with any executor by only changing

the configuration file and keeping the workflow logic unchanged. That is a good feature to

have, especially since there is a number of different computing platforms that can be used

such as SGE, SLURM, LSF, PBS/Torque, NQSII, HTCondor, AWS Batch, Ignite,

GA4GH TES and Kubernetes.

3. Conda integration - Conda is a package, dependency and environment manager, which can

be used on all major operating systems8. Conda downloads software packages from defined

channels and installs them into an isolated environment. That is a good way of isolating

dependencies for several reasons. Firstly, it is enough to provide a recipe for needed

8
 https://conda.io/

https://paperpile.com/c/wYdAjq/JFAXd+XuGwa
https://paperpile.com/c/wYdAjq/JFAXd+XuGwa
https://paperpile.com/c/wYdAjq/il1CC
https://conda.io/

19

dependencies and Conda will take care of creating an environment with the provided recipe

(Figure 2.1). Therefore, researchers with less software experience will not have difficulties

running the pipeline, and there is no need to provide the dependency itself but only the

recipe. It is also possible to manually add scripts to a created Conda environment, which

enables local testing of the developed script in an isolated environment, but in return it

decreases the portability of the pipeline. Additionally, Conda is an open source initiative,

so that anyone can contribute their own software package to it. Finally, it has a very well

tested package repository, which guarantees the stable performance of a specific version

of a specific tool. However, Conda environments do not contain an isolated operating

system, and some packages are not available for all operating systems, which limits the

portability of Conda environments and makes it inferior to containerised isolation.

4. Containerisation - Nowadays the best-known dependency isolation is done by containers.

Containers contain all the needed software to run the pipeline. It is different from Conda

because containers keep the software itself and not the recipe of it. There are some

advantages of containers over other dependency isolation methods. First, containers are

extremely portable and can make dependencies of a pipeline highly accessible.

Consequently, given that the execution environment also supports containerisation

technologies, containerised pipeline dependencies will enable portability and

reproducibility of the pipeline, basically by easily accessing the dependencies provided

within container. As in Conda-like isolation, manually adding custom scripts to a container

is also possible, and is not limiting the portability of either the container or the pipeline.

Although it is possible to manually build “black-box” containers, this approach is not

advisable. Because, even though the pipeline is reproducible (produces the same results

when rerun), it is not possible to verify what the custom software actually does in the

container. Thus, in order to provide the exact content (tools with corresponding versions)

of the container, the recipe used to build it should be also provided. Currently, the most

popular software container tools are Docker (Merkel, 2014) and Singularity (Kurtzer et al.,

2017). Typically, the software containers are built using a recipe file (e.g. Dockerfile)

which contains the base image and step-by-step instructions about how to build the

container. The base image is a previously built container, usually containing basic needs

of a container such as an operating system. However, the nf-core initiative provided a base

Figure 2.1. Example of Conda environment recipe file.

https://paperpile.com/c/wYdAjq/GRgpW
https://paperpile.com/c/wYdAjq/ZuBbc
https://paperpile.com/c/wYdAjq/ZuBbc

20

image with an operating system and Conda software installed, together with a Dockerfile

and Singularity recipes to use the provided base image. Using these provided resources

makes it straightforward and painless to build the container with a Conda-like recipe. For

instance, to build a Docker container, Docker software creates a container with base image

which contains an operating system and Conda, and creates a Conda environment with

provided Conda-like recipe inside the container. Hence, if the pipeline provides a Conda-

like recipe for creation of Conda environment, it is possible to easily build a software

container with the same provided recipe. After building the container, storing it in a specific

web repository like Docker Hub9 or Singularity Hub10 is an easy and common way of

storing and sharing containers. Since the container hubs are open for public, it is possible

to pull and use already existing containers in the hub. Docker is essentially designed for

use of enterprise software production systems and it gives superuser privileges to the user.

In multi-user systems such as HPCs, there is no good way of restricting users with such

privileges from accessing other users’ data. Singularity, another containerization platform,

behaves like Docker but does not require administrative privileges to be used (Silver,

2017). Finally, with containerisation it became relatively easier to automate the testing of

dependencies. Continuous integration and delivery are vital for most software development

organisations and containerisation provides an opportunity to apply well-known practices

of dependency isolation and continuous integration to bioinformatics pipeline

development.

2.1.5. Parallelisation

Genomic data files usually are large collections of short reads (~100 base pairs, depending on the

sequencing platform). Reads are the sequences of characters read out from the DNA. There are

several steps in a pipeline to process these files and extract meaningful information. Some of these

steps should be performed in parallel to achieve high efficiency in terms of time and cost.

Nowadays, even personal laptops usually have more than one multi-core CPUs which can run jobs

in parallel. However, to host these parallel operations there are High Performance Computing

(HPC) clusters specifically designed to increase the throughput of scientific analysis. HPCs’

operating systems are usually Linux based and have job scheduling systems (also called executors)

which orchestrate jobs into different nodes to be processed. Each job has its own resource needs,

and scheduling systems should use the resources in an efficient way to meet these needs. For

instance, given that there are ready-to-use sufficient hardware resources, from the user’s point of

view, the total running time of the pipeline for processing either 2 or 200 samples should not differ

greatly.

9
 https://hub.docker.com/

10
 https://singularity-hub.org/

https://paperpile.com/c/wYdAjq/Yvxhp
https://paperpile.com/c/wYdAjq/Yvxhp
https://hub.docker.com/
https://singularity-hub.org/

21

Computational power can also be outsourced if an institution does not want to maintain this

computational infrastructure by themselves. Cloud batch computing services are gaining more and

more popularity for the following reasons:

● Users do not have to think about maintenance of the cluster since service providers take

care of it.

● In bioinformatic analysis, lots of huge reference files are used. Storing these files also has

costs. Some cloud batch computing services keep these reference files in common storage

which means that anyone can use them without paying extra (Yung et al., 2017).

● Since transferring the files can also be costly, it is usually a good idea to keep the raw data

close to the computing power. That is why these services also offer private storage options

to keep the raw data in the cloud. Furthermore, some large-scale genomics project such as

The Cancer Genomics Atlas have made their data available on the cloud, removing the

need for analysts to download hundreds of terabytes of raw data11.

● Cloud services usually offer different pricing options, and usually, a user pays only when

they use it. For instance, AWS Batch calls it the “Pay-as-you-go” approach12. This also

makes cloud systems extremely scalable.

On the other hand, cloud systems also have some drawbacks. The major reasons why some

institutions decline to use cloud services are the cost of the service and security of their data. First,

if there is a high demand to continuous service of computational power in an institution, it is

usually cheaper in a long term to acquire inhouse HPC. Secondly, although cloud service providers

ensure to keep users’ data safe, some research institutions do not prefer to use these services due

to the potential issues described in (Kandukuri, V., & Rakshit, 2009).

2.1.6. Reusability

There are two contexts to evaluate the reusability of a pipeline: reusability of a pipeline by end-

users and reusability of the pipeline by other developers.

Reusability of a pipeline by end-users - Although there are already multiple options for biologists

to gain enough informatics knowledge to use bioinformatics software and interpret its results,

bioinformatic pipelines should be designed such that minimum configuration change would be

enough to run it successfully. In this context, reusability means how easy it is for users to install

and execute the pipeline on their own data. The bioinformatics pipeline is considered to be reusable

if the the user without prior knowledge of the field can use the pipeline with minimal effort.

Additionally, it is acceptable to allow the users to change parameters of the pipeline in order to

make it better fit to their data and execution environment. Therefore, giving some options to

change the parameters is considered as flexibility of the pipeline, which in return increases the

reusability of it. Currently, there is no consensus test to measure the reusability of a bioinformatics

11

 http://www.cancergenomicscloud.org/
12

 https://aws.amazon.com/pricing/

https://paperpile.com/c/wYdAjq/aa9rS
https://paperpile.com/c/wYdAjq/w81ym
http://www.cancergenomicscloud.org/
https://aws.amazon.com/pricing/

22

pipeline, that is why feedback provided by users and popularity in the community are considered

to be the main measures.

Reusability of the pipeline by other developers (a.k.a. extensibility) - Researchers could want

to use an existing pipeline as a basis for the development of new pipelines. In this context,

reusability means how easy it is for developers to extend a pipeline or use the source code of a

pipeline for development of a new one. The adoption of a “pipeline step modularisation” approach

by most institutions made it common to reuse these steps in other studies (Leipzig, 2018).

Open Source Software (OSS) movement is one of the major powers of software engineering

nowadays (Carillo & Okoli, 2008). The main beneficial properties of OSS are transparency, easy

collaboration and an immense knowledge pool (Dabbish, Stuart, Tsay, & Herbsleb, 2012). The

bioinformatics field also used the benefits of the shared development platform. Various institutions

have proclaimed developing reusable, robust and open source bioinformatics pipelines as one of

their objectives (e.g. (Ewels et al., 2019)). Another benefit of OSS is the community support which

is usually provided by code repository issues, chat channels like Gitter13, free agile development

tools like Slack and Trello and mail groups. With the help of these communication channels, users

and developers get quick help on how to use and develop the pipelines, and the main contributors

get rapid feedback which results in bug fixes and development of new features.

2.2. Comparison of Pipeline Frameworks and Design Decisions
Some well-known pipelines have been collected in the public repository (Di Tommaso, awesome-

pipeline). These pipelines have differences regarding design philosophies, technical issues,

difficulty of usage, environment dependency and some other factors. To get a broader view of

bioinformatics pipelines a review study by Jeremy Leipzig (2017) classifies existing pipelines

according to three criteria: syntax, paradigm and interaction.

2.2.1. Classification of Pipelines

Syntax - Explicit frameworks following the idea of tightly linking the tasks together in a certain

order and providing inputs to the very first task in order to be processed in a fixed-order chain of

tasks. Not relying on input names, output names and transformation rules between them makes

explicit frameworks simple and robust but limits the flexibility of the pipeline to process the newly

added files in addition to already processed ones. Galaxy (Goecks, Nekrutenko, Taylor, & Galaxy

Team, 2010), Taverna (Wolstencroft et al., 2013) and Ruffus (Goodstadt, 2010) are good examples

of explicit paradigm using pipelines. On the other hand, in the implicit syntax frameworks, it is

sufficient to specify inputs and expected outputs (target files), and intermediate steps are calculated

automatically by the framework. Hence, the order of tasks is managed implicitly by the framework

and not hard-coded by the user (Figure 2.2).

13

 https://gitter.im/

https://paperpile.com/c/wYdAjq/G2C59
https://paperpile.com/c/wYdAjq/MrK60
https://paperpile.com/c/wYdAjq/Eo1zu
https://paperpile.com/c/wYdAjq/9zWIj
https://paperpile.com/c/FNMMBS/ITDS
http://paperpile.com/b/FNMMBS/ITDS
http://paperpile.com/b/FNMMBS/ITDS
https://paperpile.com/c/FNMMBS/ITDS
https://paperpile.com/c/2UphZJ/XpbZ
https://paperpile.com/c/wYdAjq/jC2GV
https://paperpile.com/c/wYdAjq/jC2GV
https://paperpile.com/c/wYdAjq/3dN0I
https://paperpile.com/c/wYdAjq/40DVs
https://gitter.im/

23

Implicit frameworks are mainly descendants of Make which was designed in the '70s as one of the

early developed domain specific languages (DSL). Make offers a set of rules and a symbol-based

syntax which define how input files will be transformed into outputs, and output files will feed the

next step with inputs and so on. The implicit DSLs’ crucial feature is reentrancy, i.e. ability to

distinguish already processed files and not reprocess them. It checks the modification date of the

input file and compares it to the modification date of an existing output file. If the target file exists

and the input file is older than the target file, Make considers it as an already processed file.

Reentrancy is vital for a pipeline development process when potential errors are expected and

recovering from them takes less time thanks to this ability. Some implicit frameworks such as

Nextflow (Di Tommaso et al., 2017) and Snakemake (Köster & Rahmann, 2012) follow the Make

concept with the support of full-featured programming languages, respectively Groovy and

Python. Snakemake, as a faithful follower of Make, is file-centric, whereas Nextflow introduces

channels to pass intermediate forms of steps to each other which eliminates the need of tagging

intermediates with complex file suffix names (Leipzig, 2018). In Nextflow, input and outputs are

typed values which offer more flexibility concerning keeping intermediates in memory while

ensuring reentrancy with caching.

Design Paradigm - DSLs are known to be designed based on a conventional design paradigm,

when a directed acyclic graph (DAG) is dynamically generated according to the syntax rules of

the language, input files and target files. On the other hand, explicit frameworks create DAGs with

the help of APIs or visual user interfaces. Explicit frameworks’ DAG structure is static, where an

ordered chain of tasks is described in a fixed XML or JSON format, and changing the provided

Figure 2.2. a) Symbolic representation of explicit pipeline frameworks. The tasks are tightly coupled in

a specific order. Input file is processed step by step in a chain of ordered tasks to produce an output file.

b) Symbolic representation of implicit pipeline frameworks. There is no fixed order of tasks. Instead,

framework calculates intermediate steps according to provided target file and input file.

https://paperpile.com/c/wYdAjq/8MFpf
https://paperpile.com/c/wYdAjq/npCcT
https://paperpile.com/c/wYdAjq/G2C59

24

input does not change the structure of generated DAG. Hence, explicit frameworks are considered

to be members of configuration-based paradigm. Another design paradigm called class-based

paradigm covers design principles of frameworks that are bounded to an existing code library

instead of independent executables. More detailed analysis of design paradigms is provided in

(Leipzig, 2017).

Interaction - In contrast to command-line based pipeline frameworks, workbenches provide users

with a graphical user interface. In this interface, the user can add nodes (pipeline tasks -

preconfigured modular tools) and connect them (representing the data flow - the outputs of the

previous step become the input of the next) to develop a pipeline. These kinds of frameworks are

very suitable for scientists who have an understanding of the expected input and output files but

have a little or no coding experience. One drawback is that existing modular steps have to be

sufficient for the analysis. Open source workbenches can be installed both locally and in the cloud.

