
 UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Giorgi Gogiashvili

The State of the Art of Automatic Programming

Master’s Thesis (30 ECTS)

Supervisor(s): Siim Karus

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237085097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

The State of the Art of Automatic Programming

Abstract:

Automatic programming or code generation is a type of computer programming where the

code is generated using some tools allowing developers to write code at higher level of

abstraction. Implementing these types of programs into the software development process

is a good way to boost programmers’ performance by focusing on the task at hand rather

than implementation details. Current literature on the subject reviews single approach or

method. Very few of them are reviewing state of the art in general. This paper reviews the

state of the art of automatic programming by overviewing the existing literature on the topic

using systematic literature review method. The paper overviews approaches and algorithms

of the topic, examines issues and open questions in the field and compares the state of the

art to the state of the practice. Of 37 relevant studies, 19 addressed general definitions and

subtopics of automatic programming. 30 presented specific algorithms or approaches. 2 of

proposed techniques were implemented in practice. Currently, the focus of automatic pro-

gramming shifted from program synthesis to inductive programming, caused by a break-

through in artificial intelligence. Definition of the term and subtopics is consistent between

scholars. However, formulating correct specification and providing sufficient information

for automation is still an open research question.

Keywords:

Automatic programming, program synthesis, inductive programming, code generation

CERCS: P170 - Computer science, numerical analysis, systems, control

3

Ülevaade automaatprogrmmeerimise hetkeseisust

Lühikokkuvõte:

Automaatprogrammeerimine või koodi genereerimine on teatud tüüpi arvutiprogrammide

loomisviis, kus kood genereeritakse mõne tööriista abil, mis võimaldab arendajatel koodi

kirjutada kõrgemal abstraktsioonitasemel. Selliste programmide rakendamine tarkvaraar-

enduse protsessis on hea viis programmeerijate produktiivsuse tõstmiseks, võimaldades neil

keskenduda pigem käesolevale ülesandele kui implementatsiooni detailidele. Senises tea-

duskirjanduses on vaadeldud konkreetseid lähenemisi või meetodeid eraldi. Väga vähesed

uurimustööd vaatlevad aga kogu valdkonna viimast taset. Käesolevas töös käsitletakse au-

tomaatprogrammeerimist olemasoleva kirjanduse süstemaatilise kirjandusülevaate meetodi

abil. Töö teeb ülevaate teemaga seonduvatest algoritmidest, probleemidest ning uurmis-

valdkonna avatud uurimisküsimustest ning võrdleb valdkonna hetketaset praktika hetket-

asemega. Vaaldeldud 37 asjakohasest uuringust tegelesid 19 automaatprogrammeerimise

üldise määratlemise ja alateemadega. 30 pakkusid välja konkreetse algoritmi või lähenemis-

viisi. Esitatud tehnikatest rakendati 2 praktikas. Viimasel ajal on automaatprogrammerimise

fookus nihkunud programmide sünteesilt induktiivsele programmeerimisele, mille on

põhjustanud läbimurded tehisintellekti valdkonnas. Mõistete ja alateemade määratlus on

teadlaste vahel ühtne. Õigete spetsifikatsioonide sõnastamine ja piisava teabe andmine au-

tomatiseerimiseks on endiselt lahtine uurimisküsimus.

Võtmesõnad:

Automaatprogrammeerimine, programmide süntees, induktiivne programmeerimine, koodi

genereerimine

CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, kontroll

4

Table of Contents

1 Introduction ... 6

2 Background ... 7

2.1 Metaprogramming .. 7

2.2 Genetic Programming ... 7

2.3 History of Automatic Programming ... 7

2.4 Automatic Programming .. 8

3 Method .. 9

3.1 Search Process .. 9

3.2 Inclusion and exclusion criteria .. 9

3.3 Study Selection ... 10

3.4 Data Extraction ... 11

4 Results ... 13

Domain-specific language ... 14

4.1 Compilers ... 15

4.2 Program Synthesis .. 16

Strategical Approach ... 17

Divide and Conquer .. 18

Deductive Program Synthesis ... 18

Syntax-Guided Synthesis .. 23

Oracle-Guided Synthesis ... 23

Program Synthesis by Sketching ... 26

4.3 Inductive Programming .. 27

IGOR II ... 28

Automatic Design of Algorithms through Evolution (ADATE) 29

Object-Oriented Design and Genetic Programming ... 30

5

Data-Driven Domain-Specific Deduction ... 32

FlashMeta .. 32

Neuro-Symbolic Program Synthesis ... 33

4.4 Additional Approaches ... 36

4.5 Limitations and Open Questions .. 38

4.6 The State of the Practice ... 39

5 Discussion ... 40

5.1 Definition and Subtopic .. 40

5.2 Algorithms and Methods .. 41

5.3 Limitations and Issues .. 41

5.4 Comparison to the State of the Practice ... 42

6 Conclusion ... 43

7 References ... 45

Appendix ... 49

I. Selected Papers ... 49

II. Abbreviations ... 53

III. License .. 54

6

1 Introduction

Automatic programming or code generation is a type of computer programming where the

code is generated using some tools allowing developers to write code at higher level of

abstraction. During the last years, vast amount of papers have been published concerning

automatic programming. Most of them are comprehensive but are focused on a single case,

method or algorithm. Very few of them are reviewing state of the art of code generation in

the whole [1]. Having research paper examining the state of the art of the field has a big

scientific value as it will provide scholars base for the future research.

This paper analyses and reviews state of the art of automatic programming by overviewing

existing literature and best practices of the topic.

The main aim is to review existing techniques and algorithms in this space find issues and

open questions and compare it to the state of the practice, with an emphasis on the use of

these methods for computer program generation.

The research questions this paper tries to answer to are following:

RQ1: How is automatic programming defined by different scholars and what are subtopics

of the subject?

RQ2: What are the algorithms and approaches used in the field?

RQ3: What are the limitations and open questions on the topic?

RQ4: How does the level of the state of the practice compare to the state of the art or the

subject?

As the main aim of the paper is to formalize the state of the art, many in-depth details will

be omitted and simplified from all papers to achieve readability and briefness. Paper en-

courages the reader to see reference paper for a more exhaustive analysis of an algorithm or

approach.

The paper structure is as follows: in Section 2 the background of the topic will be presented.

Section 3 will address the research method used in this paper. Section 4 will overview the

results of the literature review. In section 5 research question will be discussed and finally

in section 6 paper will be summarized.

7

2 Background

This section of the paper will introduce the field of automatic programming by describing

theoretical and technological concepts of the topic. At first, the concept of Metaprogram-

ming and genetic programming will be overviewed. Second, origin and history of the auto-

matic programming will be described. Finally, an overview of different types of automatic

programming and used technologies will be presented.

2.1 Metaprogramming

Metaprogramming is a type of programming where computer programs are treating other

programs as their data. This means that programs are designed in a way that they are able to

generate, analyse, read or transform itself or other programs [2]. This allows developers to

reduce codebase, have more flexibility, move computations from run-time to compile-time,

to generate code during compilation. Metaprogramming language is called metalanguage

and the language of the programs that are being manipulated object language. The main

feature of Metalanguages is reflection or reflexivity that facilitates the whole concept of

metaprogramming.

2.2 Genetic Programming

Genetic programming (GP) is a type of programming where programs are regarded as genes

and then are evolved using genetic algorithms (GA). The main aim of GP is to improve the

program in performing a predefined task. According to K. Becker [3], the Genetic algorithm

takes as an input set of instructions or actions that are regarded as genes. Then a random set

of this instructions are selected to form an initial chain of DNA. The whole genome is then

executed as a program and results are scored in terms of how well the program solved the

defined task. Then top scorers are mated together and offspring is rated again until the

desired program is produced. To achieve diversification evolutionary techniques such as

roulette selection, crossover, and mutation are used. Even though genetic programming is

usually research subject of artificial intelligence its ideas and techniques are occasionally

used in automatic programming as well [4].

2.3 History of Automatic Programming

There have been different approaches to this problem and the term definition itself was var-

ying through time. From the early 1940s when term considered the description of the manual

8

process of punching paper tape. After some time when compilers started to appear, auto-

matic programming was describing a translating process from high-level code to low-level

(For example C to bytecode). Even today there is no deterministic formulation of the defi-

nition, but the generally accepted meaning of the term is that Automatic programming is

programming in a higher level of abstraction than it is available to the programmer [5].

2.4 Automatic Programming

Automatic programming or code generation is a type of computer programming where the

code is generated using some tools allowing developers to write code at the higher level of

abstraction. There are different approaches to the automatic programming, one of them is

program synthesis which aims to generate programs based on specifications that are usually

“non-algorithmic statements of an appropriate logical calculus" [2]. In contrast to that in-

ductive programming aims to derive computer programs from input-output examples or

constraints, i.e. incomplete specifications. In order to learn missing specifications, inductive

programming utilizes artificial intelligence and machine learning algorithms [5], [1].

9

3 Method

The review of the literature on this topic is done by systematic literature review and is based

on the research protocol and in this section of the paper research-strategy, the sources, the

studies selection, the selection execution and the data extraction will be defined.

3.1 Search Process

A search of the appropriate literature was carried out on the databases presented in Table 1

as well as manual search in references.

