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Title: Designing a robust and portable workflow for detecting genetic variants associated with 

molecular phenotypes across multiple studies 

Abstract: 

Quantitative trait locus (QTL) analysis links variations in molecular phenotype expression levels 

to genotype variation. This analysis has become a standard practice to better understand molecular 

mechanisms underlying complex traits and diseases. Typical QTL analysis consists of multiple 

steps. Although a diverse set of tools is available to perform these individual analysis, the tools 

have so far not been integrated into a reproducible and scalable workflow that is easy to use across 

a wide range computational environments. Our analysis workflow consists of three modules. The 

analysis starts with quantification of the phenotype of interest, proceeds with normalisation and 

quality control and finishes with the QTL analysis. For phenotype quantification and QTL 

mapping modules we developed pipelines following best practices of the nf-core framework. The 

pipelines are containerized, open-source, extensible and eligible to be parallelly executed in a 

variety computational environments. For quality control module we developed a script which 

automatically computes the measures of quality and provides user with information. As a proof of 

concept, we uniformly processed more than 40 context specific groups from more than 15 studies 

and discovered at least one significant eQTL for more than 9000 genes. We believe that adopting 

our pipelines will increase reproducibility, portability and robustness of QTL analysis in 

comparison to existing approaches.  

Keywords: pipeline; workflow; bioinformatics tools; workflow framework; QTL mapping; 

containerized pipeline 

CERCS: B110 Bioinformatics, medical informatics, biomathematics, biometrics 
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Pealkiri eesti keeles Töökindla ja teisaldatava töövoo väljatöötamine molekulaarsete tunnustega 

seotud geneetiliste variantide tuvastamiseks mitmetest andmestikest 

Lühikokkuvõte: 

Kvantitatiivse tunnuse lookusteks (quantitative trait locus, QTL) nimetatakse geneetilisi variante, 

millel on statistiline seos mõne molekulaarse tunnusega. QTL analüüs võimaldab paremini aru 

saada komplekshaiguseid ja tunnuseid mõjutavatest molekulaarsetest mehhanismidest. Tüüpiline 

QTL analüüs koosneb suurest hulgast sammudest, mille kõigi jaoks on olemas palju erinevaid 

tööriistu, kuid mida ei ole siiani kokku pandud ühte lihtsasti kasutatavasse, teisaldatavasse ning 

korratavasse töövoogu. Käesolevas töös loodud töövoog koosneb kolmest moodulist: huvipakkuva 

tunnuse kvantifitseerimine (i), andmete normaliseerimine ja kvaliteedikontroll (ii) ning QTL 

analüüs (iii). Kvantifitseerimise ja QTL analüüsi moodulite jaoks kasutasime Nextflow töövoo 

juhtimise süsteemi ning järgisime kõiki nf-core raamistiku parimaid praktikaid. Mõlemad töövoo 

moodulid on avatud lähekoodiga ning kasutavad tarkvarakonteinereid, mis võimaldab kasutajatel 

neid lihtsalt laiendada ning jooksutada erinevates arvutuskeskkondades. Kvaliteedikontrolli 

teostamiseks ning andmete normaliseerimiseks arendasime välja skripti, mis automaatselt arvutab 

välja erinevad kvaliteedimõõdikud ning esitab need kasutajale. Juhtprojekti raames viisime läbi 

geeniekspressiooni QTL analüüsi 15 andmestikus ja 40 erinevas bioloogilises kontekstis ning 

tuvastasime vähemalt ühe statistiliselt olulise QTLi enam kui 9000 geenile. Loodud töövoogude 

laialdasem kasutuselevõtt võimaldab muuta QTL analüüsi korratavamaks, teisaldatavamaks ning 

lihtsamini kasutatavaks. 

Võtmesõnad: töövoog, QTL analüüs, töövoo raamistik, konteinerdamine 

CERCS: B110 Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika 
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1. Introduction 

1.1. Terms and Notions 

Deoxyribonucleic acid (DNA): A molecule carrying genetic information and composed of four 

nucleotides (cytosine [C], guanine [G], adenine [A] or thymine [T]) 

Ribonucleic acid (RNA): A molecule primarily created on basis of DNA code and also composed 

of four nucleotides (cytosine [C], guanine [G], adenine [A] or uracil [U]). RNA has various 

biological roles in a cell. 

Nucleotide: organic molecules that serve as building units of DNA and RNA 

Genomic variant: a difference in a specific position between genotypes of two organisms 

belonging to the same species  

Single Nucleotide Polymorphism (SNP): genomic variant which occurs as a substitution of single 

nucleotide 

Gene: a sequence of nucleotides in DNA or RNA that codes for a molecule that has a function. 

Transcript: one of the possible versions of the gene sequence. 

Genomic feature: a genomic region with some annotated function. (e.g. gene, transcript, exon) 

Expression: Abundance of the specific genomic feature in a specified biological environment 

Sample: Genetic material obtained from a specific source (e.g. human, tissue) 

Phenotype: The set of observable characteristics of a sample (e.g. gene and exon expression levels) 

Genotype: The genetic constitution of an individual organism.  

Metadata: A set of data that describes and gives information about other data. 

Computation node: A set of configured hardware in order to serve computational power 

Computation cluster: A set of computation nodes 

Job (Task): A computational activity to be executed in computation node and requiring pre-defined 

amount of computational power.  

Executor (Job scheduling system): A software to orchestrate execution of tasks in the computation 

cluster. 

Execution environment: An environment equipped with necessary software in order to execute 

tasks. 
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1.2. Biological Background 

Bioinformatics is a multidisciplinary field which needs the expertise of biologists, software 

engineers and computer scientists (Brass, 2000). To make efficient tools for biologists, software 

engineers and computer scientists should understand the basics of the domain they are working in. 

Thus, knowledge of the central dogma of molecular biology, Genome Wide Association Studies, 

Quantitative Trait Loci mapping and colocalisation is essential. 

1.2.1. Central Dogma of Molecular Biology 

In molecular biology, molecular functions are mostly performed by proteins. These large and 

complex molecules are required for the structure, function and regulation of organism’s tissues. 

The abundance or structure of the specific protein in human cells can provide information about a 

specific trait (e.g. disease) (Dermitzakis, 2008; Emilsson et al., 2008; Liu, Gershon, & Kelsoe, 

2017). The idea of the central dogma describes the process of protein production from genetic 

code. This unidirectional process consists of two main steps: transcription and translation, and 

can be described as DNA ⇨  RNA ⇨  Protein (Figure 1.1). 

Figure 1.1. High level representation of central dogma of molecular biology. 

Figure obtained from molecular biology curriculum of KhanAcademy1. 

In the human body, all cells have the same DNA, however the amount of transcribed RNA is 

different. The amount of transcribed RNA from a specific gene determines the gene expression 

level, which directly affects protein abundance produced from the same gene. Although each cell 

can express (activate, turn on) majority of the genes, some cell types can additionally express 

specific genes and repress (unexpress, turn off) others (Ramsköld, Wang, Burge, & Sandberg, 

2009). The behaviour of expressing and repressing the genes is called gene regulation. Gene 

                                                 
1
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-

rna/a/overview-of-transcription 

 
 

https://paperpile.com/c/wYdAjq/hhDFx
https://paperpile.com/c/wYdAjq/xxqV4+kgCf7+LUDTn
https://paperpile.com/c/wYdAjq/xxqV4+kgCf7+LUDTn
https://paperpile.com/c/wYdAjq/vDpHR
https://paperpile.com/c/wYdAjq/vDpHR
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription
https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription
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regulation plays an important role in cell development, functionality and adaptation to the 

environment. Genes are regulated in different patterns, for example, muscle cells have to look and 

function differently from a brain cell or liver cell. Although we know that gene regulation is vital 

for life, this complicated process is not fully understood yet2. Gene regulation most commonly 

occurs at the transcription level, however it can be effective in any step of gene expression. 

Transcription is the process of producing messenger RNA (mRNA) from DNA. One strand of 

the DNA double helix acts as a template for the construction of a matching complementary RNA 

strand. A molecular machine called the RNA polymerase binds to a promoter region of a gene with 

the help of transcription factors, and starts to copy a sequence of the gene to an RNA molecule. 

In eukaryotic cells (e.g. human cells), the transcribed RNA molecule in this stage is considered 

“immature” RNA (a.k.a. pre-mRNA or primary transcript), and needs to go through modifications 

(RNA processing) to become a mature mRNA. These modifications are splicing, capping and 

polyadenylation (poly-A tail addition), and are the main events which designate the content of 

mature mRNA.  

A pre-mRNA contains exons (regions in genes which will become a piece of mature mRNA) and 

introns (regions which do not survive the RNA processing modifications). In the splicing process, 

introns are removed and exons are joined in order to form mRNA from pre-mRNA. Splicing occurs 

in the nucleus of the cell, either during the transcription process or immediately after transcription 

is completed. Sometimes alternative splicing occurs, where splicing process creates different 

sequences of mRNA by varying the exon composition of pre-mRNA (J. Chen & Weiss, 2015; Y. 

Wang et al., 2015). When alternative splicing happens, different combinations of exon and intron 

usage result in production of a variety of proteins and other gene products (Figure 1.2). Alternative 

splicing is not a random process. It is regulated by regulatory protein molecules and often depends 

on genetic variants within or nearby the transcribed gene. 

Other two steps of pre-mRNA processing are five-prime capping (5’ capping) and three-prime (3’) 

end tail polyadenylation. The 5’ end of the transcribed gene is the side where the transcription 

starts and capping of this side happens shortly after the transcription is initiated. A special molecule 

is added to the 5’ end to make mRNA more stable and mature to be able to undergo the translation 

process. Polyadenylation (poly(A)) on the other hand, is the addition of multiple adenine bases to 

specific (poly(A)) site in the 3’ end of the newly transcribed pre-mRNA. This process is also vital 

for stability and translation of the mRNA, because the tail of the mRNA is shortened overtime and 

absence of poly(A) tail can result in degradation of the mRNA before reaching the translation. 

Usually, protein coding genes have multiple polyadenylation sites, so poly(A) tail can be added in 

any of them and change the content of mRNA. This phenomenon, called alternative 

polyadenylation, makes it possible to produce different mRNAs from one gene that are different 

in their 3’ ends, eventually ending up with production of different proteins. Alternative promoter 

                                                 
2
 https://ghr.nlm.nih.gov/primer/howgeneswork/geneonoff 

https://paperpile.com/c/wYdAjq/nqDs0+XDYcV
https://paperpile.com/c/wYdAjq/nqDs0+XDYcV
https://ghr.nlm.nih.gov/primer/howgeneswork/geneonoff
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usage (choice), on the other hand, is another regulatory event, which defines the first exon of a 

gene to be transcribed (Figure 1.2) (Ayoubi & Van De Ven, 1996; Kimura et al., 2006).  

Translation is the process where a mature mRNA is decoded in order to build a protein or a 

subunit of a protein. In eukaryotes (organisms whose cells have a nucleus), it happens outside of 

the nucleus by ribosomes with the help of transport RNA (tRNA). Although gene expression can 

also be regulated at the translation level (Wilkie, Dickson, & Gray, 2003), we will not discuss this 

further, because the RNA sequencing data used in this thesis measures mRNA abundance. 

1.2.2. Quantifying RNA-seq Transcription  

RNA sequencing (RNA-seq) data are essentially a collection of text strings representing nucleotide 

sequences. To produce this data, mature mRNA is extracted from the cell, fragmented, 

complementary DNA (cDNA) fragments made and then sequenced with a high-throughput 

sequencing machine (Marioni, Mason, Mane, Stephens, & Gilad, 2008) (Figure 1.3). High-

throughput sequencing machines produce short sequences of basepais, called sequencing reads. 

To extract interpretable information from the experiment, the reads need to be aligned to the 

reference sequence to quantify the relative counts of specific phenotypes. For instance, to quantify 

gene expression, the reads should be aligned to the reference genome sequence of the 

corresponding species (Figure 1.3). 

 
Figure 1.2. Symbolic representation of alternative splicing, 

alternative promoter and alternative polyadenylation events. 

Figure is obtained from (J. Chen & Weiss, 2015) study. 

 

https://paperpile.com/c/wYdAjq/bSlEV+v79mq
https://paperpile.com/c/wYdAjq/Ncgpd
https://paperpile.com/c/wYdAjq/yXgRs
https://paperpile.com/c/wYdAjq/nqDs0
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Figure 1.3. Visual summary of RNA-seq data sequencing and alignment. Figure obtained 

from RNA-seq wikipedia article3 and is available under CC BY 4.0 license4 

Reads produced by the sequencing machines are usually stored in the FASTQ file format (Figure 

1.4). 

1.2.3. Genetic variation 

The human genome is 3.1 billion nucleotides long and there are two copies of each chromosome. 

Any two individuals differ from each other at 0.5% of the loci, which means there are differences 

in more than 100 million locations (a.k.a. genetic variants). Each variant can have either reference 

                                                 
3
 https://en.wikipedia.org/wiki/RNA-Seq 

4
 Thomas Shafee [CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)] 

 
 

 
Figure 1.4. Example of a read in FASTQ file. First line: unique identifier, second line: sequence of bases, third 

line: optional unique ID repetition with description, fourth line: quality values for sequence of bases in line 2. 

https://en.wikipedia.org/wiki/RNA-Seq
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or alternative allele inherited from one of the parents. Since humans have two sets of each 

chromosome (diploid, one inherited from the mother and another from the father), there are three 

possible value combinations of the inherited variant (1000 Genomes Project Consortium et al., 

2015). For instance, in Table 1.1 variant with ID chr1_1301656_T_C has a reference allele of 

nucleotide “T” and alternative allele of nucleotide “C” in the reference genome. Hence, three 

possible inheritance combinations are “TT”, “TC” and “CC” (“CT” is the equivalent of “TC”). 

