
UNIVERSITY OF TARTU
Institute of Computer Science

Software Engineering Curriculum

Maksym Melnyk

Data-aware Conformance
Checking

Master’s Thesis (30 ECTS)

Supervisors: Marlon Dumas

Thomas Baier

Tartu 2019

 2

Data-aware Conformance Checking
Abstract:
Conformance checking is one of the most common tasks in the
field process mining. The goal of conformance checking is to
compare a process model against an event log in order to
quantify or describe how the behavior recorded in the log
deviates with respect to the behavior captured by the process
model. Most of the existing conformance checking techniques
focus on the control-flow perspective. In this thesis, we
propose a conformance checking technique that takes into
account the data perspectives in addition to the control-flow
perspective. The proposed approach is implemented as a tool
that takes as input a BPMN process model and an event log.
The tool has been implemented using the Elixir programming
language. The thesis also reports on a performance evaluation
of the proposed approach.
Keywords:
Process Mining, Conformance Checking, Data-aware
Conformance Checking, BPMN, Event Log, Automaton, Elixir.
CERCS:
P170 – Computer science, numerical analysis, systems,
control.

 3

Andmeteadlik Vastavuse Kontrollimine
Lühikokkuvõte:
Vastavuse kontrollimine on üks kõige tavalisemaid ülesandeid
protsessikaeve valdkonnas. Vastavuse kontrollimise peamine
eesmärk on kontrollida protsessimudeli vastavust sündmuste
logidele selleks, et hinnata või kirjeldada kuidas registreeritud
käitumine protsessimudelis kirjeldatud käitumisest erineb.
Enamus olemasolevatest vastavuse kontrollimise tehnikaid
põhineb kontrollvoolu perspektiivile. Käesolev lõputöö pakub
välja tehnika, mis lisaks kontrollvoolule põhinevale tehnikale
arvestab ka andmete perspektiivile. Väljapakutud
lähenemisviis on implementeeritud tarkvaralise lahendusena,
mis kasutab sisendiks BPMN mudelit ja sündmuste logi. Loodud
tarkvara töörist on loodud kasutades programmeerimiskeelt
Elixir. Lõputöö sisaldab samuti ka välja töötatud lahenduse
tulemuslikkuse hinnangut.
Võtmesõnad:
Protsessikaeve, Vastavuse kontrollimine, Andmeteadlik
vastavuse kontrollimine, BPMN, Sündmuste logid,
Automatiseerimine, Elixir.
CERCS:
P170 – Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine.

 4

Table of Contents

1 Introduction ... 5

2 Background .. 7
2.1 Event Logs and Traces .. 7
2.2 BPMN models .. 9
2.3 Conformance Checking .. 11
2.4 Conformance Checking Tools 12
2.5 Multi-Perspective Conformance Checking 15

3 Related Work ... 20
3.1 Conformance Checking Techniques 20
3.2 Decomposed Conformance Checking 24
3.3 Multi-perspective Conformance Checking 26

4 Approach ... 27

5 Implementation and Evaluation 33
5.1 Implementation ... 33
5.2 Evaluation ... 35

6 Conclusion ... 38

References .. 40

Licence .. 41

 5

1 Introduction
Nowadays, the competition in all industries is very high.

Some companies are value-oriented, some of them are price
oriented. Companies try to become more efficient in many
different ways and one of them is by improving their business
processes. Process Mining is a set of techniques that helps
companies achieve this goal.

Process Mining is a very popular topic, and it makes sense,
processes are becoming very complex and the amount of data
is growing very fast. It is not possible anymore to improve
processes in “MS Excel” or other similar programs because they
are not suitable to deal with a large amount of data and with
very complex processes. This is why many companies started
to look for other possible solutions since even small
improvement can potentially save millions of dollars.

Process Mining has two main tasks: Process Discovery and
Conformance Checking. Although these tasks are very
connected between each other, in this paper we will
concentrate on Conformance Checking task since it has many
different sides and edges.

In order to improve any business process, we need to know
where is the problem or place that can be improved. By
knowing that we can make some changes in the process that
can save our money. If the business management is smart
enough, they will design a process before running it. But
nothing is perfect in the real world and the real-life process is
usually not the same as the designed one for many different
reasons. One of the reasons could be the impossibility to make
one action before another or necessity to skip an action. By
using Conformance Checking we can find these deviations
between the real process and designed one and by using this
information make changes to the designed process.

In most of the literature regarding Conformance Checking,
authors focused on the control-flow perspective, which means,
they care only about the correct ordering of the actions. In a
real-life process, however, other perspectives are important
and some other aspects can affect the process. Multi-
perspective Conformance Checking is aware not only of
control-flow but also about data, time and resources. Since
traditional Conformance Checking techniques do not take into

 6

considerations those perspectives, many deviations remain
undetected. And this an important issue because if we do not
have full information about our process and its deviations, we
cannot make good assumptions for improving it.

In this thesis we will provide an example of processes where
some deviations remain undetected until we add data
perspective to the process model. To address this gap, we
present a conformance checking technique that takes into
account the data perspective.