These workbenches convert a graphically designed pipeline to a configuration-based pipeline in

the background. With their large number of options, Galaxy (Goecks et al., 2010) and Taverna

(Wolstencroft et al., 2013) are the most popular ones. Galaxy offers a web-based interface for

command-line tools. Galaxy’s interface is easy to use, but it needs some coding skills to add new

modules. Taverna, on the other hand, allows pipelines to reach tools distributed across the Internet

and needs more development skills to develop new plug-ins (modules). There are some

commercial cloud-based Software as a Service (SaaS) workbenches such as Illumina’s

Table 2.1. The classification of modern pipeline frameworks. Table

is obtained from (Leipzig, 2017) and used without modifications

https://paperpile.com/c/wYdAjq/UMcWt
https://paperpile.com/c/wYdAjq/jC2GV
https://paperpile.com/c/wYdAjq/3dN0I
https://paperpile.com/c/wYdAjq/UMcWt

25

BaseSpace14, SevenBridges15 and DNANexus16. Cloud-based services like these make the pipeline

reusability, sharing and collaborations easier. To sum up the findings, the tabular representation of

the modern pipeline frameworks’ classification made by Jeremy Leipzig (Leipzig, 2017) is shown

in Table 2.1.

2.3. Pipeline Requirements of the Project
Having a variety of pipeline development frameworks providing number of different features

makes it difficult to choose the best among them. One pipeline framework can be highly scalable

but lack flexibility to modify the pipeline by the users. Therefore, a pipeline framework should be

chosen according to the specific needs of the project. Our project requires that the pipeline to be

developed should have the following features:

1. Pipeline should be portable between a wide range of different compute environments. It

can be developed and prototyped in the HPC at University of Tartu, but it should be able

to run in other environments such as EBI Embassy Cloud17, Google Cloud18 and HPC

environments of our partners with minimal effort. Next release of GTEx (GTEx

Consortium, 2013) will be distributed using Google Cloud and is expected to contain 160

terabytes of data. Portability of pipeline should enable the analysis of this data without

downloading it locally, which can take several weeks and requires lots of local space.

2. Pipeline should be able to handle large volumes of data. The volume of genomic datasets

is continuously increasing and performance of the pipeline should scale accordingly.

3. Pipeline should support reentrancy. Processing time of datasets is usually correlated with

their size. Thus, processing large datasets can take considerable amount of time. If the

execution of a pipeline is stopped for any reason, rerunning the pipeline should not

reprocess already processed entities, but should resume from the point it stopped at.

4. Pipeline should be robust to disruptions in computation. Even in very sophisticated systems

disruptions of computation can occur. Pipeline should able to handle the exceptions and

resubmit the interrupted tasks. For instance, usually each individual process of a pipeline

has specific resource requirements, such as number of processors and memory. Sometimes

specified resources can become insufficient due to abnormal size of an intermediate file,

and consequently the task can stop running. Pipeline should understand the nature of the

error message and increase the specified resource requirement for that specific task

instance.

5. Pipeline should be reproducible. Running the pipeline in two different execution

environments (at different times) with the same input and parameters should result in the

exact same results.

14

 https://basespace.illumina.com/
15

 https://www.sevenbridges.com/
16

 https://www.dnanexus.com/
17

 https://www.embassycloud.org/
18

 https://cloud.google.com/

https://paperpile.com/c/wYdAjq/UMcWt
https://paperpile.com/c/wYdAjq/mKQxP
https://paperpile.com/c/wYdAjq/mKQxP
https://basespace.illumina.com/
https://www.sevenbridges.com/
https://www.dnanexus.com/
https://www.embassycloud.org/
https://cloud.google.com/

26

6. Pipeline should be inspectable. All the steps of the developed pipeline should be open-

source, human-readable and understandable.

7. Execution of pipeline should be traceable. Usually the final target files are the main point

of interest in pipeline execution. However, in order to produce target files, vast amount of

intermediate files are generated, and sometimes intermediate files play an important role

in understanding unexpected content of target files. Furthermore, intermediate files can be

used as inputs of third party tools in order to empower the data analysis with additional

information. Thus, the pipeline should gracefully handle large numbers of intermediate

files and automatically delete them when specified to do so.

8. It should be easy to install and run the pipeline. For instance, support of software containers

and Conda environments should be provided to minimize the effort to set up the execution

environment.

9. Pipeline should follow the best practices of the pipeline development process. Maintenance

is crucial for longevity of the pipeline. To minimize the effort spent on maintenance, best

practices should be applied. Best practices are evolved according to needs of the user and

developer communities. Used framework should have a community who has already

developed such pipelines and has experience with best practices to be followed.

10. Pipeline should be reusable and extensible. Modern pipelines should adapt to the new needs

of the the user community. Hence, the pipeline should be open and eligible to modifications

and extensions by developers in order to change used tools or to add new features.

11. Pipeline should support continuous integration. Although usually there is a main developer

and maintainer of the pipeline, open-source projects are often also changed by other

developers. To ensure the functionality and the quality of the project, automatic tests are

performed after each modification and the changes are added to the repository only after

all tests have passed.

2.3.1. Comparison of Most Popular Frameworks

Fortunately, the evolution of pipeline design already serves us good frameworks to develop

pipelines which provide all of the listed properties. Nonetheless, we have different options

concerning which framework to use for pipeline development, each pipeline framework has its

own benefits and drawbacks, and there is no formula to prefer one over the another. A suitable

framework can be chosen according to the specific goals of the project. The most popular

frameworks to construct bioinformatics pipelines are Nextflow, Snakemake and Galaxy. Table 2.2

shows the overall comparative properties of these frameworks. As it can be seen from the table,

there are no significant differences between the frameworks. All three of them support the main

features of modern pipelines (e.g. dependency isolation, reentrancy, scalability, reproducibility),

and that is the reason why they are most popular among others. However, Galaxy is different from

the other two, being designed for users with little or no coding skills. Being less extensible, lacking

flexibility of changing hard-coded tool requirements (e.g. needed computational resources) and

exception handling makes this configuration based framework a weaker candidate for this project.

27

Nextflow and Snakemake are similar frameworks because of their design paradigm. However

Nextflow, in comparison to Snakemake supports exception handling and has a better community

providing best practices to easily develop a pipeline from scratch (Ewels et al., 2019).

Additionally, Nextflow provides a better reentrancy feature based on caching, making debugging

issues easier and intermediate files inspectable. Snakemake, on the other hand, makes it easier to

iteratively develop and document data analysis projects, because all of the intermediate files are

stored in an explicit folder structure.

Table 2.2. Comparison of three most famous pipeline frameworks. The evaluation of properties with count of

stars (*) is highly subjective and current values originate from the performed literature review and personal

experience of the author.

 Nextflow Snakemake Galaxy

Syntax Implicit Implicit Explicit

Paradigm Conventional Conventional Configuration

Interaction Command-line Command-line GUI Workbench

Dependency isolation Conda, Docker and

Singularity

Conda and Singularity Conda, Docker and

Singularity

Dynamic Exception

Handling

Supported Not supported Not supported

Reentrancy Supported by using

caching

Supported by tracking

file names and

modification times

Support as a built-in

feature with less

flexible options

Scalability *** *** ***

Reproducibility *** *** ***

Extensibility and

Ease of development

*** *** *

Inspectability *** *** **

Community,

availability of best

practices, CI and

documentation

*** * **

Flexibility *** *** *

https://paperpile.com/c/wYdAjq/9zWIj

28

2.3.2. Pipeline Design Decisions

Taking into consideration the existing needs of the project, we decided to use the implicit DSL,

command-line based script wrapper Nextflow (Di Tommaso et al., 2017) for the following reasons:

● It is straightforward to install and run.

● It offers an excellent framework to develop executor and environment agnostic pipelines.

Nextflow follows “develop once and run everywhere” approach which is extremely

suitable for our needs since our pipeline should be able to run with many executor engines

including cloud clusters.

● It provides good integration with containers like Docker and Singularity, and popular

package manager Conda (Grüning et al., 2018).

● It has a very helpful community and easy-to-communicate channels to get help rapidly.

● There are open-source projects like nf-core19, which provide ready-to-use pipelines that we

can adopt and make modifications according to our needs. Nf-core provides also a

collection of best practices and reasonable defaults for pipeline developers.

● It has good error handling features which make pipelines robust. In bioinformatics

pipelines each step has minimum resource requirement. In case the process (step) raises an

error due to resource insufficiency, nextflow provides an option to automatically resubmit

the task with increased resource requirements.

● It provides reentrancy feature using the caching, which enables to track intermediate files

of a particular process. This feature is extremely useful in development stage when a lot of

debugging actions are required.

● It provides a good feature for pipeline versioning which increases reproducibility.

● Continuous integration and continuous testing tools such as Travis CI20 can be easily

implemented with Nextflow pipelines.

● Steps (tasks) accept scripts of any scripting language as long as the needed language is

installed (or provided within a container) and ready-to-use in the pipeline running

environment.

● Distinction between intermediate files and final outputs is clear. Final outputs can easily

be stored in a permanent location without explicitly removing intermediate results. This is

especially important for quantification pipeline that can produce terabytes of intermediate

results whereas final outputs are very small.

3. Quantification Pipeline
The long term goal of the eQTL Catalogue project is to contain not only eQTLs (gene expression

QTLs) but also transcript usage (tuQTL), alternative splicing QTLs (sQTL) and exon expression

19

 https://nf-co.re/
20

 https://travis-ci.org/

https://paperpile.com/c/wYdAjq/8MFpf
https://paperpile.com/c/wYdAjq/EYb9Y
https://nf-co.re/
https://travis-ci.org/

29

(eeQTL). To be able to detect these QTLs, we first need to quantify gene expression, transcript

usage, alternative splicing usage and exon expression from RNA-seq data (Figure 3.1).

3.1. Quantification Methods
Several tools have been developed for quantification of these phenotypes (Figure 3.1) (Anders,

Reyes, & Huber, 2012; Dobin et al., 2013; Kim, Langmead, & Salzberg, 2015; Liao, Smyth, &

Shi, 2014). Every one of these tools serves to solve a particular problem to reach the common goal:

to produce a phenotype matrix of a quantitative trait (Table 3.1). Additionally, there are already

well established pipelines which use a subset of these tools and produce count matrix of one

phenotype21,22. However, currently there is no public, uniform pipeline which takes the RNA-seq

raw data and quantifies multiple quantitative traits such as transcript usage, exon expression and

alternative splicing usage in addition to gene expression. We adopted the nf-core rna-seq pipeline23

for gene expression, and added the following new quantification methods:

21

 https://usegalaxy.org/u/chmy/w/rna-seq-differential-analysis
22

 https://github.com/Novartis/EQP-cluster
23

 https://github.com/nf-core/rnaseq

Figure 3.1. Description of counting reads as gene expression, transcript usage, exon expression and splice-junction

usage. A gene described in example has 2 transcripts, 3 exons and 3 different splice junctions. a) All reads mapping

to the gene are summed together to estimate gene expression. b) Reads are assigned to the transcripts that they are

most likely to originate from. c) Expression level of each exon is quantified separately. d) Reads mapping to splice-

junctions are used to distinguish between two alternatively spliced transcripts.

https://paperpile.com/c/wYdAjq/SBsrZ+cSpEP+0yEQh+Rm7d5
https://paperpile.com/c/wYdAjq/SBsrZ+cSpEP+0yEQh+Rm7d5
https://paperpile.com/c/wYdAjq/SBsrZ+cSpEP+0yEQh+Rm7d5
https://usegalaxy.org/u/chmy/w/rna-seq-differential-analysis
https://github.com/Novartis/EQP-cluster
https://github.com/nf-core/rnaseq

30

● Transcript usage

● Exon expression

● Alternative splicing usage

To quantify gene expression, exon expression and alternative splicing usage, RNA-seq reads

should be aligned to the reference genome to determine the location from which they are

originated. STAR (Dobin et al., 2013) and HISAT (Kim et al., 2015) are well-known RNA-seq

aligners, using different algorithms to achieve the goal. STAR uses suffix arrays to provide fast

aligning, however requires a large amount of random access memory (~27 GB of RAM) to

function. HISAT, on the other hand, uses an indexing approach based on the Burrows-Wheeler

transform (M. Burrows, 1994) and the Ferragina-Manzini (Ferragina & Manzini, 2000) index, and

requires less memory, making it possible to align reads even in personal computers (Kim et al.,

2015). Aligner tools take the raw RNA-seq data (FASTA/FASTQ format (Cock, Fields, Goto,

Heuer, & Rice, 2010)) and the reference genome file (FASTA format) as inputs and output aligned

sequence files (SAM/BAM format (H. Li et al., 2009)) and some additional files with metadata.

To quantify transcript usage, we used Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017)

which does not align reads to the reference genome, but uses the reference transcriptome instead

(nucleotide sequences of all transcripts on the reference chromosomes, FASTA format).

3.1.1. Gene Expression Quantification

Gene expression is the most commonly used quantification method in RNA-seq analysis. It

corresponds to the total number of RNA-seq reads mapping to the gene (Figure 3.1a). We use the

rnaseq pipeline24 developed by the nf-core (Ewels et al., 2019) community. This pipeline provides

two alignment options: HISAT and STAR, preprocessing and quality assurance tools like fastqc25,

cutadapt (Martin, 2011), trim_galore, (Krueger, 2015), preseq26, RSeQC (L. Wang, Wang, & Li,

24

 https://github.com/nf-core/rnaseq
25

 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
26

 http://smithlabresearch.org/software/preseq/

Table 3.1. Example of quantified phenotype matrix of gene expression. First two columns contain

phenotype information (ID and length of the phenotype). Starting from third column, each column name

represents the sample ID and column values represent expression level of the corresponding phenotype.

gene_id length UCF018 UCB018 UCT018 UCB019 UCT019 UCB024

ENSG00000223972 1735 0 0 0 0 0 0

ENSG00000227232 1351 3 8 14 8 10 22

ENSG00000233750 3812 0 1 0 0 2 1

ENSG00000268903 755 1 7 9 11 0 25

ENSG00000279457 1397 11 31 16 29 29 28

https://paperpile.com/c/wYdAjq/cSpEP
https://paperpile.com/c/wYdAjq/SBsrZ
https://paperpile.com/c/wYdAjq/hLA2C
https://paperpile.com/c/wYdAjq/2Xf0y
https://paperpile.com/c/wYdAjq/SBsrZ
https://paperpile.com/c/wYdAjq/SBsrZ
https://paperpile.com/c/wYdAjq/dO6GT
https://paperpile.com/c/wYdAjq/dO6GT
https://paperpile.com/c/wYdAjq/UdSh9
https://paperpile.com/c/wYdAjq/7qpUK
https://paperpile.com/c/wYdAjq/9zWIj
https://paperpile.com/c/wYdAjq/APdAb
https://paperpile.com/c/wYdAjq/qBdBk
https://paperpile.com/c/wYdAjq/65SF4
https://github.com/nf-core/rnaseq
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://smithlabresearch.org/software/preseq/

31

2012), picard tools27, dupRadar (Sayols, Scherzinger, & Klein, 2016) and multiQC (Ewels,

Magnusson, Lundin, & Käller, 2016). To summarise aligned reads, the pipeline uses the

featureCounts tool: an efficient program for assigning sequence reads to genomic features. (Liao

et al., 2014).