The sample (e.g. donor, person) indicated with ID “geno_275” has two reference alleles (e.g. “TT”, 

homozygous) inherited from the parents, and does not inherit alternative allele for this variant. The 

same person has one copy of both reference and alternative alleles for the variant 

chr1_1302799_C_A (e.g. “CA”, heterozygous). Genotypes can be measured using genotyping 

microarrays or whole genome sequencing. Genotype data is typically stored in variant call format 

(VCF, (Danecek et al., 2011)) files (Table 1.1). 

1.2.4. Genome-Wide Association Studies (GWASs) 

The main goal of human genetics is to find genetic risk factors for the specific traits (e.g. diseases). 

There are a number of different tools, study designs and technologies to identify these risk factors. 

GWAS is an observational study of genetic variants in a specific cohort of individuals, which aims 

to find if any genetic variant is associated with a particular trait (e.g. disease). If a new genetic 

association is identified, researchers can contribute this finding to the pool of associations for 

future use by the community. This tremendous database helps researchers to come up with better 

strategies to detect, treat or prevent various diseases (Buniello et al., 2018). GWASs have been 

continuously grown over the past fifteen years into a great resource. While interpreting the 

complexity of human diseases is an essential objective, it is not the only target of human genetics. 

Pharmacology is a major beneficiary of GWAS. Pharmacogenetics studies associations of DNA 

sequence variations with drug metabolism and efficacy along with negative effects (Bush & 

Moore, 2012). This type of genetic studies have led to establishment of a new field called 

personalised medicine that aims to fit healthcare to individual patients based on their genetic 

information and other biological parameters. 

1.2.5. Quantitative Trait Locus (QTL) Mapping 

Another method for identifying associations between phenotypic data (traits) and genotypic data 

is quantitative trait locus (QTL) analysis. This statistical method attempts to clarify genetic bases 

of variation in complex traits. The phenotypic data in QTL analysis are quantitative traits which 

Table 1.1. Visual representation of two variants in VCF file format. 

CHR POS ID REF ALT QUAL FILTER INFO FORMAT geno_275 

1 1301656 chr1_1301656_T_C T C 100 PASS --- GT 0|0 

1 1302799 chr1_1302799_C_A C A 100 PASS --- GT 1|0 

 

https://paperpile.com/c/wYdAjq/42scP
https://paperpile.com/c/wYdAjq/42scP
https://paperpile.com/c/wYdAjq/6wjqN
https://paperpile.com/c/wYdAjq/qDg0z
https://paperpile.com/c/wYdAjq/M2RKF
https://paperpile.com/c/wYdAjq/M2RKF
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can include aspects of morphology (e.g. weight, height); behavior (e.g. aggression, stress); 

physiology (e.g. blood pressure, oxygen saturation levels); as well as molecular phenotypes (e.g. 

gene expression levels, splicing events). If the abundance of a quantitative trait can be associated 

with a specific genetic variant in the genome, then this association can help to understand certain 

diseases associated with the quantitative trait. This process of associating quantitative traits with 

the genotype is called QTL mapping. Whereas phenotypes are represented by quantitative traits, 

genotype information is usually represented as molecular markers, such as single nucleotide 

polymorphisms (SNPs), polymorphic insertions or deletions (indels) or larger structural variants 

(Mackay, 2009). Another powerful feature of QTL studies is the ability to analyse associations in 

various contexts. Quantitative traits can be affected by several properties such as environment, 

sex, diet, cell type, experimental time point or any external stimulus. QTL mapping enables 

researchers to observe the effect of a specific SNP in a specific context which can be compared to 

the effect of the same SNP in another context. For example, the same allele can increase the 

expression of one gene in monocytes but might not affect the regulation of the same gene in B 

cells (Figure 1.5). The output of the QTL mapping process is called summary statistics, because it 

summarises the association information by containing p-values (probability of observing an 

association under the null hypothesis of there is no association), effect sizes and standard errors of 

 
Figure 1.5. Cell type specific effect of the allele to the gene expression. a) T allele of rs2223286 

variant is associated with decreased  expression of SELL gene in B cells, but increased expression 

in Monocytes. b) T allele of rs738289 variant is associated with decreased  expression of MGAT3 

gene in B cells but does not affect regulation in monocytes. Same allele does not affect regulation 

of SYNGR1 gene in B cells but downregulates the expression of it in monocytes. Figure is 

obtained from (Fairfax et al., 2012). 

 

https://paperpile.com/c/wYdAjq/w9YQe
https://paperpile.com/c/wYdAjq/GzWne
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it5. Ultimately, summary statistics are compared to variants associated to disease in order to find 

if they are colocalised.  

1.2.6. Colocalisatin 

QTL analysis is becoming increasingly popular in genetic research and they are an excellent 

complement to GWASs. GWASs have become a very powerful method to identify genetic variants 

associated with a complex disease. Nonetheless, most of the significant loci identified by GWASs 

are in the non-coding regions of the genome. This makes it challenging to understand the molecular 

mechanisms underlying these associations (Visscher, Brown, McCarthy, & Yang, 2012). On the 

other hand, QTL studies identify candidate SNPs associated with molecular traits, such as gene 

expression or splicing, but these associations cannot be easily related to the higher level organismal 

phenotypes (e.g. diseases). Several algorithms have been developed to colocalise information of 

eQTL SNPs and GWAS candidate SNPs to deduce the information between disease and gene (J. 

Wang, Zheng, Wang, Li, & Deng, 2019). The underlying idea is that if an allele is more common 

in disease carrier samples and at the same time this allele is found to be associated with the 

expression of particular genes, then it is likely that these genes influence the disease risk through 

changed expression (Figure 1.6).  

Usually there is no single genetic variant in GWAS and QTL associations, but multiple correlated 

variants, simply because they are inherited together. This fact makes difficult to assess if the 

disease and quantitative trait are regulated by the same causal variant. Thus, Giambartolomei et al. 

(Giambartolomei et al., 2014) developed a statistical methodology to assess if the two associations 

are consistent (GWAS and QTL associations) with a shared causal variant. As a result, this method 

enables to infer associations between quantitative traits and disease by using GWAS and QTL 

summary statistics (Figure 1.6). 

                                                 
5
 https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html 

 
Figure 1.6. Association map between genetic variants, quantitative trait and disease. 

Colocalisation uses  QTL and GWAS associations to associate a quantitative trait to 

a disease by finding probable causal variants. 

 

https://paperpile.com/c/wYdAjq/7YoA
https://paperpile.com/c/wYdAjq/e0USK
https://paperpile.com/c/wYdAjq/e0USK
https://paperpile.com/c/wYdAjq/VRT1X
https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html
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1.3. Project Overview 
The work in this thesis contributes to the eQTL Catalogue6, a collaborative project between the 

University of Tartu and the European Bioinformatics Institute. The aim of the project is to compile 

the largest catalogue of genetic variants associated with different transcriptional quantitative traits 

(gene expression, alternative splicing, transcript usage and exon expression) across tissues, cell 

types and cellular contexts. In the project, we aim to process quantitative trait expressions and 

genotype data from more than 23,000 biological samples across more than 18 distinct studies and 

40 distinct biological contexts (“QTL groups”), all of which need to be processed separately for 

QTL mapping (Table 1.2 and Appendix 1). These groups are mostly formed of combinations of 

cell types and conditions (e.g. applied stimuli) of samples. For example, a study by Alasoo et al. 

(Alasoo et al., 2018) exposed human macrophages to Salmonella and IFNγ (interferon gamma) 

stimulations and detected eQTLs whose effect sizes changed after stimulation (response eQTLs). 

With the comparison of different QTL groups they were able to uncover novel molecular 

mechanisms concerning the response of immune cells to environmental stimuli. Ultimately, the 

catalogue allows researchers to query any disease-associated variant to identify associated target 

genes across a range of tissues, cell types and conditions, leading to better hypotheses about 

possible disease mechanisms. 

The eQTL Catalogue is, in essence, a set of QTL summary statistics. To produce QTL summary 

statistics, raw data should be processed through two distinct procedures: quantification and QTL 

mapping. Since multiple datasets and QTL groups from various studies are involved in the project, 

they should be processed uniformly to reduce technical biases and variability between datasets. 

The fact that datasets are big in volume (more than 250 Terabytes) and they should be processed 

by QTL groups necessitates to have a scalable and robust processing method. Additionally, this 

                                                 
6
 https://ensembl.github.io/eQTL-Catalogue-website/ 

Table 1.2: Subset of studies we processed with the pipeline. The QTL group is the combination of cell type 

and condition for each study. For example, BLUEPRINT study has 3 QTL groups and Alasoo_2018 study has 

4. Studies: Alasoo_2018, BLUEPRINT (L. Chen et al., 2016), GEUVADIS (Lappalainen et al., 2013), 

Nedelec_2016 (Nédélec et al., 2016), Quach_2016 (Quach et al., 2016), TwinsUK (Buil et al., 2015). 

Study Donors Samples Cell types Conditions QTL group count 

Alasoo_2018 84 336 macrophage 
naive, IFNγ, Salmonella, 

IFNγ+Salmonella 
4 

BLUEPRINT 197 608 monocyte, T-cell, neutrophil naive 3 

GEUVADIS 462 462 LCL naive 1 

Nedelec_2016 171 503 macrophage naive, Salmonella, Listeria 3 

Quach_2016 200 970 monocyte 
naive, LPS, R848, IAV, 

Pam3CSK4 
5 

TwinsUK 433 1364 LCL, skin, fat, blood naive 4 

 

https://paperpile.com/c/wYdAjq/KZL3w
https://ensembl.github.io/eQTL-Catalogue-website/
https://paperpile.com/c/wYdAjq/Gdism
https://paperpile.com/c/wYdAjq/iJWLc
https://paperpile.com/c/wYdAjq/c2Laa
https://paperpile.com/c/wYdAjq/aJuqX
https://paperpile.com/c/wYdAjq/ah6GY
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method should support addition of new datasets to the project. The method should also enable to 

process the data in parallel and should support usage of computational clusters. Taking into 

account all the mentioned requirements, we decided to develop a bioinformatics pipeline to 

perform both quantification and QTL mapping procedures. 

A key contribution of the thesis is the development of a robust and portable data analysis pipeline 

that can be run across diverse computational environments. The pipeline allows us to uniformly 

process large datasets in a parallel, scalable and reproducible manner. Additionally, developed 

pipelines are extremely portable which enables to process data hosted on public and private clouds 

without the need to download the data locally. This is especially important for the CINECA 

project7, in which we will jointly analyse gene expression data from multiple large national cohorts 

such as BIOS (Zhernakova et al., 2016) and the Estonian Genome Center (Lepik et al., 2017) where 

sensitive individual-level genetic data cannot leave country boundaries. 

The thesis consists of six chapters. In chapter 2, I will explain the properties of modern 

bioinformatics pipelines, classification of the pipeline frameworks and pipeline design decisions. 

Then, I will describe each step of QTL mapping analysis in detail. In Figure 1.7 the high-level 

representation of QTL summary statistics generation (QTL mapping analysis) from raw RNA-seq 

reads and genotype data is shown. Chapter 3 will contain descriptions of supported quantification 

methods and technical overview of the developed quantification pipeline. After quantification, a 

number of quality control steps should be performed to ensure the high quality of the processed 

data. Post-quantification quality control measures will be extensively described in chapter 4. 

Finally, I will explain all the details of QTL mapping pipeline in chapter 5, including an overview 

of the pipeline, description of the QTL mapping process, description of inputs and outputs, and 

decisions made about the technical implementation. The thesis will end with explanations of 

conclusions of the related work and list of the used studies’ references. 

                                                 
7
 https://www.ebi.ac.uk/about/news/press-releases/CINECA-facilitates-transcontinental-human-data-exchange 

 
Figure 1.7. High level representation of QTL analysis steps. 
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2. Bioinformatics Pipelines 

Due to fast developments in technology, the cost of DNA sequencing has decreased significantly 

since the Human Genome Project (Lander et al., 2001) and the 1000 Genomes project (1000 

Genomes Project Consortium et al., 2015; Siva, 2008) were completed. Now the whole human 

genome can be sequenced for less than $1000. Based on this factor and other technological 

advances, biological data is being generated in large volumes, and it has been accepted as a big 

data field for several years (Y. Li & Chen, 2014). The future of genomics data alone is predicted 

to exceed other big data related fields such as astronomy, YouTube and Twitter by the year 2025 

(Stephens et al., 2015).  

To cope with increasing volumes of genomics data, better and more efficient processing techniques 

are required. To satisfy these requirements, new tools are constantly being developed by academic 

institutions, private companies and government-funded organisations. In data analysis, 

reproducibility is required to enable the validation and consistency of the study results. 

Reproducing the results is easy, if the analysis is performed in a single computer, using a software 

containers such as Docker (Merkel, 2014) and Singularity (Kurtzer, Sochat, & Bauer, 2017), and 

tools like Jupyter Notebooks (Perez & Granger, 2007) and Rmarkdown (Allaire et al., 2016). 

However, genomic data analysis usually has to be run in parallel on compute clusters. This analysis 

has multiple steps that need to be abstracted and coordinated according to the computation 

environment (execution environment, cluster queue systems, software dependencies etc.). 

Eventually, results computed in parallel need to be collated together as output of analysis. In the 

bioinformatics field, this process is called a pipeline or a workflow. In addition to reproducibility 

of the results and task parallelisation, the most important requirements for modern pipelines are 

reusability, portability and dependency isolation.  

2.1. Properties of Pipelines 

To process genomic data, researchers usually shepherd files through a series of specific steps. The 

set of these steps is called a bioinformatic pipeline. Modern pipelines need to have the following 

properties to meet the requirements of modern research. 

