
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Richardas Keršis

Player emotional behavior dependency on fair video game

design factors and external conditions

Bachelor’s Thesis (9 ECTS)

Supervisor: Margus Luik, MSc

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237085116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Player emotional behavior dependency on fair video game design factors and

external conditions

Abstract:

The current thesis describes the problem of anger and aggression in video games and proposes a

solution specifically for action video games where players oppose each other. Losing at those

games may cause players to become angry or aggressive. As one of the factors, such anger comes

from a feeling of being cheated on.

During the thesis, an action genre video game that provides equal opportunities for the opposing

sides for winning was developed. An experiment which consists of playing the developed game

and filling out the questionnaire by a specific group of people was conducted. Participants of the

experiment were treated equally regarding game-external conditions. It turned out that fair video

game design factors and external conditions have a positive influence on player emotions.

Keywords:

PvP (Player versus Player) action video game, fair gameplay, player emotions.

CERCS:

P170 (Computer science, numerical analysis, systems, control)

Mängija emotsioonide sõltuvus ausatest mängu disaini faktoritest ja

välistingimustest

Lühikokkuvõte:

Käesolev bakalaureusetöö kirjeldab seda, miks videomängude mängijad muutuvad mõnikord

mängides agressiivseks ja vihaseks ning pakub sellele probleemile lahendust action žanri

videomängude puhul, kus mängijad mängivad üksteise vastu. Kaotamine nendes mängudes võib

muuta mängijaid vihasteks ja agressiivseteks, mille üheks põhjuseks on mängijate kahtlus, et neid

ei kohelda võrdselt ja teine võidab pettusega või talle mängu poolt loodud eelissituatsiooni abil.

Töös loodi action žanri katseline videomäng, mis pakub võrdseid võimalusi võitmiseks mõlemale

poolele. Töö käigus korraldati uuring, kus katseisikud mängisid seda mängu ja pärast täitsid

uuringu ankeedi. Selgus, et ausad mängu disaini faktorid ja välistingimused mõjuvad positiivselt

mängijate emotsioonidele.

Võtmesõnad:

PvP (Mängija vastu Mängija) action žanri videomäng, aus mängu protsess, mängija emotsioonid.

CERCS:

P170 (Arvutiteadus, arvanalüüs, süsteemid, kontroll)

3

Contents

Introduction ... 5

1 Background of the conducted research .. 7

1.1 Game fairness and fair gameplay regarding Player versus Player games 7

1.2 Developed game description ... 8

1.2.1 Input devices .. 9

1.2.2 Game logic ... 10

1.2.3 Spawning.. 11

1.2.4 Score system and winning ... 11

1.2.5 Combat ... 11

1.3 Game design factors and external conditions that affect game fairness. 13

1.3.1 Game design factors ... 13

1.3.2 External conditions .. 15

1.4 Achievements .. 16

2 Game development .. 17

2.1 Technologies used ... 17

2.1.1 Slick2D library ... 17

2.1.2 Kryonet library ... 17

2.2 Game structure .. 18

2.2.1 Game class ... 18

2.2.2 Game states .. 19

2.2.3 Menu state .. 20

2.2.4 InGame state .. 20

2.3 Client-server communication .. 23

2.4 Server application structure .. 25

2.4.1 ServerLoop class .. 26

3 Experiment conduction and playtests .. 31

3.1 Environment and preparations .. 31

4

3.2 Observational results ... 32

4 Questionnaire results .. 33

4.1 The impressions of the experiment, the game and its fairness ... 33

4.2 Emotions of the research participants ... 36

4.3 Conclusions ... 37

5 Discussion .. 38

References ... 39

Appendices .. 41

I. Questionnaire ... 41

License .. 45

5

Introduction

With today’s progression of electronics and communications more and more people are getting

involved in online video gaming as computers and Internet access are becoming easier to acquire.

In the year 2016 there were 1.8 billion gamers in the world [1]. Which was roughly 25% of the

world population at that time [2]. More and more games get digitized and there are almost no real-

life games left that are not yet digitally available. Nowadays video gaming industry has got lots of

different game types, game genres and their realizations – ranging from educational digital board

games to virtual reality action video games. Playing games is essential for human beings as they

help us create relationships, get educated, learn to work together, get to know how it feels to win

and lose around each other and more [3].

According to the statistics, the best-selling and most played are action video games [4, 5]. This is

the reason the action genre is focused during the thesis. People play games for various reasons [6,

7]. Current thesis considers two of them: competition and achievements. Competing against other

people and the competition itself means “the activity or condition of striving to gain or win

something by defeating or establishing superiority over others [8].” In other words, someone wins

and someone loses. However, despite all the good, action games bring one major problem.

Most PvP (Player versus Player) video games that provide competition have some sort of

inequality or imbalance and there are many factors that can potentially cause this effect. Be it

different starting positions or simply who has got the first turn. These factors tend to raise questions

among the players like “is the game fair?”, “do I have the same opportunity to win as my

opponent?” or “do I even have a chance to win?”. They may or may not be asked consciously

meaning that players may doubt in a game’s fairness even without thinking about it.

Looking at the players who treat action games seriously and sometimes get angry when losing at

a game, we can see that they mostly tend to behave like that because consciously or subconsciously

they think that the game was unfair to them [9-12]. As a result of their defeat, they might behave

aggressively, break things and scream blaming someone or something else for their loss [9-12].

Some people claim that this is due to excessive violence in those games [13]. However, a recent

research states that “it is not violence in games that makes people aggressive, it’s their

incompetence [14].”

Which brings us to the next set of questions. What if there is nothing to blame about a video game?

What if the players knew that the only deciding factor of a game’s outcome is their skill? Would

players then not get angry or aggressive and gracefully accept their defeats? Or maybe it would

only enhance negative emotions in people knowing they are alone to blame?

Thereby, the following hypothesis was formulated:

“Players would not feel anger if they knew that a played PvP action game was fair”.

6

The purpose of this thesis is to give clear answers to those questions and the hypothesis by

conducting an experiment. A specific group of people (further: research participants) have played

a fair fast-paced action PvP video game with equal starting conditions. After that, research

participants were interviewed, and their answers were analyzed. To ensure that the played game

provides fair gameplay the decision was made to develop a simple action game. “Game fairness”

and “fair gameplay” notions for the current thesis are described and discussed at the beginning of

the next chapter.

The first chapter of this thesis describes the background of the conducted research in detail. In the

second chapter, detailed game description and mechanics, as well as parts of the program code are

presented. The third chapter provides information about the conduction of the experiment and the

playtests. Finally, research results and conclusions are made and discussed.

7

1 Background of the conducted research

To approve or disprove the hypothesis and give clear answers to the raised questions, a game that

provides fair gameplay was played by the research participants and their reactions were examined.

The target group of researched participants consisted of people who are acquainted with action

genre video games to some extent. Moreover, they were placed in equal game-external conditions

for the experiment to be as fair as possible. Those conditions include latency, computer power,

and peripherals which are described in detail later in the thesis. To ensure that the played game

was fair, a decision was made to develop a simple fast-paced action PvP video game called

Swordshot. Description of the game is presented after the definition of “game fairness” and “fair

gameplay” notions.