3.1.2. Transcript Usage Quantification

To estimate the relative expressions of alternative transcripts (Figure 3.1b) we used Salmon (Patro

et al., 2017). Quantifying with Salmon consists of three steps: building a salmon index,

quantification of transcripts and merging the outputs. To build a salmon index, the only needed

input is the reference transcriptome (FASTA file). For quantification, Salmon takes the built index

and one raw RNA-seq (FASTQ) file as inputs and estimates the expression of each transcript.

Salmon is able to quantify individual reads in the FASTQ file in parallel using multiple threads.

Salmon quantification output contains transcript id, length, effective length, counts per kilobase

million (TPM normalised count) and number of reads assigned to the transcript. At the end, when

the transcript expressions of all RNA-seq samples are quantified, independent output files are

merged into a single phenotype matrix file (Figure 3.2).

3.1.3. Exon Expression Quantification

To quantify exon expression levels in RNA-seq data (Figure 3.1c) we used the DEXseq (Anders

et al., 2012) package from Bioconductor. DEXseq takes an aligned reads (SAM) file and counts

the number of reads mapped to a specific exon of the gene. Technically, DEXseq consists of a pair

of python scripts: one to prepare DEXseq annotation file and another for counting reads mapped

to exons. To build an annotation file, DEXseq needs Gene Transfer Format (GTF) file. It processes

the exons in GTF file and creates a customized exon annotation file (General Feature Format -

GFF) where exons do not overlap each other. The second script takes the built annotation file

(GFF) and aligned RNA-seq reads (BAM), and counts the reads overlapping with new custom

exons in the annotation file. Each aligned file is quantified individually, therefore the counting

step produces output for each sample. When exon usage counts are quantified for all samples,

output files are merged into a count matrix file (Figure 3.3).

27

 http://broadinstitute.github.io/picard/

Figure 3.2. High-level representation of transcript usage quantification with Salmon.

https://paperpile.com/c/wYdAjq/65SF4
https://paperpile.com/c/wYdAjq/h6aHN
https://paperpile.com/c/wYdAjq/h3Kw0
https://paperpile.com/c/wYdAjq/h3Kw0
https://paperpile.com/c/wYdAjq/Rm7d5
https://paperpile.com/c/wYdAjq/Rm7d5
https://paperpile.com/c/wYdAjq/7qpUK
https://paperpile.com/c/wYdAjq/7qpUK
https://paperpile.com/c/wYdAjq/0yEQh
https://paperpile.com/c/wYdAjq/0yEQh
http://broadinstitute.github.io/picard/

32

3.1.4. Alternative Splicing Usage Quantification

Although multiple tools exist to quantify alternative splicing events (Goldstein et al., 2016; Griffith

et al., 2010; Trapnell et al., 2012), we prefered to use LeafCutter (Y. I. Li et al., 2018) which

directly measures splice-junction usage and does not rely on known transcript annotations. Splice-

junction usage is a way to quantify alternative splicing from the RNA-seq data by looking at RNA-

seq reads where one half of the read maps to one exon and the other half to another exon, revealing

the intron that has been spliced out (Figure 3.1d). LeafCutter takes the aligned reads as input

(BAM) and detects the differences in intron excisions for each input file and clusters them

according to their junctions (Figure 3.4). This cluster of the different intron excisions is the final

output (a.k.a. phenotype count matrix) of the LeafCutter tool.

3.2. Pipeline overview

The implemented RNA-seq quantification pipeline quantifies all the listed phenotypes in a parallel

manner to achieve high efficacy in terms of cost and time. Raw RNA-seq sample reads go through

Quality Control steps and are pre-processed to become ready for further processing. Pre-processed

sample reads can go directly to transcript expression quantification, however, they should be

aligned to the reference genome for gene expression, exon expression and alternative splicing

usage quantifications. In the quantification step, prerequisite resources of each tool (featureCounts,

DEXseq, Salmon and LeafCutter) are already prepared and are ready to be used (not shown in

Figure 3.5). Each aligned sample is quantified individually and a count matrix is generated for

each sample. When the outputs of all samples for one quantification type have been generated,

they are merged together to form a merged phenotype count matrix (Figure 3.5).

Figure 3.3. High-level representation of exon expression quantification with DEXseq.

Figure 3.4. High-level representation of splice-junction usage quantification with LeafCutter.

https://paperpile.com/c/wYdAjq/Bw68J+S01p6+QSnDd
https://paperpile.com/c/wYdAjq/Bw68J+S01p6+QSnDd
https://paperpile.com/c/wYdAjq/Za75u

33

In addition to features that are provided by Nextflow as a framework, adapting the nf-core pipeline

according to our needs has a number of benefits. First, since nf-core pipelines are actively

maintained by the community, the tools used in the pipelines are up to date. Secondly, they

provided well documented guidelines including best practices including a tool28 to simplify the

28

 https://github.com/nf-core/tools

Figure 3.5. High-level representation of quantification pipeline including four different

phenotype quantification method descriptions.

https://github.com/nf-core/tools

34

pipeline development process and a base container image to ease building software containers

(Docker and Singularity) using a Conda environment recipe. Integrating the Travis CI29 tool

enabled to easily support the continuous integration of pipeline changes. Finally, the nf-core rnaseq

pipeline30 is one of the first developed pipelines by nf-core community, hence it continuously

evolved applying the best known practices. It is currently used by many sequencing facilities such

as SciLifeLab31 and Wellcome Sanger Institute32, which gives additional confidence to adopt this

pipeline as a base for our pipeline.

We did not modify the existing gene expression quantification steps, but added three more

quantification methods into the pipeline. We followed the best practices and added the necessary

documentation about usage of the pipeline. The pipeline is freely available for download from

GitHub33.

4. Quality Control and Normalisation

Assessing data quality is essential in studies that contain hundreds of independent samples,

because low quality samples can manifest as extreme outliers in the dataset. Outlier samples can

in turn significantly reduce the power of detecting QTLs (Ellis et al., 2013) or skew the overall

result of the analysis. Furthermore, sometimes two or more samples contaminate each other due

to minor human errors in the laboratory, so that genetic material from the sample of one individual

is present in a sample of another individual. This error is called sample cross-contamination and

can also reduce power to detect QTLs. Therefore, in addition to pre-quantification quality control

(QC) steps, we applied post-quantification QC measures such as Principal Component Analysis

(Wold, Esbensen, & Geladi, 1987) and Multidimensional Scaling (Cox & Cox, 2000; Kruskal,

1964) to detect outliers, and sex-specific gene expression analysis (’t Hoen et al., 2013) and

sequence-genotype matching analysis (Fort et al., 2017) to detect contaminated and swapped

samples. To apply these QC measures, estimated feature counts should be normalised according

to the quantification method. For instance, we used Transcript Per Million (TPM) (Wagner, Kin,

& Lynch, 2012) method to normalise gene expression and transcript expression counts, and filtered

out lowly expressed phenotypes (median(TPM) < 1), because lowly expressed phenotypes usually

do not contribute much to the meaningful signal, but considerably increase the level of noise.

Although the script that produces these QC figures and tables is automated, we have decided to

keep the process of identifying low quality samples and resolving conflicts between sample

identities between RNA-seq and genotype data manual, because extracting thresholds for these

decisions are often dataset specific and require human judgement.

29

 https://travis-ci.org/
30

 https://github.com/nf-core/rnaseq
31

 https://www.scilifelab.se/
32

 https://www.sanger.ac.uk/
33

 https://github.com/kerimoff/rnaseq

https://paperpile.com/c/wYdAjq/Kvk3k
https://paperpile.com/c/wYdAjq/0J4Pb
https://paperpile.com/c/wYdAjq/aj8lt+Ol3Fp
https://paperpile.com/c/wYdAjq/aj8lt+Ol3Fp
https://paperpile.com/c/wYdAjq/rbq5N
https://paperpile.com/c/wYdAjq/fXfYL
https://paperpile.com/c/wYdAjq/hvblr
https://paperpile.com/c/wYdAjq/hvblr
https://travis-ci.org/
https://github.com/nf-core/rnaseq
https://www.scilifelab.se/
https://www.sanger.ac.uk/
https://github.com/kerimoff/rnaseq

35

4.1. Principal Component Analysis (PCA)
PCA is a linear dimensionality reduction method which aims to collect most of the variance in a

multidimensional dataset inside the principal components. As a result, it becomes possible to plot

most of the variation and see if there are any samples in the dataset that look like obvious outliers.

PCA is one of the most commonly used procedures to summarise a multivariate dataset and detect

outliers in sample population.

The BLUEPRINT dataset consists of 608 samples from three distinct cell types (monocytes, T-

cells and neutrophils) that form three distinct clusters in the PCA analysis (Figure 4.1). This dataset

has no sign of any outlier sample which means PCA analysis did not find any poor quality samples

to be eliminated from the dataset. Some studies contain several cell types or conditions, whereas

others focus on only one cell type and have only one (naive) condition (Appendix 1). One such

dataset is the collection of human induced pluripotent stem cells (iPSCs) generated by the HipSci

project (Kilpinen et al., 2017). A PCA plot of the latter type of datasets usually look like Figure

4.2: one big cluster of samples without clear boundaries. The two outliers marked with a circle in

plot are different than other samples. Principal component 1 values of these outliers differ from

the cluster of other samples. This fact necessitates to look for the reason of this variance, which

results in the decision of if the sample will be excluded from further processing with the QTL

mapping pipeline or not. Usually, in outlier analysis, the reason of the variance is not evident (e.g.

low sample quality, library preparation errors, sequencing errors, etc), and it is impossible to

enhance the quality of the outlier samples (correct the unknown variance). Similarly, we could not

find the reason of the variance of these two outliers and decided to exclude them from the dataset.

Figure 4.1. PCA plot example from BLUEPRINT dataset (no outliers).

https://paperpile.com/c/wYdAjq/ve79m

36

PCA of the TwinsUK dataset (Buil et al., 2015) reveals four obvious clusters which represent the

four cell types and tissues that were profiled (blood, fat, skin and lymphoblastoid cell lines (LCLs))

(Figure 4.3). Samples marked with a highlighted circles appear to be outliers with no obvious

reason, and we decided to remove them from the dataset.

PCA is a well-recognised and easy to perform method to find outliers in the data. However, when

the data is about biological signals, usually PCA explains only a fraction of information in two

principal components. For instance, in Figure 4.2 only 28.5% of all variance is explained in the

first two principal components. Although in this case it is sufficient to recognise outliers,

sometimes it is beneficial to explore also more (e.g. third and fourth) principal components.

Figure 4.2. PCA plot example from HipSci dataset. Samples SAMEA2397802 and SAMEA2398792 are outliers.

Figure 4.3. PCA plot example from TwinsUK dataset. Samples TWPID8405_S,

TWPID12889_S, TWPID2140_F, TWPID11605_B and TWPID10593_B are outliers.

https://paperpile.com/c/wYdAjq/ah6GY

37

4.2. Multidimensional Scaling (MDS)

MDS is an exploratory technique used to identify unrecognized dimensions of the dataset

(Mugavin, 2008). MDS reduces a multidimensional dataset to relatively simple, easy-to-visualize

structures, which helps us to identify outliers after plotting and analysing it. In contrast to PCA,

MDS can perform a non-linear dimensionality reduction using distances between each pair of

samples. It can also force all of the data into a small number of dimensions (e.g. two dimensions)

that simplifies visualisation. In contrast, since principal components are by definition orthogonal

to each other, complex datasets are often not adequately summarised by the first two principal

components. After reducing the phenotype count matrix into two dimensions using MDS, we

explored outliers. TPM (Wagner et al., 2012) values were used in log2-transformed (log2(0.1 +

TPM)) scale, after filtering out lowly expressed phenotypes (median(TPM) < 1). Pearson

correlation was used as the correlation measure and distances between samples were defined as

distance = 1 - correlation. We used isoMDS function from MASS R package (Cox & Cox, 2000;

Ripley, 2007; Vernables & Ripley, 2002) with two desired dimensions (k=2) to summarise the

data into. This technique was first used by Genotype-Tissue Expression (GTEx) Consortium to

visualise gene expression variability among several tissues across individuals (Melé et al., 2015).

In Figure 4.4 MDS plot of the BLUEPRINT (L. Chen et al., 2016) dataset is shown. Dataset

contains three cell types and all three of them are clustered distinctly. There are no outliers to be

analyzed further, and we consider data resulting in this kind of plot as high quality. However, in

Figure 4.5 it can be clearly seen that samples marked with circles are located very far away form

their respective clusters. These samples are considered as outliers and removed from dataset.

Figure 4.4. MDS plot example from BLUEPRINT dataset (no outliers)

https://paperpile.com/c/wYdAjq/50JRJ
https://paperpile.com/c/wYdAjq/hvblr
https://paperpile.com/c/wYdAjq/Ol3Fp+nkk4J+aaY6c
https://paperpile.com/c/wYdAjq/Ol3Fp+nkk4J+aaY6c
https://paperpile.com/c/wYdAjq/4ik31
https://paperpile.com/c/wYdAjq/Gdism

38

As expected, the same samples appear to be outliers (TWPID2140_F, TWPID10593_B,

TWPID11605_B, TWPID12889_S and TWPID8405_S) in both MDS (Figure 4.5) and PCA

(Figure 4.3) analysis of TwinsUK dataset. This scenario gives additional confidence to eliminate

these outlier samples from the dataset.

To get a wider overview about variance between datasets we merged the several datasets and

plotted the MDS output after decreasing the number of dimensions to two. These kinds of plots

help us to understand the main contributing factors of the variance into the datasets. In order to

Figure 4.5. MDS plot example from TwinsUK dataset. Samples TWPID2140_F,

TWPID10593_B, TWPID11605_B, TWPID12889_S and TWPID8405_S are outliers.