Table 1. List of databases and corresponding acronyms

Source Acronym

ACM Digital Library ACM

IEEE Xplore IEEE

SpringerLink SL

The search keywords were “automatic programming”, “inductive programming”, “program

synthesis”, “automated refactoring”, “DSL” and “domain-specific language”.

After conducting a search on the above-mentioned databases and after applying inclusion

and exclusion criteria, references from and to this papers were analysed to identify addi-

tional papers.

3.2 Inclusion and exclusion criteria

The Inclusion criteria were the following:

IC1 The study must be written in English.

IC2 The study must be about automatic programming.

IC3 The study should describe one or more algorithm or technique of automatic

programming.

The exclusion criteria were the following:

10

EC1 The full-texts of the study was not accessible by the library proxy of the Uni-

versity of Tartu.

EC2 Study is non-peer reviewed research.

EC3 Study is about a topic that has already been included in the selection (in that

case papers are evaluated compared to each other and the better one is se-

lected. For comparison references to each other are checked and if one paper

refers to another the former is excluded. If there are no relevant references

then common reference on that topic is found and this paper is included in-

stead of other two).

3.3 Study Selection

The Literature review was carried out by searching with the keywords defined in section 3.2

on databases in Table 1. The results of the initial first search are presented in Table 2.

Table 2. Initial search results by query and database

Query/Data-

base

auto-

matic

pro-

gram-

ming

inductive

pro-

gram-

ming

auto-

mated

refactor-

ing

DSL &

domain-

specific

language

Program

Synthe-

sis

Total

ACM 253 15 56 326 154 804

IEEE 2,035 3 44 437 212 2,731

SL 451 33 10 179 97 770

Total 2,739 51 110 942 463 4,305

After the first iteration of searching, 4,305 papers were identified to apply inclusion and

exclusion criteria.

Before applying inclusion criteria duplicates were rejected from each library as shown in

Table 3.

11

Table 3. Duplicates identified in the results

Database Duplicates Removed Total Left

ACM 284 520

IEEE 338 2,393

SL 125 645

Total 747 3,558

Additionally, 412 duplicates were rejected from the results of all libraries combined, thus

leaving only 3146 papers for applying inclusion and exclusion criteria on.

Inclusion criteria were applied one criterion at a time followed by exclusion criteria.

Results of applying inclusion criteria are following:

 2969 papers satisfied IC1.

 784 papers satisfied IC2 based reviewing their titles.

 124 papers satisfied IC3 based on their abstracts.

Results of applying exclusion criteria are following:

 EC1 eliminated 8 papers, leaving 116.

 EC2 eliminated 10 papers, leaving 106.

 EC3 excluded 75 papers, leaving 31.

Then citations and references of selected papers were analysed manually to find additional

6 relevant papers that were not found by querying databases.

Finally, 37 papers were selected for the review. These papers are listed in Appendix I.

3.4 Data Extraction

Selected papers were further analysed and relevant data for the research questions were ex-

tracted. During extraction the following extraction criteria were taken into consideration:

EC1: Title, abstract, authors, publishing year

EC2: Theoretical overview (definitions, subtopics etc.)

12

EC3: Algorithm, approach or technique researched in paper

EC4: Issues, problems and limitations of the EC3

EC5: Tools utilizing proposed algorithm, approach or technique

Data extracted from the papers with the criteria defined above was used to answer research

questions and categorize papers. Specifically, Table 4 shows the mapping of research ques-

tions to corresponding data extractions criteria.

Table 4. Research question mapping with Data extraction criteria

Research Question Data extraction criteria

RQ1 EC1, EC2, EC3

RQ2 EC2, EC3, EC5

RQ3 EC2, EC4

RQ4 EC5

Papers were classified into following criteria (Appendix I):

 Compilers

 Program Synthesis

 Inductive Programming

Next chapter will formalize the state of the art of the automatic programming based on the

classification defined above.

13

4 Results

The state of art of the automatic programming can be split into three categories: compilers,

program synthesis and inductive programming [1]. Compilers are usually considered sepa-

rately as they do not tend to create new logic not defined in the original code but translate

latter into a different programming language [6]. As for program synthesis and inductive

programming, even though these two terms are sometimes used interchangeably, they are

disparate and utilize contrasting principles for code generation.

To begin with, it is important to mention that setting unreal expectations to the automatic

programming is a frequent issue and we need to be cautious when analysing purposes of the

automatic programming. Claims, that automatic programming systems do not need domain

knowledge or that it is possible to implement fully autonomous general-purpose program-

ming framework has no empirical evidence [7]. Discussing automatic programming in that

perspective is a philosophical debate that can be related to artificial general intelligence

(AGI).

The first comprehensive paper on code generation was Automatic Programming: A Tutorial

on Formal Methodologies by Alan W. Biermann (1985) who was the first one to divide

concept into program synthesis and inductive programming and analysed multiple ap-

proaches from both sides [1].

In this section, the state of art of the automatic programming will be analysed based on the

papers listed above. For the base of the discussion, this research will use Biermann’s paper

and supplement it with more recent works, as well as analyse completely different ap-

proaches to this topic. First, automatic programming will be reviewed form the perspective

of compilers, followed by program synthesis and finally inductive programming.

According to Gulwani [8], Automatic programming problem can be categorized into three

main dimensions: intent specification, program space, and search strategy. Intent specifi-

cation implies how should the desired application be specified and what information should

be included in the specification. Program space defined search space of the desired program

with domain-specific insights such as DSLs. The search strategy is concerned with what

approaches and methodologies should be used for actual synthesis (Deductive synthesis,

divide and conquer of strategic approach, syntax-guided synthesis, etc.).

14

Domain-specific language

A domain specific language (DSL) is a is a special purpose computer language that is spe-

cialized for computations in a specific domain [9] One good example of DSL is Structured

Query Language (SQL) which by itself does not comprehend anything that cannot be ex-

pressed using general purpose languages such as C or Java. SQL encompasses actions and

functions required for communication with the database engine.

In the literature, there are two major types of DSLs: first-class language and embedded lan-

guage as shown in Figure 1. The first-class language has its own interpreter and compiler

and only operates in a predefined environment, while embedded languages are closely tied

to the host language and utilizes latter’s semantics, however, they may have distinct look

and feel.

Figure 1. Type of domain-specific languages [9]

Embedded DSL (EDSL) has the look and feel and semantics of a language it is embedded

to. But it is specialized for a specific domain. Since it resembles host language very much

developing and maintaining DSL is easier. According to A. Gill [9], Haskell’s concise syn-

tax made developing the vast amount of EDSLs possible. Combining multiple terms in DSL

gives us deeply embedded DSL which can be considered as a library of provided functions

[9]. In contrast to shallow EDSL, where values are computed directly, deep EDSL constructs

Domain-Specific

Language

Stand Alone DSL Embedded DSL

Shallow EDSL Deep EDSL

15

syntax trees. The result of computation of shallow EDSL is valued while deep EDSL returns

structure that can later be evaluated into a value.

4.1 Compilers

Computer programs are written in programming languages that specify specific command-

set in their syntax. A computer processor, on the other hand, accepts sequences of instruc-

tions in contrast to program texts. The computer in order to be able to understand program

text first needs to be translated into proper instructions. This process can be automated by a

specific program referred as compiler and the translation process itself is called compiling

[10]. More formally, a compiler is a computer program that is used to translate source code

written in one language to another programming language [6].

There are many different types of compilers designed for different purposes. The term is

usually referred to the software that translates high-level language code (e.g. C/C++) into a

lower-level language (assembly, machine code). Other types of compilers include: cross-

compiler that has ability to compile code for different CPU or architecture; bootstrap com-

piler that is written in the same language as the target [11]; decompiler that translates code

from low-level language to high-level [12]; source-to-source compiler that translates be-

tween two high-level programming languages [6]; and compiler-compiler used for design-

ing syntax analysers.

The compilers must follow two fundamental principles: The compiler must preserve the

meaning of the program being compiled and the compiler must improve the input program

in some discernible way [6]. The first principle cannot be ignored as if we allow change of

the meaning, what will limit compiler to produce completely different program then we

intended to write. The second principle is more practical than formal, if we define improve-

ment as optimization, for example making the program perform faster, then the compiler

can overlook this principle. But if improvement is understood as a creation of a value, for

example, the creation of executable program from source code, then the compiler is indeed

improving input.

The compiler usually adopts separation of concerns principle and is structured in two or

three parts: Front-end, Middle end or Optimizer and Back-end. Difference between two and

three-part structure is that two-part structure does not have optimization. Figure 2 presents

the structure of a common compiler.

16

Figure 2. Structure of a common compiler [6]

Front-end receives source code and is responsible for analysing and building an intermediate

representation (IR) of it. Usually, front-end process is divided into following parts: line

reconstruction, pre-processing, tokenization, syntax analysis, semantic analysis.

Middle end or optimizer receives intermediate representation as an input runs it through

series of optimization algorithms and outputs improved intermediate representation. The

focus of each optimization algorithm varies from compiler to compiler. Following are the

most frequent optimizer directions: speed, size, number of page faults, and energy consump-

tion.

Back-end receives output from the optimizer, in case of a two-part compiler, or from the

front end, in case of three-part compiler, and translates it to CPU and architecture specific

instruction set. Its main aim is to maximize the efficiency of available resources utilization.