1.1 Game fairness and fair gameplay regarding Player versus Player games

As far as the definition of the word fair goes (“Treating people equally without favoritism or

discrimination [15]”), this remains true when describing “fair gameplay” notion in this thesis. For

a PvP game to provide “fair gameplay” it has to offer equal opportunities to the opposing sides for

winning. Note: this does not mean that opponents have equal chances of winning, as their skill

level might differ.

The chess game is considered as a good example of an arguable gameplay fairness. Chess is a

popular board game that is played by two opponents on a checkered board. Players have equal sets

of specially designed pieces of contrasting colors, commonly white and black. Players alternate

turns to move one piece at a turn in accordance with fixed rules, where white moves first. They

attempt to force the opponent’s principal piece, the King, into checkmate - a position where it is

unable to avoid capture. Chess fairness is being argued [16]. Reason being is that someone (a

player that has got the white pieces) takes the first turn in the game. Statistically, this gives an

advantage as more games are won with white pieces rather than black. Usually, players do not play

one game at a time - they play series of games and switch sides meaning that pieces of each color

will be played at least once by both players. But if the first game in the series is lost by a player

with black pieces, it may cause him to play differently further and lose the series because of that.

Hence, there is no perfect balance in chess.

Current thesis implies that if a game does not meet the requirement of providing equal

opportunities to the opposing sides for winning, it is considered unfair.

Important note: “game fairness” and “fair gameplay” notion definitions may not be the same or

even true outside the framework of this thesis. They were defined this way inside the current thesis

only. They are used without quotation marks further.

8

1.2 Developed game description

The developed game was named Swordshot. The game is an isometric PvP fighting game (see

Figure 1). The confrontation takes place on a flat square plane (further: map) somewhere in the

sky. Both players are playing as stickman characters.

Figure 1: Swordshot in-game screenshot.

Stickman characters are able to:

1. Walk on the map;

2. Fall off from the map;

3. Execute 2 attacks: sword attacks and pistol shots;

4. Kill another player’s character by executing attacks;

5. Get killed by another character attacks.

A player’s character is always being centered in the game window. This is done by transitioning

all game objects in accordance with a player character’s position. The game implies 8-directional

character movement. It can move in any of the cardinal directions (North, South, East, and West)

as well as in directions in between (North - West, North - East, South - West, and South - East).

9

1.2.1 Input devices

Character manipulations are controlled by specific key presses (see Figures 2 and 3).

Figure 2: Character action key bindings. Character movement directions as well as attacks and corresponding

controlling keys. Keys are in blue color (where W, A, S, D are keyboard keys and LMB and RMB are right and left

mouse buttons respectively). Directions and attack names are colored black.

Figure 3: Character attacks and facing directions depiction. Directions North, East, South and West are shortened as

N, E, S, W respectively.

10

In games where players must aim it is easier to do with a mouse rather than a game controller.

Game controllers use analog sticks for aiming compared to the mouse which can be precisely and

accurately positioned on screen requiring much less effort [17]. Hence, mouse and keyboard

control were chosen over the game controllers. But as only one mouse cursor is allowed per

computer, the game is made to be played through a network. This way each player can control

their character using an individual computer and peripherals (i.e. input devices).

1.2.2 Game logic

Game mechanics and logic are calculated from a top-down 2D (two-dimensional) perspective of

the game. What player sees is an angled isometric projection of this from the side (see Figure 4).

Figure 4: Top-down and isometric demonstrative perspectives of the game. A, B and B/2 are arbitrary positions on

the x-axis and y-axis that show coordinate conversion upon perspective change. There are two characters at positions

P1 and P2. Their logical coordinates are depicted in Top-down perspective picture whereas visual coordinates are

depicted in Isometric perspective picture. Character positions are colored green.

Object positional coordinates in the game space are maintained using x-axis and y-axis. The third

axis is used only for character fall simulation. Besides the character falling process, the third axis

is not used. Objects have logical and visual coordinate types. Logical coordinates are the actual

coordinates of an object in the game space. Those form a top-down perspective. Visual coordinates

are those used to draw objects with their representative images onto the user’s screen. Those form

an isometric perspective. To convert logical coordinates to visual coordinates, y coordinate is

divided by 2. X coordinate is not changed. This way, a three-dimensional view is simulated.

11

1.2.3 Spawning

When the game starts, each character is spawned at one of the four determined spawn locations.

Each of them is near a separate corner of the map. (see Figure 5).

Figure 5: Swordshot game map with character spawn locations. Spawn locations are represented by red ellipses.

Respawn location is chosen by the game. A character will not respawn at the closest location to

another character. It will respawn randomly at one of the other three leftover locations. Characters

also respawn after dying. They die after getting hit by another character’s attack or crossing the

map boundaries. On death, the character becomes disabled for two seconds. The decision to

respawn the character is made by the game.

1.2.4 Score system and winning

The first player to reach the score of 20 wins the game, the other player loses the game at that

point. Both players start the game with 0 score points. To gain 1 point a player’s character must

kill other player’s character. It can be done by either hitting a character with a single sword attack

or a pistol shot. Falling off the map subtracts 1 score point from the current player’s score and kills

their character. When a player’s score is changed their updated score appears on their screen for 2

seconds.

1.2.5 Combat

Characters can interact with each other only by attacking. To kill a character a player must execute

a successful attack. For an attack to be successful it needs to hit another player’s character. Attacks

and character bodies have their areas of effect called hitboxes. The hit is registered if an attack

12

hitbox of one character intersects the body hitbox of another character. Attack and body hitbox

shapes vary depending on the attack type (see Table 1 and Figures 6-8).

Table 1: Hitbox shapes depending on the attack type

 Attack hitbox shape Body hitbox shape

Sword attack Rectangle Rectangle

Pistol shot Line Ellipse

Figure 6: An East-directed sword attack hitbox of the character P1 as well as the body hitbox of the character P2 in

the isometric projection. A sword attack from the character P1 in picture 1 would be unsuccessful whereas in picture

2 it would hit the character P2.

Figure 7: A North-directed sword attack hitbox of the character P1 as well as the body hitbox of the character P2 in

the isometric projection. A sword attack from the character P1 in picture 1 would be unsuccessful whereas in picture

2 it would hit the character P2.

Sword attack hitbox size is visually changed in isometric projection depending on the direction it

is executed at. However, as the game logic and mechanics take place from the top-down

perspective, hitboxes for the sword attacks are of equal size no matter the direction. They are also

visually invisible to the players during the game.

13

Figure 8: A pistol shot executed by the character P1 as well as the body hitbox of the character P2 in the isometric

projection. Picture 1 depicts an unsuccessful pistol shot execution by the character P1. The pistol shot executed by the

character P1 in picture 2 is successful and hits the character P2.

The mechanics and logic for pistol shots take place in the isometric perspective being one and only

exception. Hitboxes are created and maintained using visual coordinates of the players. The

exception was made for the pistol shots to be consistently represented visually. Otherwise, if the

mechanic and logic took place in the top-down perspective, the shots hitting a character’s head

visually would not be considered as successful.

During the game, player characters are given one bullet on their spawn / respawn. Meaning, that

they do not get another bullet unless they die.