2.1.1. Reproducibility (Replicability) 

Processing a dataset at different times, with same set of parameters should produce the same (or 

consistent) results, independent of location and computational environment. This property is 

known as reproducibility of the results and modern pipelines are expected to support it. Nowadays 

the major scientific journals require to publish data and code to assure reproducibility of the study 

results (a.k.a. “reviewable research”, (Stodden, Borwein, & Bailey, 2013)). This requirement is 

reasonable since otherwise, it would not be possible to verify the results presented in the 

publication. The concept of reproducibility is usually referred to in terms of “provenance” (Gil et 

al., 2007; Kanwal, Khan, Lonie, & Sinnott, 2017) which in pipeline circles refers to the origins of 

https://paperpile.com/c/wYdAjq/hbkmC
https://paperpile.com/c/wYdAjq/IEZJm+42scP
https://paperpile.com/c/wYdAjq/IEZJm+42scP
https://paperpile.com/c/wYdAjq/xiVoG
https://paperpile.com/c/wYdAjq/3IhNb
https://paperpile.com/c/wYdAjq/GRgpW
https://paperpile.com/c/wYdAjq/ZuBbc
https://paperpile.com/c/wYdAjq/0lGQ6
https://paperpile.com/c/wYdAjq/96mDx
https://paperpile.com/c/wYdAjq/BVYMO
https://paperpile.com/c/wYdAjq/p9YjH+79ffA
https://paperpile.com/c/wYdAjq/p9YjH+79ffA
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input data, tools, results and intermediates (Leipzig, 2018). Replicating (reproducing the results) 

an experiment in a location and operator agnostic manner is a key element in modern science 

(Kulkarni et al., 2018). To reproduce the results of a bioinformatics study, the data needs to be 

accessible and the tools, together with the step-by-step guidelines to reprocess the data, need to be 

available (Usability and archival stability of computational tools).  

Data availability - Genomic data and its privacy are concepts which need very careful attention, 

since misuse of the data can have serious consequences. Genomics is a relatively new field, and 

with the development of biotechnology and increases in computational power, findings are 

happening more frequently in comparison to the previous century. It is not known what can be 

done with the genetic data of the donor in the future and that is why it should be kept according to 

donor’s consent. Taking this potential power of genomic data into consideration, usually, data is 

separated according to donor’s consent to access levels: open access data which is publicly 

available for anyone to use and managed (controlled) access data which needs special permission 

for usage. Hence, if the experiment involves controlled access data, corresponding permissions 

must be obtained to replicate the experiment. 

Usability and archival stability of computational tools - After obtaining the data to be 

reprocessed, the main challenge of replicating an experiment is technical. Usually the problem is 

one of the two following aspects: 

1. The software used in the experiment is not available or can not be installed. A recent 

comprehensive analysis of 24,490 bioinformatics software resources published from 2000 

to 2017 showed that 26% of the tools needed for reproduction were not accessible at all, 

24% of accessible software failed to install and 49% were deemed “hard to install” (Mangul 

et al., 2018). This empirical study also found that the publications introducing new software 

have significantly more citations if they provide an accessible and easy installation process.  

2. The exact guidelines about usage of the software involved in the experiment are 

unavailable. Usually in bioinformatics data analysis, command-line tools are used, where 

each tool executes a specific job according to provided parameters. Providing different 

parameters or not providing the needed parameters can lead to generation of different 

results. Hence, the information about how exactly the software was used in the experiment 

should be provided in order to achieve consistent results. If the used software has multiple 

released versions, it is important to specify which version was used in the experiment, in 

order to ensure the consistency of results. 

Therefore, reproducibility is an essential issue especially because pipelines use several tools. Each 

tool in the pipeline should be accessible and usage of it should be human-readable and 

understandable (explanation comments can be added if the code is not self explanatory, e.g. 

explanation of each parameter used). A pipeline can become useless if even one of the tools is not 

available or produces inconsistent results. 

https://paperpile.com/c/wYdAjq/G2C59
https://paperpile.com/c/wYdAjq/cufbj
https://paperpile.com/c/wYdAjq/tvpkO
https://paperpile.com/c/wYdAjq/tvpkO
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2.1.2. Portability 

In data science fields the primary resource is the data itself. It is understandable that some 

organisations do not want to share this valuable resource publicly. In genomics, in addition to the 

value of the resource, there are also legal duties to protect the sensitive data of research 

participants. For these reasons, some authors and institutions simply are not allowed to share their 

genetic data. Genetic data analysis is an incredibly dynamic field, which continuously produces 

new methods, and there is the potential to generate new discoveries by applying new or different 

analysis methods to already existing data. Genetic data generated (sequenced) with one scientific 

question in mind can often be used for another study even if it was not initially generated for it 

(Denk, 2017). However, sometimes, it is challenging to overcome the legal issues to get raw 

genetic data, and that is where the portability of the pipeline plays a vital role. For instance, 

sometimes genomic data cannot be moved outside of a country due to local data protection laws. 

In this case, renting private clouds within the borders of the country and performing the 

computation there with a portable pipeline is an eligible option. Because, even if the sharing of 

raw data is not allowed, the summary-level data analysis results generated from the raw data can 

often be shared with third party organisations or even published publicly, since it is impossible to 

deduce the donors’ private information from the generated results.  

Portability is also appreciated when in an organisation an existing infrastructure changes or some 

other organisation with different technical infrastructure wants to use the pipeline. Being able to 

publish and re-use existing pipelines can significantly improve the efficacy of the data analysis 

process, because researchers do not have to reimplement the same pipelines from scratch and can 

spend more time on interpreting the results. For instance, nf-core (Ewels et al., 2019) is a 

community curated initiative which provides portable and ready-to-use pipelines for public use. 

2.1.3. Scalability 

Each step of the pipeline has specific hardware resource requirements such as memory, time and 

number of needed compute processors (CPU cores) in order to successfully process the specified 

data. When the specified set of resource requirements and data to be processed becomes available 

for executing the step (process) of the pipeline, a task scheduler (e.g. job scheduling systems of 

high performance computing cluster) reserves resources and performs the step. Usually, the 

resource needs of software used in the pipeline are in a linear relationship with the input file size. 

When the needed resources become very large to handle because of the size of the input file, 

software sometimes provides additional options to divide the input file into chunks and process 

them in a parallel manner with less resources but as multiple individual tasks. Therefore, if the 

functionality of the software can scale according to the volume of the input data then the software 

is considered to be scalable. Since the pipeline in essence is a set of tools used in a specific 

configuration, all the tools used in the pipeline should be scalable in order to consider a pipeline 

as scalable (Fjukstad & Bongo, 2017).  

https://paperpile.com/c/wYdAjq/cNimb
https://paperpile.com/c/wYdAjq/9zWIj
https://paperpile.com/c/wYdAjq/IJiBz
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2.1.4. Dependency Isolation 

It is very common to use existing tools and libraries in software development. That is how a 

developed software becomes dependent on other software. Moreover, if any of the dependencies 

have special needs like a specific operating system or environment, dependent software also 

inherits these needs. When it comes to bioinformatics pipelines, the situation is similar, especially 

when pipelines are script wrappers which use a number of external tools to process and analyse 

data in a structured and efficient manner. Accessibility and stability of software tools used in the 

pipeline increase according to their level of dependency isolation. Consequently, pipelines with 

highly isolated dependencies provide better portability and replicability features. 

We have classified the dependency isolation levels according to their degree from not isolated to 

highly isolated. 

1. No isolation - This is the case when the dependencies and environment needed for the 

execution of the pipeline are only documented in a relevant chapter of the pipeline 

documentation file and it is assumed that the needed tools are waiting in a “ready to use” 

state in the specific environment the pipeline is designed for. Consequently, any change to 

the software environment can cause the pipeline to fail (Baggerly & Coombes, 2009; 

Ioannidis et al., 2009) or generate inconsistent results due to different versions of the 

software tools used (Piccolo & Frampton, 2016). Typically, single script file pipelines are 

good examples of this, where all tasks and their order, environment-dependent 

configurations, and parameters of tools used in the tasks are defined in a single file. Thus, 

if the working environment changes, the change of the pipeline file becomes inevitable.  

2. Isolate workflow logic from the execution environment - When the pipeline is hardcoded 

to communicate with a specific cluster environment, running it in a different environment 

takes a lot of effort. However, if the workflow logic and execution environment 

configuration are isolated, it requires no change in the workflow logic. Usually, workflow 

frameworks offer easy-to-set configuration options to run the pipeline in a different 

execution environment. This isolation level still requires manual installation of software 

required by the pipeline, but isolation between workflow logic and the execution 

environment is guaranteed. It means that if a user has a workflow and the needed 

dependencies are installed, a pipeline can be executed with any executor by only changing 

the configuration file and keeping the workflow logic unchanged. That is a good feature to 

have, especially since there is a number of different computing  platforms that can be used 

such as SGE, SLURM, LSF, PBS/Torque, NQSII, HTCondor, AWS Batch, Ignite, 

GA4GH TES and Kubernetes. 

3. Conda integration - Conda is a package, dependency and environment manager, which can 

be used on all major operating systems8. Conda downloads software packages from defined 

channels and installs them into an isolated environment. That is a good way of isolating 

dependencies for several reasons. Firstly, it is enough to provide a recipe for needed 

                                                 
8
 https://conda.io/ 
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dependencies and Conda will take care of creating an environment with the provided recipe 

(Figure 2.1). Therefore, researchers with less software experience will not have difficulties 

running the pipeline, and there is no need to provide the dependency itself but only the 

recipe. It is also possible to manually add scripts to a created Conda environment, which 

enables local testing of the developed script in an isolated environment, but in return it 

decreases the portability of the pipeline. Additionally, Conda is an open source initiative, 

so that anyone can contribute their own software package to it. Finally, it has a very well 

tested package repository, which guarantees the stable performance of a specific version 

of a specific tool. However, Conda environments do not contain an isolated operating 

system, and some packages are not available for all operating systems, which limits the 

portability of Conda environments and makes it inferior to containerised isolation.  

4. Containerisation - Nowadays the best-known dependency isolation is done by containers. 

Containers contain all the needed software to run the pipeline. It is different from Conda 

because containers keep the software itself and not the recipe of it. There are some 

advantages of containers over other dependency isolation methods. First, containers are 

extremely portable and can make dependencies of a pipeline highly accessible. 

Consequently, given that the execution environment also supports containerisation 

technologies, containerised pipeline dependencies will enable portability and 

reproducibility of the pipeline, basically by easily accessing the dependencies provided 

within container. As in Conda-like isolation, manually adding custom scripts to a container 

is also possible, and is not limiting the portability of either the container or the pipeline. 

Although it is possible to manually build “black-box” containers, this approach is not 

advisable. Because, even though the pipeline is reproducible (produces the same results 

when rerun), it is not possible to verify what the custom software actually does in the 

container. Thus, in order to provide the exact content (tools with corresponding versions) 

of the container, the recipe used to build it should be also provided. Currently, the most 

popular software container tools are Docker (Merkel, 2014) and Singularity (Kurtzer et al., 

2017). Typically, the software containers are built using a recipe file (e.g. Dockerfile) 

which contains the base image and step-by-step instructions about how to build the 

container. The base image is a previously built container, usually containing basic needs 

of a container such as an operating system. However, the nf-core initiative provided a base 

 
Figure 2.1. Example of Conda environment recipe file. 
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image with an operating system and Conda software installed, together with a Dockerfile 

and Singularity recipes to use the provided base image. Using these provided resources 

makes it straightforward and painless to build the container with a Conda-like recipe. For 

instance, to build a Docker container, Docker software creates a container with base image 

which contains an operating system and Conda, and creates a Conda environment with 

provided Conda-like recipe inside the container. Hence, if the pipeline provides a Conda-

like recipe for creation of Conda environment, it is possible to easily build a software 

container with the same provided recipe. After building the container, storing it in a specific 

web repository like Docker Hub9 or Singularity Hub10 is an easy and common way of 

storing and sharing containers. Since the container hubs are open for public, it is possible 

to pull and use already existing containers in the hub. Docker is essentially designed for 

use of enterprise software production systems and it gives superuser privileges to the user. 

In multi-user systems such as HPCs, there is no good way of restricting users with such 

privileges from accessing other users’ data. Singularity, another containerization platform, 

behaves like Docker but does not require administrative privileges to be used (Silver, 

2017). Finally, with containerisation it became relatively easier to automate the testing of 

dependencies. Continuous integration and delivery are vital for most software development 

organisations and containerisation provides an opportunity to apply well-known practices 

of dependency isolation and continuous integration to bioinformatics pipeline 

development. 

2.1.5. Parallelisation 

Genomic data files usually are large collections of short reads (~100 base pairs, depending on the 

sequencing platform). Reads are the sequences of characters read out from the DNA. There are 

several steps in a pipeline to process these files and extract meaningful information. Some of these 

steps should be performed in parallel to achieve high efficiency in terms of time and cost. 

Nowadays, even personal laptops usually have more than one multi-core CPUs which can run jobs 

in parallel. However, to host these parallel operations there are High Performance Computing 

(HPC) clusters specifically designed to increase the throughput of scientific analysis. HPCs’ 

operating systems are usually Linux based and have job scheduling systems (also called executors) 

which orchestrate jobs into different nodes to be processed. Each job has its own resource needs, 

and scheduling systems should use the resources in an efficient way to meet these needs. For 

instance, given that there are ready-to-use sufficient hardware resources, from the user’s point of 

view, the total running time of the pipeline for processing either 2 or 200 samples should not differ 

greatly.  