The backend is a multi-stage process that includes: Machine dependent optimizations, which

rewrites particular instructions of assembly language to be more efficient on the given pro-

cessor; Code generation, which refers to translation from assembly language to machine

language.

The benefit of multi-part compilers and separation of concerns principle is that front and

back ends can be changed with different ones, to support numerous languages, processors

and architectures, while maintaining optimizations. This is frequent practice and the biggest

and most common example if GNU Compiler Collection (GCC) that supports multiple lan-

guages and platforms.

4.2 Program Synthesis

Program synthesis is a process of the deriving program from a given full specification. The

desired program should be synthesized by specifying features or behaviours but not exact

Compiler

Front-End Optimizer Back-End
IR IR Source

Program
Target

Program

17

algorithms. Usually, specification consists of human-provided insights and general descrip-

tion of the domain. Regardless it should be specified enough information to successfully

derive desired program [13], [1]. Even though computers’ main job is to derive the low-

level details, human intervention by specifying additional insights is valuable [14]. More

formally, the program synthesis addresses the problem of finding function f such that will

satisfy function ϕ that checks the correctness of f in terms of specification (i.e. ϕ stating that

f is a valid program) [13].

Many approaches of program synthesis relay on mathematical theorem proving algorithms

as well as metaprogramming, however, more recent studies started researching different

approaches to program synthesis such as A. Solar-Lezama’s Program Synthesis by Sketch-

ing [14]. Moreover, an essential part of this subtopic relays on domain-specific languages.

In the following chapters, the current state of the art of the program synthesis will be for-

malized.

Strategical Approach

Strategical approach for program synthesis was first introduced by Bibel and Hornig in 1984

[1]. They proposed logical program synthesis system LOPS whose main features include

acquiring specification, manipulating domain, proposing and proving critical theorems and

last but not least constructing code.

The main idea behind the strategical approach is to identify the relationship between the

input and output. The system does this by searching for the portion of the input that can give

any insight on output. If that kind of portion is found then system tries to find a repetition

of the original specification with already processed part of input and it continues reducing

the problem that way until all of the input is a process, thus completing the synthesis.

However, when required theorems are not available to process input further, synthesis

blocks and invokes model exploration capability, which on the other hand tries to generate

additional examples to derive missing theorem by generalizing the examples observed pre-

viously.

This approach resembles human reasoning to find new relationships in the domain and to

generalize on the previous evidence. Theorem proving methodologies and generalization

from examples capabilities are a crucial part of this approach [1].

18

Divide and Conquer

The widespread approach in developing software is the “top-down” design, where the orig-

inal problem specification is divided into subtasks. Then each subtask is analysed, it can be

trivial enough to be solved directly or still complex as original specification. If they are not

primitive enough, they are further broken into parts, until all of the subtasks are simple

enough to be solved individually. After that, the decomposed and solved subtasks are com-

bined together to assemble a complete solution. The divide and conquer methodology of

automatic programming as reviewed by A. Biermann [1] follows the strategy defined above.

It partitions the problem input into multiple parts and tries to solve each sequence individu-

ally. In other words if the desired program is f, which accepts input x, with divide and con-

quer approach system will first check if f is simple enough to be solved directly, otherwise,

it will split x into parts and repeats the process on each part of x individually. Finally, the

results of each computation are collected together to produce the result of f. The main ap-

plication of this approach is the class of sorting programs, where the different decomposition

operator can generate different sorting programs.

Deductive Program Synthesis

There are several approaches to the program synthesis. One of them is deductive program

synthesis pioneered by Z. Manna and R. Waldinger [15]. In this approach, program synthe-

sis is considered as a problem of proving a mathematical theorem and utilizes theorem-

proving methods such as transformation rules, mathematical induction and unification. The

authors introduced deductive tableau, which is a two-dimensional structure used for encom-

passing the proof [16].

To overview proposed method we need to define formal terms and notions used in the paper.

The terms encompass constants and variables, expressed in Latin symbols. The term can be

constructed by application of different functions such as 𝑓(𝑎, 𝑔(𝑎, 𝑥)) [16]. Additionally,

if-then-else is defined which is considered as a term constructor. Atomic sentences construc-

tion consists of applying predicate symbols (𝑝, 𝑞, 𝑟) to terms. Sentences consist of atomic

sentences and truth symbols true and false, their construction is based on the application of

connectives (∧, ∨, ¬,…) and quantifiers (∀𝑥, ∃𝑥) to other sentences as well as conditional

connective (if-then-else) for implication.

Paper also defined different types of expressions: closed which does not contain any free

variables; ground which does not contain any expressions at all; and herbrand which is a

19

ground expression that does not contain any connectives, term constructors or equality sym-

bols.

The total reflexive theory TR is defined by the following two axioms:

𝑢 ≽ 𝑢 (𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦)

𝑢 ≽ 𝑣 ⋁ 𝑣 ≽ 𝑢 (𝑡𝑜𝑡𝑎𝑙𝑖𝑡𝑦)

Table 5 presents basic deductive tableau, which is denoted by assertions and goals, rows

and output columns. The tableau represents proof itself and derivation and the output col-

umns are used for extracting a program. The authors present several features for deductive

tableau: suiting, satisfying and equivalence that is then used in deriving deduction rules and

finally deducting required program [16].

Table 5. Deductive Tableau [15]

Assertions Goals 𝑓1(𝑎) … 𝑓𝑛(𝑎)

 ro
w

s

𝐴1 𝑠1 𝑠𝑛

 𝐺1 𝑡1 𝑡𝑛

 Output columns

Deduction rules add new rows to a tableau. They intend to preserve similarity but can violate

equivalence. In other words, they leave primitive closed terms that satisfy the tableau un-

touched. Accordingly, the main feature of deduction rules is that by applying them to the

program that satisfies the tableau, the program stays same.

The deductive tableau framework defined following deduction rules:

 Splitting rule, that splits rows into logical components.

 Resolution rule takes sub-sentence of two rows and performs truth case analysis on

them.

20

 Equivalence rule that takes sub-sentence and replaces it with an equivalent sentence.

 Skolemization rule that removes quantifiers

 Equality rule that replaces sub-term with an equal term

 Mathematical induction rule that assumes the correctness of the desired program on

inputs smaller than the given one.

To illustrate the complete process of deducting program Z. Manna and R. Waldinger [15]

present the following example:

The desired program is to find two outputs for a given nonempty string s:

 the last character of s – last(s)

 all but the last character of s – front(s)

For example: for the s =”example” program should output O1 =”example” and O2 =”e”

The formal specification of this problems is as follows:

〈𝑓𝑟𝑜𝑛𝑡(𝑠), 𝑙𝑎𝑠𝑡(𝑠)〉 ⇐ {

𝑓𝑖𝑛𝑑 〈𝑧1, 𝑧2〉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑖𝑓 ¬(𝑠 = Λ)

𝑡ℎ𝑒𝑛 𝑐ℎ𝑎𝑟(𝑧2) ∧ 𝑠 = 𝑧1 ∗ 𝑧2

}

Table 6 represents complete deductive tableau of the defined problem.

Table 6. Complete Deductive Tableau

Nr Assertions Goals 𝑓𝑟𝑜𝑛𝑡(𝑠) 𝑙𝑎𝑠𝑡(𝑠)

1 𝑖𝑓 ¬(𝑠 = Λ)

𝑡ℎ𝑒𝑛 𝑐ℎ𝑎𝑟(𝑧2)

∧ 𝑠 = 𝑧1 ∗ 𝑧2

𝑧1 𝑧2

2 𝑖𝑓 ¬(𝑠 = Λ)

3 𝑐ℎ𝑎𝑟(𝑧2) ∧ 𝑠

= 𝑧1 ∗ 𝑧2

𝑧1 𝑧2

21

4 𝑐ℎ𝑎𝑟(𝑧2) ∧ 𝑠

= 𝑧2

Λ 𝑧2

5 𝑐ℎ𝑎𝑟(𝑠) Λ s

6 𝑐ℎ𝑎𝑟(𝑢)

∧ 𝑐ℎ𝑎𝑟(𝑦2) ∧ 𝑠

= 𝑢 ⋅ 𝑦1 ∗ 𝑦2

𝑢 ⋅ 𝑦1 𝑦2

7 𝑖𝑓 𝑥′ ≺𝑤 𝑠

𝑡ℎ𝑒𝑛 𝑖𝑓 ¬(𝑥′ = Λ)

𝑡ℎ𝑒𝑛 𝑐ℎ𝑎𝑟(𝑙𝑎𝑠𝑡(𝑥′))
−

∧

𝑥 ;

= 𝑓𝑟𝑜𝑛𝑡(𝑥;)

∗ 𝑙𝑎𝑠𝑡(𝑥 ;)

8 𝑥 ≺𝑤 𝑠 ∧

¬(𝑥 = Λ) ∧

𝑐ℎ𝑎𝑟(𝑢) ∧

𝑐ℎ𝑎𝑟(𝑙𝑎𝑠𝑡(𝑥))
+

∧

𝑠 = 𝑢 ∙ 𝑥

𝑢 ∙ 𝑓𝑟𝑜𝑛𝑡(𝑥) 𝑙𝑎𝑠𝑡(𝑥)