1.3 Game design factors and external conditions that affect game fairness.

The next two sub-sections describe and give examples of some of the most notable game design

factors and external conditions that can affect a game’s fairness. The information on how each one

of them is handled during the experiment and Swordshot game design is given right after their

brief explanation.

1.3.1 Game design factors

Game design factors are factors that affect in-game gameplay directly. Game design is what makes

up the game and its rules [18].

1.3.1.1 Position and environment

In environmental action PvP games, positioning is crucial. If an environment has got any sort of

surface irregularities like hills or walls, the position a player is in affects player’s chances for

winning. Figure 9 shows an example of imbalanced gameplay in first-person shooter game type.

14

Player A and player B are the opposing players that are placed on the same plain field. From a

Player A perspective, the player B has half of their character body hidden behind a wall. This way,

Player A can roughly see only the upper body part of the opposing character while player B sees

the whole enemy character body. There are better chances for player B to hit player A with a

gunshot than player A to hit player B.

Figure 9: First person shooter game type example of environmental imbalance.

In Swordshot, positional advantages cannot occur as the environment of the game is a completely

flat symmetrical rectangular surface.

1.3.1.2 Different character classes

Characters that differ from each other by an aspect are from different classes. They may differ by

every aspect, such as size, movement speed, abilities and more. Different character classes may

influence the outcome of a game.

An example of this would be a fighting game, where one character can move faster but has less

health than another character. A perfect balance of power between those characters cannot be

achieved as they are stronger or weaker in different aspects.

In Swordshot, the character design is classless. Each player is playing one and only character in

the game with specific abilities.

15

1.3.1.3 Chance and probability

Some games include chance and probability that influence a player’s winning chances. A lesser-

skilled player might win a game against a skilled player because of random number generation.

Let us consider a fighting game that involves critical attacks. A critical attack in this game would

be an attack that deals double the amount of normal attack’s damage with some probability. In

such a game, a player who has more “luck” and deals more critical attacks – has an advantage.

In Swordshot, chance and probability are completely excluded.

1.3.2 External conditions

Besides game design factors there are also game-external conditions that might affect a game’s

fairness and player experience. More information on how the experiment was held is available

under the “Experiment conduction and playtests” chapter.

1.3.2.1 Latency

Latency in networks is the time interval it takes for a packet to travel from one designated point to

another [19]. Network-communication fast-paced action games are sensitive to latency. In most

games of the action genre, players with lower latency usually have an advantage over players with

higher latency. Latency differences between players are caused mainly by their geographical

location and Internet connection speed and reliability. As online games are played from different

locations and with different Internet connection qualities, latency differences occur causing issues

between player interactions.

The experiment conducted in this thesis was held locally. Computers of the participants were

connected to the same local area network. By this, latency factor influence was minimal being as

equal between players as possible. There are other methods to compensate latency issues between

players. For example, by extrapolating player actions, using client-server side predictions and

many more [20, 21]. These methods partly mitigate latency issues and do not equalize them for

players as good as the method used in the conducted experiment.

1.3.2.2 Computer power

Resource-demanding games might require players to use powerful computers to be played without

performance issues. Such games might experience performance issues if ran on a computer not

powerful enough to handle them. Having performance issues affects gameplay, its speed, and user

experience. As different people have different personal computers, games may get unfair when

players with computers of different power oppose each other.

16

All the research participants were given equally powerful computers on which the game

performance was as good as intended. This suppressed the computer power factor during the

experiment.

1.3.2.3 Peripherals

Peripheral devices such as keyboards or mice might also differ by their reaction speed on user’s

actions. All research participants were given equal keyboards and mice for this factor to be

balanced.

1.4 Achievements

People play games for various reasons, two of which (the competition and the achievements) were

considered as mentioned before. The game Swordshot allows people to compete by playing against

each other. As an achievement, winning players were complimented by the author. Moreover, a

chocolate bar was promised and given to winners as an incentive to try harder and play better. This

was done in order to make the research participants more motivated to win the game.

17

2 Game development

A game called Swordshot that meets the requirement of fair gameplay was developed for the

research participants to be played. A server application was also developed to complement the

client-server game architecture and enable players to interact with each other over a network

connection. Game and server application code and releases along with the requirements on

computer hardware and instructions are available in the Bitbucket repository [22]. Detailed

descriptions of the structure of the game and server application are given in this chapter.

2.1 Technologies used

Although popular game engines for 2D game development (Unity [23], GameMaker: Studio [24])

were considered, the author decided to go with a clearer approach building the game up with Java

[25] and libraries that utilize Java native tools, due to being more familiar and experienced with it.

By this, it was also ensured that the game did not obtain any hidden mechanics from an engine that

could cause it to run in an unexpected and uncontrollable way.

The game was developed using Java Development Kit version 1.8. This means the game is

compatible with machines that have Java Runtime Environment version 8. The game can

technically be run successfully on any of the major computer operating systems like Windows,

Mac OS, and Linux. It was tested only on Windows 10.

2.1.1 Slick2D library

Slick2D library [26] is a set of tools and utilities that utilize the graphics card if possible. It is

wrapped around LWJGL (Lightweight Java Game Library) [27] which is a lower-level language

library. Slick2D makes Java game development easier by providing higher-level language

development tools that utilize LWJGL tools. Libgdx [28], which is a similar to Slick2D library,

has more features than Slick2D and is being developed by this day as an advantage. But it does

not have as consistent documentation as Slick2D does which made Slick2D the preferred choice

over Libgdx. Also, the Libgdx variety of tools was excessive for the developed game.

2.1.2 Kryonet library

Kryonet library [29] is based on java.net Java package and provides simple client-server communi-

cation tools and utilities. Kryonet simplifies and generalizes the use of java networking tools

making them easier to use. It was used to make Swordshot run successfully on a network using

client-server communication architecture. Swordshot game instance runs a client program that

connects to a running server program at a specified address. On successful client connections,

server program handles them and enables clients to communicate with each other through it.

Client-server communication is described further in this chapter.

18

2.2 Game structure

The game Swordshot is created using Slick2D library and its container system. The container

system provides the functionality that allows creating standalone application windows (i.e. the

containers). Org.newdawn.slick package and its sub-packages will be further referred to as simply

.slick for readability purposes. Games created using Slick2D that use the container system should

implement the main game interface .slick.Game. The direct needed implementation of that

interface is the class .slick.StateBasedGame. This class allows easy manipulation of different

isolated, yet interchangeable game states (for example menu state, in-game state, etc.).

2.2.1 Game class

Slick2D provides an easy way to create a standalone application window for the game as an object

which then has to be started:

AppGameContainer appgc = new AppGameContainer(new

Game("Swordshot"), SCALED_WIDTH, SCALED_HEIGHT, false); //

Create the game container

appgc.start(); // Start the game

.slick.AppGameContainer is the main part of the container system mentioned before and is the first

thing that is called in the main method of the game Swordshot. Its constructor takes 4 parameters:

an instance of a .slick.Game interface implementing class (in this case, a custom Game class that

extends .slick.StateBasedGame class), the width of the container, the height of the container, and

a boolean for the fullscreen option. The main method of the game resides inside the Game class.