In order to design processes and unify its format, the
community created the Business Process Model and Notation
(BPMN). There are many implementations of this format in
many different languages. However, there is no
implementation for Elixir, which is becoming very popular
nowadays because of its performance, simplicity and
functional approach.

From a tooling perspective, the main contribution of this
thesis is a parser for BPMN and a conformance checking tool
written entirely in Elixir. Both the parser and the algorithm take
into account the control-flow and the data perspectives.

The thesis also reports on some performance tests to assess
the efficiency of the proposed conformance checking
technique on different logs and models.

 7

2 Background
In this section, we describe needed terms and definitions in

order to fully understand the thesis topic. At the end, we
provide a running example for better understanding.

2.1 Event Logs and Traces
In this subsection, we will describe definitions that are

needed to understand how companies observe and store their
process executions.

Each company that do enterprise solutions has a lot of
processes. All of the events of the existent processes have to
be saved in some kind databases or files. Some companies
decided to design a database for this purpose, some of them
just keep all of the events happened in the files. Unfortunately,
most of the companies have their own format to keep all of this
data. However, some attributes remain the same.

Definition 1 (Event). An event 𝑒 ∈ 𝐵(𝐴) is execution of
an activity from the set of activities 𝐴 with mandatory
attributes:

1. Trace ID (will be described later)
2. Process activity ID
3. Start timestamp
4. Finish timestamp

There could be a different number of custom attributes
that the company decided to keep. It is usually “Executor”,
“Role” etc.

In simple words, an event is an atomic structure in the

process that describes when one particular activity from the
process happened and how long it has been executed.

Definition 2 (Event Log). An event log 𝐿 ∈ 𝐵(𝐴) is a set
of events 𝑒 over the activity set 𝐴.

If we consider event log as a file, then it will be CSV file
where columns are event attributes and rows are events.

 8

Usually, there are separated event logs for each process (there
could be many event logs for one process) but if the company
decided to have one log for many processes then each event
should have additional attribute “Process ID”. However, this
type of logs is very rare, and we will not consider it in this thesis.

Trace Activity Start End Role

1 Incident
logging

2016/01/04
12:09:44

2016/01/04
12:09:44

Agent

1 Incident
classification

2016/01/04
12:10:44

2016/01/04
12:17:44

Agent

1 Initial
diagnosis

2016/01/04
12:34:44

2016/01/04
12:39:44

Agent

1 Functional
escalation

2016/01/04
12:41:44

2016/01/04
12:48:44

Agent

1 Investigation
and diagnosis

2016/01/04
18:13:44

2016/01/05
01:36:44

Special
Agent

1 Resolution
and recovery

2016/01/05
03:56:44

2016/01/05
04:30:44

Agent

1 Incident
closure

2016/01/05
04:31:44

2016/01/05
04:48:44

Agent

2 Incident
logging

2016/01/04
13:09:44

2016/01/04
12:09:44

Agent

2 Initial
diagnosis

2016/01/04
13:10:44

2016/01/04
12:17:44

Agent

2 Incident
classification

2016/01/04
13:34:44

2016/01/04
12:39:44

Agent

2 Functional
escalation

2016/01/04
13:41:44

2016/01/04
12:48:44

Agent

2 Investigation
and diagnosis

2016/01/04
19:13:44

2016/01/05
01:36:44

Special
Agent

2 Resolution
and recovery

2016/01/05
04:56:44

2016/01/05
04:30:44

Agent

2 Incident
closure

2016/01/05
05:31:44

2016/01/05
04:48:44

Agent

Figure 1: Event log example (Incident Management).

 9

Definition 3 (Trace). A trace 𝑡 =	< 𝑒,, 𝑒., … 𝑒0 > is a
sequence of events that are related to the one particular
process execution. The sequence is ordered by event
timestamps.

As mentioned before, a trace is a sequence of events.
Practically speaking, we can retrieve all the traces from the
event log by grouping it by “Trace ID” (this attribute can be
called “Case ID” as well). If we look at the example of the event
log from Figure 1, we can see that all the events that are related
to the trace with number 1 and it is ordered by timestamps. So,
roughly speaking, we can consider that as a trace.

Traces, as well as events, can have attributes specific to one
particular process execution. For example, the trace can have
attribute “County” with value “Germany” which means,
according to the incident management example (Figure 1), that
the incident has happened in Germany. Of course, it doesn’t
make sense to keep this attribute for an event because it is the
same for all events in the trace. Companies decide which
attributes they need to have in order to do better
postprocessing of the logs, that is why they are different from
process to process and from log to log. Trace attributes are
usually stored in separated from event log files or database
tables.

2.2 BPMN models
In this subsection, we provide definitions with appropriate

examples which are useful in business process designing and
management overall.

As it was mentioned in the introduction section of this
thesis, if a company is smart enough and has good
management, before running new business process, it would
be good if the company design this process using some special
tools.

Decades before, companies draw and design processes on a
paper or, if a company has enough resources and money, using
some proprietary programs and tools. But in the end, business
understood that it is good to have some unified business
process format in order to share it not only inside the
organization but also for business cooperation etc.