9 𝑥 ≺𝑤 𝑠 ∧

¬(𝑥 = Λ) ∧

𝑐ℎ𝑎𝑟(𝑢) ∧

𝑠 = 𝑢 ∙ 𝑥

𝑢 ∙ 𝑓𝑟𝑜𝑛𝑡(𝑥) 𝑙𝑎𝑠𝑡(𝑥)

10 ¬(𝑠 = Λ) ∧

𝑡𝑎𝑖𝑙(𝑠) ≺𝑤 𝑠+ ∧

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠))

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠))

22

¬(𝑡𝑎𝑖𝑙(𝑠) = Λ)

∧

𝑐ℎ𝑎𝑟(ℎ𝑒𝑎𝑑(𝑠))

11 ¬(𝑠 = Λ) ∧

¬(𝑡𝑎𝑖𝑙(𝑠) = Λ)

∧

𝑐ℎ𝑎𝑟(ℎ𝑒𝑎𝑑(𝑠))+

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠))

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠))

12 ¬(𝑠 = Λ) ∧

¬(𝑡𝑎𝑖𝑙(𝑠) = Λ)+

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠))

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠))

13 ¬(𝑠 = Λ)+ ∧

𝑐ℎ𝑎𝑟(𝑠)

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠))

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠))

14 ¬𝑐ℎ𝑎𝑟(𝑠)− ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠))

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠))

15 𝑡𝑟𝑢𝑒 𝑖𝑓 𝑐ℎ𝑎𝑟(𝑠)

𝑡ℎ𝑒𝑛 Λ

𝑒𝑙𝑠𝑒 ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠))

𝑖𝑓 𝑐ℎ𝑎𝑟(𝑠)

𝑡ℎ𝑒𝑛 s

𝑒𝑙𝑠𝑒 𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠))

First, we begin with the basic goal line (1), then by applying if-split, we get a line (2) and

(3). Then by the equality rule, we derive (4). With applying resolution rule to the reflexivity

axiom we obtain (5). With applying equality rule to the axiom for concatenation we get (6).

Then we apply induction rule on (1) to get (7). With applying equality rule to (7) and (6) we

get (8). By applying resolution rule to (7) we get (9). With applying resolution rule to de-

composition property of strings and to (9) we get (10). Then with the resolution rule twice

we get (11) and (12). Then applying resolution rule to the trichotomy property of strings we

get (13). By applying resolution rule to (2) we get (14). And finally, with the applying res-

olution rule to the (5) and (14), we obtain (15), thus the final program.

23

Syntax-Guided Synthesis

In syntax-guided synthesis (SyGuS) a programmer specifies the outlines of a program, i.e.

incomplete program and the synthesizer tries to fill in the missing details. To do so the

system needs user-defined specifications and assertion [13].

According to R Alur, et al. [13] syntax-guided synthesis had many potential benefits com-

pared to classical synthesis problem that consists of only the specification. Few of the po-

tential advantages include:

 Candidate set L, which limits search space of possible implementations, thus gaining

computational performance for solving the synthesis problem.

 Flexibility to specify the desired programme with the use of syntactic and semantic

constraint.

 This approach can be considered for machine learning and inductive inference as in

the end results in finding correct expression from the syntactic space.

Additionally, syntax-guided synthesis defines three constraints:

1. Background theory constraints logical symbols and their interpretation.

2. Background theory limits specification ϕ to a first-order formula and all its variables

are universally quantified.

3. Syntactic expression in grammar restricts the universe of possible functions f

Accordingly, as R. Alur et al. [13] states, the syntax-guided synthesis problem can be for-

malized in the following way:

Given a background theory T, a typed function symbol f, a formula ϕ over the vo-

cabulary of T along with f, and a set L of expressions over the vocabulary of T and

of the same type as f, find an expression e ∈ L such that the formula ϕ[f /e] is valid

modulo T.

Oracle-Guided Synthesis

Oracle-Guided Synthesis researched by Susmit Jha et al. [17] is an approach of automatic

programming that is designed for loop-free programs. The method is a fusion of oracle-

guided learning from examples and constraint-based synthesis which by itself uses satisfia-

bility modulo theories (SMT) solvers. The main application of this approach is bit-manipu-

lation programs and deobfuscation (converting difficult to understand program into simpler

one) programs. The method takes as an input the following:

24

 A validation oracle 𝑉, that checks whether the synthesized program is the desired

one.

 An I/O oracle 𝐼, that returns correct output for given input.

 A set of specifications {〈𝐼𝑖⃗⃗ , 𝑂𝑖, 𝜙𝑖(𝐼𝑖⃗⃗ , 𝑂𝑖)〉|𝑖 = 1,… ,𝑁} called library. Where 𝐼𝑖⃗⃗ s list

of input variables, 𝑂𝑖 is output variable, and 𝜙𝑖(𝐼𝑖⃗⃗ , 𝑂𝑖) specifies the relationship be-

tween input and output.

The goal of the oracle-guided synthesis approach is to find program P that satisfies follow-

ing requirements:

 can be checked with validation oracle V

 only utilizes components from the library

 takes 𝐼 as an input and outputs O

 Uses {𝑂1, … , 𝑂𝑛} as an intermediate or temporary variables

 Has form defined in (1)

𝑃(𝐼): 𝑂𝜋1 ≔ 𝑓𝜋1(�⃗� 𝜋1); … ; 𝑂𝜋𝑛 ≔ 𝑓𝜋𝑛(�⃗� 𝜋𝑛); 𝑟𝑒𝑡𝑢𝑟𝑛 𝑂𝜋𝑛 (1)

Additional constraints for the form are that �⃗� 𝜋𝑖 is either input variable or a temporary vari-

able (C1); and 𝜋𝑖 , … , 𝜋𝑛 is a permutation of 1,… , 𝑛 (C2).

The synthesis procedure is the following:

1. Encode the space of all possible programs with a formula.

2. Constraint formula based on input-output pairs.

3. Solve constraint defined previously.

4. If the solution is not the desired program then generate new input-output pair.

5. Constraint formula further and check again until the correct solution is found.

For encoding, authors define THEOREM 1 that state that there exist two formulas 𝜓𝑤𝑓𝑝

and 𝜙𝑓𝑢𝑛𝑐. First one represents syntactically well-formed programs, while the second for-

mula embodies all semantic I/O behaviours of a well-formed program.

THEOREM 1. There exists a set of integer-valued location variables L, a

well-formedness constraint 𝜓𝑤𝑓𝑝(𝐿) over L, a mapping Lval2Prog, and a

functional constraint 𝜙𝑓𝑢𝑛𝑐(𝐿, 𝐼 , 𝑂) over 𝐿 ∪ {𝐼 , 𝑂} such that the following

properties hold:

25

 Lval2Prog is a bijective mapping from the set of values L that satisfy

the constraint 𝜓𝑤𝑓𝑝(𝐿) to the set of programs that satisfy constraints

C1 and C2.

 Let 𝐿0 be a satisfying assignment to the formula 𝜓𝑤𝑓𝑝. If α and β are

any candidate input and output values, then the formula

𝜙𝑓𝑢𝑛𝑐(𝐿0, 𝛼, 𝛽) is true iff the program Lval2Prog (𝐿0) returns the

value β on the input α.

This paper will not the proof of this theorem for the sake of simplicity but it can be obtained

from [17].

The key step in the oracle-guided synthesis is defining constraint (I/O-behavioral constraint)

whose solution will guide us to the program desired.

I/O-Behavioral constraint is denoted with the following formula:

𝐵𝑒ℎ𝑎𝑣𝑒𝐸(𝐿) = ⋀ 𝜙𝑓𝑢𝑛𝑐(𝐿0, 𝛼𝑗 , 𝛽𝑗)

(𝛼𝑗, 𝛽𝑗 ∈ 𝐸)

 (2)

Where E is a set of input-output examples.

Authors then define THEOREM 2 which gives us the ability to search for a candidate pro-

gram in the finite search space of input-output pairs.

THEOREM 2 (I/O-behavioural Constraint). For any satisfying solution L0 to

the I/O-behavioural constraint, the input-output behaviour of the program

Lval2Prog (L0) matches all the input-output examples in the set E.

Program synthesized with the above constraints then need to be checked with the validation

oracle and since it is an expensive operation Susmit Jha et al. [17] define an additional dis-

tinguishing constraint that differentiates between two candidate programs:

𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐸,𝐿(𝐼) = ∃𝐿′, 𝑂, 𝑂′ 𝐵𝑒ℎ𝑎𝑣𝑒𝐸(𝐿
′) ∧ 𝜙𝑓𝑢𝑛𝑐(𝐿, 𝐼 , 𝑂) ∧ 𝜙𝑓𝑢𝑛𝑐(𝐿

′, 𝐼 , 𝑂′) ∧ 𝑂 ≠ 𝑂′ (3)

THEOREM 3 (Distinguishing Constraint). If α is a satisfying solution to the

distinguishing constraint 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐸,𝑃(𝐼), then there exists a program P’

such that P and P’ have different behaviours on input α, but have the same

behavior on all the inputs in the set E.

The synthesising procedure generates new programs in a loop that satisfy more and more

inputs. In the beginning, only one input is selected corresponding program is synthesized

26

and then using distinguishing constraint different input is searched. If it is found then next

iteration begins with expanded input set and the loop continues until the correct program is

found. Otherwise, the system returns stating that not enough information is provided for

successful synthesis. Additionally, Satisfiability Modulo Theory (SMT) is used for solving

I/O behavioural and distinguishing constraint.