Its constructor is called when new Game("Swordshot") instance of it is created:

public Game(String name) {

 super(name); // pass to .slick.StateBasedGame constructor

}

The name parameter is what the application window of the game is named. This parameter is

passed to and handled inside the .slick.StateBasedGame class constructor. Also, an abstract method

initStatesList of that class is overridden in the Game’s class:

@Override

public void initStatesList(GameContainer gameContainer) throws

SlickException {

 addState(new Menu(STATE_MENU));

 addState(new InGame(STATE_INGAME));

}

It creates and initializes interchangeable game states using addState method provided by

.slick.StateBasedGame class. This is also called as a state pattern. addState method takes an

instance of .slick.BasicGameState class as an argument. Menu and InGame custom classes were

19

created for this purpose. These, upon instantiation, are given an ID (identification number)

(STATE_MENU and STATE_INGAME) to switch between them. States are the “stages” or

“scenes” in an application. To “enter” a game state means executing the Game.enterState(int

state_id) method. When this method is executed, the current state is abandoned, calling its leave

method and the state with a specified state_id is entered, calling its enter method. When a state is

entered, it becomes the current state that the game is operating and the user is interacting with.

2.2.2 Game states

The game application has two custom state classes: the Menu class and the InGame class. These

classes are called as states further. Game states are class-extensions of a .slick.BasicGameState

class. This class is an implementation of the interface .slick.GameState. This interface generalizes

game states giving them several methods described in Table 2.

Table 2: .slick.GameState interface methods.

Method Usage

getID()
Returns the ID of the state. Used only to get the state to

switch to.

init(GameContainer container,

StateBasedGame game)

Called when the state is created and added to the game

in initStatesList method discussed above. Used for

functionality that needs to be initialized only once.

enter(GameContainer container,

StateBasedGame game)

Called every time the state is entered. Used for

functionality that needs to be executed every time the

state is entered or re-entered.

leave(GameContainer container,

StateBasedGame game)

Called every time the state is left. Used for

functionality that needs to be executed every time the

state is left.

update(GameContainer container,

StateBasedGame game, int delta)

The state’s logic processes are updated here (e.g. user

input, character movement etc.). Ideally is called 60

times per second. Call frequency might fluctuate.

render(GameContainer container,

StateBasedGame game, Graphics g)

Used to render the state to the game container. To

render means to draw and create an image that is

displayed on the user’s screen. Ideally is called 60

times per second. Call frequency might fluctuate.

Both Menu and InGame states implement the methods described above.

http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#getID()
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#init(org.newdawn.slick.GameContainer,%20org.newdawn.slick.state.StateBasedGame)
http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/StateBasedGame.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#enter(org.newdawn.slick.GameContainer,%20org.newdawn.slick.state.StateBasedGame)
http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/StateBasedGame.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#leave(org.newdawn.slick.GameContainer,%20org.newdawn.slick.state.StateBasedGame)
http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/StateBasedGame.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#update(org.newdawn.slick.GameContainer,%20org.newdawn.slick.state.StateBasedGame,%20int)
http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/StateBasedGame.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#render(org.newdawn.slick.GameContainer,%20org.newdawn.slick.state.StateBasedGame,%20org.newdawn.slick.Graphics)
http://slick.ninjacave.com/javadoc/org/newdawn/slick/GameContainer.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/StateBasedGame.html
http://slick.ninjacave.com/javadoc/org/newdawn/slick/Graphics.html

20

2.2.3 Menu state

Menu state is what the user is presented with at the game’s launch (see Figure 10).

Figure 10: Swordshot Menu state screenshot.

This is the first state entered by the game. To play the game a user must connect to a running server

application. Menu state provides functionality to enter an IP (Internet Protocol) address and a port

number at which the desired server application is running. By pressing the “Enter” key an attempt

to connect to a server with entered server address takes place. On failure, the game state is not

switched, and the user is notified with an error message. On a successful execution, the game

connects to the server application establishing client-server communication and the InGame state

is entered.

2.2.4 InGame state

The InGame state is depicted in Figure 1. InGame state is where the actual gameplay takes place.

The player gets to control their character and the game’s interface using specific keyboard and

mouse keys (see Figure 2 for character controls). A player can also press the keys “I” to toggle

game info statistics and “Esc” to switch to the Menu state and disconnect from the server

application.

21

2.2.4.1 InGame render method

The game is rendered using the render method. Sky, game map, all the characters and GUI

(Graphical User Interface) are drawn and displayed to the user’s screen by rendering them where

and when needed. Renders occur 60 times per second as set by the game. This number is called

FPS (Frames Per Second). Each new frame everything is re-rendered to present a clean image of

the game to the user constantly.

First of all, the sky is rendered. The sky is a solid color that the application window is refilled by.

Everything after is rendered using graphical resources. All of the graphical resources reside inside

the game’s “res” folder (path: ../<Game folder>/res). The game map consists of sectors (called

tiles) that are rendered using a file “map.txt” and picture resources located in the “default_map”

folder (path: ../res/maps/default_map). The file “map.txt” contains the information about the map

which is read once by the game. The game uses the information to draw specific tile pictures at

specified positions. After that, characters of the players are drawn using sprite sheets.

Sprites in computer graphics are two-dimensional bitmaps (i.e. pictures). Sprite sheets are the

collections of sprites. In Swordshot, sprite sheets are used to store different stages of the character

animations. The game animates characters using custom-made character sprite sheets (see Figure

11).

Figure 11: A part of character running animation sprite sheet.

The GUI (Graphical User Interface) is rendered last. GUI consists of text strings and the crosshair,

which are rendered on the screen when necessary.

Everything is rendered using the .slick.Graphics type parameter g of the render method.

2.2.4.2 InGame update method

Game’s logic is updated inside the update method. Time, character movement, physics, player

inputs and interactions with the game, as well as communication with the server are handled and

calculated in there. Updates also occur 60 times per second. This number is called UPS (Updates

Per Second).

First, the current update time is saved. After that, the network update is executed when needed

(network updates are described at the end of this section). This is then followed by game logic

calculations which are player input and interactions with the game, character movement and

physics. Updated character information is then sent to the server. Further time calculations

http://slick.ninjacave.com/javadoc/org/newdawn/slick/state/GameState.html#update(org.newdawn.slick.GameContainer,%20org.newdawn.slick.state.StateBasedGame,%20int)

22

conclude the update cycle. Performing rendering and updates 60 times per second provides players

with smooth gameplay experience. The lower the render and update frequencies are, the less-

smooth is game experience.

Rendering and update frequency fluctuations

Render and update methods are not executed in a specific sequence. They are executed

independently of each other. It is preferred for them to run at a constant frequency of 60 times per

second as described above. Though, rendering and update frequencies (further: RF and UF) may

fluctuate. Renders and updates are not always executed at a constant pace and their frequency may

vary depending on computer power and performance (e.g. at a moment, UF may drop to 50 UPS;

the same can happen to the RF). RF fluctuations cannot cause severe problems, compared to UF

fluctuations. These might cause the game to be updated improperly while being in InGame state.

Menu state is not affected by the fluctuations as it is a simple user interface without much graphics

and mechanics.

UF fluctuations may cause character movement to become improper and imbalanced. A character,

who moves, one unit at an update will move 60 units per second at 60 UPS and only 20 units per

second at 20 UPS. This problem is mitigated by multiplying every physics calculation by the

parameter delta of the update method. Delta is an integer number that indicates how much time in

milliseconds has passed since the previous update execution. As a result, calculated values are

approximately the same with different UF.