                                                 
9
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https://paperpile.com/c/wYdAjq/Yvxhp
https://paperpile.com/c/wYdAjq/Yvxhp
https://hub.docker.com/
https://singularity-hub.org/


21 

Computational power can also be outsourced if an institution does not want to maintain this 

computational infrastructure by themselves. Cloud batch computing services are gaining more and 

more popularity for the following reasons:  

● Users do not have to think about maintenance of the cluster since service providers take 

care of it.   

● In bioinformatic analysis, lots of huge reference files are used. Storing these files also has 

costs. Some cloud batch computing services keep these reference files in common storage 

which means that anyone can use them without paying extra (Yung et al., 2017). 

● Since transferring the files can also be costly, it is usually a good idea to keep the raw data 

close to the computing power. That is why these services also offer private storage options 

to keep the raw data in the cloud. Furthermore, some large-scale genomics project such as 

The Cancer Genomics Atlas have made their data available on the cloud, removing the 

need for analysts to download hundreds of terabytes of raw data11.  

● Cloud services usually offer different pricing options, and usually, a user pays only when 

they use it. For instance, AWS Batch calls it the “Pay-as-you-go” approach12. This also 

makes cloud systems extremely scalable. 

On the other hand, cloud systems also have some drawbacks. The major reasons why some 

institutions decline to use cloud services are the cost of the service and security of their data. First, 

if there is a high demand to continuous service of computational power in an institution, it is 

usually cheaper in a long term to acquire inhouse HPC. Secondly, although cloud service providers 

ensure to keep users’ data safe, some research institutions do not prefer to use these services due 

to the potential issues described in (Kandukuri, V., & Rakshit, 2009). 

2.1.6. Reusability 

There are two contexts to evaluate the reusability of a pipeline: reusability of a pipeline by end-

users and reusability of the pipeline by other developers. 

Reusability of a pipeline by end-users - Although there are already multiple options for biologists 

to gain enough informatics knowledge to use bioinformatics software and interpret its results, 

bioinformatic pipelines should be designed such that minimum configuration change would be 

enough to run it successfully. In this context, reusability means how easy it is for users to install 

and execute the pipeline on their own data. The bioinformatics pipeline is considered to be reusable 

if the the user without prior knowledge of the field can use the pipeline with minimal effort. 

Additionally, it is acceptable to allow the users to change parameters of the pipeline in order to 

make it better fit to their data and execution environment. Therefore, giving some options to 

change the parameters is considered as flexibility of the pipeline, which in return increases the 

reusability of it. Currently, there is no consensus test to measure the reusability of a bioinformatics 
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 http://www.cancergenomicscloud.org/ 
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pipeline, that is why feedback provided by users and popularity in the community are considered 

to be the main measures. 

Reusability of the pipeline by other developers (a.k.a. extensibility) - Researchers could want 

to use an existing pipeline as a basis for the development of new pipelines. In this context, 

reusability means how easy it is for developers to extend a pipeline or use the source code of a 

pipeline for development of a new one. The adoption of a “pipeline step modularisation” approach 

by most institutions made it common to reuse these steps in other studies (Leipzig, 2018).  

Open Source Software (OSS) movement is one of the major powers of software engineering 

nowadays (Carillo & Okoli, 2008). The main beneficial properties of OSS are transparency, easy 

collaboration and an immense knowledge pool (Dabbish, Stuart, Tsay, & Herbsleb, 2012). The 

bioinformatics field also used the benefits of the shared development platform. Various institutions 

have proclaimed developing reusable, robust and open source bioinformatics pipelines as one of 

their objectives (e.g. (Ewels et al., 2019)). Another benefit of OSS is the community support which 

is usually provided by code repository issues, chat channels like Gitter13, free agile development 

tools like Slack and Trello and mail groups. With the help of these communication channels, users 

and developers get quick help on how to use and develop the pipelines, and the main contributors 

get rapid feedback which results in bug fixes and development of new features.  

2.2. Comparison of Pipeline Frameworks and Design Decisions 
Some well-known pipelines have been collected in the public repository (Di Tommaso, awesome-

pipeline). These pipelines have differences regarding design philosophies, technical issues, 

difficulty of usage, environment dependency and some other factors. To get a broader view of 

bioinformatics pipelines a review study by Jeremy Leipzig (2017) classifies existing pipelines 

according to three criteria: syntax, paradigm and interaction.  

2.2.1. Classification of Pipelines 

Syntax - Explicit frameworks following the idea of tightly linking the tasks together in a certain 

order and providing inputs to the very first task in order to be processed in a fixed-order chain of 

tasks. Not relying on input names, output names and transformation rules between them makes 

explicit frameworks simple and robust but limits the flexibility of the pipeline to process the newly 

added files in addition to already processed ones. Galaxy (Goecks, Nekrutenko, Taylor, & Galaxy 

Team, 2010), Taverna (Wolstencroft et al., 2013) and Ruffus (Goodstadt, 2010) are good examples 

of explicit paradigm using pipelines. On the other hand, in the implicit syntax frameworks, it is 

sufficient to specify inputs and expected outputs (target files), and intermediate steps are calculated 

automatically by the framework. Hence, the order of tasks is managed implicitly by the framework 

and not hard-coded by the user (Figure 2.2).  
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Implicit frameworks are mainly descendants of Make which was designed in the '70s as one of the 

early developed domain specific languages (DSL). Make offers a set of rules and a symbol-based 

syntax which define how input files will be transformed into outputs, and output files will feed the 

next step with inputs and so on. The implicit DSLs’ crucial feature is reentrancy, i.e. ability to 

distinguish already processed files and not reprocess them. It checks the modification date of the 

input file and compares it to the modification date of an existing output file. If the target file exists 

and the input file is older than the target file, Make considers it as an already processed file. 

Reentrancy is vital for a pipeline development process when potential errors are expected and 

recovering from them takes less time thanks to this ability. Some implicit frameworks such as 

Nextflow (Di Tommaso et al., 2017) and Snakemake (Köster & Rahmann, 2012) follow the Make 

concept with the support of full-featured programming languages, respectively Groovy and 

Python. Snakemake, as a faithful follower of Make, is file-centric, whereas Nextflow introduces 

channels to pass intermediate forms of steps to each other which eliminates the need of tagging 

intermediates with complex file suffix names (Leipzig, 2018). In Nextflow, input and outputs are 

typed values which offer more flexibility concerning keeping intermediates in memory while 

ensuring reentrancy with caching.  

Design Paradigm - DSLs are known to be designed based on a conventional design paradigm, 

when a directed acyclic graph (DAG) is dynamically generated according to the syntax rules of 

the language, input files and target files. On the other hand, explicit frameworks create DAGs with 

the help of APIs or visual user interfaces. Explicit frameworks’ DAG structure is static, where an 

ordered chain of tasks is described in a fixed XML or JSON format, and changing the provided 

 
Figure 2.2. a) Symbolic representation of explicit pipeline frameworks. The tasks are tightly coupled in 

a specific order. Input file is processed step by step in a chain of ordered tasks to produce an output file. 

b) Symbolic representation of implicit pipeline frameworks. There is no fixed order of tasks. Instead, 

framework calculates intermediate steps according to provided target file and input file. 
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input does not change the structure of generated DAG. Hence, explicit frameworks are considered 

to be members of configuration-based paradigm. Another design paradigm called class-based 

paradigm covers design principles of frameworks that are bounded to an existing code library 

instead of independent executables. More detailed analysis of design paradigms is provided in 

(Leipzig, 2017).  

Interaction - In contrast to command-line based pipeline frameworks, workbenches provide users 

with a graphical user interface. In this interface, the user can add nodes (pipeline tasks - 

preconfigured modular tools) and connect them (representing the data flow - the outputs of the 

previous step become the input of the next) to develop a pipeline. These kinds of frameworks are 

very suitable for scientists who have an understanding of the expected input and output files but 

have a little or no coding experience. One drawback is that existing modular steps have to be 

sufficient for the analysis. Open source workbenches can be installed both locally and in the cloud. 

These workbenches convert a  graphically designed pipeline to a configuration-based pipeline in 

the background. With their large number of options, Galaxy (Goecks et al., 2010) and Taverna 

(Wolstencroft et al., 2013) are the most popular ones. Galaxy offers a web-based interface for 

command-line tools. Galaxy’s interface is easy to use, but it needs some coding skills to add new 

modules. Taverna, on the other hand, allows pipelines to reach tools distributed across the Internet 

and needs more development skills to develop new plug-ins (modules). There are some 

commercial cloud-based Software as a Service (SaaS) workbenches such as Illumina’s 

Table 2.1. The classification of modern pipeline frameworks. Table 

is obtained from (Leipzig, 2017) and used without modifications 
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BaseSpace14, SevenBridges15 and DNANexus16. Cloud-based services like these make the pipeline 

reusability, sharing and collaborations easier. To sum up the findings, the tabular representation of 

the modern pipeline frameworks’ classification made by Jeremy Leipzig (Leipzig, 2017) is shown 

in Table 2.1.   

2.3. Pipeline Requirements of the Project 
Having a variety of pipeline development frameworks providing number of different features 

makes it difficult to choose the best among them. One pipeline framework can be highly scalable 

but lack flexibility to modify the pipeline by the users. Therefore, a pipeline framework should be 

chosen according to the specific needs of the project. Our project requires that the pipeline to be 

developed should have the following features: 

1. Pipeline should be portable between a wide range of different compute environments. It 

can be developed and prototyped in the HPC at University of Tartu, but it should be able 

to run in other environments such as EBI Embassy Cloud17, Google Cloud18 and HPC 

environments of our partners with minimal effort. Next release of GTEx (GTEx 

Consortium, 2013) will be distributed using Google Cloud and is expected to contain 160 

terabytes of data. Portability of pipeline should enable the analysis of this data without 

downloading it locally, which can take several weeks and requires lots of local space. 

2. Pipeline should be able to handle large volumes of data. The volume of genomic datasets 

is continuously increasing and performance of the pipeline should scale accordingly. 

3. Pipeline should support reentrancy. Processing time of datasets is usually correlated with 

their size. Thus, processing large datasets can take considerable amount of time. If the 

execution of a pipeline is stopped for any reason, rerunning the pipeline should not 

reprocess already processed entities, but should resume from the point it stopped at. 

4. Pipeline should be robust to disruptions in computation. Even in very sophisticated systems 

disruptions of computation can occur. Pipeline should able to handle the exceptions and 

resubmit the interrupted tasks. For instance, usually each individual process of a pipeline 

has specific resource requirements, such as number of processors and memory. Sometimes 

specified resources can become insufficient due to abnormal size of an intermediate file, 

and consequently the task can stop running. Pipeline should understand the nature of the 

error message and increase the specified resource requirement for that specific task 

instance. 

5. Pipeline should be reproducible. Running the pipeline in two different execution 

environments (at different times) with the same input and parameters should result in the 

exact same results.  

                                                 
14

 https://basespace.illumina.com/ 
15

 https://www.sevenbridges.com/ 
16

 https://www.dnanexus.com/ 
17

 https://www.embassycloud.org/ 
18

 https://cloud.google.com/ 

https://paperpile.com/c/wYdAjq/UMcWt
https://paperpile.com/c/wYdAjq/mKQxP
https://paperpile.com/c/wYdAjq/mKQxP
https://basespace.illumina.com/
https://www.sevenbridges.com/
https://www.dnanexus.com/
https://www.embassycloud.org/
https://cloud.google.com/
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6. Pipeline should be inspectable. All the steps of the developed pipeline should be open-

source, human-readable and understandable.  

7. Execution of pipeline should be traceable. Usually the final target files are the main point 

of interest in pipeline execution. However, in order to produce target files, vast amount of 

intermediate files are generated, and sometimes intermediate files play an important role 

in understanding unexpected content of target files. Furthermore, intermediate files can be 

used as inputs of third party tools in order to empower the data analysis with additional 

information. Thus, the pipeline should gracefully handle large numbers of intermediate 

files and automatically delete them when specified to do so.  

8. It should be easy to install and run the pipeline. For instance, support of software containers 

and Conda environments should be provided to minimize the effort to set up the execution 

environment. 

9. Pipeline should follow the best practices of the pipeline development process. Maintenance 

is crucial for longevity of the pipeline. To minimize the effort spent on maintenance, best 

practices should be applied. Best practices are evolved according to needs of the user and 

developer communities. Used framework should have a community who has already 

developed such pipelines and has experience with best practices to be followed.  

10. Pipeline should be reusable and extensible. Modern pipelines should adapt to the new needs 

of the the user community. Hence, the pipeline should be open and eligible to modifications 

and extensions by developers in order to change used tools or to add new features. 

11. Pipeline should support continuous integration. Although usually there is a main developer 

and maintainer of the pipeline, open-source projects are often also changed by other 

developers. To ensure the functionality and the quality of the project, automatic tests are 

performed after each modification and the changes are added to the repository only after 

all tests have passed.  

2.3.1. Comparison of Most Popular Frameworks 

Fortunately, the evolution of pipeline design already serves us good frameworks to develop 

pipelines which provide all of the listed properties. Nonetheless, we have different options 

concerning which framework to use for pipeline development, each pipeline framework has its 

own benefits and drawbacks, and there is no formula to prefer one over the another. A suitable 

framework can be chosen according to the specific goals of the project. The most popular 

frameworks to construct bioinformatics pipelines are Nextflow, Snakemake and Galaxy. Table 2.2 

shows the overall comparative properties of these frameworks. As it can be seen from the table, 

there are no significant differences between the frameworks. All three of them support the main 

features of modern pipelines (e.g. dependency isolation, reentrancy, scalability, reproducibility), 

and that is the reason why they are most popular among others. However, Galaxy is different from 

the other two, being designed for users with little or no coding skills. Being less extensible, lacking 

flexibility of changing hard-coded tool requirements (e.g. needed computational resources) and 

exception handling makes this configuration based framework a weaker candidate for this project. 
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Nextflow and Snakemake are similar frameworks because of their design paradigm. However 

Nextflow, in comparison to Snakemake supports exception handling and has a better community 

providing best practices to easily develop a pipeline from scratch (Ewels et al., 2019). 