Program Synthesis by Sketching

The combination of high-level design and low-level algorithms is required for implementa-

tion of complex challenging programs. Even though computers’ main job is to derive the

low-level details, but without human intervention by specifying additional insights synthe-

sizers cannot complete its tasks [14]. Therefore establishing synergy between the synthe-

sizer and the programmer is one of the main challenges in program synthesis.

To approach this challenge, A. Solar-Lezama [14] in 2003 introduced a new strategy for

synthesis sketching which tries to find a solution to the synergy problem. As it is already

shown in the paper previous work on this subject was utilizing meta-programming or theo-

rem proving algorithm to deduce an implementation form the specification. One of the prob-

lems with synthesized programs was that they were hard to read and understand and pro-

grammers needed to get used to the way of thinking to efficiently extend or reuse synthe-

sized programs.

Sketching, on the other hand, removes that complexity form synthesis by allowing

programmers to specify sketch, outline or high-level structure of an implementation, leaving

low-level details to the synthesizer. Sketching utilizes Boolean satisfiability problem based

synthesize which using a just small number of test cases can efficiently synthesize an im-

plementation. Authors of this research also define counterexample guided inductive synthe-

sis procedure (CEGIS) that uses the above-defined synthesizer as its core additionally adds

validation procedures. This procedures can automatically generate test inputs and validate

generated program correctness in regards to specification. Moreover, CEGIS can operate of

concurrent program and is able to solve problems ranging from bit-level cypher to manipu-

lation of linked data structures. As authors claim [14] programs that the system was able to

synthesize complete optimized AES cypher, multiple concurrency problems such as a fine-

locking scheme for a concurrent set, the solution to the dining philosophers problem, and

sense reversing barrier.

27

4.3 Inductive Programming

Inductive programming is a subtopic of automatic programming which is focused on gen-

erating programs from incomplete specifications, like input-output examples, in contrast to

program synthesis where specifications are usually complete. The research of inductive pro-

gramming spans from programming to artificial intelligence and mainly research functional

and recursive programs [18], [19].

There are multiple types of inductive programming depending on the programming para-

digm. For example, inductive functional programming is used with the functional paradigm

or inductive logic programming used in logic programming languages such as Prolog.

According to S. Gulwani et al. [20], the input of inductive programming system is an

incomplete specification that usually consists of:

 Inputs and corresponding output examples, occasionally instead of outputs output-

evaluation-function is being passed to the system. For describing intended

behaviours.

 Action sequences describing the process of computing provided outputs

 Logical constraints to limit the search space of possible programs.

 Background knowledge, or domain specification

 Program templates, predefined functions and heuristics or other biases.

The output of an inductive programming system is a program consisting of any Turing-

complete representations, such as loops, conditionals, recursive controls, etc.

In contrast to program synthesis where provided specification should be complete, inductive

programming operates on an incomplete specification such as input-output examples, thus

generated program should be correct in terms of provided partial specification [21].

The prominence of inductive programming is mostly based on its potential for enabling

programmers to provide examples instead of full specifications. Examples are much easier

to write than logical specifications as they can be incomplete. However, according to O.

Polozov [22], inductive programming has three major limitations:

1. Requirements of deep domain-specific insight.

2. Extensive implementation efforts that can take up to 1-2 man-years.

3. Lack of extensibility as a small change in the underlying DSL causes non-trivial

changes to the system implementation.

28

IGOR II

IGOR II [23] is the inductive programming system designed to learn recursive programs.

To achieve full synthesis the system separates input partitioning or finding patterns and

predicates in the input, and code synthesis that computes the desired output. IGOR II does

partitioning completely and systematically instead of randomly or using greedy search and

does this in parallel.

According to M. Hofmann [23], a search of the desired expression is complete and traceable

even for a complex program. The reason as authors claim is the construction of hypotheses

in IGOR II is data driver and that the system combines analytical program synthesis with

the search.

The system defines E the set of example equations and B a set of background knowledge

and both of them have constructor terms on their right-hand side and both describe input-

output behaviours on their domain. This two notions together with the declaration of all used

data types, the IGOR II system outputs a set of equations P which is correct in the following

space:

{
∀(𝐹(𝑖) = 𝑜) ∈ 𝐸

𝐹(𝑖)
!
→𝑃∪𝐵 𝑜

 (1)

The result is constructor system which rewrites each left-hand side of equations form an

example set E to its right-hand side.

Let’s define P as the signature of the induced program. Then it is possible to define signature

Σ of 𝐸 ∪ 𝐵 and 𝑃 = Σ ∪ 𝐷𝐴. Where DA is a set of function not in the example of background

sets, but defined through synthesis.

The system constraint auxiliary function is two ways:

 Input types of auxiliary function and function calling should be identical. This limits

IGOR II to automatically infer auxiliary parameters

 Auxiliary function symbols are constrained with the right-hand side of calling func-

tion, i.e. these symbols cannot occur on the right-hand side.

These restrictions are called language bias [24]. By definition of property (1), there are in-

finitely many solution P, accordingly IGOR II, as almost all inductive programming meth-

ods, define preference bias that chooses the most appropriate solution form the set of possi-

29

ble solutions. The selecting criteria for the system are the number of subsets used for parti-

tioning the example inputs, and since search is complete it is possible to systematically se-

lect the best solution.

The start state or the initial hypothesis is a constructor system (CS) with one rule for each

target function in E. Next the best hypothesis is selected using preference bias, an unfinished

rule is chosen and system replaces it with its successor rules. IGOR II contains multiple

functions for computing successor rules, thus results of substation can be multiple and the

best one is selected from this set using preference bias [24].

The system defined three different methods for successor rule replacement:

 The splitting rule by pattern refinement, which uses pattern refinement to split rules

and replace rule p with at least to or more specific patterns. That way the system

achieves a case distinction.

 Introducing auxiliary functions and generating new induction problems on, in other

words, new example equation in set E.

 Function calls that either recursively calls itself or other defined function from target

background, or auxiliary function sets. It should be noted that finding arguments for

such functions are perceived as separate induction problem.

The process then continues to apply preference bias on the hypotheses and finishes when at

least one of them is finished. At that point, induction is finalized and derived program is

outputted [23].

Automatic Design of Algorithms through Evolution (ADATE)

Automatic design of algorithms through evolution (ADATE) is a framework for automatic

programming that was introduced by R. Olsson [25]. The system induces functional pro-

grams containing recursion, invented auxiliary functions and numerical constants.

ADATE’s flexibility allows programmers to generate programs from scratch or improve

existing ones.

ADATE works very well with high-performance applications where optimizations happen

experimentally, such as implementations of heuristics. Since heuristics that give very high-

quality results efficiently are difficult to design, automating this task is very beneficial [26]

[27].

30

In more detail, ADATE maintains a population of programs structured hierarchically. The

most important entities in the ADATE taxonomy are families which itself is divided into

races which in turn consists of species. Species consists of similar programs that are derived

from one single founding program using compound program transformations. As in genetic

programming main principle for ranking population is that program should perform better

than previously observed ones. After each transformation in varying combinations newly

generated programs are ranked to be considered in the population. The transformation pro-

cess is systematic and does not introduce any randomness [25].

Object-Oriented Design and Genetic Programming

The system proposed by N. Pillay and C. Chalmers [4] consists of two components: a rule-

based expert system and a genetic programming system, and aims to induce object-oriented

programs from specifications and input-output examples. The expert system uses problem

specification to generate an object-oriented design (OOD), while GP system induces the

methods of each class.

Figure 3. Overall Process [4]

Problem Specifi-

cation

Rule-Based Ex-

pert System

Object-Oriented

Design

GP System

Object-Oriented

Program

JAVA Program

Program Transla-

tor

31

The system takes problem specification as an input, the latter consists of the application

domain represented as descriptions of entities and several input-output examples. With this

method, programs are generated in an internal representation language but creating a

translator for converting it into convenient programming languages. The overall process is

visualized in Figure 3. The specification of each entity consists of its characteristics and

behaviours. For example, if we have bank cheque as an entity “CHEQUE” its characteristics

would be account number, profile and balance, while its behaviours would be a deposit and

withdraw. In the specification, behaviours are represented as an input and output values.

The specification also supports constants for defining application domain. It should be noted

that the system is typed, accordingly in the specification types of each characteristic and

input-outputs should be defined. Figure 4 shows example specification for the CHEQUE

entity.

Figure 4. Example Specification [4]

The actual synthesis is done using genetic programming. For each method of the entities

that need to be induced, the specification is passed to the genetic programming system,

CHEQUE

accountnumber balance profile

integer real character

Deposit

#Input amount Real 100 , 50 , 200

#Input balance Real 1000 , 2300 , 400

#Output balance Real 1100 , 2350 , 600

Withdrawal

#Input amount Real 100 , 50 , 200

#Input balance Real 1000 , 2300 , 400

#Output balance Real 900 , 2250 , 200

32

which employs the generational control model [4]. The system then generates an initial pop-

ulation of programs that are constructed by randomly selecting elements from the functions

and terminal sets. Then this population is refined by using genetic programming techniques

such as evaluation, selection and regeneration, to generate better programs. This process

continues until the desired program is synthesized or until a predefined number of iterations

is exhausted.