Network updates

There are also network updates which were mentioned before that are executed 20 times per second

inside the update method. This number is called NUPS (Network Updates Per Second). Network

updates perform client-server communication by sending and receiving data packets (small static

classes that contain various information like character positions, actions, messages, etc.) as well

as handle those data packets. Performing network updates only 20 times per second as opposed to

60 conserves network bandwidth usage. This does not affect gameplay and its fairness. Network

updates are visually compensated by network interpolation technique. The algorithm takes an

object’s current position and last position and interpolates between them, calculating positions in

between which are rendered. As a result, the user sees only smooth movement of the game’s

objects. The drawback of this technique is that the user is shown only the previous network update,

seeing enemy characters slightly “in the past”. Fairness is not affected since all players execute

network updates at the same rate of 20.

23

2.3 Client-server communication

Client-server communication is realized using Kryonet library. com.esotericsoftware.kryonet

package and its sub-packages will be further referred to as simply .kryonet for readability purposes.

Custom classes ClientProgram and ServerProgram that are responsible for a successful client-

server communication were built. The ClientProgram and the ServerProgram are used by the

game and the server application respectively.

To start the server, it is bound to a specific port and is then started: (sp is the ServerProgram

instance)

sp.server.bind(port); // Bind the server to a port
<..>

sp.server.start(); // Start the server

To connect the client to the server the following sequence is executed:

1. connectToServer method is called from the Menu state when the user presses the “Enter” key:

((InGame) game.getState(Game.STATE_INGAME)).connectToServer(ip,

port);

2. connect method of the ClientProgram instance cp is called:

public void connectToServer(String ip, int port) throws

Exception { //throw further into the Menu

 cp.connect(ip, port);

}

3. connect method is executed:

public void connect(String ip, int port) throws Exception {

 client.start(); // Start the client

 try {

 client.connect(5000, ip, port); // 5000 is the timeout

value in milliseconds

 } catch (Exception e) { // In case of failure

 client.stop(); // Stop the client

 throw e; // Throw the exception into the InGame

 }

}

The major difference between the two (the ClientProgram and the ServerProgram) is that the

ClientProgram creates an instance of .kryonet.Client client and the ServerProgram - an

instance of .kryonet.Server server. These two instances are also .kryonet.Endpoint interface

implementations and thus, are called endpoints. Moreover, client instance can connect to only

24

one server instance and communicate only with it. server instance is able to have multiple

client instances connected to it, with a possibility to communicate with all of them.

Being an extension of .kryonet.Listener class enables ServerProgram and ClientProgram instances

to listen for incoming data packets and handle (further: serve) them upon receipt. Thus, they are

referred to as listeners later. client and server instances are given those listeners by calling

client.addListener(this); and server.addListener(this);

respectively as they form separate threads. Dividing the program into several threads allows to

execute multiple processes concurrently and independently. Meaning, that the data packets can be

received, served and sent at the same time without these processes interrupting each other.

Endpoint .kryonet.Client and .kryonet.Server instances must be familiar with the structure of the

data packets they send and receive in order to work properly. For that purpose, the Network class

was built.

Network class is a container for data packet classes. The static register method of that class is used

by endpoints to register networked data packets (i.e. to familiarize with them) and is called in both

ClientProgram and ServerProgram constructors:

Network.register(client); and Network.register(server);

respectively.

The following example of a data packet is the PacketUpdateX class which contains a player’s ID

and their character’s x coordinate:

static public class PacketUpdateX {

 public int id;

 public float x;

}

Both listeners use TCP (Transmission Control Protocol) [30] to send and receive data packets.

TCP is a protocol that is used for reliable network conversations. There is also a UDP (User

Datagram Protocol) [31] which allows transferring packets at a higher rate at the cost of reliability.

TCP was chosen over UDP because the game played throughout the experiment had to provide

fair gameplay to the players. Thus, the reliable delivery of player decisions and actions was chosen

over the speed of the communication.

ClientProgram and ServerProgram listeners also have a queue of received data packets that need

to be served. When a client or a server instance receives a data packet the received method

of the corresponding listener is called. This puts the packet into the receivedPackets queue.

receivedPackets = new ConcurrentLinkedQueue<>(); // Received

packets are put in here

25

As packets are served outside of the listeners, they both implement a public method to retrieve the

receivedPackets queue. Queued packets are polled out of the receivedPackets queue

and served one by one until the queue becomes empty. This process is similar for both the game

and the server application. However, the ways the game and the server application are operating

with data packets are different.

Client data packet handling

The game handles data packets inside the InGame state instance when network update occurs (20

times per second). Clients do not communicate with each other directly. Instead, clients send data

packets only about their character data to the server and receive data packets containing other data

like messages, other character positions, commands, etc. from the server. First, all the received

packets are served. After that, data packets containing updated character information are sent to

the server. To send a packet to the server the following client method must be executed:

client.sendTCP(packet);

Server data packet handling

The server application handles packets inside the ServerLoop class which is described in the next

section. This process also occurs 20 times per second. Server application’s responsibility is to

deliver updated information to all the clients connected to it. Right after the packet has been served,

clients are informed about updated information on server processes. This is what makes client and

server data packet handling different. Three server methods are used for sending packets to

clients depending on the functionality needed:

server.sendToTCP(client, packet); // Send the packet to a

specified client

server.sendToAllExceptTCP(client, packet); // Send the packet to

all clients except the specified client

server.sendToAllTCP(packet); // Send the packet to all clients

2.4 Server application structure

The server application consists only of four classes:

1. Network - a container class for data packet classes which is used to register networked data

packets as mentioned before (an identical class is used for the game’s client instances);

2. ServerReceivedPacket - simple helper class for better data packet structuring;

3. ServerLoop – the class, where the main gameplay and server logic take place;

26

4. ServerProgram, where the main method of the server application resides. How it creates and

runs the server instance to receive and send packets was described earlier. To handle client

connections and disconnections the two methods (connected and disconnected) of the server

instance are called respectively. They pass the information about the client connection or

disconnection further to the ServerLoop instance thread serverLoop which handles them.

serverLoop instance is started as a separate thread inside the ServerProgram class before

the server instance: (sp is a ServerProgram instance)

sp.serverLoop.start(); // Start the server loop

sp.server.start(); // Start the server

2.4.1 ServerLoop class

ServerLoop is responsible for handling client connections, disconnections and interactions among

each other, serving client data packets as well as distributing client and server information among

the clients and managing gameplay modes. The reason why this class is called a “loop” is that its

main functionality is running in an endless controlled while loop until the server application is

stopped. This while loop is responsible for updating the server logic at the frequency of 20 times

per second. Server logic updates are performed by calling the update method.

2.4.1.1 ServerLoop update method

First, all the received packets are served and the updated information about the game process is

distributed among clients. During this, player character information excluding attacks is registered

and simply distributed to other clients without processing. Attacks need to be processed and

verified as the ServerLoop is responsible for the kill confirmation and the killing of player

characters. Sword attacks and pistol shots have different mechanics.