Figure 4.6. MDS plot of the 5278 distinct samples from seven datasets. Contains. Cell type

and tissue specific clusters are clearly explaining most of the variance between samples.

Clusters of Monocytes and T-cells are divided into two subclusters, showing additional

variance depending on differences between studies’ datasets.

39

make the plot interpretable we only use samples with the “naive” condition (without any stimuli)

and do not use datasets with very large number of biological contexts (e.g. GTEx). This filtering

operation enables to decrease the noise and see the samples clustered according to some biological

property. For instance, Figure 4.6 is a visualisation of MDS analysis of 5278 samples from 7

datasets. 12 tissues and cell types are clustered distinctly, explaining the source of the main

variance between samples. However, monocytes and T-cells show extra variance in comparison

to other cell type specific clusters. Each of these clusters are divided into two distinct subclusters,

explaining variance derived from differences between datasets.

4.3. Sex-specific Gene Expression Analysis

In addition to outlier samples, other common data quality issues are sample swaps (samples

between two study participants have accidentally been swapped and mislabeled) and cross-

contamination between samples (RNA sample from individual A has been contaminated with

RNA from individual B). It is not possible to spot the sample swaps or cross contamination of

samples with PCA and MDS analyses, if affected samples are the same kind (same condition and

cell type). One strategy to detect this type of data quality issues is to focus on genes that are

exclusively expressed by one sex. ‘t Hoen et al. (’t Hoen et al., 2013) proposed to plot the

expression of genes from the Y chromosome against the expression of the XIST gene which is

only expressed in females.

We generate a scatter plot with the XIST gene (ENSG00000229807 - found only in females)

expression in horizontal axis and the Y chromosome gene expression (found only in males) in

vertical axis, and set the color of each sample according to its donor’s sex. Plot from the

GEUVADIS study (Lappalainen et al., 2013) is a good example of non-contaminated, correctly

labeled lymphoblastoid samples (Figure 4.7). In this case, all of the male samples express genes

from the Y chromosome and no XIST gene, whereas female samples express XIST gene but not

the genes from the Y chromosome. The perfect separation between male and female samples also

demonstrate how this analysis can be used to impute sex for RNA-seq samples if this data is not

present in the original dataset. When there is cross-contamination between samples, the sex-

specific gene expression plot looks like the one from the BLUEPRINT (L. Chen et al., 2016) study

(Figure 4.7). The blue dots (male samples) marked with circles expressed XIST gene which should

only be expressed in females. Conversely, red dots (female samples) marked with circles also

expressed genes from the Y chromosome which should only be present in males. This suggests

that the two female samples (S003Q3B1_mRNA and S003Q3B1_RNA) have been cross-

contaminated by RNA from one or more male samples and the male samples (S003P5B1_mRNA

and S003P5B1_RNA) have been cross-contaminated by RNA from one or more female samples

(expressing the XIST gene). This could be caused by pipetting error while the samples were being

processed in the lab. Consequently, these samples should be excluded from further analysis.

https://paperpile.com/c/wYdAjq/rbq5N
https://paperpile.com/c/wYdAjq/iJWLc
https://paperpile.com/c/wYdAjq/Gdism

40

Sex-specific gene expression analysis is only effective if the metadata of dataset has sex

information and the sample swap or contamination happened between samples belonging to donors

with different sexes (e.g. male and female).

4.4. Sequence-genotype Matching (MBV analysis)

Another possibility to detect sample swaps is to directly compare the sample genotypes in VCF

format to the genotype information that is present in the RNA-seq reads. MBV (Match BAM to

VCF) is a method to detect mislabeling and technical bias in datasets that contain both genotype

and sequencing (e.g. RNA-seq) data (Fort et al., 2017). This tool takes an aligned RNA-seq file

(sample being tested) and a VCF file (Danecek et al., 2011) containing genotypic information of

multiple samples as input and filters out undercovered variants according to provided parameter

value. The variants with enough coverage are divided into two groups as homozygous and

heterozygous sites. Finally, the proportion of consistent reads between the tested sample and each

genotype sample in VCF file are measured for each group as shown in Formula 4.1.

The MBV tool creates one output file per each sample in the dataset. All plots shown in Figure 4.8

are generated from the MBV analysis output of Schwartzentruber et al. (Schwartzentruber et al.,

2018) dataset. Each dot on the plot represents one genotype sample in the VCF file and each plot

Figure 4.7. Sex-specific gene expression plots of GEUVADIS (on the left cide, not contaminated) and

BLUEPRINT (on the right side, contaminated) datasets

https://paperpile.com/c/wYdAjq/fXfYL
https://paperpile.com/c/wYdAjq/6wjqN
https://paperpile.com/c/wYdAjq/LFUB9
https://paperpile.com/c/wYdAjq/LFUB9

41

generated according to analysis of one RNA-seq file (sample being tested). Colors of dots indicate

if the genotype sample is a match to a tested sample. Hence, a green dot on each plot representing

the best match genotype sample, and other genotype samples are red. X axis represents consistency

of the heterozygous sites calculated with Formula 4.1-5. Y axis represents consistency of

homozygous sites calculated with Formula 4.1-4. For example, the plot in Figure 4.8a is a good

example of a non-contaminated, correctly labeled sample. The RNA-seq sample SAMEA3234534

is tested (consistency of both homozygous and heterozygous sites are calculated, Formula 4.1)

against all of the genotype samples in the VCF file and only one genotype sample (HPSI0513i-

oarz_22) is found to have highly consistent matching sites to the tested sample. In this example,

more than 97% of homozygous sites in the tested sample (SAMEA3234534) are also homozygous

in HPSI0513i-oarz_22 genotype sample. Heterozygous sites also show same level of consistency

(>97%) between tested sample (SAMEA3234534) and matched genotype sample (HPSI0513i-

oarz_22). Yet, consistency between the tested sample and other genotype samples in the VCF file

are relatively low (consistency of heterozygous sites < 50%, consistency of homozygous sites <

80%). Therefore, it can be concluded that the tested sample has only one genotype match in the

VCF file and the sample is not cross-contaminated with genetic material of other samples.

There are at least three possible conflicts between RNA-seq data and genotype data. Firstly, the

genotypic data corresponding to the tested sample might not be present in the VCF file (Figure

4.8b). This technical issue sometimes happens when genotypic data (samples in VCF file) of

needed samples are extracted from a larger VCF file. It should be analysed further and fixed if

possible. If not possible to fix, the sample missing genotypic data should be eliminated from the

dataset. Secondly, the MBV tool is good for detecting cross-contamination between samples

(Figure 4.8c). The tested sample is fully matched with one genotype sample but also partially

matched with some other genotype. It usually indicates possible cross-contamination in the

laboratory. Both of these potentially contaminated samples should be analysed in order to decide

if to eliminate one or both of the samples from the dataset. Finally, the MBV output plot can look

like as Figure 4.8d. In the top right corner we see only red dot instead of green. That is because

the green dot is overwritten and located under the red one, which means that the tested sample is

perfectly matched with more than one genotype in the VCF file. This indicates that there are

Formula 4.1. Calculation method of consistent reads’ proportions grouped by site type (homozygous

and heterozygous groups). Summarised according to supplementary material of (Fort et al., 2017) study.

https://paperpile.com/c/wYdAjq/fXfYL

42

duplicate samples in the dataset. For QTL analysis one of these duplicate samples usually needs

to be excluded, because they cannot be considered as independent samples.

Looking through all of the plots manually can be misleading, because it is easy to miss two

overlapping samples on a plot. Instead, we analysed the distance between two best matching

samples to detect potential contaminated and duplicated samples. For that reason, we generate a

table containing all tested samples (sample_id), best matching genotype to the tested sample

(mbv_gentotype_id), heterozygous and homozygous consistent fractions of the best match

Figure 4.8. Examples of sequence-genotype matching analysis output plots from Schwartzentuber et al. (2018)

dataset. X axis represents consistency of heterozygous sites (Formula 4.1-5). Y axis represents consistency of

homozygous sites (Formula 4.1-4). a) Non-contaminated sample (SAMEA3234534) matches only one genotype

(HPSI0513i-oarz_22) in the VCF file. b) The tested sample (SAMEA3476959) did not match to any genotype in

the VCF file. c) Tested sample (SAMEA3864997) fully matches to one genotype (HPSI0613i-qony_1), but also

partially matches another genotype (HPSI0214i-pelm_3) in the VCF file. d) Tested sample (SAMEA3234610)

fully matches two genotypes (HPSI1213i-foqj_2 and HPSI0913i-ffdl_1) in the VCF file.

Table 4.1. Example of minimum distance between best matching samples from BLUEPRINT study

sample_id mbv_genotype_id het_consistent_frac hom_consistent_frac het_min_dist hom_min_dist dist

S003Q3B1_mRNA S003Q3 0.989 0.688 0.173 0.09 0.196

S003Q3B1_RNA S003Q3 0.99 0.735 0.223 0.108 0.248

S003P5B1_mRNA S003P5 0.99 0.775 0.347 0.142 0.374

S003P5B1_RNA S003P5 0.991 0.835 0.414 0.169 0.447

S0026AB7 S0026A 0.996 0.89 0.494 0.231 0.545

S007PQB5 S007PQ 0.995 0.909 0.495 0.23 0.546

S0041CB7 S0041C 0.994 0.898 0.5 0.22 0.547

43

(het_consistent_frac and hom_consistent_frac), heterozygous and homozygous minimum distance

to the second best genotype match to tested sample (het_min_dist and hom_min_dist), and overall

distance from the best match to the second best match (dist) (Table 4.1). Table 4.1 represents the

first 7 rows of a sequence-genotype matching analysis output table, ascendingly ordered by

minimum distance between the best genotype match and the second best genotype match (dist) to

the tested sample. These samples are potentially contaminated samples and need further analysis.

To visualise the measurement of minimum distance between the best two matches, scatter plots of

first (S003Q3B1_mRNA) and sixth (S007PQB5) samples in the table are shown in Figure 4.9.

The tested sample S003Q3B1_mRNA in Figure 4.9 is an obvious contamination and should be

eliminated from the dataset. As expected this sample from the BLUEPRINT (L. Chen et al., 2016)

study appeared to be contaminated also in sex-specific gene expression analysis (Figure 4.7).

However, the sample S007PQB5 does not seem to be a contaminated one, because the second best

genotype match (S001C2) is located close to the cluster of unmatched genotypes. This case is open

to interpretation of the bioinformatician and we decided to keep this sample.

5. QTL Mapping Pipeline

Computing association summary statistics with all required technical features (portability,

scalability, reproducibility etc.) is the main goal of the QTL mapping pipeline. After quality control

steps are performed and samples with poor quality are eliminated, the phenotype count matrix

should be normalised according to the quantification method. The normalised phenotype matrix is

considered ready for QTL mapping. We developed a pipeline which takes phenotype count matrix

Figure 4.9. Plot of the two potentially contaminated samples’ sequence-genotype matching analysis.

BLUEPRINT (L. Chen et al., 2016) study. Sample S003Q3B1_mRNA is fully matched to S003Q3

genotype and partially matched to S003P5 genotype. Distance between the two best genotype

matches is 0.196. Sample S007PQB5 is fully matched to S007PQ genotype and, the second best

genotype match is S001C2. Distance between the two best matches is 0.546

https://paperpile.com/c/wYdAjq/Gdism
https://paperpile.com/c/wYdAjq/Gdism

44

(the output of the quantification pipeline, quality controlled, normalised), metadata files and

genotype information as input to uniformly map a wide range of molecular QTLs. The pipeline is

based on the widely used QTLtools software package (Delaneau et al., 2017) and is freely available

for download from GitHub34.

5.1. Description of QTL Mapping Process
QTL mapping is the process of finding statistically significant associations between phenotypes

and genetic variants located nearby (within a specific window around phenotype, a.k.a cis

window), which is usually found using linear regressions. The process requires a large number of

association tests to find all potential phenotype-variant associations in a cis window and produces

p-values for each performed test. Because of the high number of existing phenotypes and the

number of tests to be performed, accounting for multiple testing is essential to assess the

significance of discovered associations. QTLtools (Delaneau et al., 2017) uses a fast and efficient

permutation algorithm where the null distribution of association for phenotype is modeled based

on the beta distribution (Ongen, Buil, Brown, Dermitzakis, & Delaneau, 2016). This enables to

accurately estimate adjusted p-values in short running times.

QTLtools provides two options to run the QTL mapping in cis window, namely nominal run and

permutation run. The nominal run calculates only nominal p-values of the associations, given the

null hypothesis of not having any association between a phenotype and variant. Permutation run,

on the other hand, performs a permutation based analysis in order to adjust nominal p-values

according to a fitted beta distribution from thousands of random permutations of the genotype data.

Permutation run accounts for the number of genetic variants tested in the cis window and allows

us to identify phenotypes that have at least one statistically significant QTL at a pre-determined

false discovery rate.

5.2. Pipeline Overview
To develop the QTL mapping pipeline, we adopted the development style and some resources of

the nf-core framework (Ewels et al., 2019), as we did in quantification pipeline development. Nf-

core initiated the idea of having bioinformatics pipelines in one unified pool. Nf-core pipelines are

containerized, easy-to-use, open-source, tested and continuously maintained by the contributor

developers. They also provide pipeline development tools35 to encourage developers to contribute

new pipelines and widen the community. We developed the QTL mapping pipeline (qtlmap) to be

added to nf-core set of pipelines. The overview of the pipeline and brief explanation of each step

is described in Figure 5.1.