Data-Driven Domain-Specific Deduction

Data-driven domain-specific deduction (D4) is novel approach by O. Polozov and S. Gul-

wani [22] that unifies deductive, syntax-guided, and domain-specific synthesis approaches

into one meta-algorithm by utilizing strengths of each approach:

 D4 operates over a DSL, thus its program space is syntactically restricted.

 D4 reduces synthesis problem into smaller sub-problems by utilizing deductive syn-

thesis techniques.

 D4, in contrast to deductive synthesis, were program space is searched with a com-

plete logical specification, operates on input-output examples thus it is data-driven.

In D4 uses I/O examples for specifying intent, utilizes syntax-guided synthesis for reducing

search space and for search deductive strategy is employed. Since program space is limited

with the provided DSL, as in SyGuS, it drastically speeds up a search of the desired program

(as authors claim synthesis of commons real-life tasks take less than a second [22]). The

easiest form of specification is input-output specifications, this approach also employs a

similar strategy with the addition of output properties, which is input states map to some

properties of the output. Search strategy for D4 is a novel deductive inference that is based

on witness functions. These functions capture the inverse semantic of underlying DSL op-

erator. Moreover, the deductive inference is combined with enumerative search.

FlashMeta

FlashMeta is a declarative framework based on D4, which facilitates design, implementation

and maintenance of efficient inductive program synthesizers [22]. The system operates on

DSL that synthesizer developer should parameterize and provide as an input. Then Flash-

Meta automatically generates an inductive synthesizer that will utilize provided DSL. Ad-

ditionally, the system provides a predefined library of witness functions and generic opera-

tors that can be reused by the developers with any conformant DSL. As authors claim [22],

33

a predefined modelling of properties of operators, it becomes a lot easier to develop synthe-

sizer as only required task for a developer is an exploration of various design choices in

DSL structure. The most notable examples of using FlashMeta framework in the industry is

FlashFill and FlashExtract, shipped with Microsoft Excel and Windows PowerShell respec-

tively [22].

FlashFill is a system for synthesizing string transformation is spreadsheets from input-out-

put examples. It defined DSL LFF which takes a tuple of user inputs as an input and outputs

some transformation of input. It should be noted, that FlashFill was implemented manually

by S. Gulwani in 2011 [28] but rewriting it with the help of FlashMeta framework resulted

in 7 times less time and efforts and the system discovered optimizations that were not ex-

ploited in the original implementation.

FlashExtract is a system for synthesizing scripts for extracting data from unstructured

documents [29]. Currently, it is integrated into PowerShell 3.0, shipped with Windows 10,

and Azure Operational Management Suite for analysing logs. As FlashFill, FlashExtract

operates on specific DSL LFE that takes the textual document as an input and outputs se-

quence of spans in that document. Selection of spans is done using Filter and Map functions

applied to the document provided.

Neuro-Symbolic Program Synthesis

Neuro-Symbolic Program Synthesis (NSPS) is a novel technique by E. Parisotto [30] that

can be trained to generate the desired program incrementally without the need for an explicit

search. According to authors NSPS is capable of synthesizing programs based on input-

output examples provided a test time. The system utilizes two novel architectures of the

modular neural network:

 Cross-correlation I/O network, that produces a continuous representation of input-

output examples.

 Recursive-Reverse-Recursive Neural Network (R3NN), that takes input result of

cross-correlation I/O network and by incrementally expanding partial programs syn-

thesizes desired program. R3NN has a tree-based architecture and by utilizing rules

from a context-free grammar (the DSL) constructs a parse tree.

The formal definition of the NSPS is as follows:

34

Given a DSL L, The system learns a generative model of programs in the L. The model is

trained on input-output examples to constraint the search space of a consistent program.

Figure 5 illustrates the training phase of NSPS which uses a large training set of programs

form the DSL with equivalent input-output examples.

Figure 5. NSPS Training Phase [30]

For a neural network to be accurate it needs large training set to train on. The rule-based

strategy is used to compute input string for uniformly samples programs form the provided

DSL. Outputs then are generated by running inputs on the selected programs. These tree

components sample set of programs, inputs, and outputs combines the training set used for

NSPS.

The system treats DSL as a context-free grammar that consists of a start symbol S, set of

non-terminals and corresponding expansion rules. The most straightforward way to run a

search is to start synthesis with the start symbol S and then randomly choose non-terminals

to extend tree until every leaf of the tree is a terminal. The NSPS, on the other hand, assigns

probabilities to the non-terminals and expansion rules to optimize search for complete der-

ivations. The generative model of the system utilizes Recursive-Reverse-Recursive Neural

Network (R3NN) for partial tree encoding. Each node in the partial tree encodes global

insight on every other node in the tree. The vector representation is assigned to every symbol

35

and expansion rule in the grammar. Then given a partial tree, the system applies vector

representations to the leaves and recursively backtracks to the root node to encode the global

insight. In the end, reverse recursive pass starting from the root node is invoked to update

global representations of each node in the tree.

Figure 6. NSPS Testing Phase [30]

After the model is trained it is tested on the testing set of DSL and input-output examples,

as shown in Figure 6. Depending on the approaches used for encoding or distributing prob-

abilities the accuracy varies but in the optimal selection as authors claim accuracy is industry

applicable [30].

Microsoft research group utilized NSPS to implement RobustFill that leverages data-driven

approach to remove any hand-crafted rules from the synthesis [31]. RobustFill uses the

attentional sequence-to-sequence neural network to synthesize the program from the input-

output examples. For the example, authors used FlashFill real-life dataset, trained neural

network and then evaluated the outcomes. The system turned out to have 92% accuracy.

36

4.4 Additional Approaches

The current state of the art of automatic programming consists of additional approaches that

cannot be categorized with above-mentioned criteria, i.e. they do not completely fit in the

compiler, program synthesis or inductive programming specifications but are still employ-

ing some kind of automation. Accordingly, it was decided to include them here as the main

aim of this paper is to review the state of the art of automatic programming in depth.

The AI Programmer introduced by K. Becker and J. Gottschlich [3] is solely dependent on

genetic programming (GP) algorithms but in contrast to previously mentioned approaches

AI Programmer can operate only on a tightly constrained programming language consisting

of just a few instruction sets, thus drastically limiting the search space and making GP fea-

sible with a minimum human intervention. Table 7 shows the AI Programmers instruction

set and gene map.

Table 7. AI Programmer Instruction Set and Gene Map [3]

Instruction Gene Range Operation

> (0, 0.125] Increment the pointer

< (0.125, 0.25] Decrement the pointer

+ (0.25, 0.375] Increment the byte at the pointer

- (0.375, 0.5] Decrement the byte at the pointer

. (0.5, 0.625] Output the byte at the pointer

, (0.625, 0.75] Input a byte and store it at the ptr

[(0.75, 0.875] Jump to matching] if current 0

] (0.875, 1.0] Jump back to matching [unless 0

37

It should be noted that AI Programmer’s language is Turing-complete, i.e. is theoretically

capable of performing any programming task (in the scope of the single-taped Turing ma-

chine) given unlimited time and memory [3].

Another application of automatic programming is refactoring legacy code to utilize new

features of the language. The paper by R. Khatchadourian [32] provides an automated

approach for translating legacy java code to employ new Java enumeration types. Their al-

gorithm for transformation produces code that is simple, easy to understand, type-safe and

free from brittleness problem. The system uses interprocedural type inferencing to track the

lifecycle of the enumerated values. Authors claim that their approach can successfully re-

factor large legacy java projects with a large number of fields.

One more application of automatic programming is in web-service composition and gen-

erating API adapter for cloud-based APIs. The approach by A. Omer and A. Schill [33]

proposes methods for solving runtime problems that are occurring in service-oriented archi-

tecture (SOA) type environment by composing (semi-) automatically crucial points of the

system. Authors also deal with dependencies that are emerging from combinations of inde-

pendently developed web services. As for generating API adapters, the main problem de-

fined by E. Hossny et al. [34] is that in the cloud environment where multiple services and

applications are dependent on each other and are communicating via API calls, slight change

of API specification causes big overhead in updated adapter for different dependants. To

solve this problem authors propose automatic adapter generation method that is constructed

upon semantic annotations and search. This method requires that conceptual meanings of

inputs and outputs are specified based on a common domain ontology.

Other less important approaches include Automatic Model Generation from Documen-

tation for Java API Functions by J. Zhai et al. [35] this approach takes API documentation

of Java libraries whose source code representation in unknown and generate simple model

from this documentation allowing developers to easily analyse and understand the function-

ality that could be difficult to process solely by documentation. The core of the generation

is natural language processing (NLP) that has received big attention in the recent years.

One more application of automatic programming is Code completion suggestions to make

the development process more efficient. There are several approaches to this problem [36]

[37] [38], the most popular one is Being Developer Assistant (BDA) [36] that uses data

mining techniques to collect analyse and store sample codes form public repositories such

38

as GitHub. Authors provide a plugin for the Microsoft Visual Studio that enables developers

to automatically, based on their code get sample suggestions mined with the BDA. Another

approach for code completion is Statistical Language Models [37] that uses several auto-

matic programming methods and synthesizes code completions based on the partial imple-

mentation of the program, it uses machine learning and data mining techniques as well as

treats program as a natural language and analyses it with big data collected from public

repositories using NLP algorithms, thus providing high accuracy sample codes to fill in the

holes in the implementations.