Sword attack mechanics

Sword attack mechanics and calculations happen from a top-down perspective of the game and

use logical character coordinates. When a player executes a sword attack their client sends a

specific packet containing the angle information at which the sword attack was executed at. This

angle is read by the server program as the “direction” of the attack. A .slick.Shape object is created

on the server which is a rectangle representation of the sword attack hitbox at a specific position

beside player character. It is then rotated clockwise by the angle from the received packet around

the player character position to match the actual direction of the attack.Whether the attack hitbox

intersects with any player’s character body hitbox is checked next. Character body hitbox for

sword attacks is a .slick.Shape object as well which is a rectangle around the character. Figure 12

shows demonstrative sword attack hitboxes.

27

Figure 12: Attack hitbox and its rotation (on the left) as well as character body hitbox for sword attacks (on the right).

The blue rectangle A, the rotation of which is 0 degrees, is the initial sword attack hitbox created

when a sword attack is executed. It is then rotated clockwise by the angle from the received packet

around the character P1 for the attack to be facing at the proper direction. For example, the hitbox

B is rotated by 90 degrees around the character P1 and the hitbox C is rotated by 210 degrees

around the character P1. D is the body hitbox of the character P2 for sword attacks. If the sword

attack hitbox of the character P1 intersects with the body hitbox of the character P2, then the sword

attack is successful. If a successful sword attack from the character P2 is executed in reply to the

character P1 attack shortly after, the sword clash occurs and both characters are pushed aside from

each other without dying. Otherwise, the character P2 is killed.

Pistol shot mechanics

Unlike sword attacks which mechanics happen from top-down perspective, pistol shot mechanics

happen from the isometric perspective and use visual character coordinates. When a player

executes a pistol shot their client sends a specific packet containing the vector at which the pistol

shot was executed at. A .slick.Shape object is created on the server which is a line representation

of the pistol shot hitbox. It starts at the character’s visual position and follows the vector. The line

length is equal to the map size in units meaning that a pistol shot can reach any character from any

position on the map. The character body hitboxes for sword attacks and pistol shots are different.

The character body hitbox representation for the pistol shot is a .slick.Shape object as well which

is an ellipse of fixed size around the character model. If the pistol shot hitbox of the character P1

28

intersects with the body hitbox of the character P2, then the pistol shot is successful. As a result,

the P2 character is killed.

The server uses .slick.Shape instances because they provide necessary and convenient tools to

check for intersection of two shapes.

Gameplay modes

After the packet handling, the major gameplay mode check is performed. It controls whether the

gameplay mode needs to be changed or not. Gameplay modes are different game stages that are

possessed by the server.

Note: gameplay mode checks are also performed after events that might cause the gameplay mode

to change (e.g. a player getting a score point by killing another player).

There are 4 gameplay modes:

1. Lobby mode: This is the first gameplay mode the server enters. While in lobby mode, players

can connect to the server, they have unlimited ammo and they can interact with each other not

gaining or losing any score points. Connecting to the server is permitted until it becomes full

(two players have connected to the server). When the server is full further connections are then

rejected and connected players are prompted to press the “R” key to indicate that they are ready

for the game to get started. When both players are ready the game starts with the server entering

the countdown mode;

2. Countdown mode: This mode is an intermediate mode for players to get prepared for the

game. It kills all the characters giving players 5 seconds to prepare for the game start. After 5

seconds have passed the game mode is entered;

3. Game mode: This is the main gameplay mode which represents the game process itself.

Players get the ability to kill each other’s characters for score points. After one of the players

reaches the score of 20 the game is considered to be finished and the endgame mode is entered;

4. Endgame mode: Player that has first reached the score of 20 wins the game and is notified by

“YOU HAVE WON!” message. Other player characters die and are not respawned until the

gameplay mode is changed. Endgame mode lasts for 10 seconds after which the lobby mode

is entered.

Detailed gameplay mode workflow chart is present below (see Figure 13).

29

Figure 13: Gameplay mode workflow chart.

Lobby gameplay mode is the only gameplay mode which is not considered as a game-in-process

mode like other modes. This means that players can connect to the server only if it is not full and

only if it is in lobby mode. In other cases, new client connections are rejected and closed by the

server.

Rest of the update method

SeverLoop update method is concluded by two further checks:

1. Check for sword clash event occurrence. Controls whether two characters have performed

successful sword attacks on each other at almost the same time.

2. Check for dead player timer expiry. Controls whether the dead player characters need to be

respawned.

30

The update method is executed inside the run method of the ServerLoop thread which contains the

main while loop. It is responsible for updating the server logic at the frequency of 20 times per

second as mentioned before. This is accomplished by checking whether a certain amount of time

has passed after the previous update execution or not. If not, the thread sleeps for 1 millisecond in

order to reduce the load on computer processing units. This means that the server program stops

working for 1 millisecond and then continues where it left off.

This concludes the developed game and server application descriptions. The experiment conduc-

tion and its results, as well as the research analysis, are presented further in the thesis.

31

3 Experiment conduction and playtests

The experiment was conducted in a classroom of the Institute of Computer Science of the

University of Tartu. The classroom presented a total of 15 computers which had the same

hardware, operating systems, and peripherals (see Figure 14). All of them were also connected to

the same local area network. There were eight research participants. Their age was ranging from

19-23 years.

Figure 14: The classroom where the experiment was held in.

3.1 Environment and preparations

Players were put in pairs of two, making a total of four pairs. Paired research participants sat next

to each other while their server application ran on the adjacent separate computer. This way,

opposing players were connected to a third computer. Running a server application on a separate

computer equalized the client-server communication latency for both paired players. When the

research participants came into the classroom, the games on their computers were already running

and connected to the needed server. Players were seated and instructed the game controls and rules.

After the explanations, they were given indefinite time to explore the game and get used to the

game controls being in the lobby gameplay mode. Players started playing the game by pressing

the “R” key when they were comfortable and ready.

32

3.2 Observational results

The research participants were observed during the playtests. Notes about their emotions, behavior,

and questions were made. These results are only observational and should not be treated as

statistically accurate.

Players looked confident while playing the game. There were very little questions about the

gameplay and the game rules and only from those players who did not listen to the explanations

carefully at the start of the experiment. During the gameplay, the research participants mostly had

smiles on their faces. After the games were finished, pairs announced the winners themselves.

None of the paired players shook hands after the games. The players did not express any negative

emotions either.

Judging by the observed results, it looked like players enjoyed the process, were excited and

motivated to win the game. It is worth mentioning that nobody showed disagreement on the

outcome of the game. The results might have been influenced by the fact, that the participants were

friends of the author. However, personal responses show their actual emotions and feelings better.

33

4 Questionnaire results

Research participants were asked to fill out and submit a questionnaire (Appendix I) about the

game, the feelings they got from it, their experience with similar games and the experiment

fairness. Note, that players were told that the game they were playing was fair. Also note, that

players were not given the definition of gameplay fairness. What was fair was up to them to decide.

The questionnaire was made with the Google Forms web application [32].

4.1 The impressions of the experiment, the game and its fairness

Overall, research participants liked the game and its idea. They had fun playing the game and were

motivated to win at it. Judging by the questionnaire answers the game did an average job of

providing a good challenge level to the players (see Figure 15). Players stated that the external

conditions were pleasing and had a rather positive influence on the Swordshot gameplay than

neutral (see Figure 16). It was also made sure that all the research participants are acquainted with

and have played some of the other action PvP video games.