34

 https://github.com/kerimoff/qtlmap
35

 https://github.com/nf-core/tools

https://paperpile.com/c/wYdAjq/h5KXz
https://paperpile.com/c/wYdAjq/h5KXz
https://paperpile.com/c/wYdAjq/3CLWr
https://paperpile.com/c/wYdAjq/9zWIj
https://github.com/kerimoff/qtlmap
https://github.com/nf-core/tools

45

The pipeline starts execution with checking if all the mandatory inputs are provided (not shown in

the Figure 5.1). Then, if the all provided inputs are valid, information (coordinates, alleles, etc.)

about all the variants in the provided VCF file are extracted. Genotypic variant information

together with sample metadata files and the phenotype count matrix are passed into the custom

script group_by_qtlgoup.R36 in order to filter out the problematic phenotypes and group samples

by QTL group. After asserting that all needed columns are available in datasets, we find variants

36

 https://github.com/kerimoff/qtlmap/blob/master/bin/group_by_qtlgroup.R

Figure 5.1. High level representation of qtlmap pipeline. Shapes with yellow background are the

steps (processes) and shapes with white background symbolize data objects (files).

https://github.com/kerimoff/qtlmap/blob/master/bin/group_by_qtlgroup.R

46

(from variant information) overlapping with cis window of phenotypic features (from phenotype

metadata) (Figure 5.2). We introduced a filtering parameter mincisvariant37 (with a default value

of 5) to avoid processing phenotypes with very few variants in the cis window, because QTLtools

simply stop working (e.g. raises error) if there are no overlapping variants in cis window of the

phenotype. Hence, by default, if the phenotype has less than 5 variants in the cis window, this

phenotype is filtered out from the phenotype count matrix. After removing phenotypes with very

few variants (less than mincisvariant) from the phenotype matrix, we divide it into submatrices

according to qtl_group information provided in the sample metadata file. QTL groups usually

represent different tissues, cell types or other biological contexts (e.g. experimental stimulation)

present in the datasets. These submatrices are processed individually and in parallel through the

next steps of the pipeline.

Genotypic information of samples represented in each QTL group are also extracted from the VCF

file, forming VCF files containing only samples belonging to each QTL group. First output of the

pipeline is the variant information extracted from each of these QTL group specific VCF files.

QTLtools uses PCA covariates in the QTL mapping process. PCA of the phenotype matrix is used

in order to remove technical variance between samples and increases the power of detecting

significant associations. On the other hand, PCA of genotypic information is used to take origin of

the genotypic information (e.g. population structure) into account in the QTL mapping process.

We used six principal components of the phenotype matrix and three principal components of

genotypic data as covariates in QTL mapping process. In order to map the QTLs, PCA covariates

matrix together with QTL group specific VCF file and phenotype matrix are provided as inputs to

the QTLtools. QTLtools process these inputs in parallel according to specified number of

batches38. Ultimately, individually calculated outputs of batches are merged into a single summary

statistics file for each QTL group.

37

 https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--mincisvariant
38

 https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--n_batches

Figure 5.2. Finding genomic variants overlapping with the cis window of the phenotype. In example,

cis distance is 1 million sequence bases and the length of cis window is 2 million bases. Genomic

variants which overlapped with the cis window of the phenotype are shown in green. Genomic

variants remaining out of the cis window represented in red color. The phenotype has 9 overlapping

variants in its cis window, which is more than 5 (default value of mincisvariant parameter). Hence

this phenotype will be processed in QTL mapping procedure.

https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--mincisvariant
https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--n_batches

47

5.3. Pipeline Implementation Details

There are a number of tools available to map QTLs such as QTLtools and MatrixEQTL (Delaneau

et al., 2017; Shabalin, 2012). Moreover, the MOLGENIS (van der Velde et al. 2019) project

provides a set of scripts and step-by-step guidelines to use them in order to map QTLs39. Another

reason why we decided to use QTLtools is that it provides options to facilitate parallelisation on

compute cluster for both cis mapping running options (nominal40 and permutation41 runs).

Especially in permutation run this parallelisation feature increases efficacy of the analysis, because

it does multiple permutation tests to adjust p-values which is computationally intensive. For

instance, by default we perform ten thousand (10,000) permutations in one megabase (1 Mb) cis

distance to obtain accurate adjusted p-values. Moreover, we also use PCA42 module of QTLtools

to calculate covariates. Besides the preprocessing steps needed for QTL mapping, our pipeline is

smoothly managing these multiple parallel tasks by processing them in specified number of

batches (one parallel node per batch) and finally merging them into a single output file.

Hardware requirements of each step of the pipeline is configured in a base configuration file43 and

the set values are the result of personal experience of researchers involved in the project. The

current version of the pipeline can only perform the cis-QTL mapping, however, we are working

to add trans-QTL mapping option also in the future.

5.3.1. Containerisation and Conda support

To provide maximum level of dependency isolation, Nextflow provides very good integration with

both Conda and containerisation (e.g. Docker and Singularity). We analysed all the dependencies

for this pipeline and created a Conda software recipe (Figure 2.1). User can create a “Conda

environment” with this recipe in an execution environment (e.g. HPC or PC) and run the pipeline

without worrying about software dependencies. Nf-core provided a nice template to build a

software container using a Conda environment recipe. Specifically they provide a base image

which contains the operating system and Conda installed. I have built the needed containers using

Dockerfile and Singularity file which are also provided by nf-core and pushed them to Docker Hub

and Singularity-Hub, respectively. The address of the Docker container has been entered into

pipeline settings, hence, users only need to specify if they want to run the pipeline with the

container (Docker or Singularity) and the pipeline will automatically download the container from

Docker Hub and use it. Since Singularity supports direct usage of Docker containers, I have

included only the address of the Docker container into the pipeline.

39

 https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-seq-data
40

 https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html
41

 https://qtltools.github.io/qtltools/pages/mode_cis_permutation.html
42

 https://qtltools.github.io/qtltools/pages/mode_pca.html
43

 https://github.com/kerimoff/qtlmap/blob/master/conf/base.config

https://paperpile.com/c/wYdAjq/h5KXz+VMwKY
https://paperpile.com/c/wYdAjq/h5KXz+VMwKY
https://paperpile.com/c/h0QcSm/MXsW
https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-seq-data
https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html
https://qtltools.github.io/qtltools/pages/mode_cis_permutation.html
https://qtltools.github.io/qtltools/pages/mode_pca.html
https://github.com/kerimoff/qtlmap/blob/master/conf/base.config

48

We processed more than 40 QTL groups from more than 15 studies (Appendix 1) with this

pipeline. To verify that the results make sense, we plotted the number of eQTLs detected in each

biological context (qtl_group) against the sample size of that context and discovered more than

9000 eGenes (genes which have at least one significant SNP in the cis window) (Figure 5.3). As

expected, we found a linear relationship between the number of eGenes and the sample size.

5.4. Pipeline Input and Output Description
Although the pipeline is developed to be user-friendly and ready-to-use, there is a data preparation

step which requires a little effort to ensure having mandatory format and content of the input files.

5.4.1. Input Preparation

We decided to use simple text files (e.g. tab separated value, TSV) as the main format of tabular

input files for our pipeline. Pipeline requires 4 input files to map the QTLs.

1. Phenotype count matrix of the quantitative traits: tab separated file containing normalised

phenotype counts (e.g. gene expression matrix). Columns and rows represent samples and

phenotypes, respectively.

2. Phenotype metadata: tab separated file containing metadata of phenotypes appearing in

count matrix as rows. This table should have at least the following information:

phenotype_id (this column links the metadata to count matrix), chromosome,

phenotype_pos, strand. The chromosome and position of each phenotype is used to define

the genomic region around the phenotype that is used for QTL mapping (cis window).

Figure 5.3. Correlation of eGenes with sample size within each QTL group. Imputed genotypes: 1000 Genomes

Phase 3*; Genotype filtering: MAF > 0.01 & R^2 > 0.4; Covariates: 6 expression PCs + 3 genotype PCs; Cis

window: +/- 1Mb from gene center; FDR correction: 10,000 permutation + Benjamini-Hochberg FDR < 0.05.

Figure prepared by Kaur Alasoo for presentation purposes of quarterly results of the project.

49

3. Sample metadata: tab separated file containing metadata of samples appearing in count

matrix as columns. This table should have at least the following information: sample_id

(this column links the metadata to the count matrix), genotype_id, qtl_group

4. Variant Call Format (VCF) file: genotype information of samples to map the QTLs to.

Input files are coupled to each other through specific parameters (Figure 5.4). Phenotype count

matrix is the main data table for the pipeline. Pipeline manipulates phenotype count matrix

according to metadata files and maps it to VCF file. Although, it is important to have the mandatory

columns in each metadata file, preparing them is straightforward. The count matrix dataset will be

grouped into subsets according to qtl_group information in the sample metadata file.

For instance, TwinUK dataset contains 1364 samples originated from 4 biological contexts (in this

case cell-type and tissues), namely LCL, skin, fat and blood (Table 1.2 and Appendix 1). Although

the phenotype count matrix of this dataset will contain phenotype expression levels of 1364

samples, this matrix will be divided into 4 distinct matrices according to qtl_group value in the

sample metadata file of the dataset. These 4 matrices will be processed individually in order to

map the QTLs.

Figure 5.4. Description of relations between required input files for QTL mapping with pipeline. Count

matrix has a phenotype_id column which corresponds to column with the same name in phenotype metadata

file. Other column names of count matrix (sample_ABC and sample_DEF) corresponds to the values of

sample_id column in sample metadata file. Values of the genotype_id column in sample metadata file

corresponds to genotype_ids in VCF file. Count matrix is divided into submatrices (in this case, each of two

submatrices contains only one sample) according to values of the qtl_group column in sample metadata file

and processed individually. chromosome, phenoype_pos and strand information of each phenotype (in

phenotype metadata file) is used to define the cis window that is used for QTL mapping.

50

Finally, the genotype ids present in the VCF file should correspond to values of genotype_id

column in sample metadata file. For a complete set of available parameters see the pipeline

documentation44.

5.4.2. Description and Interpretation of Pipeline Output

The main final output of the QTL mapping pipeline is a sorted and indexed text file of summary

statistics. This file summarises the associations between phenotypes and genetic variants. The

output of the nominal run contains the nominal phenotype information (id, chromosome, strand,

start and end positions), genetic variant information (id, chromosome, start and end positions), test

information (number of variants tested per phenotype, distance between the phenotype and

associated variant) and association details (nominal p-value, effect size and a binary flag showing

if the associated variant has the lowest p-value a.k.a. lead variant)45.

6. Conclusions
In the context of the eQTL Catalog project, we implemented all the necessary steps to uniformly

generate QTL summary statistics from RNA-seq and genotype data from multiple studies. The

whole process can be summarised as three distinct steps:

1. Quantification of the required phenotypes (gene expression, transcript usage, exon

expression and alternative splicing usage) from raw RNA-seq data (including pre-

quantification quality control steps) with the quantification pipeline.

2. Post-quantification manual quality control (PCA, MDS, sex-specific gene expression and

sequence-genotype matching analyses) and elimination of samples with poor quality.

3. QTL mapping pipeline input preparation and running.

In the first step we added new phenotype quantification methods (transcript usage, exon

expressions and alternative splicing usage) to an existing RNA-seq pipeline developed by the nf-

core framework. In order to isolate software dependencies, it fully supports package managers like

Conda and container technologies such as Docker and Singularity. The output of the pipeline is a

phenotype count matrix which represents expression levels of quantitative traits in the RNA-seq

data.

The second step is detection and elimination of mislabeled, contaminated and poor quality

samples, in order to increase the quality and precision of summary statistics. To detect outlier

samples in the dataset we apply PCA and MDS analyses. For identification of mislabeling and

contamination issues we analyse the sex-specific gene expression and the sequence-genotype

44

 https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md
45

 https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html

https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md
https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html

51

matching levels of samples. If the reason of the issue is not evident or correctable, we eliminate

the concerned samples from the dataset.

After post-quantification quality control measures, the phenotype count matrix together with

phenotype metadata, sample metadata and genotype (VCF) files are given into the QTL mapping

pipeline in order to produce summary statistics. This pipeline is also designed to be containerised,

easy-to-use, parallelly executable, scalable, open-source and ready-to-use, as all other pipelines in

the nf-core framework. We implemented it to ease the QTL mapping analysis process for users

and uniformly process context specific datasets of multiple studies. Although the pipeline is much

simpler to use than existing QTL mapping tools, some data preparation effort is still needed.

Currently, the pipeline performs only cis QTL mapping, but we are planning to add trans-QTL

mapping in the near future.

The next step in development of the pipeline is consulting with the nf-core team and decide if this

pipeline is suitable to be added to nf-core set of reference pipelines. Continuous integration and

HTML reports are also features to be added to the pipeline. Additionally, we are looking for a

suitable method to merge similar biological contexts across different studies (e.g. blood tissue

samples from two different studies) and process them as a unified QTL group. Successful

implementation of this approach can substantially increase the statistical power of the QTL

mapping, facilitating the discovery of weaker trans-eQTLs, for which most individual studies are

currently underpowered.

7. References

1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H.

M., … Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526(7571), 68–74.

Alasoo, K., Rodrigues, J., Mukhopadhyay, S., Knights, A. J., Mann, A. L., Kundu, K., … Gaffney.

(2018). Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in

immune response. Nature Genetics, 50(3), 424–431.

Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., … Arslan, R. (2016). rmarkdown:

Dynamic Documents for R. R Package Version, 1, 9010.

Anders, S., Reyes, A., & Huber, W. (2012). Detecting differential usage of exons from RNA-seq data.

Genome Research, 22(10), 2008–2017.

Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters.

FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,

http://paperpile.com/b/vNFI9K/ywR4Y
http://paperpile.com/b/vNFI9K/ywR4Y
http://paperpile.com/b/vNFI9K/ywR4Y
http://paperpile.com/b/vNFI9K/ywR4Y
http://paperpile.com/b/vNFI9K/ywR4Y
http://paperpile.com/b/vNFI9K/ywR4Y
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/qTUC9
http://paperpile.com/b/vNFI9K/9VqFq
http://paperpile.com/b/vNFI9K/9VqFq
http://paperpile.com/b/vNFI9K/9VqFq
http://paperpile.com/b/vNFI9K/9VqFq
http://paperpile.com/b/vNFI9K/9VqFq
http://paperpile.com/b/vNFI9K/9VqFq
http://paperpile.com/b/vNFI9K/xS0xH
http://paperpile.com/b/vNFI9K/xS0xH
http://paperpile.com/b/vNFI9K/xS0xH
http://paperpile.com/b/vNFI9K/xS0xH
http://paperpile.com/b/vNFI9K/xS0xH
http://paperpile.com/b/vNFI9K/xS0xH
http://paperpile.com/b/vNFI9K/9lkny
http://paperpile.com/b/vNFI9K/9lkny
http://paperpile.com/b/vNFI9K/9lkny
http://paperpile.com/b/vNFI9K/9lkny

52

10(4), 453–460.

Baggerly, K. A., & Coombes, K. R. (2009). DERIVING CHEMOSENSITIVITY FROM CELL LINES:

FORENSIC BIOINFORMATICS AND REPRODUCIBLE RESEARCH IN HIGH-THROUGHPUT

BIOLOGY. The Annals of Applied Statistics, 3(4), 1309–1334.