 10

In 2011 Object Management Group designed a new
modelling standard called Business Process Model and
Notation (BPMN). BPMN quickly became very popular because
of its complete range of supported abstractions that is
understandable for all type of business users.

Definition 4 (BPMN model). A process model that conform
BPMN requirements.

Figure 2: BPMN model example, visual representation

(Incident Management).

We need to remember that BPMN is just a format, that is

why there are a lot of tools that implement this format. These
tools, for example, “Camunda”, “Signavio”, usually provide a
possibility to create BPMN models via graphical interface as
shown in Figure 2. These BPMN models then can be saved to
one of the text, usually XML, formats (Figure 3).

Figure 3: BPMN model example, text representation in xml

format (Incident Management).

 11

Even though BPMN provides a wide range of abstractions,
working with data is not as good as we want. Of course, there
are data objects, but they are not more than just graphical
presentation. If we want to use the data, we need a different
level of abstraction. Fortunately, the Camunda
(https://camunda.com) modelling tool provides an extension
mechanism, using this mechanism we can extend BPMN format
with the needed abstractions. Camunda has an extension for
adding conditions to sequence flows and input/output
parameters to activities. With these abstractions, we can easily
include data to our BPMN models and then use it for
Conformance Checking.

2.3 Conformance Checking
Conformance Checking is a family of techniques to compare

process model with an event log of the same process model.
In simple words, having a BPMN process and an event log

we can use Conformance Checking to answer the question:
how close a real-life process with a modelled one?

If we look at the process model example from Figure 2 and
analyze it, we can say that Trace 1 from Figure 1 perfectly fit
the model. So that there are no deviations for this trace.

If we try to align Trace 2 from Figure 1 to the process model
from Figure 2, we can see that the trace doesn’t fit the model.
After further analysis, we find out that activities “Incident
classification” and “Initial diagnosis” are switched. So, there is
a deviation for this trace.

This example of control-flow conformance checking shows
us that this type of conformance checking works if there are
misplaced activities in respect to the process model.

Control-flow conformance checking is based only on
ordering of events/activities. It is the most popular type of
conformance checking and most of the papers about
conformance checking based on this type.

Control-flow conformance checking does not take into
account the timestamps (time perspective), it only takes into
account the order of the events in each case but not the actual
time of occurrence. Also, control-flow conformance checking
as illustrated above does not take into account any data
conditions that may be attached to the XOR-split gateways of

 12

the process model (data perspective), it doesn’t take into
account the (human) resources who perform the activities in
the process (resource perspective).

2.4 Conformance Checking Tools
Conformance Checking is implemented is several

opensource and commercial tools including Apromore
(apromore.org), Signavio Process Intelligence (signavio.com),
Celonis (celonis.com) and LanaLabs (lanalabs.com).

This thesis has been written in partnership with LanaLabs.
LanaLabs is a process mining startup based in Berlin. They
provide several process mining tools. In this subsection, we
describe Lana Process Mining Tool and we give a short
overview of its features.

2.4.1 Process Discovery

The first thing we need to do in order to use the tool is to
upload an event log. We use “Incident Management” event log
as an example that we have been using in this thesis. After
uploading an event log, we already can view a discovered
process map of this log (Figure 4). Discovered process map is a
graph where nodes are activities and arcs represent the direct
following relation between two activities.

Figure 4: Incident Management discovered process map.

 13

We can see some base statistics like frequency of

occupancies of the events and some weak points.

2.4.2 Conformance Checking

In order to do conformance checking, we need to upload a
BPMN model or create a new one from scratch in the tool
(Figure 5).

Figure 5: Target model of the Incident management

example.

As we can see the tool already shows us deviation paths and
skipped and inserted activities (move-on-log and move-on-
model).

We can look into the deviations in detail on “Action” page
(Figure 6).

 14

Figure 6: Incident Management deviations.

2.4.3 Root cause analysis

As we can see in Figure 6, we can do root cause analysis on
each of the deviations by clicking on the special button. Let’s,
for example, run root cause analysis on skipping “Resolution
and Recovery” activity.

Figure 7: Root cause analysis example.

There is a possibility to run root cause analysis in any part of

the application and on different combinations deviations.

2.4.4 Statistics

As described above we can view conformance checking
statistics in various places. There is, however, the “Statistics”

 15

page where we can see a full picture of the conformance
checking results and even more (Figure 8).

Figure 8: Conformance statistics page.

In this subsection, we described only a few features of the

Lana Process Mining Tool. There are way more features like
filtering event logs, creating dashboards etc. You can read
more and try the tool on the website https://lanalabs.com.

We saw some nice visualizations, histograms etc. In order to
create those visualizations, we need to compute the alignment
between each trace and the process model. The concept of
alignments and how to compute them is described in Section 3
of this thesis.

2.5 Multi-Perspective Conformance Checking
In this subsection, we describe multi-perspective

conformance checking in respect to time, resource and data
perspectives.