Figure 15: Questionnaire results for the general question.

34

Figure 16: Questionnaire results about influence the external condition had on the game.

The results of the questionnaire showed that players sometimes feel that the action games they are

playing are unfair. Half of the research participants have also mentioned that they sometimes think

games are unfair only towards them (see Figure 17).

Figure 17: Questionnaire results on previous emotional experience and thoughts about other action PvP video games.

35

When players compared Swordshot gameplay fairness with other games, they noticed the

difference and their responses were in favor of the Swordshot. They said that either the game was

completely fair or somewhat fairer than other games. One player stated that the difference in

gameplay fairness was unnoticeable. However, Swordshot received no negative responses

regarding gameplay fairness compared to other action PvP video games (see Figure 18).

Figure 18: Questionnaire results on Swordshot gameplay fairness comparison to other action PvP video games.

Some people felt that the gameplay was unfair in an aspect. They referred to the different skill

levels of the players that were divided into pairs. Stating, that overall gameplay during the

experiment was fair, but assuming, that their opposing player had an advantage over them in terms

of being more acquainted with the genre of action video games. As all research participants were

familiar with some of the other action PvP video games, it was impossible to balance their previous

skill level in this genre. Hence, these responses only supported the idea that the outcome of the

Swordshot game is heavily dependent on a player’s skill.

36

4.2 Emotions of the research participants

On average, research participants stated that they usually experience positive emotions when

winning at other action PvP video games while losing at them sometimes brings up negative

emotions (see Figure 17). During the experiment, all of the players had experienced positive

emotions like happiness, joy, elatedness, and satistafction (see Figure 19). This shows that

Swordshot managed to bring positive emotions to the research participants providing an average

level of challenge. They were unconfident about the gratitude emotion. As for negative emotions

(see Figure 20), most of the players felt no anger at all and no players felt hate. The minority, who

felt anger were those exact people mentioned before, who referenced different player skill levels

in action games. These people have lost their games during the experiment. Some research

participants were unconfident whether they did experience anxiety or fear, but nobody felt sadness,

sorrow nor shame.

Figure 19: Questionnaire results on positive player emotions during the experiment.

Figure 20: Questionnaire results on negative player emotions during the experiment.

37

The feedback for the experiment environment to be even more compelling to the game was

received. Players stated that more participants or even a tournament would be really appreciated.

Also, there could have been series of the games organized rather than one game per pair.

One player has proposed a solution for compensating latency issue in online games. Which is

emulate equal latency for all players by creating additional latency in accordance with the real

latency of the players. This would possibly mean that the allowed player latency would be

limited by the server.

4.3 Conclusions

Going back to the formulated hypothesis “Players would not feel anger if they knew that a played

PvP action game was fair”, experiment results show that players who considered Swordshot

gameplay as fair did not feel anger or hate. This partially proves the hypothesis. The hypothesis

cannot be completely proven as during the experiment it was revealed that Swodshot provided

only an average level of challenge to the research participants. They were intended to be motivated

by the challenge and the achievements. Those, who were only mildly challenged or not at all had

possibly lower motivation to win the game and surpass their opponent. Being less motivated may

have led to lower emotional activity from the players during the experiment. The fact that nobody

felt neither sadness nor sorrow, can potentially mean that players had nothing to lose while playing

the game, which is also a motivational factor. It is worth mentioning, that the research participants

were friends of the author. All of this could suppress negative emotions in research participants

and hence, the hypothesis cannot be completely proven.

Another reason why the hypothesis was proven only partially is that other incentive factors which

might cause players to feel anger (e.g. cultural, racial, phobic, etc.) were not considered and

addressed in the current thesis. Further testing for all possible incentive factors would be required

to fully test the hypothesis.

It can be certainly stated that fair game design factors and external conditions did not enhance

anger in the players. Experiment results showed that only the minority of people who had

complained the experiment fairness uncertainly felt anger. Moreover, the external conditions might

have suppressed the anger emotion levels in the players, due to the fact that multiplayer online

games are often played anonymously while being disconnected from the actual people. The

disconnection and anonymity may influence negative emotions of the players.

Judging by the results, people were unconfident whether they felt gratitude or not. Players did not

express gratitude but did not argue with the outcome of the games. This might possibly be due to

low motivation for winning during the playtests.

38

5 Discussion

The author is happy with the results accomplished in the framework of this thesis. The Swordshot

game was fully developed and the experiment was conducted successfully. The game is playable

and provides joyful gameplay experience to the players without inducing negative emotions. The

game is fully functional and operates using client-server communication. The game is totally free-

to-play and can be played by anyone. Simple server application code modifications can enable

more than 2 clients to be handled by the server. Game and server application code and releases

along with the requirements on computer hardware and instructions are available in the Bitbucket

repository [22].

During the research clear answers were given to the raised questions. The formulated hypothesis

was partly approved considering that Swordshot provided only an average level of challenge to

the players. Looking from another perspective, action games might not even need to be challenging

to be enjoyed. But the longevity of the joyfulness is questionable, as such games might become

boring quickly.

The biggest drawback in the research was the size of the researched group and their motivation.

The author was unable to involve more people in the research as well as provide better motivation

for the research participants. Having the low number of participants, experiment results were

inaccurate. The topic of Player emotional behavior on PvP games is very relevant considering how

many people play them. Continuation of the topic is proposed by the author and further research

should be considered.

Thanks to the University of Tartu for providing the knowledge, tools, and the equipment and all

the people who took part in the conducted research. Special thanks go to Alo Peets, Anne Villems

and the supervisor Margus Luik for helping in the realization of the current thesis.

39

References

[1] Jamie M. There are 1.8 billion gamers in the world, and PC gaming dominates the market.

2016, 4. https://mygaming.co.za/news/features/89913-there-are-1-8-billion-gamers-in-the-

world-and-pc-gaming-dominates-the-market.html (12.05.2018)

[2] World population statistics archive Worldometers.

http://www.worldometers.info/world-population/world-population-by-year

[3] Greg H. How are games useful to us? 2017, 4.

https://www.quora.com/How-are-games-useful-to-us (12.05.2018)

[4] Ian D., Meena K. 10 Best Selling Video Games in 2018. 2018, 4.

https://www.insidermonkey.com/blog/10-best-selling-video-games-in-2018-

658164/?singlepage=1 (12.05.2018)

[5] Statistics portal Statista. https://www.statista.com/statistics/251222/most-played-pc-games

(12.05.2018)

[6] Nikola V. Dominant video game genres – why are they so appealing? 2013, 4.

https://blog.gfk.com/2013/04/dominant-video-game-genres-why-are-they-so-appealing

(12.05.2018)

[7] Chirlien P. Understanding Gamer Psychology: Why Do People Play Games? 2017, 1.

https://www.sekg.net/gamer-psychology-people-play-games (12.05.2018)

[8] Oxford English dictionary definition for competition.

https://en.oxforddictionaries.com/definition/competition

[9] Commentary discussion on topic “Why do some ppl get so angry in games?”

https://www.gamespot.com/forums/games-discussion-1000000/why-do-some-ppl-get-so-

angry-in-games-31018366/ (12.05.2018)