Brass, A. (2000). Bioinformatics education--a UK perspective. Bioinformatics , 16(2), 77–78.

Buil, A., Brown, A. A., Lappalainen, T., Viñuela, A., Davies, M. N., Zheng, H.-F., … Dermitzakis, E. T.

(2015). Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in

twins. Nature Genetics, 47(1), 88–91.

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., … Parkinson,

H. (2018). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted

arrays and summary statistics 2019. Nucleic Acids Research. https://doi.org/10.1093/nar/gky1120

Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-wide association studies. PLoS Computational

Biology, 8(12), e1002822.

Carillo, K., & Okoli, C. (2008). The Open Source Movement: A Revolution in Software Development.

Journal of Computer Information Systems, 49(2), 1–9.

Chen, J., & Weiss, W. A. (2015). Alternative splicing in cancer: implications for biology and therapy.

Oncogene, 34(1), 1–14.

Chen, L., Ge, B., Casale, F. P., Vasquez, L., Kwan, T., Garrido-Martín, D., … Soranzo, N. (2016).

Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell, 167(5), 1398–

1414.e24.

Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2010). The Sanger FASTQ file format

for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research,

38(6), 1767–1771.

Cox, T. F., & Cox, M. A. A. (2000). Multidimensional scaling. Chapman and hall/CRC.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. (2012). Social Coding in GitHub: Transparency and

Collaboration in an Open Software Repository. In Proceedings of the ACM 2012 Conference on

http://paperpile.com/b/vNFI9K/9lkny
http://paperpile.com/b/vNFI9K/9lkny
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/rIl8P
http://paperpile.com/b/vNFI9K/3bbXV
http://paperpile.com/b/vNFI9K/3bbXV
http://paperpile.com/b/vNFI9K/3bbXV
http://paperpile.com/b/vNFI9K/3bbXV
http://paperpile.com/b/vNFI9K/3bbXV
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/xdaO6
http://paperpile.com/b/vNFI9K/IkNT7
http://paperpile.com/b/vNFI9K/IkNT7
http://paperpile.com/b/vNFI9K/IkNT7
http://paperpile.com/b/vNFI9K/IkNT7
http://paperpile.com/b/vNFI9K/IkNT7
http://dx.doi.org/10.1093/nar/gky1120
http://paperpile.com/b/vNFI9K/Aj1mW
http://paperpile.com/b/vNFI9K/Aj1mW
http://paperpile.com/b/vNFI9K/Aj1mW
http://paperpile.com/b/vNFI9K/Aj1mW
http://paperpile.com/b/vNFI9K/Aj1mW
http://paperpile.com/b/vNFI9K/Aj1mW
http://paperpile.com/b/vNFI9K/Q39lc
http://paperpile.com/b/vNFI9K/Q39lc
http://paperpile.com/b/vNFI9K/Q39lc
http://paperpile.com/b/vNFI9K/Q39lc
http://paperpile.com/b/vNFI9K/Q39lc
http://paperpile.com/b/vNFI9K/Q39lc
http://paperpile.com/b/vNFI9K/DH683
http://paperpile.com/b/vNFI9K/DH683
http://paperpile.com/b/vNFI9K/DH683
http://paperpile.com/b/vNFI9K/DH683
http://paperpile.com/b/vNFI9K/DH683
http://paperpile.com/b/vNFI9K/DH683
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/mfbJh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/awLKh
http://paperpile.com/b/vNFI9K/sSWPi
http://paperpile.com/b/vNFI9K/sSWPi
http://paperpile.com/b/vNFI9K/sSWPi
http://paperpile.com/b/vNFI9K/j7MdY
http://paperpile.com/b/vNFI9K/j7MdY
http://paperpile.com/b/vNFI9K/j7MdY

53

Computer Supported Cooperative Work (pp. 1277–1286). New York, NY, USA: ACM.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … 1000 Genomes

Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics , 27(15), 2156–

2158.

Delaneau, O., Ongen, H., Brown, A. A., Fort, A., Panousis, N. I., & Dermitzakis, E. T. (2017). A

complete tool set for molecular QTL discovery and analysis. Nature Communications, 8, 15452.

Denk, F. (2017). Don’t let useful data go to waste. Nature, 543(7643), 7.

Dermitzakis, E. T. (2008). From gene expression to disease risk. Nature Genetics, 40(5), 492–493.

Di Tommaso, P. (n.d.). awesome-pipeline. Github. Retrieved from

https://github.com/pditommaso/awesome-pipeline

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., & Notredame, C. (2017).

Nextflow enables reproducible computational workflows. Nature Biotechnology, 35(4), 316–319.

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013).

STAR: ultrafast universal RNA-seq aligner. Bioinformatics , 29(1), 15–21.

Ellis, S. E., Gupta, S., Ashar, F. N., Bader, J. S., West, A. B., & Arking, D. E. (2013). RNA-Seq

optimization with eQTL gold standards. BMC Genomics, 14, 892.

Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A. S., Zink, F., Zhu, J., … Stefansson, K. (2008).

Genetics of gene expression and its effect on disease. Nature, 452(7186), 423–428.

Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for

multiple tools and samples in a single report. Bioinformatics , 32(19), 3047–3048.

Ewels, P., Peltzer, A., Fillinger, S., Alneberg, J., Patel, H., Wilm, A., … Nahnsen, S. (2019). nf-core:

Community curated bioinformatics pipelines. bioRxiv. https://doi.org/10.1101/610741

Fairfax, B. P., Makino, S., Radhakrishnan, J., Plant, K., Leslie, S., Dilthey, A., … Knight, J. C. (2012).

Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and

roles of HLA alleles. Nature Genetics, 44(5), 502–510.

Ferragina, P., & Manzini, G. (2000). Opportunistic data structures with applications. In Proceedings 41st

http://paperpile.com/b/vNFI9K/j7MdY
http://paperpile.com/b/vNFI9K/j7MdY
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/4LKcC
http://paperpile.com/b/vNFI9K/nXBGP
http://paperpile.com/b/vNFI9K/nXBGP
http://paperpile.com/b/vNFI9K/nXBGP
http://paperpile.com/b/vNFI9K/nXBGP
http://paperpile.com/b/vNFI9K/nXBGP
http://paperpile.com/b/vNFI9K/nXBGP
http://paperpile.com/b/vNFI9K/RVbKf
http://paperpile.com/b/vNFI9K/RVbKf
http://paperpile.com/b/vNFI9K/RVbKf
http://paperpile.com/b/vNFI9K/RVbKf
http://paperpile.com/b/vNFI9K/RVbKf
http://paperpile.com/b/vNFI9K/vA3qD
http://paperpile.com/b/vNFI9K/vA3qD
http://paperpile.com/b/vNFI9K/vA3qD
http://paperpile.com/b/vNFI9K/vA3qD
http://paperpile.com/b/vNFI9K/vA3qD
http://paperpile.com/b/vNFI9K/KmNHQ
http://paperpile.com/b/vNFI9K/KmNHQ
http://paperpile.com/b/vNFI9K/KmNHQ
http://paperpile.com/b/vNFI9K/KmNHQ
https://github.com/pditommaso/awesome-pipeline
http://paperpile.com/b/vNFI9K/WYqDd
http://paperpile.com/b/vNFI9K/WYqDd
http://paperpile.com/b/vNFI9K/WYqDd
http://paperpile.com/b/vNFI9K/WYqDd
http://paperpile.com/b/vNFI9K/WYqDd
http://paperpile.com/b/vNFI9K/WYqDd
http://paperpile.com/b/vNFI9K/I1Pb9
http://paperpile.com/b/vNFI9K/I1Pb9
http://paperpile.com/b/vNFI9K/I1Pb9
http://paperpile.com/b/vNFI9K/I1Pb9
http://paperpile.com/b/vNFI9K/I1Pb9
http://paperpile.com/b/vNFI9K/I1Pb9
http://paperpile.com/b/vNFI9K/zP6c0
http://paperpile.com/b/vNFI9K/zP6c0
http://paperpile.com/b/vNFI9K/zP6c0
http://paperpile.com/b/vNFI9K/zP6c0
http://paperpile.com/b/vNFI9K/zP6c0
http://paperpile.com/b/vNFI9K/zP6c0
http://paperpile.com/b/vNFI9K/QzT4S
http://paperpile.com/b/vNFI9K/QzT4S
http://paperpile.com/b/vNFI9K/QzT4S
http://paperpile.com/b/vNFI9K/QzT4S
http://paperpile.com/b/vNFI9K/QzT4S
http://paperpile.com/b/vNFI9K/QzT4S
http://paperpile.com/b/vNFI9K/GzHcL
http://paperpile.com/b/vNFI9K/GzHcL
http://paperpile.com/b/vNFI9K/GzHcL
http://paperpile.com/b/vNFI9K/GzHcL
http://paperpile.com/b/vNFI9K/GzHcL
http://paperpile.com/b/vNFI9K/GzHcL
http://paperpile.com/b/vNFI9K/5dsZL
http://paperpile.com/b/vNFI9K/5dsZL
http://paperpile.com/b/vNFI9K/5dsZL
http://paperpile.com/b/vNFI9K/5dsZL
http://paperpile.com/b/vNFI9K/5dsZL
http://paperpile.com/b/vNFI9K/5dsZL
http://dx.doi.org/10.1101/610741
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/tmW0z
http://paperpile.com/b/vNFI9K/UPSXA
http://paperpile.com/b/vNFI9K/UPSXA

54

Annual Symposium on Foundations of Computer Science (pp. 390–398).

Fjukstad, B., & Bongo, L. A. (2017). A Review of Scalable Bioinformatics Pipelines. Data Science and

Engineering, 2(3), 245–251.

Fort, A., Panousis, N. I., Garieri, M., Antonarakis, S. E., Lappalainen, T., Dermitzakis, E. T., & Delaneau,

O. (2017). MBV: a method to solve sample mislabeling and detect technical bias in large combined

genotype and sequencing assay datasets. Bioinformatics , 33(12), 1895–1897.

Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., Hingorani, A. D., Wallace, C., & Plagnol,

V. (2014). Bayesian test for colocalisation between pairs of genetic association studies using summary

statistics. PLoS Genetics, 10(5), e1004383.

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., … Myers, J. (2007). Examining

the Challenges of Scientific Workflows. Computer, 40(12), 24–32.

Goecks, J., Nekrutenko, A., Taylor, J., & Galaxy Team. (2010). Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the life sciences. Genome

Biology, 11(8), R86.

Goldstein, L. D., Cao, Y., Pau, G., Lawrence, M., Wu, T. D., Seshagiri, S., & Gentleman, R. (2016).

Prediction and Quantification of Splice Events from RNA-Seq Data. PloS One, 11(5), e0156132.

Goodstadt, L. (2010). Ruffus: a lightweight Python library for computational pipelines. Bioinformatics ,

26(21), 2778–2779.

Griffith, M., Griffith, O. L., Mwenifumbo, J., Goya, R., Morrissy, A. S., Morin, R. D., … Marra, M. A.

(2010). Alternative expression analysis by RNA sequencing. Nature Methods, 7(10), 843–847.

Grüning, B., Dale, R., Sjödin, A., Chapman, B. A., Rowe, J., Tomkins-Tinch, C. H., … Bioconda Team.

(2018). Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature

Methods, 15(7), 475–476.

GTEx Consortium. (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45(6),

580–585.

Ioannidis, J. P. A., Allison, D. B., Ball, C. A., Coulibaly, I., Cui, X., Culhane, A. C., … van Noort, V.

http://paperpile.com/b/vNFI9K/UPSXA
http://paperpile.com/b/vNFI9K/UPSXA
http://paperpile.com/b/vNFI9K/0LmDh
http://paperpile.com/b/vNFI9K/0LmDh
http://paperpile.com/b/vNFI9K/0LmDh
http://paperpile.com/b/vNFI9K/0LmDh
http://paperpile.com/b/vNFI9K/0LmDh
http://paperpile.com/b/vNFI9K/0LmDh
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/gfA0y
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/JNu2M
http://paperpile.com/b/vNFI9K/E6DGZ
http://paperpile.com/b/vNFI9K/E6DGZ
http://paperpile.com/b/vNFI9K/E6DGZ
http://paperpile.com/b/vNFI9K/E6DGZ
http://paperpile.com/b/vNFI9K/E6DGZ
http://paperpile.com/b/vNFI9K/E6DGZ
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/BFjWH
http://paperpile.com/b/vNFI9K/LzL5C
http://paperpile.com/b/vNFI9K/LzL5C
http://paperpile.com/b/vNFI9K/LzL5C
http://paperpile.com/b/vNFI9K/LzL5C
http://paperpile.com/b/vNFI9K/LzL5C
http://paperpile.com/b/vNFI9K/LzL5C
http://paperpile.com/b/vNFI9K/ioWzG
http://paperpile.com/b/vNFI9K/ioWzG
http://paperpile.com/b/vNFI9K/ioWzG
http://paperpile.com/b/vNFI9K/ioWzG
http://paperpile.com/b/vNFI9K/ioWzG
http://paperpile.com/b/vNFI9K/ioWzG
http://paperpile.com/b/vNFI9K/PKkox
http://paperpile.com/b/vNFI9K/PKkox
http://paperpile.com/b/vNFI9K/PKkox
http://paperpile.com/b/vNFI9K/PKkox
http://paperpile.com/b/vNFI9K/PKkox
http://paperpile.com/b/vNFI9K/PKkox
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/s2ivt
http://paperpile.com/b/vNFI9K/rPJ2j
http://paperpile.com/b/vNFI9K/rPJ2j
http://paperpile.com/b/vNFI9K/rPJ2j
http://paperpile.com/b/vNFI9K/rPJ2j
http://paperpile.com/b/vNFI9K/rPJ2j
http://paperpile.com/b/vNFI9K/rPJ2j
http://paperpile.com/b/vNFI9K/bWEZt

55

(2009). Repeatability of published microarray gene expression analyses. Nature Genetics, 41(2), 149–

155.

Kandukuri, B. R., V., R. P., & Rakshit, A. (2009). Cloud Security Issues. In 2009 IEEE International

Conference on Services Computing (pp. 517–520).

Kanwal, S., Khan, F. Z., Lonie, A., & Sinnott, R. O. (2017). Investigating reproducibility and tracking

provenance - A genomic workflow case study. BMC Bioinformatics, 18(1), 337.