Additionally, Nextflow provides a better reentrancy feature based on caching, making debugging 

issues easier and intermediate files inspectable. Snakemake, on the other hand, makes it easier to 

iteratively develop and document data analysis projects, because all of the intermediate files are 

stored in an explicit folder structure.  

Table 2.2. Comparison of three most famous pipeline frameworks. The evaluation of properties with count of 

stars (*) is highly subjective and current values originate from the performed literature review and personal 

experience of the author. 

 Nextflow Snakemake Galaxy 

Syntax Implicit Implicit Explicit 

Paradigm Conventional Conventional Configuration 

Interaction Command-line Command-line GUI Workbench 

Dependency isolation Conda, Docker and 

Singularity 

Conda and Singularity Conda, Docker and 

Singularity 

Dynamic Exception 

Handling 

Supported Not supported Not supported 

Reentrancy Supported by using 

caching 

Supported by tracking 

file names and 

modification times 

Support as a built-in 

feature with less 

flexible options  

Scalability *** *** *** 

Reproducibility *** *** *** 

Extensibility and 

Ease of development 

*** *** * 

Inspectability *** *** ** 

Community, 

availability of best 

practices, CI and 

documentation 

*** * ** 

Flexibility *** *** * 

 

https://paperpile.com/c/wYdAjq/9zWIj
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2.3.2. Pipeline Design Decisions 

Taking into consideration the existing needs of the project, we decided to use the implicit  DSL, 

command-line based script wrapper Nextflow (Di Tommaso et al., 2017) for the following reasons: 

● It is straightforward to install and run. 

● It offers an excellent framework to develop executor and environment agnostic pipelines. 

Nextflow follows “develop once and run everywhere” approach which is extremely 

suitable for our needs since our pipeline should be able to run with many executor engines 

including cloud clusters.  

● It provides good integration with containers like Docker and Singularity, and popular 

package manager Conda (Grüning et al., 2018).  

● It has a very helpful community and easy-to-communicate channels to get help rapidly. 

● There are open-source projects like nf-core19, which provide ready-to-use pipelines that we 

can adopt and make modifications according to our needs. Nf-core provides also a 

collection of best practices and reasonable defaults for pipeline developers. 

● It has good error handling features which make pipelines robust. In bioinformatics 

pipelines each step has minimum resource requirement. In case the process (step) raises an 

error due to resource insufficiency, nextflow provides an option to automatically resubmit 

the task with increased resource requirements. 

● It provides reentrancy feature using the caching, which enables to track intermediate files 

of a particular process. This feature is extremely useful in development stage when a lot of 

debugging actions are required. 

● It provides a good feature for pipeline versioning which increases reproducibility. 

● Continuous integration and continuous testing tools such as Travis CI20 can be easily 

implemented with Nextflow pipelines. 

● Steps (tasks) accept scripts of any scripting language as long as the needed language is 

installed (or provided within a container) and ready-to-use in the pipeline running 

environment. 

● Distinction between intermediate files and final outputs is clear. Final outputs can easily 

be stored in a permanent location without explicitly removing intermediate results. This is 

especially important for quantification pipeline that can produce terabytes of intermediate 

results whereas final outputs are very small. 

3. Quantification Pipeline 
The long term goal of the eQTL Catalogue project is to contain not only eQTLs (gene expression 

QTLs) but also transcript usage (tuQTL), alternative splicing QTLs (sQTL) and exon expression 

                                                 
19

 https://nf-co.re/ 
20

 https://travis-ci.org/ 

https://paperpile.com/c/wYdAjq/8MFpf
https://paperpile.com/c/wYdAjq/EYb9Y
https://nf-co.re/
https://travis-ci.org/
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(eeQTL). To be able to detect these QTLs, we first need to quantify gene expression, transcript 

usage, alternative splicing usage and exon expression from RNA-seq data (Figure 3.1).  

3.1. Quantification Methods 
Several tools have been developed for quantification of these phenotypes (Figure 3.1) (Anders, 

Reyes, & Huber, 2012; Dobin et al., 2013; Kim, Langmead, & Salzberg, 2015; Liao, Smyth, & 

Shi, 2014). Every one of these tools serves to solve a particular problem to reach the common goal: 

to produce a phenotype matrix of a quantitative trait (Table 3.1). Additionally, there are already 

well established pipelines which use a subset of these tools and produce count matrix of one 

phenotype21,22. However, currently there is no public, uniform pipeline which takes the RNA-seq 

raw data and quantifies multiple quantitative traits such as transcript usage, exon expression and 

alternative splicing usage in addition to gene expression. We adopted the nf-core rna-seq pipeline23 

for gene expression, and added the following new quantification methods: 

                                                 
21

 https://usegalaxy.org/u/chmy/w/rna-seq-differential-analysis 
22

 https://github.com/Novartis/EQP-cluster 
23

 https://github.com/nf-core/rnaseq 

 
Figure 3.1. Description of counting reads as gene expression, transcript usage, exon expression and splice-junction 

usage. A gene described in example has 2 transcripts, 3 exons and 3 different splice junctions. a) All reads mapping 

to the gene are summed together to estimate gene expression. b) Reads are assigned to the transcripts that they are 

most likely to originate from. c) Expression level of each exon is quantified separately. d) Reads mapping to splice-

junctions are used to distinguish between two alternatively spliced transcripts. 

 

https://paperpile.com/c/wYdAjq/SBsrZ+cSpEP+0yEQh+Rm7d5
https://paperpile.com/c/wYdAjq/SBsrZ+cSpEP+0yEQh+Rm7d5
https://paperpile.com/c/wYdAjq/SBsrZ+cSpEP+0yEQh+Rm7d5
https://usegalaxy.org/u/chmy/w/rna-seq-differential-analysis
https://github.com/Novartis/EQP-cluster
https://github.com/nf-core/rnaseq
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● Transcript usage 

● Exon expression 

● Alternative splicing usage 

To quantify gene expression, exon expression and alternative splicing usage, RNA-seq reads 

should be aligned to the reference genome to determine the location from which they are 

originated. STAR (Dobin et al., 2013) and HISAT (Kim et al., 2015) are well-known RNA-seq 

aligners, using different algorithms to achieve the goal. STAR uses suffix arrays to provide fast 

aligning, however requires a large amount of random access memory (~27 GB of RAM) to 

function. HISAT, on the other hand, uses an indexing approach based on the Burrows-Wheeler 

transform (M. Burrows, 1994) and the Ferragina-Manzini (Ferragina & Manzini, 2000) index, and 

requires less memory, making it possible to align reads even in personal computers (Kim et al., 

2015). Aligner tools take the raw RNA-seq data (FASTA/FASTQ format (Cock, Fields, Goto, 

Heuer, & Rice, 2010)) and the reference genome file (FASTA format) as inputs and output aligned 

sequence files (SAM/BAM format (H. Li et al., 2009)) and some additional files with metadata. 

To quantify transcript usage, we used Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017) 

which does not align reads to the reference genome, but uses the reference transcriptome instead 

(nucleotide sequences of all transcripts on the reference chromosomes, FASTA format). 

3.1.1. Gene Expression Quantification 

Gene expression is the most commonly used quantification method in RNA-seq analysis. It 

corresponds to the total number of RNA-seq reads mapping to the gene (Figure 3.1a). We use the 

rnaseq pipeline24 developed by the nf-core (Ewels et al., 2019) community. This pipeline provides 

two alignment options: HISAT and STAR, preprocessing and quality assurance tools like fastqc25, 

cutadapt (Martin, 2011), trim_galore, (Krueger, 2015), preseq26, RSeQC (L. Wang, Wang, & Li, 

                                                 
24

 https://github.com/nf-core/rnaseq 
25

 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
26

 http://smithlabresearch.org/software/preseq/ 

Table 3.1. Example of quantified phenotype matrix of gene expression. First two columns contain 

phenotype information (ID and length of the phenotype). Starting from third column, each column name 

represents the sample ID and column values represent expression level of the corresponding phenotype. 

gene_id length UCF018 UCB018 UCT018 UCB019 UCT019 UCB024 

ENSG00000223972 1735 0 0 0 0 0 0 

ENSG00000227232 1351 3 8 14 8 10 22 

ENSG00000233750 3812 0 1 0 0 2 1 

ENSG00000268903 755 1 7 9 11 0 25 

ENSG00000279457 1397 11 31 16 29 29 28 

 

https://paperpile.com/c/wYdAjq/cSpEP
https://paperpile.com/c/wYdAjq/SBsrZ
https://paperpile.com/c/wYdAjq/hLA2C
https://paperpile.com/c/wYdAjq/2Xf0y
https://paperpile.com/c/wYdAjq/SBsrZ
https://paperpile.com/c/wYdAjq/SBsrZ
https://paperpile.com/c/wYdAjq/dO6GT
https://paperpile.com/c/wYdAjq/dO6GT
https://paperpile.com/c/wYdAjq/UdSh9
https://paperpile.com/c/wYdAjq/7qpUK
https://paperpile.com/c/wYdAjq/9zWIj
https://paperpile.com/c/wYdAjq/APdAb
https://paperpile.com/c/wYdAjq/qBdBk
https://paperpile.com/c/wYdAjq/65SF4
https://github.com/nf-core/rnaseq
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://smithlabresearch.org/software/preseq/
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2012), picard tools27, dupRadar (Sayols, Scherzinger, & Klein, 2016) and multiQC (Ewels, 

Magnusson, Lundin, & Käller, 2016). To summarise aligned reads, the pipeline uses the 

featureCounts tool: an efficient program for assigning sequence reads to genomic features. (Liao 

et al., 2014).  

3.1.2. Transcript Usage Quantification 

To estimate the relative expressions of alternative transcripts (Figure 3.1b) we used Salmon (Patro 

et al., 2017). Quantifying with Salmon consists of three steps: building a salmon index, 

quantification of transcripts and merging the outputs. To build a salmon index, the only needed 

input is the reference transcriptome (FASTA file). For quantification, Salmon takes the built index 

and one raw RNA-seq (FASTQ) file as inputs and estimates the expression of each transcript. 

Salmon is able to quantify individual reads in the FASTQ file in parallel using multiple threads. 

Salmon quantification output contains transcript id, length, effective length, counts per kilobase 

million (TPM normalised count) and number of reads assigned to the transcript. At the end, when 

the transcript expressions of all RNA-seq samples are quantified, independent output files are 

merged into a single phenotype matrix file (Figure 3.2).  

3.1.3. Exon Expression Quantification 

To quantify exon expression levels in RNA-seq data (Figure 3.1c) we used the DEXseq (Anders 

et al., 2012) package from Bioconductor. DEXseq takes an aligned reads (SAM) file and counts 

the number of reads mapped to a specific exon of the gene. Technically, DEXseq consists of a pair 

of python scripts: one to prepare DEXseq annotation file and another for counting reads mapped 

to exons. To build an annotation file, DEXseq needs Gene Transfer Format (GTF) file. It processes 

the exons in GTF file and creates a customized exon annotation file (General Feature Format - 

GFF) where exons do not overlap each other. The second script takes the built annotation file 

(GFF) and aligned RNA-seq reads (BAM), and counts the reads overlapping with new custom 

exons in the annotation file. Each aligned file is quantified individually, therefore the counting 

step produces output for each sample. When exon usage counts are quantified for all samples, 

output files are merged into a count matrix file (Figure 3.3). 

                                                 
27

 http://broadinstitute.github.io/picard/ 

 
Figure 3.2. High-level representation of transcript usage quantification with Salmon. 

 

 

https://paperpile.com/c/wYdAjq/65SF4
https://paperpile.com/c/wYdAjq/h6aHN
https://paperpile.com/c/wYdAjq/h3Kw0
https://paperpile.com/c/wYdAjq/h3Kw0
https://paperpile.com/c/wYdAjq/Rm7d5
https://paperpile.com/c/wYdAjq/Rm7d5
https://paperpile.com/c/wYdAjq/7qpUK
https://paperpile.com/c/wYdAjq/7qpUK
https://paperpile.com/c/wYdAjq/0yEQh
https://paperpile.com/c/wYdAjq/0yEQh
http://broadinstitute.github.io/picard/
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3.1.4. Alternative Splicing Usage Quantification 

Although multiple tools exist to quantify alternative splicing events (Goldstein et al., 2016; Griffith 

et al., 2010; Trapnell et al., 2012), we prefered to use LeafCutter (Y. I. Li et al., 2018) which 

directly measures splice-junction usage and does not rely on known transcript annotations. Splice-

junction usage is a way to quantify alternative splicing from the RNA-seq data by looking at RNA-

seq reads where one half of the read maps to one exon and the other half to another exon, revealing 

the intron that has been spliced out (Figure 3.1d). LeafCutter takes the aligned reads as input 

(BAM) and detects the differences in intron excisions for each input file and clusters them 

according to their junctions (Figure 3.4). This cluster of the different intron excisions is the final 

output (a.k.a. phenotype count matrix) of the LeafCutter tool.  

3.2. Pipeline overview 

The implemented RNA-seq quantification pipeline quantifies all the listed phenotypes in a parallel 

manner to achieve high efficacy in terms of cost and time. Raw RNA-seq sample reads go through 

Quality Control steps and are pre-processed to become ready for further processing. Pre-processed 

sample reads can go directly to transcript expression quantification, however, they  should be 

aligned to the reference genome for gene expression, exon expression and alternative splicing 

usage quantifications. In the quantification step, prerequisite resources of each tool (featureCounts, 

DEXseq, Salmon and LeafCutter) are already prepared and are ready to be used (not shown in 

Figure 3.5). Each aligned sample is quantified individually and a count matrix is generated for 

each sample. When the outputs of all samples for one quantification type have been generated, 

they are merged together to form a merged phenotype count matrix (Figure 3.5).  