2.5.1 Time perspective

When considering real-life models, it may happen that an
activity should be executed after a certain period of time (timer
events). If we do not take the time perspective into account,

 16

we cannot check when activity was executed. However, in real
life this is important and if an activity “did not meet the
deadline” we should consider it as a deviation. Consider, for
example, the model in Figure 9 taken from [2]:

Figure 9: Process model describing a process to handle credit

requests.

As we can see from the Figure 9, “Renegotiation Request”

should be processed within one week. This constraint may be
a cause of a deviation that cannot be found using simple
control-flow conformance checking.

2.5.2 Resource Perspective

In process models, each activity is usually associated with a
particular role. It could be one exact resource as well as a group
of resources. This means that an activity associated with a
resource must be executed by that resource.

If we look at the process model from Figure 2, the activity
“Investigation and Diagnosis” is associated with the resource
“Special Agent”. If the activity is performed by another
resource, for example, “Agent”, this is a deviation, which is not
catchable by control-flow conformance checking.

As a conclusion of this subsection, we can say that the
resource perspective for conformance checking is important
and must be considered so that more deviations can be
identified.

 17

2.5.3 Data Perspective
In this subsection, we will introduce the data perspective,

one of the most important aspects of conformance checking.
As it was already mentioned, we can add conditions to XOR

splits. This is the simplest example of data perspective.
However, more complex scenarios can come up. In process
models, the results of activities can be stored in variables and
this information can be used as input for other activities. For
example, in Figure 9, we can see that the choice between
“Simple assessment”, “Advanced assessment” and skipping
assessment is made considering the “Amount” and
“Verification” variables, which are the results of “Credit
request” and “Verify” activities. If a decision is made against
the rules, we must identify a deviation that is not possible to
identify when using only the control-flow perspective.

Moreover, considering the real world where the business
logic is very complex, it is possible to build decision models
based on business rules. A decision model could be
represented as a Decision Model and Notation (DMN) diagram.
DMN is a standard designed to work with BPMN process
models, so it is possible then to connect a DMN model to the
BPMN model and, after the analysis, we can get more accurate
results.

In this thesis, we will not consider very complex business
logic and rules. We will focus only on simple cases like adding
conditions to XOR gateways. In Section 3 we will go behind the
Conformance Checking with data perspective by providing a
running example of this case.

Let’s then slightly change the model as shown in Figure 2:

 18

Figure 10: Incident Management process model (with data

perspective)

We can see that the process model from Figure 10 now has
additional elements. One of the sequence flows has a
condition. By adding conditions, we apply data perspective to
the process model. Now, in order to do “Functional escalation”
and “Investigation and diagnosis” the country of the incident
must be different from Germany. If we do those activities for
the incident in Germany it should be considered as a deviation.

In order to have a full picture let’s also consider the trace
attributes for the traces as shown in Figure 11:

Trace Country

1 Germany
2 Germany

Figure 11: Incident Management trace attributes.

If we try to align the Trace 1 from Figure 1 to the new model

from Figure 10 (taking into account the trace attributes from
Figure 11), we will see that the trace doesn’t fit the model
anymore because of the sequence flow condition. If we don’t
take into account the data, the trace still fit the model
perfectly, however, we need to consider data in order to catch
all the deviations.

 19

Let’s consider a new trace shown in Figure 12:

Trace Activity Start End Role

3 Incident
logging

2016/01/04
12:09:44

2016/01/04
12:09:44

Agent

3 Incident
classification

2016/01/04
12:10:44

2016/01/04
12:17:44

Agent

3 Initial
diagnosis

2016/01/04
12:34:44

2016/01/04
12:39:44

Agent

3 Resolution
and recovery

2016/01/05
03:56:44

2016/01/05
04:30:44

Agent

3 Incident
closure

2016/01/05
04:31:44

2016/01/05
04:48:44

Agent

Figure 12: Incident Management trace example without any

type of deviations.

With the following trace attributes shown in Figure 13:

Trace Country
3 Germany

Figure 13: Incident management trace attributes for the

trace from Figure 12.

Considering trace from Figure 12 and trace attributes from
Figure 13, we can see that this trace perfectly fit the model
(Figure 10) from both control-flow conformance checking and
data-aware conformance checking.

As a conclusion of this subsection, we saw that there is some
type of deviations that control-flow conformance checking
cannot catch, however data-aware conformance checking can
deal with all the data related deviations.

 20

3 Related Work
In this section, we describe related works about

Conformance Checking. We will focus on Conformance
Checking with multiple perspectives.

3.1 Conformance Checking Techniques
In this subsection, we describe basic token replay and trace

alignment techniques for conformance checking.
Conformance checking has been designed in order to find

differences between a process model and a log [4][5]. Most of
the techniques can find two types of deviations:

1. Unfitting behavior.
2. Additional behavior.

Unfitting behavior describes a type of deviations where the
behavior is observed by a log but disallowed by a process
model, while additional behavior describes the opposite:
behavior that is allowed by a model, but which is not observed
in a log.