4.5 Limitations and Open Questions

Even though automatic programming is capable of synthesizing complex programs it still

has many limitations and open questions for further research. This subsection will overview

this issues with regards to RQ3.

To begin with, it should be noted that most of the automatic programming methods are

operating on the tightly constrained domain-specific languages and scaling it to even slightly

modified language requires rewriting the systems from the scratch. Thus the main limitation

of approaches overviewed is the limited scope of operation [20].

Deductive synthesis is limited to first-order input-output relations and only applies to an

applicative program set with only output and no side effects. Generally, it is important to

research deductive program synthesis for high-level specification such as a description of

the properties, not just input-output relations [16].

Divide and Conquer strategy requires very high-level specification that, in some cases, can

be regarded as an executable program itself [1].

Deductive and Syntax-Guided Synthesis both require complete formal specification. Writing

it is, in most, cases as complex as the implementation itself thus advantages of automatic

programming cannot be utilized [30].

Benchmarking and comparison are difficult because most of the automatic programming

approaches operate on a very specific narrow domain, thus it is impossible to find a bench-

marking task that most of them would be able to work on [39].

For inductive programming the following limitations are apparent:

Domain change: Today most of the IP approaches operate only on a specific DSLs thus

changing to a new domain is a hard challenge. The cause of this is that IP approaches are

39

relatively new to the real-world application and there is not enough experience in exploring

the space of the application. In the long term, meta-synthesizers will appear as a dominant

approach in IP thus allowing synthesizers to be scalable across different domains [21].

Noise Tolerance: Since inductive programming takes input-output examples as an input, in

the real world it is difficult to provide accurate data, thus provided information will always

have some noise in them. Currently available approaches cannot identify this noise,

accordingly, synthesis accuracy lowers as nose level raises [21]. Only RobustFill, that uti-

lizes Neuro-Symbolic Program Synthesis, is able to treat noise at some level, still returning

accurate results and deriving correct desired programs to the end users [31].

 Neuro-Symbolic Program Synthesis currently utilizes supervised-learning approach, that

assumes the availability of desired programs during training, but in real life, there can be

the cases where sample programs are not provided, or there is an oracle that returns correct

output for the input. Current research does not give us insight into this problem, indicating

that further research is required in that direction [30].

4.6 The State of the Practice

Even though automatic programming is popular research subject since the 1970s [1], but

this research remained in the scope of artificial intelligence and did not transfer into the

industry. The main reason for that could be that current systems lack usability and are very

hard to transfer synthesizer implemented in each approach to a different domain.

First and most notable application of automatic programming in industry level software was

FlashFill and FlashExtract shipped with Microsoft Excel [29], [22]. Other applications that

provide user friendly automatic programming tools are TerpreT that is a domain specific

language for expressing program synthesis problems [40], PushGP which is a family of

programming languages suited for evolutionary computations, i.e. genetic programming

[41], MagicHaskeller that is an inductive functional programming system for Haskell that

uses systematic search for induction [42].

Recently Microsoft launched its new product Meta-synthesizer Microsoft Program Synthe-

sis using Examples (PROSE) that encapsulates FlashMeta [22] framework as well as Ro-

busFill [31] system to provide high level, user-friendly meta-synthesizer that is capable of

generating synthesizers for user-defined DSL and train it on input-output examples [43].

40

5 Discussion

In this chapter evaluation of the state of art and state of practice of automatic programming

will be provided.

5.1 Definition and Subtopic

This subsection answers RQ1: How is automatic programming defined by different scholars

and what are subtopics of the subject?

As shown in Appendix I, out of 37 papers reviewed, 22 (59%) were on inductive program-

ming, 19 (51%) were on program synthesis and only 5 (14%) were on compilers.

This distribution can be explained by analysing trends and semantics of each subtopic. For

example, compilers are usually regarded separately as they do not tend to create new logic

not defined in the original code but translate latter into a different programming language

[6]. Accordingly, selection keywords for this literature review were more targeted on the

papers that were focused on deriving additional insights from the specification, not just

translation or compilation.

As it is evident, that inductive programming and program synthesis are selected equally.

This can be conditioned for several reasons. First of all, we need to look into the distribution

of term trends as shown in Figure 7.

Figure 7. Distribution of research papers on automatic programming

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Program Synthesis Inductive Programming

Expon. (Program Synthesis) Expon. (Inductive Programming)

41

From the graph, if we take a closer look at the trend lines it is easily seen that popularity of

inductive programming was more rapidly growing than program synthesis. But since most

of the inductive programming approaches utilize program synthesis to some extent they are

still reviewing that topic, thus the current indicator of the popularity of program synthesis

might be distorted. One reason for that trend is that in the 1990s, artificial intelligence tech-

niques were not researched in an in-depth manner and machine learning, deep learning or

neural networks were not that popular research subject, thus the time was spent mostly

thinking how to create mathematical models for generation or how to model specifications

that can be full and easy to write at the same time. Moreover, it should be noted that last

year number of research papers on IP was far above the average number of papers per year,

4 and 1 respectively. 19 papers were discussing general definition or subtopics of automatic

programming, out of which 10 (53%) were defining inductive programming, 12 (63%) were

on program synthesis and 4 (21%) were on compilers. This distribution is in line with the

previous reasoning.

5.2 Algorithms and Methods

This subsection answers RQ2: What are the algorithms and approaches used in the field?

Out of the selected 37 papers, 30 (81%) were focused on one or more approaches to the

automatic programming. 6 (16%) were reviewing more than one algorithm or method and

24 (65%) were dedicated solely on a single approach. 2 (5%) papers were an improvement

or enhancement of previously introduced research.

5.3 Limitations and Issues

This subsection answers RQ3: What are the limitations and open questions on the topic?

Out of the selected 37 papers, 9 (24%) were discussing the issues, limitations or open ques-

tions in automatic programming. From this 9 papers, 3 were the original work for the ap-

proach and 6 were overviewing one or more methods.

The limited scope of the operation and the complexity of domain change was mentioned in

the 5 (%) papers.

The limitation of deductive synthesis to operate only on applicative programs, as well as,

the issue with program synthesis and the specification complexity, discussed in Section 4.5,

was stated in 3 papers.

42

Noise tolerance and applicable scope for neuro-symbolic program synthesis were reviewed

only in one paper. The reason behind this is the lack of literature on the approach as that

neuro-symbolic program synthesis was introduced recently and it still it requires compre-

hensive research.

5.4 Comparison to the State of the Practice

This subsection answers RQ4: How does the level of the state of the practice compare to the

state of the art or the subject?

From the approaches reviewed in the selected papers, only a few of them were actually

transferred to practice (FlashMeta, FlashExtract and RobustFill), other applications listed in

section 4.6 were not explicitly analysed but were mentioned in several papers as a similar

method. The reason behind that low transfer rate is that current systems lack usability and

are very hard to transfer synthesizer implemented in each approach to a different domain.

This limits possible applications to a single fixed domain but in real life, domains change

rapidly and the required time for keeping up synthesizer to the domain is not worth the

benefit automatic programming could give. But current approaches of meta-synthesizers

will most probably promote the use of inductive programming in the industry.

43

6 Conclusion

This thesis has presented the state of the art of automatic programming by reviewing existing

literature on the topic.

From the results of literature review, we can conclude, that automatic programming is gen-

erally categorized into three sub-topics: compilers, program synthesis and inductive pro-

gramming.

Program synthesis was a much more popular research subject in the late 90s and early 2000s.

There are many reasons for that, one of them is that at that time available computational

power did not allow researchers to consider expensive operations (deep learning, neural

networks, etc.), thus the time was spend mostly thinking how to create mathematical models

for generation or how to model specifications that can be full and easy to write at the same

time. But as the technology developed and with the advance of research in artificial intelli-

gence inductive programming became more popular as its domain of deriving desirable pro-

grams from input-output examples or incomplete specifications matched the domain of ma-

chine learning and artificial intelligence.

The extensive research on the automatic programming throughout time introduced many

interesting and breakthrough approaches. For program synthesis the state of the art ap-

proaches are Strategical Approach, Divide and Conquer, Deductive Program Synthesis,

Syntax-Guided Synthesis, Oracle-Guided Synthesis, and Synthesis by Sketching. For In-

ductive programming, the state of the art approaches is IGOR II, ADATE, Object-Oriented

Design and Genetic Programming, Data-Driven Domain-Specific Deduction (that inspired

FlashMeta) and Neuro-Symbolic Program Synthesis. Additional approaches that cannot be

regarded as any of upper mention sub-types include: AI Programmer (utilizing genetic pro-

gramming), automatic refactoring, web-service composition and generating API adapter,

and Automatic Model Generation from Documentation

The current most important limitations and open questions regarding automatic program-

ming as identified in the literature are different for the sub-topics. For program synthesis,

writing specification that by definition should be formally complete that is most of the times

as complex as writing the actual implementation. For inductive programming, several issues

arise, one of them is extending synthesize to different domains when actually a small change

in the domain can lead to rewriting the whole synthesizer. The approaches using machine

learning and neural networks are early birds in the subject thus their potential is not yet fully

44

embraced. For example, Neuro-Symbolic Program Synthesis currently utilizes supervised-

learning approach currently does not give us insight on reinforced learning that is the

essential case in the domain, indicating that further research is required in that direction.