 
Figure 3.3. High-level representation of exon expression quantification with DEXseq. 

 

 
Figure 3.4. High-level representation of splice-junction usage quantification with LeafCutter. 

 

https://paperpile.com/c/wYdAjq/Bw68J+S01p6+QSnDd
https://paperpile.com/c/wYdAjq/Bw68J+S01p6+QSnDd
https://paperpile.com/c/wYdAjq/Za75u
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In addition to features that are provided by Nextflow as a framework, adapting the nf-core pipeline 

according to our needs has a number of benefits. First, since nf-core pipelines are actively 

maintained by the community, the tools used in the pipelines are up to date. Secondly, they 

provided well documented guidelines including best practices including a tool28 to simplify the 

                                                 
28

 https://github.com/nf-core/tools 

 

Figure 3.5. High-level representation of quantification pipeline including four different 

phenotype quantification method descriptions. 

 

https://github.com/nf-core/tools
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pipeline development process and a base container image to ease building software containers 

(Docker and Singularity) using a Conda environment recipe. Integrating the Travis CI29 tool 

enabled to easily support the continuous integration of pipeline changes. Finally, the nf-core rnaseq 

pipeline30 is one of the first developed pipelines by nf-core community, hence it continuously 

evolved applying the best known practices. It is currently used by many sequencing facilities such 

as SciLifeLab31 and Wellcome Sanger Institute32, which gives additional confidence to adopt this 

pipeline as a base for our pipeline. 

We did not modify the existing gene expression quantification steps, but added three more 

quantification methods into the pipeline. We followed the best practices and added the necessary 

documentation about usage of the pipeline. The pipeline is freely available for download from 

GitHub33.  

4. Quality Control and Normalisation 

Assessing data quality is essential in studies that contain hundreds of independent samples, 

because low quality samples can manifest as extreme outliers in the dataset. Outlier samples can 

in turn significantly reduce the power of detecting QTLs (Ellis et al., 2013) or skew the overall 

result of the analysis. Furthermore, sometimes two or more samples contaminate each other due 

to minor human errors in the laboratory, so that genetic material from the sample of one individual 

is present in a sample of another individual. This error is called sample cross-contamination and 

can also reduce power to detect QTLs. Therefore, in addition to pre-quantification quality control 

(QC) steps, we applied post-quantification QC measures such as Principal Component Analysis 

(Wold, Esbensen, & Geladi, 1987) and Multidimensional Scaling (Cox & Cox, 2000; Kruskal, 

1964) to detect outliers, and sex-specific gene expression analysis (’t Hoen et al., 2013) and 

sequence-genotype matching analysis (Fort et al., 2017) to detect contaminated and swapped 

samples. To apply these QC measures, estimated feature counts should be normalised according 

to the quantification method. For instance, we used Transcript Per Million (TPM) (Wagner, Kin, 

& Lynch, 2012) method to normalise gene expression and transcript expression counts, and filtered 

out lowly expressed phenotypes (median(TPM) < 1), because lowly expressed phenotypes usually 

do not contribute much to the meaningful signal, but considerably increase the level of noise. 

Although the script that produces these QC figures and tables is automated, we have decided to 

keep the process of identifying low quality samples and resolving conflicts between sample 

identities between RNA-seq and genotype data manual, because extracting thresholds for these 

decisions are often dataset specific and require human judgement. 
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 https://travis-ci.org/ 
30

 https://github.com/nf-core/rnaseq 
31

 https://www.scilifelab.se/ 
32

 https://www.sanger.ac.uk/ 
33

 https://github.com/kerimoff/rnaseq 
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https://paperpile.com/c/wYdAjq/aj8lt+Ol3Fp
https://paperpile.com/c/wYdAjq/rbq5N
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https://www.sanger.ac.uk/
https://github.com/kerimoff/rnaseq
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4.1. Principal Component Analysis (PCA) 
PCA is a linear dimensionality reduction method which aims to collect most of the variance in a 

multidimensional dataset inside the principal components. As a result, it becomes possible to plot 

most of the variation and see if there are any samples in the dataset that look like obvious outliers. 

PCA is one of the most commonly used procedures to summarise a multivariate dataset and detect 

outliers in sample population.  

The BLUEPRINT dataset consists of 608 samples from three distinct cell types (monocytes, T-

cells and neutrophils) that form three distinct clusters in the PCA analysis (Figure 4.1). This dataset 

has no sign of any outlier sample which means PCA analysis did not find any poor quality samples 

to be eliminated from the dataset. Some studies contain several cell types or conditions, whereas 

others focus on only one cell type and have only one (naive) condition (Appendix 1). One such 

dataset is the collection of human induced pluripotent stem cells (iPSCs) generated by the HipSci 

project (Kilpinen et al., 2017). A PCA plot of the latter type of datasets usually look like Figure 

4.2: one big cluster of samples without clear boundaries. The two outliers marked with a circle in 

plot are different than other samples. Principal component 1 values of these outliers differ from 

the cluster of other samples. This fact necessitates to look for the reason of this variance, which 

results in the decision of if the sample will be excluded from further processing with the QTL 

mapping pipeline or not. Usually, in outlier analysis, the reason of the variance is not evident (e.g. 

low sample quality, library preparation errors, sequencing errors, etc), and it is impossible to 

enhance the quality of the outlier samples (correct the unknown variance). Similarly, we could not 

find the reason of the variance of these two outliers and decided to exclude them from the dataset. 

 
Figure 4.1. PCA plot example from BLUEPRINT dataset (no outliers). 

 

https://paperpile.com/c/wYdAjq/ve79m
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PCA of the TwinsUK dataset (Buil et al., 2015) reveals four obvious clusters which represent the 

four cell types and tissues that were profiled (blood, fat, skin and lymphoblastoid cell lines (LCLs)) 

(Figure 4.3). Samples marked with a highlighted circles appear to be outliers with no obvious 

reason, and we decided to remove them from the dataset. 

PCA is a well-recognised and easy to perform method to find outliers in the data. However, when 

the data is about biological signals, usually PCA explains only a fraction of information in two 

principal components. For instance, in Figure 4.2 only 28.5% of all variance is explained in the 

first two principal components. Although in this case it is sufficient to recognise outliers, 

sometimes it is beneficial to explore also more (e.g. third and fourth) principal components.  

 
Figure 4.2. PCA plot example from HipSci dataset. Samples SAMEA2397802 and SAMEA2398792 are outliers.  

 

 
Figure 4.3. PCA plot example from TwinsUK dataset. Samples TWPID8405_S, 

TWPID12889_S, TWPID2140_F, TWPID11605_B and TWPID10593_B are outliers.  

 

https://paperpile.com/c/wYdAjq/ah6GY
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4.2. Multidimensional Scaling (MDS) 

MDS is an exploratory technique used to identify unrecognized dimensions of the dataset 

(Mugavin, 2008). MDS reduces a multidimensional dataset to relatively simple, easy-to-visualize 

structures, which helps us to identify outliers after plotting and analysing it. In contrast to PCA, 

MDS can perform a non-linear dimensionality reduction using distances between each pair of 

samples. It can also force all of the data into a small number of dimensions (e.g. two dimensions) 

that simplifies visualisation. In contrast, since principal components are by definition orthogonal 

to each other, complex datasets are often not adequately summarised by the first two principal 

components. After reducing the phenotype count matrix into two dimensions using MDS, we 

explored outliers. TPM (Wagner et al., 2012) values were used in log2-transformed (log2(0.1 + 

TPM)) scale, after filtering out lowly expressed phenotypes (median(TPM) < 1). Pearson 

correlation was used as the correlation measure and distances between samples were defined as 

distance = 1 - correlation. We used isoMDS function from MASS R package (Cox & Cox, 2000; 

Ripley, 2007; Vernables & Ripley, 2002) with two desired dimensions (k=2) to summarise the 

data into. This technique was first used by Genotype-Tissue Expression (GTEx) Consortium to 

visualise gene expression variability among several tissues across individuals (Melé et al., 2015). 

In Figure 4.4 MDS plot of the BLUEPRINT (L. Chen et al., 2016) dataset is shown. Dataset 

contains three cell types and all three of them are clustered distinctly. There are no outliers to be 

analyzed further, and we consider data resulting in this kind of plot as high quality. However, in 

Figure 4.5 it can be clearly seen that samples marked with circles are located very far away form 

their respective clusters. These samples are considered as outliers and removed from dataset. 

 
Figure 4.4. MDS plot example from BLUEPRINT dataset (no outliers) 

 

https://paperpile.com/c/wYdAjq/50JRJ
https://paperpile.com/c/wYdAjq/hvblr
https://paperpile.com/c/wYdAjq/Ol3Fp+nkk4J+aaY6c
https://paperpile.com/c/wYdAjq/Ol3Fp+nkk4J+aaY6c
https://paperpile.com/c/wYdAjq/4ik31
https://paperpile.com/c/wYdAjq/Gdism
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As expected, the same samples appear to be outliers (TWPID2140_F, TWPID10593_B, 

TWPID11605_B, TWPID12889_S and TWPID8405_S) in both MDS (Figure 4.5) and PCA 

(Figure 4.3) analysis of TwinsUK dataset. This scenario gives additional confidence to eliminate 

these outlier samples from the dataset.  

To get a wider overview about variance between datasets we merged the several datasets and 

plotted the MDS output after decreasing the number of dimensions to two. These kinds of plots 

help us to understand the main contributing factors of the variance into the datasets. In order to 

 
Figure 4.5. MDS plot example from TwinsUK dataset. Samples TWPID2140_F, 

TWPID10593_B, TWPID11605_B, TWPID12889_S and TWPID8405_S are outliers. 

 

 
Figure 4.6. MDS plot of the 5278 distinct samples from seven datasets. Contains. Cell type 

and tissue specific clusters are clearly explaining most of the variance between samples. 

Clusters of Monocytes and T-cells are divided into two subclusters, showing additional 

variance depending on differences between studies’ datasets. 
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make the plot interpretable we only use samples with the “naive” condition (without any stimuli) 

and do not use datasets with very large number of biological contexts (e.g. GTEx). This filtering 

operation enables to decrease the noise and see the samples clustered according to some biological 

property. For instance, Figure 4.6 is a visualisation of MDS analysis of 5278 samples from 7 

datasets. 12 tissues and cell types are clustered distinctly, explaining the source of the main 

variance between samples. However, monocytes and T-cells show extra variance in comparison 

to other cell type specific clusters. Each of these clusters are divided into two distinct subclusters, 

explaining variance derived from differences between datasets.  

4.3. Sex-specific Gene Expression Analysis 

In addition to outlier samples, other common data quality issues are sample swaps (samples 

between two study participants have accidentally been swapped and mislabeled) and cross-

contamination between samples (RNA sample from individual A has been contaminated with 

RNA from individual B). It is not possible to spot the sample swaps or cross contamination of 

samples with PCA and MDS analyses, if affected samples are the same kind (same condition and 

cell type). One strategy to detect this type of data quality issues is to focus on genes that are 

exclusively expressed by one sex. ‘t Hoen et al. (’t Hoen et al., 2013) proposed to plot the 

expression of genes from the Y chromosome against the expression of the XIST gene which is 

only expressed in females. 

We generate a scatter plot with the XIST gene (ENSG00000229807 - found only in females) 

expression in horizontal axis and the Y chromosome gene expression (found only in males) in 

vertical axis, and set the color of each sample according to its donor’s sex. Plot from the 

GEUVADIS study (Lappalainen et al., 2013) is a good example of non-contaminated, correctly 

labeled lymphoblastoid samples (Figure 4.7). In this case, all of the male samples express genes 

from the Y chromosome and no XIST gene, whereas female samples express XIST gene but not 

the genes from the Y chromosome. The perfect separation between male and female samples also 

demonstrate how this analysis can be used to impute sex for RNA-seq samples if this data is not 

present in the original dataset. When there is cross-contamination between samples, the sex-

specific gene expression plot looks like the one from the BLUEPRINT (L. Chen et al., 2016) study 

(Figure 4.7). The blue dots (male samples) marked with circles expressed XIST gene which should 

only be expressed in females. Conversely, red dots (female samples) marked with circles also 

expressed genes from the Y chromosome which should only be present in males. This suggests 

that the two female samples (S003Q3B1_mRNA and S003Q3B1_RNA) have been cross-

contaminated by RNA from one or more male samples and the male samples (S003P5B1_mRNA 

and S003P5B1_RNA) have been cross-contaminated by RNA from one or more female samples 

(expressing the XIST gene). This could be caused by pipetting error while the samples were being 

processed in the lab. Consequently, these samples should be excluded from further analysis. 

https://paperpile.com/c/wYdAjq/rbq5N
https://paperpile.com/c/wYdAjq/iJWLc
https://paperpile.com/c/wYdAjq/Gdism
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Sex-specific gene expression analysis is only effective if the metadata of dataset has sex 

information and the sample swap or contamination happened between samples belonging to donors 

with different sexes (e.g. male and female). 

4.4. Sequence-genotype Matching (MBV analysis) 

Another possibility to detect sample swaps is to directly compare the sample genotypes in VCF 

format to the genotype information that is present in the RNA-seq reads. MBV (Match BAM to 

VCF) is a method to detect mislabeling and technical bias in datasets that contain both genotype 

and sequencing (e.g. RNA-seq) data (Fort et al., 2017). This tool takes an aligned RNA-seq file 

(sample being tested) and a VCF file (Danecek et al., 2011) containing genotypic information of 

multiple samples as input and filters out undercovered variants according to provided parameter 

value. The variants with enough coverage are divided into two groups as homozygous and 

heterozygous sites. Finally, the proportion of consistent reads between the tested sample and each 

genotype sample in VCF file are measured for each group as shown in Formula 4.1. 