The simplest way to identify unfitting behavior is token-
based replay technique. The idea is to replay each trace of the
log against the model, represented as a petri net. The model
follows the trace by its transitions. When the algorithm cannot
go ahead because the transition is not enabled, it adds the
missing tokens in order to continue. When the trace is
completely replayed, all the left tokens considered as
remaining tokens. The fitness between a log and a process
model is quantified as a number of added and remaining
tokens.

The token-based replay approach shows good performance,
however, it has some critical weak points. The main one is that
it cannot identify the minimum number of errors in respect to
log and process model comparison. Trace alignment technique
can address this weak point. Each trace in the log is compared
to the process model, as a result, we have the closest trace of
the process model in respect to the given trace of the log with
highlighted activities where the algorithm has found
mismatches.

Here, we describe trace alignments, one of the most popular
technique to do Conformance Checking.

 21

In trace alignment, we compare every single trace of the
event log to the process model. At the end of the trace
alignment process, we have an alignment for each trace.

Usually, alignments are represented as a list of skipped
and/or inserted activities. Let’s describe concepts that are used
in trace alignments:

1. Move on log indicates that the behavior in the event
log cannot be replicated in the process model
(BPMN model). So, in order to continue, we move to
the next event in the event log.

2. Move on model indicates that the expected
occurrence of the event in the model doesn’t
happen in the event log. So, in order to continue, we
move to the next activity in the process model.

3. Synchronous move tells us that the expected
behavior in the log match to the expected behavior
in the process model and we move the log and the
model to the next step.

In the example of an alignment below (Figure 14) we show
an alignment for the Trace 2 from Figure 1 in respect to the
process model from Figure 2.

Log IL >> ID IC FE IaD RaR IClo
Model IL IC ID >> FE IaD RaR IClo

Figure 14: Alignment example

Note: For better visualization we made short names for
activities: IL -> Incident logging, IC -> Incident classification, ID
-> Initial diagnosis, FE -> Functional escalation, IaD ->
Investigation and diagnosis, RaR -> Resolution and recovery,
IClo -> Incident closure

The first occurrence of “Incident Classification” is a move-

on-model, the second occurrence is a move-on-log.
In real life processes, some traces fit the process model

perfectly. In these cases, we don’t even need to compute any
alignments and there are no deviations. However, for those
traces that don’t fit the model we need to run some algorithm

 22

that can compute alignments. Most of the trace alignment
algorithms use 𝐴∗ or some modification of it.
𝐴∗ (A-star) is a search algorithm. The algorithm is widely

used in artificial intelligence in order to do a search in state
space. For computing alignments, we need to know what is a
state space in our task, initial state, final state and how to
generate new states:

1. State: A pair of states < 𝑆,, 𝑆. > such that 𝑆, is a
state of the process model and 𝑆. is a position in the
trace.

2. State Space: All possible states as defined above.
3. Initial state: Model’s start event and the beginning

of the trace.
4. Final state: Model’s end event and the end of the

trace.
5. Generator: If a synchronous move is impossible do

either move-on-log or move-on-model.
A-star is a heuristic based algorithm, that means that we

need to provide some cost function in order to determine
optimal alignment. Very basic and most widely cost functions
is the number of move-on-log and move-on-model moves. You
can find an example of the flow of the A-star algorithm below
(Trace 2 from Figure 1 in respect to the process model from
Figure 2).

 23

Figure 15: A-star example for computing alignments.

The alignment is represented as a path from the initial state
to the final state. As we can see there are 2 optimal alignments

 24

for this trace and the model. One of these alignments is
illustrated in Figure 14.

The original trace alignment algorithm for conformance
checking by Adriansyah [7] assumes that the model is
represented as a petri net. Each trace is then represented itself
as a (linear) petri net and the alignment is performed over the
model’s Petri net and the Petri net of the trace. An alternative
approach [8] uses automata as an intermediate representation
of the control-flow of the process. In this approach, the process
model (e.g. BPMN model) is converted into an automaton, the
log is also converted into an acyclic automaton and the two
automata are then aligned.

Figure 16: Overview of the automata-based approach

In simple words, an automaton is a graph where vertices

represent states of the process and edges represent transitions
between states.

When we have the automaton of the process model and the
automaton of the event log, we can align them as it was
described in the previous subsection.

In this subsection, we described conformance checking
approaches. Token-based replay approach shows good
performance, but the results are non-optimal. The trace
alignment technique has optimal results but the performance
of it is not as good as we want.

3.2 Decomposed Conformance Checking
In this subsection, we are going to describe a divide-and-

conquer approach that is potentially able to speed up the
computation of alignments for the conformance checking.

 25

Most of the conformance checking algorithms have an
exponential complexity [1][2][3]. The author from [1] proposes
to decompose the original model into smaller parts in order to
reduce the computation time. Indeed, if we can divide the
model and run computations concurrently, it will speed up
computations a lot. However, in this case, we need to have a
good algorithm for model decomposition.

Process decomposition is a well-known task and has been
described in many papers [1][6]. In [1], the author proposes to
use a Single-Entry Single-Exit (SESE) algorithm to decompose
process models. The idea of the algorithm is very simple: each
decomposed fragment should have one single entry point and
one single exit point so that the fragments are completely
isolated and independent. You can find the examples of model
decomposition taken from [1] in Figure 17 and Figure 18.