Kilpinen, H., Goncalves, A., Leha, A., Afzal, V., Alasoo, K., Ashford, S., … Gaffney, D. J. (2017).

Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 546(7658), 370–375.

Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory

requirements. Nature Methods, 12(4), 357–360.

Kimura, K., Wakamatsu, A., Suzuki, Y., Ota, T., Nishikawa, T., Yamashita, R., … Sugano, S. (2006).

Diversification of transcriptional modulation: large-scale identification and characterization of putative

alternative promoters of human genes. Genome Research, 16(1), 55–65.

Köster, J., & Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow engine.

Bioinformatics , 28(19), 2520–2522.

Krueger, F. (2015). Trim galore. A Wrapper Tool around Cutadapt and FastQC to Consistently Apply

Quality and Adapter Trimming to FastQ Files.

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.

Psychometrika, 29(1), 1–27.

Kulkarni, N., Alessandrì, L., Panero, R., Arigoni, M., Olivero, M., Ferrero, G., … Calogero, R. A. (2018).

Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines.

BMC Bioinformatics, 19(Suppl 10), 349.

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for mobility of

compute. PloS One, 12(5), e0177459.

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., … International Human

Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature,

http://paperpile.com/b/vNFI9K/bWEZt
http://paperpile.com/b/vNFI9K/bWEZt
http://paperpile.com/b/vNFI9K/bWEZt
http://paperpile.com/b/vNFI9K/bWEZt
http://paperpile.com/b/vNFI9K/bWEZt
http://paperpile.com/b/vNFI9K/bWEZt
http://paperpile.com/b/vNFI9K/Pu1Sg
http://paperpile.com/b/vNFI9K/Pu1Sg
http://paperpile.com/b/vNFI9K/Pu1Sg
http://paperpile.com/b/vNFI9K/Pu1Sg
http://paperpile.com/b/vNFI9K/lyvAz
http://paperpile.com/b/vNFI9K/lyvAz
http://paperpile.com/b/vNFI9K/lyvAz
http://paperpile.com/b/vNFI9K/lyvAz
http://paperpile.com/b/vNFI9K/lyvAz
http://paperpile.com/b/vNFI9K/lyvAz
http://paperpile.com/b/vNFI9K/E6nmC
http://paperpile.com/b/vNFI9K/E6nmC
http://paperpile.com/b/vNFI9K/E6nmC
http://paperpile.com/b/vNFI9K/E6nmC
http://paperpile.com/b/vNFI9K/E6nmC
http://paperpile.com/b/vNFI9K/E6nmC
http://paperpile.com/b/vNFI9K/oBzr4
http://paperpile.com/b/vNFI9K/oBzr4
http://paperpile.com/b/vNFI9K/oBzr4
http://paperpile.com/b/vNFI9K/oBzr4
http://paperpile.com/b/vNFI9K/oBzr4
http://paperpile.com/b/vNFI9K/oBzr4
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/SGnsF
http://paperpile.com/b/vNFI9K/nmRHC
http://paperpile.com/b/vNFI9K/nmRHC
http://paperpile.com/b/vNFI9K/nmRHC
http://paperpile.com/b/vNFI9K/nmRHC
http://paperpile.com/b/vNFI9K/nmRHC
http://paperpile.com/b/vNFI9K/nmRHC
http://paperpile.com/b/vNFI9K/Buq6M
http://paperpile.com/b/vNFI9K/Buq6M
http://paperpile.com/b/vNFI9K/Buq6M
http://paperpile.com/b/vNFI9K/Buq6M
http://paperpile.com/b/vNFI9K/vh1f3
http://paperpile.com/b/vNFI9K/vh1f3
http://paperpile.com/b/vNFI9K/vh1f3
http://paperpile.com/b/vNFI9K/vh1f3
http://paperpile.com/b/vNFI9K/vh1f3
http://paperpile.com/b/vNFI9K/vh1f3
http://paperpile.com/b/vNFI9K/5Nnum
http://paperpile.com/b/vNFI9K/5Nnum
http://paperpile.com/b/vNFI9K/5Nnum
http://paperpile.com/b/vNFI9K/5Nnum
http://paperpile.com/b/vNFI9K/5Nnum
http://paperpile.com/b/vNFI9K/5Nnum
http://paperpile.com/b/vNFI9K/t1gSh
http://paperpile.com/b/vNFI9K/t1gSh
http://paperpile.com/b/vNFI9K/t1gSh
http://paperpile.com/b/vNFI9K/t1gSh
http://paperpile.com/b/vNFI9K/t1gSh
http://paperpile.com/b/vNFI9K/t1gSh
http://paperpile.com/b/vNFI9K/PZHz3
http://paperpile.com/b/vNFI9K/PZHz3
http://paperpile.com/b/vNFI9K/PZHz3
http://paperpile.com/b/vNFI9K/PZHz3

56

409(6822), 860–921.

Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A. C., Monlong, J., Rivas, M. A., …

Geuvadis Consortium. (2013). Transcriptome and genome sequencing uncovers functional variation in

humans. Nature, 501(7468), 506–511.

Leipzig, J. (2017). A review of bioinformatic pipeline frameworks. Briefings in Bioinformatics, 18(3),

530–536.

Leipzig, J. (2018). Computational Pipelines and Workflows in Bioinformatics. In S. Ranganathan, M.

Gribskov, K. Nakai, & C. Schönbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology

(pp. 1151–1162). Oxford: Academic Press.

Lepik, K., Annilo, T., Kukuškina, V., Kisand, K., Kutalik, Z., Peterson, P., … eQTLGen Consortium.

(2017). C-reactive protein upregulates the whole blood expression of CD59 - an integrative analysis.

PLoS Computational Biology, 13(9), e1005766.

Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics , 30(7), 923–930.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … 1000 Genome Project Data

Processing Subgroup. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics ,

25(16), 2078–2079.

Liu, C., Gershon, E., & Kelsoe, J. (2017). From Gene Expression To Disease Association. European

Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology, 27,

S416.

Li, Y., & Chen, L. (2014). Big biological data: challenges and opportunities. Genomics, Proteomics &

Bioinformatics, 12(5), 187–189.

Li, Y. I., Knowles, D. A., Humphrey, J., Barbeira, A. N., Dickinson, S. P., Im, H. K., & Pritchard, J. K.

(2018). Annotation-free quantification of RNA splicing using LeafCutter. Nature Genetics, 50(1), 151–

158.

Mackay, T. F. C. (2009). Q&A: Genetic Analysis of Quantitative Traits. Journal of Biology.

http://paperpile.com/b/vNFI9K/PZHz3
http://paperpile.com/b/vNFI9K/PZHz3
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/m8sQI
http://paperpile.com/b/vNFI9K/stspG
http://paperpile.com/b/vNFI9K/stspG
http://paperpile.com/b/vNFI9K/stspG
http://paperpile.com/b/vNFI9K/stspG
http://paperpile.com/b/vNFI9K/stspG
http://paperpile.com/b/vNFI9K/stspG
http://paperpile.com/b/vNFI9K/ZzFV7
http://paperpile.com/b/vNFI9K/ZzFV7
http://paperpile.com/b/vNFI9K/ZzFV7
http://paperpile.com/b/vNFI9K/ZzFV7
http://paperpile.com/b/vNFI9K/ZzFV7
http://paperpile.com/b/vNFI9K/eBOUb
http://paperpile.com/b/vNFI9K/eBOUb
http://paperpile.com/b/vNFI9K/eBOUb
http://paperpile.com/b/vNFI9K/eBOUb
http://paperpile.com/b/vNFI9K/eBOUb
http://paperpile.com/b/vNFI9K/eBOUb
http://paperpile.com/b/vNFI9K/Tn6pS
http://paperpile.com/b/vNFI9K/Tn6pS
http://paperpile.com/b/vNFI9K/Tn6pS
http://paperpile.com/b/vNFI9K/Tn6pS
http://paperpile.com/b/vNFI9K/Tn6pS
http://paperpile.com/b/vNFI9K/Tn6pS
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/18BSb
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/Vnofu
http://paperpile.com/b/vNFI9K/qSGYp
http://paperpile.com/b/vNFI9K/qSGYp
http://paperpile.com/b/vNFI9K/qSGYp
http://paperpile.com/b/vNFI9K/qSGYp
http://paperpile.com/b/vNFI9K/qSGYp
http://paperpile.com/b/vNFI9K/qSGYp
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/4UPiW
http://paperpile.com/b/vNFI9K/LFUmc
http://paperpile.com/b/vNFI9K/LFUmc
http://paperpile.com/b/vNFI9K/LFUmc

57

https://doi.org/10.1186/jbiol133

Mangul, S., Mosqueiro, T., Duong, D., Mitchell, K., Sarwal, V., Hill, B., … Blekhman, R. (2018). A

comprehensive analysis of the usability and archival stability of omics computational tools and resources.

bioRxiv. https://doi.org/10.1101/452532

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-seq: an assessment of

technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9), 1509–

1517.

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.

EMBnet.journal, 17(1), 10–12.

M. Burrows, D. J. W. (1994). A block-sorting lossless data compression algorithm. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8069

Melé, M., Ferreira, P. G., Reverter, F., DeLuca, D. S., Monlong, J., Sammeth, M., … Guigó, R. (2015).

Human genomics. The human transcriptome across tissues and individuals. Science, 348(6235), 660–665.

Merkel, D. (2014). Docker: Lightweight Linux Containers for Consistent Development and Deployment.

Linux Journal, 2014(239). Retrieved from http://dl.acm.org/citation.cfm?id=2600239.2600241

Mugavin, M. E. (2008). Multidimensional scaling: a brief overview. Nursing Research, 57(1), 64–68.

Nédélec, Y., Sanz, J., Baharian, G., Szpiech, Z. A., Pacis, A., Dumaine, A., … Barreiro, L. B. (2016).

Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to

Pathogens. Cell, 167(3), 657–669.e21.

Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T., & Delaneau, O. (2016). Fast and efficient QTL

mapper for thousands of molecular phenotypes. Bioinformatics , 32(10), 1479–1485.

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon provides fast and bias-

aware quantification of transcript expression. Nature Methods, 14(4), 417–419.

Perez, F., & Granger, B. E. (2007). IPython: A System for Interactive Scientific Computing. Computing

in Science & Engineering. https://doi.org/10.1109/mcse.2007.53

Piccolo, S. R., & Frampton, M. B. (2016). Tools and techniques for computational reproducibility.

http://paperpile.com/b/vNFI9K/LFUmc
http://dx.doi.org/10.1186/jbiol133
http://paperpile.com/b/vNFI9K/RAWIA
http://paperpile.com/b/vNFI9K/RAWIA
http://paperpile.com/b/vNFI9K/RAWIA
http://paperpile.com/b/vNFI9K/RAWIA
http://paperpile.com/b/vNFI9K/RAWIA
http://paperpile.com/b/vNFI9K/RAWIA
http://paperpile.com/b/vNFI9K/RAWIA
http://dx.doi.org/10.1101/452532
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/OeoN4
http://paperpile.com/b/vNFI9K/jDi8Q
http://paperpile.com/b/vNFI9K/jDi8Q
http://paperpile.com/b/vNFI9K/jDi8Q
http://paperpile.com/b/vNFI9K/jDi8Q
http://paperpile.com/b/vNFI9K/jDi8Q
http://paperpile.com/b/vNFI9K/jDi8Q
http://paperpile.com/b/vNFI9K/2HdN5
http://paperpile.com/b/vNFI9K/2HdN5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.8069
http://paperpile.com/b/vNFI9K/ROM9B
http://paperpile.com/b/vNFI9K/ROM9B
http://paperpile.com/b/vNFI9K/ROM9B
http://paperpile.com/b/vNFI9K/ROM9B
http://paperpile.com/b/vNFI9K/ROM9B
http://paperpile.com/b/vNFI9K/ROM9B
http://paperpile.com/b/vNFI9K/smlpe
http://paperpile.com/b/vNFI9K/smlpe
http://paperpile.com/b/vNFI9K/smlpe
http://paperpile.com/b/vNFI9K/smlpe
http://paperpile.com/b/vNFI9K/smlpe
http://paperpile.com/b/vNFI9K/smlpe
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://paperpile.com/b/vNFI9K/L5HuH
http://paperpile.com/b/vNFI9K/L5HuH
http://paperpile.com/b/vNFI9K/L5HuH
http://paperpile.com/b/vNFI9K/L5HuH
http://paperpile.com/b/vNFI9K/L5HuH
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/z4g3H
http://paperpile.com/b/vNFI9K/YMs0B
http://paperpile.com/b/vNFI9K/YMs0B
http://paperpile.com/b/vNFI9K/YMs0B
http://paperpile.com/b/vNFI9K/YMs0B
http://paperpile.com/b/vNFI9K/YMs0B
http://paperpile.com/b/vNFI9K/YMs0B
http://paperpile.com/b/vNFI9K/BcDON
http://paperpile.com/b/vNFI9K/BcDON
http://paperpile.com/b/vNFI9K/BcDON
http://paperpile.com/b/vNFI9K/BcDON
http://paperpile.com/b/vNFI9K/BcDON
http://paperpile.com/b/vNFI9K/BcDON
http://paperpile.com/b/vNFI9K/lKQ0t
http://paperpile.com/b/vNFI9K/lKQ0t
http://paperpile.com/b/vNFI9K/lKQ0t
http://paperpile.com/b/vNFI9K/lKQ0t
http://dx.doi.org/10.1109/mcse.2007.53
http://paperpile.com/b/vNFI9K/QTVBk

58

GigaScience, 5(1), 30.

Quach, H., Rotival, M., Pothlichet, J., Loh, Y.-H. E., Dannemann, M., Zidane, N., … Quintana-Murci, L.

(2016). Genetic Adaptation and Neandertal Admixture Shaped the Immune System of Human

Populations. Cell, 167(3), 643–656.e17.

Ramsköld, D., Wang, E. T., Burge, C. B., & Sandberg, R. (2009). An abundance of ubiquitously

expressed genes revealed by tissue transcriptome sequence data. PLoS Computational Biology, 5(12),

e1000598.

Ripley, B. D. (2007). Pattern Recognition and Neural Networks. Cambridge University Press.

Sayols, S., Scherzinger, D., & Klein, H. (2016). dupRadar: a Bioconductor package for the assessment of

PCR artifacts in RNA-Seq data. BMC Bioinformatics, 17(1), 428.