The MBV tool creates one output file per each sample in the dataset. All plots shown in Figure 4.8 

are generated from the MBV analysis output of Schwartzentruber et al. (Schwartzentruber et al., 

2018) dataset. Each dot on the plot represents one genotype sample in the VCF file and each plot 

 
Figure 4.7. Sex-specific gene expression plots of GEUVADIS (on the left cide, not contaminated) and 

BLUEPRINT (on the right side, contaminated) datasets 

 

https://paperpile.com/c/wYdAjq/fXfYL
https://paperpile.com/c/wYdAjq/6wjqN
https://paperpile.com/c/wYdAjq/LFUB9
https://paperpile.com/c/wYdAjq/LFUB9
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generated according to analysis of one RNA-seq file (sample being tested). Colors of dots indicate 

if the genotype sample is a match to a tested sample. Hence, a green dot on each plot representing 

the best match genotype sample, and other genotype samples are red. X axis represents consistency 

of the heterozygous sites calculated with Formula 4.1-5. Y axis represents consistency of 

homozygous sites calculated with Formula 4.1-4. For example, the plot in Figure 4.8a is a good 

example of a non-contaminated, correctly labeled sample. The RNA-seq sample SAMEA3234534 

is tested (consistency of both homozygous and heterozygous sites are calculated, Formula 4.1) 

against all of the genotype samples in the VCF file and only one genotype sample (HPSI0513i-

oarz_22) is found to have highly consistent matching sites to the tested sample. In this example, 

more than 97% of homozygous sites in the tested sample (SAMEA3234534) are also homozygous 

in HPSI0513i-oarz_22 genotype sample. Heterozygous sites also show same level of consistency 

(>97%) between tested sample (SAMEA3234534) and matched genotype sample (HPSI0513i-

oarz_22). Yet, consistency between the tested sample and other genotype samples in the VCF file 

are relatively low (consistency of heterozygous sites < 50%, consistency of homozygous sites < 

80%). Therefore, it can be concluded that the tested sample has only one genotype match in the 

VCF file and the sample is not cross-contaminated with genetic material of other samples.  

There are at least three possible conflicts between RNA-seq data and genotype data. Firstly, the 

genotypic data corresponding to the tested sample might not be present in the VCF file (Figure 

4.8b). This technical issue sometimes happens when genotypic data (samples in VCF file) of 

needed samples are extracted from a larger VCF file. It should be analysed further and fixed if 

possible. If not possible to fix, the sample missing genotypic data should be eliminated from the 

dataset. Secondly, the MBV tool is good for detecting cross-contamination between samples 

(Figure 4.8c). The tested sample is fully matched with one genotype sample but also partially 

matched with some other genotype. It usually indicates possible cross-contamination in the 

laboratory. Both of these potentially contaminated samples should be analysed in order to decide 

if to eliminate one or both of the samples from the dataset. Finally, the MBV output plot can look 

like as Figure 4.8d. In the top right corner we see only red dot instead of green. That is because 

the green dot is overwritten and located under the red one, which means that the tested sample is 

perfectly matched with more than one genotype in the VCF file. This indicates that there are 

 
Formula 4.1. Calculation method of consistent reads’ proportions grouped by site type (homozygous 

and heterozygous groups). Summarised according to supplementary material of (Fort et al., 2017) study. 

 

https://paperpile.com/c/wYdAjq/fXfYL
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duplicate samples in the dataset. For QTL analysis one of these duplicate samples usually needs 

to be excluded, because they cannot be considered as independent samples. 

Looking through all of the plots manually can be misleading, because it is easy to miss two 

overlapping samples on a plot. Instead, we analysed the distance between two best matching 

samples to detect potential contaminated and duplicated samples. For that reason, we generate a 

table containing all tested samples (sample_id), best matching genotype to the tested sample 

(mbv_gentotype_id), heterozygous and homozygous consistent fractions of the best match 

 
Figure 4.8. Examples of sequence-genotype matching analysis output plots from Schwartzentuber et al. (2018) 

dataset. X axis represents consistency of heterozygous sites (Formula 4.1-5). Y axis represents consistency of 

homozygous sites (Formula 4.1-4). a) Non-contaminated sample (SAMEA3234534) matches only one genotype 

(HPSI0513i-oarz_22) in the VCF file. b) The tested sample (SAMEA3476959) did not match to any genotype in 

the VCF file. c) Tested sample (SAMEA3864997) fully matches to one genotype (HPSI0613i-qony_1), but also 

partially matches another genotype (HPSI0214i-pelm_3) in the VCF file. d) Tested sample (SAMEA3234610) 

fully matches two genotypes (HPSI1213i-foqj_2 and HPSI0913i-ffdl_1) in the VCF file. 

 

Table 4.1. Example of minimum distance between best matching samples from BLUEPRINT study 

sample_id mbv_genotype_id het_consistent_frac hom_consistent_frac het_min_dist hom_min_dist dist 

S003Q3B1_mRNA S003Q3 0.989 0.688 0.173 0.09 0.196 

S003Q3B1_RNA S003Q3 0.99 0.735 0.223 0.108 0.248 

S003P5B1_mRNA S003P5 0.99 0.775 0.347 0.142 0.374 

S003P5B1_RNA S003P5 0.991 0.835 0.414 0.169 0.447 

S0026AB7 S0026A 0.996 0.89 0.494 0.231 0.545 

S007PQB5 S007PQ 0.995 0.909 0.495 0.23 0.546 

S0041CB7 S0041C 0.994 0.898 0.5 0.22 0.547 

 



43 

(het_consistent_frac and hom_consistent_frac), heterozygous and homozygous minimum distance 

to the second best genotype match to tested sample (het_min_dist and hom_min_dist), and overall 

distance from the best match to the second best match (dist) (Table 4.1). Table 4.1 represents the 

first 7 rows of a sequence-genotype matching analysis output table, ascendingly ordered by 

minimum distance between the best genotype match and the second best genotype match (dist) to 

the tested sample. These samples are potentially contaminated samples and need further analysis. 

To visualise the measurement of minimum distance between the best two matches, scatter plots of 

first (S003Q3B1_mRNA) and sixth (S007PQB5) samples in the table are shown in Figure 4.9. 

The tested sample S003Q3B1_mRNA in Figure 4.9 is an obvious contamination and should be 

eliminated from the dataset. As expected this sample from the BLUEPRINT (L. Chen et al., 2016) 

study appeared to be contaminated also in sex-specific gene expression analysis (Figure 4.7). 

However, the sample S007PQB5 does not seem to be a contaminated one, because the second best 

genotype match (S001C2) is located close to the cluster of unmatched genotypes. This case is open 

to interpretation of the bioinformatician and we decided to keep this sample. 

5. QTL Mapping Pipeline 

Computing association summary statistics with all required technical features (portability, 

scalability, reproducibility etc.) is the main goal of the QTL mapping pipeline. After quality control 

steps are performed and samples with poor quality are eliminated, the phenotype count matrix 

should be normalised according to the quantification method. The normalised phenotype matrix is 

considered ready for QTL mapping. We developed a pipeline which takes phenotype count matrix 

 
Figure 4.9. Plot of the two potentially contaminated samples’ sequence-genotype matching analysis. 

BLUEPRINT (L. Chen et al., 2016) study. Sample S003Q3B1_mRNA is fully matched to S003Q3 

genotype and partially matched to S003P5 genotype. Distance between the two best genotype 

matches is 0.196. Sample S007PQB5 is fully matched to S007PQ genotype and, the second best 

genotype match is S001C2. Distance between the two best matches is 0.546 

 

https://paperpile.com/c/wYdAjq/Gdism
https://paperpile.com/c/wYdAjq/Gdism
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(the output of the quantification pipeline, quality controlled, normalised), metadata files and 

genotype information as input to uniformly map a wide range of molecular QTLs. The pipeline is 

based on the widely used QTLtools software package (Delaneau et al., 2017) and is freely available 

for download from GitHub34.  

5.1. Description of QTL Mapping Process 
QTL mapping is the process of finding statistically significant associations between phenotypes 

and genetic variants located nearby (within a specific window around phenotype, a.k.a cis 

window), which is usually found using linear regressions. The process requires a large number of 

association tests to find all potential phenotype-variant associations in a cis window and produces 

p-values for each performed test. Because of the high number of existing phenotypes and the 

number of tests to be performed, accounting for multiple testing is essential to assess the 

significance of discovered associations. QTLtools (Delaneau et al., 2017) uses a fast and efficient 

permutation algorithm where the null distribution of association for phenotype is modeled based 

on the beta distribution (Ongen, Buil, Brown, Dermitzakis, & Delaneau, 2016). This enables to 

accurately estimate adjusted p-values in short running times.  

QTLtools provides two options to run the QTL mapping in cis window, namely nominal run and 

permutation run. The nominal run calculates only nominal p-values of the associations, given the 

null hypothesis of not having any association between a phenotype and variant. Permutation run, 

on the other hand, performs a permutation based analysis in order to adjust nominal p-values 

according to a fitted beta distribution from thousands of random permutations of the genotype data. 

Permutation run accounts for the number of genetic variants tested in the cis window and allows 

us to identify phenotypes that have at least one statistically significant QTL at a pre-determined 

false discovery rate. 

5.2. Pipeline Overview 
To develop the QTL mapping pipeline, we adopted the development style and some resources of 

the nf-core framework (Ewels et al., 2019), as we did in quantification pipeline development. Nf-

core initiated the idea of having bioinformatics pipelines in one unified pool. Nf-core pipelines are 

containerized, easy-to-use, open-source, tested and continuously maintained by the contributor 

developers. They also provide pipeline development tools35 to encourage developers to contribute 

new pipelines and widen the community. We developed the QTL mapping pipeline (qtlmap) to be 

added to nf-core set of pipelines. The overview of the pipeline and brief explanation of each step 

is described in Figure 5.1.  

                                                 
34

 https://github.com/kerimoff/qtlmap 
35

 https://github.com/nf-core/tools 

https://paperpile.com/c/wYdAjq/h5KXz
https://paperpile.com/c/wYdAjq/h5KXz
https://paperpile.com/c/wYdAjq/3CLWr
https://paperpile.com/c/wYdAjq/9zWIj
https://github.com/kerimoff/qtlmap
https://github.com/nf-core/tools
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The pipeline starts execution with checking if all the mandatory inputs are provided (not shown in 

the Figure 5.1). Then, if the all provided inputs are valid, information (coordinates, alleles, etc.) 

about all the variants in the provided VCF file are extracted. Genotypic variant information 

together with sample metadata files and the phenotype count matrix are passed into the custom 

script group_by_qtlgoup.R36 in order to filter out the problematic phenotypes and group samples 

by QTL group. After asserting that all needed columns are available in datasets, we find variants 

                                                 
36

 https://github.com/kerimoff/qtlmap/blob/master/bin/group_by_qtlgroup.R 

 
Figure 5.1. High level representation of qtlmap pipeline. Shapes with yellow background are the 

steps (processes) and shapes with white background symbolize data objects (files). 

https://github.com/kerimoff/qtlmap/blob/master/bin/group_by_qtlgroup.R
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(from variant information) overlapping with cis window of phenotypic features (from phenotype 

metadata) (Figure 5.2). We introduced a filtering parameter mincisvariant37 (with a default value 

of 5) to avoid processing phenotypes with very few variants in the cis window, because QTLtools 

simply stop working (e.g. raises error) if there are no overlapping variants in cis window of the 

phenotype. Hence, by default, if the phenotype has less than 5 variants in the cis window, this 

phenotype is filtered out from the phenotype count matrix. After removing phenotypes with very 

few variants (less than mincisvariant) from the phenotype matrix, we divide it into submatrices 

according to qtl_group information provided in the sample metadata file. QTL groups usually 

represent different tissues, cell types or other biological contexts (e.g. experimental stimulation) 

present in the datasets. These submatrices are processed individually and in parallel through the 

next steps of the pipeline. 

Genotypic information of samples represented in each QTL group are also extracted from the VCF 

file, forming VCF files containing only samples belonging to each QTL group. First output of the 

pipeline is the variant information extracted from each of these QTL group specific VCF files. 

QTLtools uses PCA covariates in the QTL mapping process. PCA of the phenotype matrix is used 

in order to remove technical variance between samples and increases the power of detecting 

significant associations. On the other hand, PCA of genotypic information is used to take origin of 

the genotypic information (e.g. population structure) into account in the QTL mapping process. 

We used six principal components of the phenotype matrix and three principal components of 

genotypic data as covariates in QTL mapping process. In order to map the QTLs, PCA covariates 

matrix together with QTL group specific VCF file and phenotype matrix are provided as inputs to 

the QTLtools. QTLtools process these inputs in parallel according to specified number of 

batches38. Ultimately, individually calculated outputs of batches are merged into a single summary 

statistics file for each QTL group. 

                                                 
37

 https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--mincisvariant 
38

 https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--n_batches 

 
Figure 5.2. Finding genomic variants overlapping with the cis window of the phenotype. In example, 

cis distance is 1 million sequence bases and the length of cis window is 2 million bases. Genomic 

variants which overlapped with the cis window of the phenotype are shown in green. Genomic 

variants remaining out of the cis window represented in red color. The phenotype has 9 overlapping 

variants in its cis window, which is more than 5 (default value of mincisvariant parameter). Hence 

this phenotype will be processed in QTL mapping procedure. 

https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--mincisvariant
https://github.com/kerimoff/qtlmap/blob/master/docs/usage.md#--n_batches
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5.3. Pipeline Implementation Details 

There are a number of tools available to map QTLs such as QTLtools and MatrixEQTL (Delaneau 

et al., 2017; Shabalin, 2012). Moreover, the MOLGENIS (van der Velde et al. 2019) project 

provides a set of scripts and step-by-step guidelines to use them in order to map QTLs39. Another 

reason why we decided to use QTLtools is that it provides options to facilitate parallelisation on 

compute cluster for both cis mapping running options (nominal40 and permutation41 runs). 