Figure 17: Petri net of claims handling in an insurance

company.

Figure 18: Decomposed petri net of claims handling in an

insurance company.

 26

3.3 Multi-perspective Conformance Checking
As it was mentioned before, conformance checking may

include several perspectives. In order to get the most accurate
results, we need to consider all these perspectives. In this
section we describe simple conformance checking approaches
to achieve our goal.

The authors from [2] propose an approach in which they put
the control-flow perspective on the first place. In other words,
they consider the control-flow perspective as more important
than the others. According to this method, if the control-flow
perspective did not catch a deviation and other perspectives
found it, it is possible that the algorithm decides not to consider
this deviation. This approach has some problems. The main one
is that the solution (the computed alignments) is not always
optimal as described. However, this algorithm is quicker than
the next one, described below.

As opposed to [2], the authors from [3] propose to consider
that all the perspectives have the same level of importance so
that the solution gains optimality. Optimality, in this case, is
defined according to the cost function defined in [3]. However,
this approach is very computation consuming and when we
have terabytes of the data, this factor is very important.

So, as we can see, the approaches described in this
subsection have clear limitations. However, these methods can
be used if optimality is not required or when the amount of
data is small enough. However, by combining the divide-and-
conquer approach and multi-perspective conformance
checking techniques we potentially can get optimal results in a
reasonable time. In [1], the author extends the decomposed
conformance checking algorithm, so that it fits the data
perspective as well. The extension is very simple: a variable
must not belong to more than one decomposed fragment. In
other words, any two decomposed fragments cannot write or
read the value from the same variable. And it makes sense, if
two model fragments can read/write from the same variable,
they are not independent anymore, which means that the
decomposition is not valid.

 27

4 Approach
In this section, we introduce a chosen approach in order to

do conformance checking with data perspective. We will
describe challenges and implementation features in respect to
Elixir (chosen programming language).

As a conformance checking technique, we chose automata-
based conformance checking [8]. According to this technique,
we have to transform the process model to the automaton. Let
us consider the following process model taken from Figure 2
but with numbered sequence flows (Figure 19).

Figure 19: Incident Management process model with
numbered sequence flows.

Automaton is a state machine. So, in order to build an

automaton for the process model above we need to define a
state and transitions between states:

• State: A set of active sequence flows.
• Transition: An Activity between sequence flows.

Having these definitions, we can build an automaton for the
process model from Figure 19.

 28

Figure 20: Incident Management automaton.

For the automaton, we need to remove tau-transitions. Tau
transitions represent invisible actions that are not recorded in
the event log. We are interested only in visible (activity)

 29

transitions because only those make sense for us. That’s is why
it is good to remove tau transitions from the automaton. In this
thesis, we propose to remove tau transitions by combining the
states connected by the tau transition so that a new state has
all incoming sequence flows of the source state of the tau
transition and it has all outgoing sequence flows of the target
state of the tau transition. The new state itself represents all
the sequence flows from both of the states.

Figure 21: Tau-less Incident Management automaton.

 30

In Figure 21 we can see the finale automaton without tau
transitions for the process model from Figure 19.

Let’s now consider data-aware conformance checking. In
Section 2 we have changed a process model from Figure 2 by
adding a condition to the sequence flow (Figure 10). In order to
build an automaton for this process model, let’s assume that it
has the same numbered sequence flows as on Figure 19.

Figure 22: Incident Management automaton with conditions.

 31

As we can see from Figure 22, there is a condition for “Initial

diagnosis” flow. It means that in order to move on through this
flow, the trace must have a correct next activity (Initial
diagnosis) and the correspondent condition must be true.

It could happen that we have a state with multiple active
sequence flows ({4, 6, 9}, for example). In this case, we have to
combine conditions of these sequence flows by AND operator.

We assume that by default all sequence flows has no
conditions, it also can be represented as a sequence flow with
a condition with true value so that we don’t differentiate
sequence flows with and without conditions. It makes building
an automaton easier.

Having an automaton of the process model we can already
align it to the traces. In Section 3 we described an automata-
based technique to do conformance checking. According to this
technique, we need to compress an event log to DAFSA
(Deterministic Acyclic Finite State Automaton). In this thesis,
we do not do this but just align each unique trace to the process
model automaton. It means that we lose some performance
because if some traces have the same prefix, we do the same
job by aligning this prefix multiple times. But if we have
compressed event log to DAFSA, we align this prefix only once
so that we save some time and we have better performance.

Compressing an event log to DAFSA can be a direction for
the future work of this thesis.

The alignment algorithm should be slightly changed in order
to fit the data perspective. As it was described in Section 3, we
use 𝐴∗ as a base algorithm for computing alignments. In
control-flow conformance checking, if the synchronous move
is possible, there is no other way but to do it. In data-aware
conformance checking, synchronous move is not always an
optimal step, that’s why we need to consider all possible steps
to be performed. So, every time when we need to expand the
state, we generate new (next) states by applying all possible
synchronous moves, move-on-logs and move-on-models and
then chose the best way according to the cost function of the
algorithm as it was described in Section 3.