Schwartzentruber, J., Foskolou, S., Kilpinen, H., Rodrigues, J., Alasoo, K., Knights, A. J., … HIPSCI

Consortium. (2018). Molecular and functional variation in iPSC-derived sensory neurons. Nature

Genetics, 50(1), 54–61.

Shabalin, A. A. (2012). Matrix eQTL: ultra fast eQTL analysis via large matrix operations.

Bioinformatics , 28(10), 1353–1358.

Silver, A. (2017). Software simplified. Nature, 546(7656), 173–174.

Siva, N. (2008). 1000 Genomes project. Nature Biotechnology, 26(3), 256.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., … Robinson, G. E.

(2015). Big Data: Astronomical or Genomical? PLoS Biology, 13(7), e1002195.

Stodden, V., Borwein, J., & Bailey, D. H. (2013). Setting the default to reproducible. Computational

Science Research. SIAM News, 46(5), 4–6.

’t Hoen, P. A. C., Friedländer, M. R., Almlöf, J., Sammeth, M., Pulyakhina, I., Anvar, S. Y., …

Lappalainen, T. (2013). Reproducibility of high-throughput mRNA and small RNA sequencing across

laboratories. Nature Biotechnology, 31(11), 1015–1022.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., … Pachter, L. (2012). Differential

gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature

http://paperpile.com/b/vNFI9K/QTVBk
http://paperpile.com/b/vNFI9K/QTVBk
http://paperpile.com/b/vNFI9K/QTVBk
http://paperpile.com/b/vNFI9K/QTVBk
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/9zkqh
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/CbpJV
http://paperpile.com/b/vNFI9K/vp380
http://paperpile.com/b/vNFI9K/vp380
http://paperpile.com/b/vNFI9K/vp380
http://paperpile.com/b/vNFI9K/BFTjq
http://paperpile.com/b/vNFI9K/BFTjq
http://paperpile.com/b/vNFI9K/BFTjq
http://paperpile.com/b/vNFI9K/BFTjq
http://paperpile.com/b/vNFI9K/BFTjq
http://paperpile.com/b/vNFI9K/BFTjq
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/enyhl
http://paperpile.com/b/vNFI9K/ShQzE
http://paperpile.com/b/vNFI9K/ShQzE
http://paperpile.com/b/vNFI9K/ShQzE
http://paperpile.com/b/vNFI9K/ShQzE
http://paperpile.com/b/vNFI9K/ShQzE
http://paperpile.com/b/vNFI9K/ShQzE
http://paperpile.com/b/vNFI9K/yCZaU
http://paperpile.com/b/vNFI9K/yCZaU
http://paperpile.com/b/vNFI9K/yCZaU
http://paperpile.com/b/vNFI9K/yCZaU
http://paperpile.com/b/vNFI9K/yCZaU
http://paperpile.com/b/vNFI9K/RfSR6
http://paperpile.com/b/vNFI9K/RfSR6
http://paperpile.com/b/vNFI9K/RfSR6
http://paperpile.com/b/vNFI9K/RfSR6
http://paperpile.com/b/vNFI9K/RfSR6
http://paperpile.com/b/vNFI9K/Ry6NJ
http://paperpile.com/b/vNFI9K/Ry6NJ
http://paperpile.com/b/vNFI9K/Ry6NJ
http://paperpile.com/b/vNFI9K/Ry6NJ
http://paperpile.com/b/vNFI9K/Ry6NJ
http://paperpile.com/b/vNFI9K/Ry6NJ
http://paperpile.com/b/vNFI9K/0dBY1
http://paperpile.com/b/vNFI9K/0dBY1
http://paperpile.com/b/vNFI9K/0dBY1
http://paperpile.com/b/vNFI9K/0dBY1
http://paperpile.com/b/vNFI9K/0dBY1
http://paperpile.com/b/vNFI9K/0dBY1
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/1cnj5
http://paperpile.com/b/vNFI9K/RjORH
http://paperpile.com/b/vNFI9K/RjORH
http://paperpile.com/b/vNFI9K/RjORH

59

Protocols, 7(3), 562–578.

van der Velde, K., Imhann, F., Charbon, B., Pang, C., van Enckevort, D., Slofstra, M., Barbieri, R.,

Alberts, R., Hendriksen, D., Kelpin, F., de Haan, M., de Boer, T., Haakma, S., Stroomberg, C., Scholtens,

S., van de Geijn, G., Festen, E., Weersma, R. and Swertz, M. (2018). MOLGENIS research: advanced

bioinformatics data software for non-bioinformaticians. Bioinformatics, 35(6), pp.1076-1078.

Vernables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. Springer, New York, New

York, USA.

Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery.

American Journal of Human Genetics, 90(1), 7–24.

Wagner, G. P., Kin, K., & Lynch, V. J. (2012). Measurement of mRNA abundance using RNA-seq data:

RPKM measure is inconsistent among samples. Theory in Biosciences = Theorie in Den

Biowissenschaften, 131(4), 281–285.

Wang, J., Zheng, J., Wang, Z., Li, H., & Deng, M. (2019). Inferring Gene-Disease Association by an

Integrative Analysis of eQTL Genome-Wide Association Study and Protein-Protein Interaction Data.

Human Heredity, 83(3), 117–129.

Wang, L., Wang, S., & Li, W. (2012). RSeQC: quality control of RNA-seq experiments. Bioinformatics ,

28(16), 2184–2185.

Wang, Y., Liu, J., Huang, B. O., Xu, Y.-M., Li, J., Huang, L.-F., … Wang, X.-Z. (2015). Mechanism of

alternative splicing and its regulation. Biomedical Reports, 3(2), 152–158.

Wilkie, G. S., Dickson, K. S., & Gray, N. K. (2003). Regulation of mRNA translation by 5’- and 3'-UTR-

binding factors. Trends in Biochemical Sciences, 28(4), 182–188.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent

Laboratory Systems, 2(1), 37–52.

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., … Goble, C. (2013). The

Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in

the cloud. Nucleic Acids Research, 41(Web Server issue), W557–W561.

http://paperpile.com/b/vNFI9K/RjORH
http://paperpile.com/b/vNFI9K/RjORH
http://paperpile.com/b/vNFI9K/RjORH
http://paperpile.com/b/vNFI9K/RjORH
http://paperpile.com/b/vNFI9K/Yzila
http://paperpile.com/b/vNFI9K/Yzila
http://paperpile.com/b/vNFI9K/htBol
http://paperpile.com/b/vNFI9K/htBol
http://paperpile.com/b/vNFI9K/htBol
http://paperpile.com/b/vNFI9K/htBol
http://paperpile.com/b/vNFI9K/htBol
http://paperpile.com/b/vNFI9K/htBol
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/WIysV
http://paperpile.com/b/vNFI9K/BrfIy
http://paperpile.com/b/vNFI9K/BrfIy
http://paperpile.com/b/vNFI9K/BrfIy
http://paperpile.com/b/vNFI9K/BrfIy
http://paperpile.com/b/vNFI9K/BrfIy
http://paperpile.com/b/vNFI9K/BrfIy
http://paperpile.com/b/vNFI9K/H0aMv
http://paperpile.com/b/vNFI9K/H0aMv
http://paperpile.com/b/vNFI9K/H0aMv
http://paperpile.com/b/vNFI9K/H0aMv
http://paperpile.com/b/vNFI9K/H0aMv
http://paperpile.com/b/vNFI9K/H0aMv
http://paperpile.com/b/vNFI9K/CKxLi
http://paperpile.com/b/vNFI9K/CKxLi
http://paperpile.com/b/vNFI9K/CKxLi
http://paperpile.com/b/vNFI9K/CKxLi
http://paperpile.com/b/vNFI9K/CKxLi
http://paperpile.com/b/vNFI9K/CKxLi
http://paperpile.com/b/vNFI9K/QeVXF
http://paperpile.com/b/vNFI9K/QeVXF
http://paperpile.com/b/vNFI9K/QeVXF
http://paperpile.com/b/vNFI9K/QeVXF
http://paperpile.com/b/vNFI9K/QeVXF
http://paperpile.com/b/vNFI9K/QeVXF
http://paperpile.com/b/vNFI9K/hK2y3
http://paperpile.com/b/vNFI9K/hK2y3
http://paperpile.com/b/vNFI9K/hK2y3
http://paperpile.com/b/vNFI9K/hK2y3
http://paperpile.com/b/vNFI9K/hK2y3
http://paperpile.com/b/vNFI9K/hK2y3
http://paperpile.com/b/vNFI9K/GyRRU
http://paperpile.com/b/vNFI9K/GyRRU
http://paperpile.com/b/vNFI9K/GyRRU
http://paperpile.com/b/vNFI9K/GyRRU
http://paperpile.com/b/vNFI9K/GyRRU
http://paperpile.com/b/vNFI9K/GyRRU
http://paperpile.com/b/vNFI9K/GyRRU

60

Yung, C. K., Mihaiescu, G. L., Tiernay, B., Zhang, J., Gerthoffert, F., Yang, A., … Stein, L. D. (2017).

Abstract 378: The Cancer Genome Collaboratory. Cancer Research, 77(13 Supplement), 378–378.

Zhernakova, D. V., Deelen, P., Vermaat, M., van Iterson, M., van Galen, M., Arindrarto, W., … Franke,

L. (2016). Identification of context-dependent expression quantitative trait loci in whole blood. Nature

Genetics. https://doi.org/10.1038/ng.3737

http://paperpile.com/b/vNFI9K/PhFh9
http://paperpile.com/b/vNFI9K/PhFh9
http://paperpile.com/b/vNFI9K/PhFh9
http://paperpile.com/b/vNFI9K/PhFh9
http://paperpile.com/b/vNFI9K/PhFh9
http://paperpile.com/b/vNFI9K/PhFh9
http://paperpile.com/b/vNFI9K/3ljPL
http://paperpile.com/b/vNFI9K/3ljPL
http://paperpile.com/b/vNFI9K/3ljPL
http://paperpile.com/b/vNFI9K/3ljPL
http://paperpile.com/b/vNFI9K/3ljPL
http://dx.doi.org/10.1038/ng.3737

61

8. Appendices

1. Full list of studies processed in a context of eQTL Catalog project (List is prepared by main researcher of the project Kaur

Alasoo for documentation purposes). All datasets also have a “naive” stimulation, where there is no any stimulation applied.

For instance, dataset of Alasoo_2018 study has 3 stimultions in addition to naive, hence it has 4 qtl_groups.

Study name
Number of

donors
Number of
samples

Experiment
type

Cell types or
tissues

Stimulations
Number of
qtl_group’s

Publication DOI

CEDAR 322 2388 microarray

T-cell,
transverse_colon,
monocyte,
neutrophil, platelet,
rectum, B-cell,
ileum

 8 http://dx.doi.org/10.1038/s41467-018-04365-8

Fairfax_2012 282 282 microarray B-cell 1 http://dx.doi.org/10.1038/ng.2205

Fairfax_2014 424 1372 microarray monocyte
IFN24, LPS2,
LPS24

4 http://dx.doi.org/10.1126/science.1246949

Kasela_2017 297 553 microarray T-cell 1 http://dx.doi.org/10.1371/journal.pgen.1006643

Naranbhai_2015 93 93 microarray neutrophil 1 http://dx.doi.org/10.1038/ncomms8545

Raj_2014 515 984 microarray T-cell, monocyte 2 http://dx.doi.org/10.1126/science.1249547

Alasoo_2018 84 336 RNA-seq macrophage
IFNg,
Salmonella,
IFNg+Salmonella

4 http://dx.doi.org/10.1038/s41588-018-0046-7

BLUEPRINT 197 554 RNA-seq
monocyte,
neutrophil, T-cell

 3 https://doi.org/10.1016/j.cell.2016.10.026

http://dx.doi.org/10.1038/s41467-018-04365-8
http://dx.doi.org/10.1038/ng.2205
http://dx.doi.org/10.1126/science.1246949
http://dx.doi.org/10.1371/journal.pgen.1006643
http://dx.doi.org/10.1038/ncomms8545
http://dx.doi.org/10.1126/science.1249547
http://dx.doi.org/10.1038/s41588-018-0046-7
https://doi.org/10.1016/j.cell.2016.10.026

62

GENCORD 195 560 RNA-seq
LCL, fibroblast, T-
cell

 3 https://doi.org/10.7554/eLife.00523

GEUVADIS 445 445 RNA-seq LCL 1 https://doi.org/10.1038/nature12531

HipSci 322 322 RNA-seq iPSC 1 https://doi.org/10.1038/nature22403

Nedelec_2016 168 493 RNA-seq macrophage
Listeria,
Salmonella

3 http://dx.doi.org/10.1016/j.cell.2016.09.025

Quach_2016 200 969 RNA-seq monocyte
LPS,
Pam3CSK4,
R848, IAV

5 http://dx.doi.org/10.1016/j.cell.2016.09.024

Schwartzentruber_2018 98 98 RNA-seq sensory_neuron 1 http://dx.doi.org/10.1038/s41588-017-0005-8

TwinsUK 433 1364 RNA-seq
fat, LCL, skin,
blood

 4 http://dx.doi.org/10.1038/ng.3162

van_de_Bunt_2015 117 117 RNA-seq pancreatic_islet 1 https://doi.org/10.1371/journal.pgen.1005694

Ye_2018 261 573 RNA-seq dendritic_cell IFN, FLU 3 http://dx.doi.org/10.1101/gr.240390.118

https://doi.org/10.7554/eLife.00523
https://doi.org/10.1038/nature12531
https://doi.org/10.1038/nature22403
http://dx.doi.org/10.1016/j.cell.2016.09.025
http://dx.doi.org/10.1016/j.cell.2016.09.024
http://dx.doi.org/10.1038/s41588-017-0005-8
http://dx.doi.org/10.1038/ng.3162
https://doi.org/10.1371/journal.pgen.1005694
http://dx.doi.org/10.1101/gr.240390.118

63

9. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Nurlan Kerimov,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the purpose of preservation, including for

adding to the DSpace digital archives until the expiry of the term of copyright, “Designing a robust and portable workflow for

detecting genetic variants associated with molecular phenotypes across multiple studies”, supervised by Kaur Alasoo.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the public via the web environment of the

University of Tartu, including via the DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows,

by giving appropriate credit to the author, to reproduce, distribute the work and communicate it to the public, and prohibits the creation

of derivative works and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual property rights or rights arising from the

personal data protection legislation.

Nurlan Kerimov

16/05/2019