Especially in permutation run this parallelisation feature increases efficacy of the analysis, because 

it does multiple permutation tests to adjust p-values which is computationally intensive. For 

instance, by default we perform ten thousand (10,000) permutations in one megabase (1 Mb) cis 

distance to obtain accurate adjusted p-values. Moreover, we also use PCA42 module of QTLtools 

to calculate covariates. Besides the preprocessing steps needed for QTL mapping, our pipeline is 

smoothly managing these multiple parallel tasks by processing them in specified number of 

batches (one parallel node per batch) and finally merging them into a single output file. 

Hardware requirements of each step of the pipeline is configured in a base configuration file43 and 

the set values are the result of personal experience of researchers involved in the project. The 

current version of the pipeline can only perform the cis-QTL mapping, however, we are working 

to add trans-QTL mapping option also in the future. 

5.3.1. Containerisation and Conda support 

To provide maximum level of dependency isolation, Nextflow provides very good integration with 

both Conda and containerisation (e.g. Docker and Singularity). We analysed all the dependencies 

for this pipeline and created a Conda software recipe (Figure 2.1). User can create a “Conda 

environment” with this recipe in an execution environment (e.g. HPC or PC) and run the pipeline 

without worrying about software dependencies. Nf-core provided a nice template to build a 

software container using a Conda environment recipe. Specifically they provide a base image 

which contains the operating system and Conda installed. I have built the needed containers using 

Dockerfile and Singularity file which are also provided by nf-core and pushed them to Docker Hub 

and Singularity-Hub, respectively. The address of the Docker container has been entered into 

pipeline settings, hence, users only need to specify if they want to run the pipeline with the 

container (Docker or Singularity) and the pipeline will automatically download the container from 

Docker Hub and use it. Since Singularity supports direct usage of Docker containers, I have 

included only the address of the Docker container into the pipeline. 

                                                 
39

 https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-seq-data 
40

 https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html 
41

 https://qtltools.github.io/qtltools/pages/mode_cis_permutation.html 
42

 https://qtltools.github.io/qtltools/pages/mode_pca.html 
43

 https://github.com/kerimoff/qtlmap/blob/master/conf/base.config 

https://paperpile.com/c/wYdAjq/h5KXz+VMwKY
https://paperpile.com/c/wYdAjq/h5KXz+VMwKY
https://paperpile.com/c/h0QcSm/MXsW
https://github.com/molgenis/systemsgenetics/wiki/eQTL-mapping-analysis-cookbook-for-RNA-seq-data
https://qtltools.github.io/qtltools/pages/mode_cis_nominal.html
https://qtltools.github.io/qtltools/pages/mode_cis_permutation.html
https://qtltools.github.io/qtltools/pages/mode_pca.html
https://github.com/kerimoff/qtlmap/blob/master/conf/base.config
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We processed more than 40 QTL groups from more than 15 studies (Appendix 1) with this 

pipeline. To verify that the results make sense, we plotted the number of eQTLs detected in each 

biological context (qtl_group) against the sample size of that context and discovered more than 

9000 eGenes (genes which have at least one significant SNP in the cis window) (Figure 5.3). As 

expected, we found a linear relationship between the number of eGenes and the sample size. 

5.4. Pipeline Input and Output Description 
Although the pipeline is developed to be user-friendly and ready-to-use, there is a data preparation 

step which requires a little effort to ensure having mandatory format and content of the input files.  

5.4.1. Input Preparation 

We decided to use simple text files (e.g. tab separated value, TSV) as the main format of tabular 

input files for our pipeline. Pipeline requires 4 input files to map the QTLs.  

1. Phenotype count matrix of the quantitative traits: tab separated file containing normalised 

phenotype counts (e.g. gene expression matrix). Columns and rows represent samples and 

phenotypes, respectively.  

2. Phenotype metadata: tab separated file containing metadata of phenotypes appearing in 

count matrix as rows. This table should have at least the following information: 

phenotype_id (this column links the metadata to count matrix), chromosome, 

phenotype_pos, strand. The chromosome and position of each phenotype is used to define 

the genomic region around the phenotype that is used for QTL mapping (cis window). 

 

Figure 5.3. Correlation of eGenes with sample size within each QTL group. Imputed genotypes: 1000 Genomes 

Phase 3*; Genotype filtering: MAF > 0.01 & R^2 > 0.4; Covariates: 6 expression PCs + 3 genotype PCs; Cis 

window: +/- 1Mb from gene center; FDR correction: 10,000 permutation + Benjamini-Hochberg FDR < 0.05. 

Figure prepared by Kaur Alasoo for presentation purposes of quarterly results of the project. 
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3. Sample metadata: tab separated file containing metadata of samples appearing in count 

matrix as columns. This table should have at least the following information: sample_id 

(this column links the metadata to the count matrix), genotype_id, qtl_group 

4. Variant Call Format (VCF) file: genotype information of samples to map the QTLs to. 

Input files are coupled to each other through specific parameters (Figure 5.4). Phenotype count 

matrix is the main data table for the pipeline. Pipeline manipulates phenotype count matrix 

according to metadata files and maps it to VCF file. Although, it is important to have the mandatory 

columns in each metadata file, preparing them is straightforward. The count matrix dataset will be 

grouped into subsets according to qtl_group information in the sample metadata file.  

For instance, TwinUK dataset contains 1364 samples originated from 4 biological contexts (in this 

case cell-type and tissues), namely LCL, skin, fat and blood (Table 1.2 and Appendix 1). Although 

the phenotype count matrix of this dataset will contain phenotype expression levels of 1364 

samples, this matrix will be divided into 4 distinct matrices according to qtl_group value in the 

sample metadata file of the dataset. These 4 matrices will be processed individually in order to 

map the QTLs.  

 
Figure 5.4. Description of relations between required input files for QTL mapping with pipeline. Count 

matrix has a phenotype_id column which corresponds to column with the same name in phenotype metadata 

file. Other column names of count matrix (sample_ABC and sample_DEF) corresponds to the values of 

sample_id column in sample metadata file. Values of the genotype_id column in sample metadata file 

corresponds to genotype_ids in VCF file. Count matrix is divided into submatrices (in this case, each of two 

submatrices contains only one sample) according to values of the qtl_group column in sample metadata file 

and processed individually. chromosome, phenoype_pos and strand information of each phenotype (in 

phenotype metadata file) is used to define the cis window that is used for QTL mapping. 
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Finally, the genotype ids present in the VCF file should correspond to values of genotype_id 

column in sample metadata file. For a complete set of available parameters see the pipeline 

documentation44.  

5.4.2. Description and Interpretation of Pipeline Output 

The main final output of the QTL mapping pipeline is a sorted and indexed text file of summary 

statistics. This file summarises the associations between phenotypes and genetic variants. The 

output of the nominal run contains the nominal phenotype information (id, chromosome, strand, 

start and end positions), genetic variant information (id, chromosome, start and end positions), test 

information (number of variants tested per phenotype, distance between the phenotype and 

associated variant) and association details (nominal p-value, effect size and a binary flag showing 

if the associated variant has the lowest p-value a.k.a. lead variant)45.  

6. Conclusions 
In the context of the eQTL Catalog project, we implemented all the necessary steps to uniformly 

generate QTL summary statistics from RNA-seq and genotype data from multiple studies. The 

whole process can be summarised as three distinct steps: 

1. Quantification of the required phenotypes (gene expression, transcript usage, exon 

expression and alternative splicing usage) from raw RNA-seq data (including pre-

quantification quality control steps) with the quantification pipeline. 

2. Post-quantification manual quality control (PCA, MDS, sex-specific gene expression and 

sequence-genotype matching analyses) and elimination of samples with poor quality. 

3. QTL mapping pipeline input preparation and running. 

In the first step we added new phenotype quantification methods (transcript usage, exon 

expressions and alternative splicing usage) to an existing RNA-seq pipeline developed by the nf-

core framework. In order to isolate software dependencies, it fully supports package managers like 

Conda and container technologies such as Docker and Singularity. The output of the pipeline is a 

phenotype count matrix which represents expression levels of quantitative traits in the RNA-seq 

data. 

The second step is detection and elimination of mislabeled, contaminated and poor quality 

samples, in order to increase the quality and precision of summary statistics. To detect outlier 

samples in the dataset we apply PCA and MDS analyses. For identification of mislabeling and 

contamination issues we analyse the sex-specific gene expression and the sequence-genotype 
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matching levels of samples. If the reason of the issue is not evident or correctable, we eliminate 

the concerned samples from the dataset. 

After post-quantification quality control measures, the phenotype count matrix together with 

phenotype metadata, sample metadata and genotype (VCF) files are given into the QTL mapping 

pipeline in order to produce summary statistics. This pipeline is also designed to be containerised, 

easy-to-use, parallelly executable, scalable, open-source and ready-to-use, as all other pipelines in 

the nf-core framework. We implemented it to ease the QTL mapping analysis process for users 

and uniformly process context specific datasets of multiple studies. Although the pipeline is much 

simpler to use than existing QTL mapping tools, some data preparation effort is still needed. 

Currently, the pipeline performs only cis QTL mapping, but we are planning to add trans-QTL 

mapping in the near future.  

The next step in development of the pipeline is consulting with the nf-core team and decide if this 

pipeline is suitable to be added to nf-core set of reference pipelines. Continuous integration and 

HTML reports are also features to be added to the pipeline. Additionally, we are looking for a 

suitable method to merge similar biological contexts across different studies (e.g. blood tissue 

samples from two different studies) and process them as a unified QTL group. Successful 

implementation of this approach can substantially increase the statistical power of the QTL 

mapping, facilitating the discovery of weaker trans-eQTLs, for which most individual studies are 

currently underpowered. 
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8. Appendices 

1. Full list of studies processed in a context of eQTL Catalog project (List is prepared by main researcher of the project Kaur 

Alasoo for documentation purposes). All datasets also have a “naive” stimulation, where there is no any stimulation applied. 

For instance, dataset of Alasoo_2018 study has 3 stimultions in addition to naive, hence it has 4 qtl_groups. 

Study name 
Number of 

donors 
Number of 
samples 

Experiment 
type 

Cell types or 
tissues 

Stimulations 
Number of 
qtl_group’s 

Publication DOI 

CEDAR 322 2388 microarray 

T-cell, 
transverse_colon, 
monocyte, 
neutrophil, platelet, 
rectum, B-cell, 
ileum 

 8 http://dx.doi.org/10.1038/s41467-018-04365-8  

Fairfax_2012 282 282 microarray B-cell  1 http://dx.doi.org/10.1038/ng.2205  

Fairfax_2014 424 1372 microarray monocyte 
IFN24, LPS2, 
LPS24 

4 http://dx.doi.org/10.1126/science.1246949  

Kasela_2017 297 553 microarray T-cell  1 http://dx.doi.org/10.1371/journal.pgen.1006643  

Naranbhai_2015 93 93 microarray neutrophil  1 http://dx.doi.org/10.1038/ncomms8545  

Raj_2014 515 984 microarray T-cell, monocyte  2 http://dx.doi.org/10.1126/science.1249547  

Alasoo_2018 84 336 RNA-seq macrophage 
IFNg, 
Salmonella, 
IFNg+Salmonella 

4 http://dx.doi.org/10.1038/s41588-018-0046-7  

BLUEPRINT 197 554 RNA-seq 
monocyte, 
neutrophil, T-cell 

 3 https://doi.org/10.1016/j.cell.2016.10.026  

http://dx.doi.org/10.1038/s41467-018-04365-8
http://dx.doi.org/10.1038/ng.2205
http://dx.doi.org/10.1126/science.1246949
http://dx.doi.org/10.1371/journal.pgen.1006643
http://dx.doi.org/10.1038/ncomms8545
http://dx.doi.org/10.1126/science.1249547
http://dx.doi.org/10.1038/s41588-018-0046-7
https://doi.org/10.1016/j.cell.2016.10.026
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GENCORD 195 560 RNA-seq 
LCL, fibroblast, T-
cell 

 3 https://doi.org/10.7554/eLife.00523  

GEUVADIS 445 445 RNA-seq LCL  1 https://doi.org/10.1038/nature12531  

HipSci 322 322 RNA-seq iPSC  1 https://doi.org/10.1038/nature22403  

Nedelec_2016 168 493 RNA-seq macrophage 
Listeria, 
Salmonella 

3 http://dx.doi.org/10.1016/j.cell.2016.09.025  

Quach_2016 200 969 RNA-seq monocyte 
LPS, 
Pam3CSK4, 
R848, IAV 

5 http://dx.doi.org/10.1016/j.cell.2016.09.024  

Schwartzentruber_2018 98 98 RNA-seq sensory_neuron  1 http://dx.doi.org/10.1038/s41588-017-0005-8  

TwinsUK 433 1364 RNA-seq 
fat, LCL, skin, 
blood 

 4 http://dx.doi.org/10.1038/ng.3162  

van_de_Bunt_2015 117 117 RNA-seq pancreatic_islet  1 https://doi.org/10.1371/journal.pgen.1005694  

Ye_2018 261 573 RNA-seq dendritic_cell IFN, FLU 3 http://dx.doi.org/10.1101/gr.240390.118  
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