As an example of data-aware alignment, let’s align Trace 1
from Figure 1 with trace attributes from Figure 11 to the

 32

process model automaton from Figure 22. As was mentioned
in Section 2, this trace perfectly fit from control-flow
perspective, but it has a deviation in respect to data
perspective.

Log IL IC ID [Country ==

‘Germany’]
FE IaD RaR IClo

Model IL IC >> FE IaD RaR IClo

Figure 23: Example of data-aware alignment.

 33

5 Implementation and Evaluation
In this section, we describe implementation features,

structure of the code of the project and evaluation of the
written algorithms.

5.1 Implementation
Elixir has been chosen as an implementation programming

language for this thesis. Elixir language is based on the Erlang
programming language, which means it shares the same
abstractions for building applications. Elixir is a functional
language. The functional approach is very popular nowadays. It
allows to write and run concurrent distributed applications out
of the box. In the era of big data, distributed applications it is
rather a need than an option, that is why, I think, Elixir is very
popular.

Turning to the process mining, event logs becoming very
huge, from gigabytes to terabytes. In order to analyze this
amount of data, we need to do it concurrently. Elixir helps us a
lot in it because it provides a lot of tools for writing concurrent
applications.

Elixir has a lot of libraries for different needs. However,
there is no BPMN library as well as any library that is able to do
conformance checking. So, another purpose of this thesis is to
provide a BPMN library with conformance checking algorithms
for Elixir community.

 34

Figure 24: Code structure

In Figure 24 we show how the structure of the project looks
like. Elixir community has code guidelines, so that the
opensource community can easily contribute to the projects.
These guidelines are basically about the code and project
structure. For example, interfaces (base classes) should be
places in the same level as the folder that include classes that
implement this interface. Meanwhile, this folder should have
the same name as the interface itself. We can clearly saw this
in Figure 24. During the development process, we followed
these guidelines.

 35

BPMN format itself is very huge and contains a lot of
elements. In this thesis, we designed a library that includes only
the core BPMN elements. Specifically, we selected a subset of
BPMN elements known as process graph [9] with addition of
start and end events. Other elements could be added later as a
future work for this thesis.

In order to parse and process sequence flow conditions, we
need to have some boolean expression parser. Unfortunately,
there was no such a library for Elixir, so we designed and
implemented this parser from scratch on Elixir.

Most of the code is opensource and available on Github
(https://github.com/imaxmelnyk/rainbow). However, the
alignment algorithm is taken from LanaLabs and is not present
in the opensource project.

5.2 Evaluation
For the experiments we use demo event logs and process

models provided by LanaLabs. The provided data has a
different number of activities, traces, event etc. We can see the
datasets statistics in Figure 25.

Dataset Events Unique

Events
Traces Unique

Traces
Model

size

Incident
Management

11674 7 2000 8 22

Sales Process 4712 15 572 156 38
Manufacturing
Dataset

241280 65 94612 759 98

Figure 25: Experiment datasets statistics.

Note: Model size is a number of nodes (activities, events,
gateways) and sequence flows in a process model.

As we can see from Figure 25, the datasets are very

different. “Incident Management” dataset is the one we used
in this thesis as an example. It is the simplest and the smallest
dataset. “Sales Process” dataset is more complicated, it has less

 36

events and traces, but it has more unique traces (variants) and
more complicated process model. The most complicated
dataset is “Manufacturing Dataset”. It is very close to real-life
story. We can see the huge number of unique traces and
events. It has a very complicated process model which is not
even readable without proper filtering.

As evaluation metrics we use:
1. Log preprocessing time. This metric gives as an idea

of how complicated the event log itself and how
much time the program needs to parse the log and
compute unique traces.

2. Alignment computation time. This metric is the one
we need in order to evaluate the alignment
algorithm itself.

Dataset Preprocessing

time (ms)
Alignment

computation
time (ms)

Total
(sec)

Incident
Management

379 539 0.91

Sales Process 479 1321 1.8
Manufacturing
Dataset

6023 9447 15.47

Figure 26: Evaluation metrics.

As we can see in Figure 26, for the simple logs the

preprocessing and alignment computation is fast enough. And
for the real-life log the total time is significantly longer. This is
something we expected as a result.

For the current version of the algorithm, it doesn’t matter, if
sequence flows have conditions or they don’t, the alignments
computation time remain more-less the same. This is because
the conditions are checked only once for each trace
(preprocessing step) and it is a simple task. The main
complexity is in 𝐴∗ search. As it is described Section 4,
synchronous moves are no longer the only possible way if they
exist. We expand states for every possible move. It means that
the algorithm must check significantly more states and

 37

alignments. It is, however, possible to choose how to expand
states. If the data perspective is not present, we expand states
as it was described Section 3, and if the data perspective is
present, we run the algorithm from Section 4. This can be
implemented as a future work of this thesis.