[10] Commentary discussion on topic “Why do people tend to get angry when they lose in a

game?” https://www.quora.com/Why-do-people-tend-to-get-angry-when-they-lose-in-a-

game (12.05.2018)

[11] Commentary discussion on topic “I get mad when I play competitive games!”

https://www.reddit.com/r/truegaming/comments/48d6rj/i_get_mad_when_i_play_competitiv

e_games/ (12.05.2018)

[12] Commentary discussion on topic “How Can You Accept Defeat Gracefully?”

https://boards.na.leagueoflegends.com/en/c/player-behavior-moderation/ErJB3LXA-how-

can-you-accept-defeat-gracefully-and-wth-is-happening-to-riot (12.05.2018)

[13] Jean M. T. Yes, Violent Video Games Do Cause Aggression. 2012, 12.

https://www.psychologytoday.com/us/blog/our-changing-culture/201212/yes-violent-video-

games-do-cause-aggression (12.05.2018)

[14] Andrew K. P., Edward L. D. Scott R., Richard M. R. Competence-Impeding Electronic

Games and Players’ Aggressive Feelings, Thoughts, and Behaviors. Journal of Personality

and Social Psychology, 2014, Vol. 106, No. 3, 441– 457.

[15] Oxford English dictionary definition for competition.

https://en.oxforddictionaries.com/definition/fair

https://mygaming.co.za/news/features/89913-there-are-1-8-billion-gamers-in-the-world-and-pc-gaming-dominates-the-market.html
https://mygaming.co.za/news/features/89913-there-are-1-8-billion-gamers-in-the-world-and-pc-gaming-dominates-the-market.html
http://www.worldometers.info/world-population/world-population-by-year/
https://www.quora.com/How-are-games-useful-to-us
https://www.insidermonkey.com/blog/10-best-selling-video-games-in-2018-658164/?singlepage=1
https://www.insidermonkey.com/blog/10-best-selling-video-games-in-2018-658164/?singlepage=1
https://www.statista.com/statistics/251222/most-played-pc-games
https://blog.gfk.com/2013/04/dominant-video-game-genres-why-are-they-so-appealing
https://www.sekg.net/gamer-psychology-people-play-games
https://en.oxforddictionaries.com/definition/competition
https://www.gamespot.com/forums/games-discussion-1000000/why-do-some-ppl-get-so-angry-in-games-31018366/
https://www.gamespot.com/forums/games-discussion-1000000/why-do-some-ppl-get-so-angry-in-games-31018366/
https://www.quora.com/Why-do-people-tend-to-get-angry-when-they-lose-in-a-game
https://www.quora.com/Why-do-people-tend-to-get-angry-when-they-lose-in-a-game
https://www.reddit.com/r/truegaming/comments/48d6rj/i_get_mad_when_i_play_competitive_games/
https://www.reddit.com/r/truegaming/comments/48d6rj/i_get_mad_when_i_play_competitive_games/
https://boards.na.leagueoflegends.com/en/c/player-behavior-moderation/ErJB3LXA-how-can-you-accept-defeat-gracefully-and-wth-is-happening-to-riot
https://boards.na.leagueoflegends.com/en/c/player-behavior-moderation/ErJB3LXA-how-can-you-accept-defeat-gracefully-and-wth-is-happening-to-riot
https://www.psychologytoday.com/us/blog/our-changing-culture/201212/yes-violent-video-games-do-cause-aggression
https://www.psychologytoday.com/us/blog/our-changing-culture/201212/yes-violent-video-games-do-cause-aggression
https://en.oxforddictionaries.com/definition/fair

40

[16] Commentary discussion on topic “Is chess a fair game?”

https://www.quora.com/Is-chess-a-fair-game (12.05.2018)

[17] Commentary discussion on topic “Is the advantage of mouse and keyboard over gamepad

in shooters a myth?”.

https://www.reddit.com/r/truegaming/comments/28dsy0/is_the_advantage_of_mouse_and_k

eyboard_over (12.05.2018)

[18] Keith B. Game Design Theory: A New Philosophy for Understanding Games. CRC

Press. 2012

[19] WhatIs definition for latency. https://whatis.techtarget.com/definition/latency

[20] Online gaming: The real-time illusion created by client-side prediction.

https://www.nbnco.com.au/blog/entertainment/the-real-time-illusion-of-client-side-

prediction.html (12.05.2018)

[21] Glenn F. What Every Programmer Needs To Know About Game Networking. 2010, 2.

https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_net

working (12.05.2018)

[22] Swordshot game and server application Bitbucket repository.

https://bitbucket.org/riks1233/swordshotloputoo

[23] Video game engine Unity. https://unity3d.com (12.05.2018)

[24] Video game engine GameMaker: Studio. https://www.yoyogames.com/gamemaker

(12.05.2018)

[25] Java. https://www.java.com/en/ (12.05.2018)

[26] Slick2D Java library. http://slick.ninjacave.com (12.05.2018)

[27] Lightweight Java Game Library. https://www.lwjgl.org (12.05.2018)

[28] Libgdx Java library. https://libgdx.badlogicgames.com (12.05.2018)

[29] Kryonet Java library. https://github.com/EsotericSoftware/kryonet (12.05.2018)

[30] Nadeem U. TCP (Transmission Control Protocol) Explained. 2018, 2.

https://www.lifewire.com/tcp-transmission-control-protocol-3426736 (12.05.2018)

[31] Bradley M. User Datagram Protocol. 2018, 4.

https://www.lifewire.com/user-datagram-protocol-817976 (12.05.2018)

[32] Google Forms software. https://www.google.com/forms/about (12.05.2018)

https://www.quora.com/Is-chess-a-fair-game
https://www.reddit.com/r/truegaming/comments/28dsy0/is_the_advantage_of_mouse_and_keyboard_over
https://www.reddit.com/r/truegaming/comments/28dsy0/is_the_advantage_of_mouse_and_keyboard_over
https://whatis.techtarget.com/definition/latency
https://www.nbnco.com.au/blog/entertainment/the-real-time-illusion-of-client-side-prediction.html
https://www.nbnco.com.au/blog/entertainment/the-real-time-illusion-of-client-side-prediction.html
https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking
https://gafferongames.com/post/what_every_programmer_needs_to_know_about_game_networking
https://bitbucket.org/riks1233/swordshotloputoo
https://unity3d.com/
https://www.yoyogames.com/gamemaker
https://www.java.com/en/
http://slick.ninjacave.com/
https://www.lwjgl.org/
https://libgdx.badlogicgames.com/
https://github.com/EsotericSoftware/kryonet
https://www.lifewire.com/tcp-transmission-control-protocol-3426736
https://www.lifewire.com/user-datagram-protocol-817976
https://www.google.com/forms/about

41

Appendices

I. Questionnaire

42

(appendix I continued)

43

(appendix I continued)

44

(appendix I continued)

45

License

Non-exclusive licence to reproduce thesis and make thesis public

I, Richardas Keršis,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including

for addition to the DSpace digital archives until expiry of the term of validity of the

copyright, and

1.2. make available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives until expiry of the term of validity of the copyright,

Player emotional behavior dependency on fair video game design factors and

external conditions

supervised by Margus Luik

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights

or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2018