In this section, we explained how the algorithm described in
Section 4 has been implemented and what tools we used in
order to do that. We showed the performance statistics of the
implemented algorithm in respect to different datasets. There
are, however, some improvements could be done in the future.

 38

6 Conclusion
Process mining is very popular nowadays due to complex

processes and large amount of data. Conformance Checking is
one of the process mining tasks that helps companies to check
their real process executions in respect to designed process
models and catch deviations if there are any.

However, most of the conformance checking papers are
focused only on the control-flow perspective omitting the data
perspective. In this thesis we designed and implemented the
algorithm that can deal not only with control-flow perspective
but with data perspective as well.

In this thesis we consider data perspective as boolean
conditions on sequence flows, where variables are taken from
trace attributes of the event log. We have chosen the
automata-based technique for conformance checking as a base
for our work. We slightly changed alignment algorithm so that
it fit the data perspective. At the end we were able to compute
optimal data-aware alignments.

For the implementation we choose Elixir programming
language. Elixir is popular due to its functional approach but
there is no BPMN library, neither Conformance Checking
library. That is why we decided to contribute to development
of this programming language by implementing those libraries.

For evaluation we used the datasets provided by LanaLabs.
The results of the evaluation weren’t a surprise. It is more-less
the same with data perspective and without it. That’s all
because of modified (data-aware) alignment algorithm that
needs to generate significantly more states in order to
compute optimal alignments.

A lot of work is done; however, a lot still can be done. We
highlight 5 main points for the future work of this thesis:

1. Extending the BPMN library with all the elements
from BPMN format. For now, the library includes only
core elements.

2. Converting event logs to DAFSA (Deterministic
Acyclic Finite State Automaton) so that the same
prefixes of different traces aren’t aligned twice. For
now, the algorithm aligns all unique traces to the
automaton.

 39

3. Modify the alignment algorithm, so that it can
identify whether or not the data perspective is
present in the model and will run different
algorithms accordingly. This should make the tool
faster when there is no data perspective.

4. The developed tool only takes into account case
attributes. One possible extension is to handle event
attributes as well. This might be challenging since the
value of event attributes can change during a trace
and this has an impact on the performance of the
algorithm.

5. The experimental evaluation could be extended in
order to examine the tradeoffs between the
proposed approach and alternative ones such as the
one in [3].

 40

References
[1] Jorge Munoz-Gama. Conformance Checking and

Diagnosis in Process Mining - Comparing Observed and
Modeled Processes. Lecture Notes in Business
Information Processing 270, Springer 2016, ISBN 978-3-
319-49450-0, pp. 1-195

[2] Massimiliano de Leoni, Wil M. P. van der Aalst. Aligning
Event Logs and Process Models for Multi-perspective
Conformance Checking: An Approach Based on Integer
Linear Programming. BPM 2013: 113-129

[3] Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers,
Wil M. P. van der Aalst. Balanced multi-perspective
checking of process conformance. Computing 98(4):
407-437 (2016)

[4] Luciano García-Bañuelos, Nick van Beest, Marlon
Dumas, Marcello La Rosa, Willem Mertens. Complete
and Interpretable Conformance Checking of Business
Processes. IEEE Trans. Software Eng. 44(3): 262-290
(2018)

[5] Wil M. P. van der Aalst, Arya Adriansyah, Boudewijn F.
van Dongen. Replaying history on process models for
conformance checking and performance analysis. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2(2): 182-192
(2012)

[6] Massimiliano de Leoni, Jorge Munoz-Gama, Josep
Carmona, Wil M. P. van der Aalst. Decomposing
Alignment-Based Conformance Checking of Data-Aware
Process Models. OTM Conferences 2014: 3-20

[7] Arya Adriansyah, Boudewijn F. van Dongen, Wil M. P.
van der Aalst. Conformance Checking Using Cost-Based
Fitness Analysis. EDOC 2011: 55-64

[8] Daniel Reißner, Raffaele Conforti, Marlon Dumas,
Marcello La Rosa, Abel Armas-Cervantes. Scalable
Conformance Checking of Business Processes. OTM
Conferences (1) 2017: 607-627

[9] Artem Polyvyanyy, Luciano García-Bañuelos, Marlon
Dumas. Structuring acyclic process models. Inf. Syst.
37(6): 518-538 (2012)

 41

Licence
Non-exclusive licence to reproduce thesis and make thesis
public
I, Maksym Melnyk

1. herewith grant the University of Tartu a free permit
(non-exclusive licence) to reproduce, for the purpose of
preservation, including for adding to the DSpace digital
archives until the expiry of the term of copyright,
Data-aware Conformance Checking
supervised by Marlon Dumas and Thomas Baier.

2. I grant the University of Tartu a permit to make the work
specified in p. 1 available to the public via the web
environment of the University of Tartu, including via the
DSpace digital archives, under the Creative Commons
licence CC BY NC ND 3.0, which allows, by giving
appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public,
and prohibits the creation of derivative works and any
commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights
specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not
infringe other persons’ intellectual property rights or
rights arising from the personal data protection
legislation.

Maksym Melnyk
10/05/2019