As for the comparison to the state of the practice, the current situation in that direction is

marginal that is only a few approaches (FlashMeta, MagicHaskeller, etc.) end up in the in-

dustry level software and are accessible for users. Recent efforts by the Microsoft research

group provided PROSE framework that will further catalyse this transfer from research to

practice, as it is providing tools for easily building inductive synthesizers.

45

7 References

[1] A. W. Biermann, “Automatic Programming: A Tutorial on Formal Methodologies,”

Journal of Symbolic Computation, vol. Volume 1, no. Issue 2, pp. 119-142, 1985.

[2] K. Czarnecki and U. W. Eisenecker, Generative and Component-Based Software

Engineering, Erfurt: Springer-Verlag, 1999.

[3] K. Becker and J. Gottschlich, “AI Programmer: Autonomously Creating Software

Programs Using Genetic Algorithms.,” CoRR, abs/1709.05703., 2017.

[4] N. Pillay and C. K. A. Chalmers, “A hybrid approach to automatic programming for

the object-oriented programming paradigm,” in Proceedings of the 2007 annual

research conference of the South African institute of computer scientists and

information technologists on IT research in developing countries, Port Elizabeth,

2007.

[5] D. L. Parnas, “Software aspects of strategic defense systems,” Communications of

the ACM, pp. 1326-1335, December 1985.

[6] K. D. Cooper and L. Torczon, Engineering a Compiler, Burlington, MA: Morgan

Kaufmann, 2012.

[7] C. Rich and R. C. Waters, “Approaches to Automatic Programming,” Advances in

Computers, vol. 37, pp. 1-57, 1992.

[8] S. Gulwani, “Dimensions in Program Synthesis,” in Proceedings of the 12th

international ACM SIGPLAN symposium on Principles and practice of declarative

programming (PPDP '10), New York, 2010.

[9] A. Gill, “Domain-Specific Languages and Code Synthesis Using Haskell,” Queue,

vol. 12, no. 4, pp. 30-45, 2014.

[10] N. Wirth, Compiler Construction, Redwood City: Addison Wesley Longman

Publishing Co., 1996.

[11] P. Terry, Compilers and Compiler Generators, 1996.

[12] J. Miecznikowski and L. J. Hendren, “Decompiling Java Bytecode: Problems, Traps

and Pitfalls,” in CC '02 Proceedings of the 11th International Conference on

Compiler Construction, London, 2002.

46

[13] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R.

Singh, A. Solar-Lezama, E. Torlak and A. Udupa, “Syntax-Guided Synthesis,” in

Formal Methods in Computer-Aided Design, Portland, 2013.

[14] A. Solar-Lezama, “Program Synthesis by Sketching,” 2003.

[15] Z. Manna and R. Waldinger, “A Deductive Approach to Program Synthesis,” ACM

Transactions on Programming Languages and Systems, vol. 2, no. 1, pp. 90-121,

1980.

[16] Z. Manna and R. Waldinger, “Fundamentals of Deductive Program Synthesis,” IEEE

Transactions on Software Engineering, pp. 674-704, 1992.

[17] S. Jha, S. Gulwani, S. A. Seshia and A. Tiwari, “Oracle-Guided Component-Based

Program Synthesis,” in 32nd ACM/IEEE International Conference on Software

Engineering, New York, 2010.

[18] J. Voigtländer, “Ideas for connecting inductive program synthesis and

bidirectionalization,” in ACM SIGPLAN 2012 workshop on Partial evaluation and

program manipulation, Philadelphia, 2012.

[19] P. Flener and D. Partridge, “Inductive Programming,” Automated Software

Engineering, pp. 131-137, April 2001.

[20] S. Gulwani, O. Polozov and R. Singh, Program Synthesis, Hanover: now Publishers

Inc, 2011.

[21] S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid and

B. Zorn, “Inductive programming meets the real world, Volume 58 Issue 11,”

Communications of the ACM, pp. 90-99, 2015.

[22] O. Polozov and S. Gulwani, “FlashMeta: a framework for inductive program

synthesis,” in ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, Pittsburgh, 2015.

[23] M. Hofmann, E. Kitzelmann and U. Schmid, “Analysis and Evaluation of Inductive

Programming Systems in a Higher-Order Framework,” in 31st annual German

conference on Advances in Artificial Intelligence, Berlin, 2008.

[24] M. Hofmann and E. Kitzelmann, “I/O guided detection of list catamorphisms:

towards problem specific use of program templates in IP,” in ACM SIGPLAN

workshop on Partial evaluation and program manipulation, Madrid, 2010.

47

[25] R. Olsson, “Inductive functional programming using incremental program

transformation,” Artificial Intelligence, pp. 55 - 81, March 1995.

[26] A. Løkketangen and R. Olsson, “Generating meta-heuristic optimization code using

ADATE,” Journal of Heuristics, vol. 16, no. 6, pp. 911-930, 2010.

[27] J. Olsson and D. M. W. Powers, “Machine Learning of Human Language through

Automatic Programming,” International Conference on Cognitive Science, pp. 507-

512, July 2003.

[28] S. Gulwani, “Automating string processing in spreadsheets using input-output

examples,” in 38th annual ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, New York, 2011.

[29] V. Le and S. Gulwani, “FlashExtract: A Framework for Data Extraction by

Examples,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI '14), New York, 2014.

[30] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou and P. Kohli, “Neuro-

Symbolic Program Synthesis,” in Proceedings of 5th International Conference on

Learning Representations (ICLR 2017), Toulon, 2017.

[31] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed and P. Kohli,

“RobustFill: Neural Program Learning under Noisy I/O,” in Proceedings of the 34th

International Conference on Machine, Sydney, 2017.

[32] R. Khatchadourian, “Automated refactoring of legacy Java software to enumerated

types,” Automated Software Engineering, 2016.

[33] A. M. Omer and A. Schill, “Web Services Composition using Input/Output,” in

Proceedings of the 3rd workshop on Agent-oriented software engineering challenges

for ubiquitous and pervasive computing, London, 2009.

[34] E. Hossny, S. Khattab, F. A. Omara and H. Hassan, “Semantic-based generation of

generic-API adapters for portable cloud applications,” in Proceedings of the 3rd

Workshop on CrossCloud Infrastructures & Platforms, London, 2016.

[35] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao and F. Qin, “Automatic Model

Generation from Documentation for Java,” in 38th IEEE International Conference

on Software Engineering, Austin, 2016.

48

[36] H. Zhang, A. Jain, G. Khandelwal, C. Kaushik, S. Ge and W. Hu, “Bing developer

assistant: improving developer productivity by recommending sample code,” in 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering,

New York, 2016.

[37] V. Raychev, M. Vechev and E. Yahav, “Code completion with statistical language

models,” in 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation, New York, 2014.

[38] M.-A. Storey and A. Zagalsky, “Disrupting Developer Productivity One Bot at a

Time,” in ACM SIGSOFT International Symposium on Foundations of Software

Engineering, Seattle, 2016.

[39] E. Pantridge, T. Helmuth, N. F. McPhee and L. Spector, “On the difficulty of

benchmarking inductive program synthesis methods,” in Genetic and Evolutionary

Computation Conference Companion, Berlin, 2017.

[40] 51alg, “TerpreT,” [Online]. Available: https://github.com/51alg/TerpreT. [Accessed

20 May 2018].

[41] L. Spector, “Evolutionary Computing with Push,” [Online]. Available:

http://faculty.hampshire.edu/lspector/push.html. [Accessed 20 05 2018].

[42] “MagicHaskeller: Automatic inductive functional programmer by systematic

search,” [Online]. Available: https://hackage.haskell.org/package/MagicHaskeller.

[Accessed 20 05 2018].

[43] “Microsoft Program Synthesis using Examples SDK,” [Online]. Available:

https://microsoft.github.io/prose/. [Accessed 20 05 2018].

49

Appendix

I. Selected Papers

ID Title Author Date Topic Area

S1 Automatic Programming: A Tutorial on

Formal Methodologies [1]

Alan W. Bier-

mann

1985 Inductive Pro-

gramming, Pro-

gram Synthesis

S2 Fundamentals of Deductive Program

Synthesis [16]s

Zohar Manna,

Richard

Waldinger

1992 Program Syn-

thesis

S3 Inductive functional programming using

incremental program transformation [25]

Roland Olsson 1995 Inductive Pro-

gramming

S4 A Hybrid Approach to Automatic Pro-

gramming for the Object-Oriented Pro-

gramming Paradigm [4]

Nelishia Pillay,

Caryl K. A.

Chalmers

2007 Inductive Pro-

gramming

S5 Web Services Composition using In-

put/output Dependency Matrix

Abrehet Moham-

med Omer, Alex-

ander Schill

2009 Inductive Pro-

gramming

S6 I/O Guided Detection of List Catamor-

phisms: Towards Problem Specific Use

of Program Templates in IP

Martin Hofmann,

Emanuel Kit-

zelmann

2010 Inductive Pro-

gramming,

Generative Pro-

gramming

S7 Oracle-Guided Component-Based Pro-

gram Synthesis [17]

Susmit Jha et al. 2010 Inductive pro-

gramming, pro-

gram synthesis

S8 Ideas for connecting inductive program

synthesis and bidirectionalization

Janis Voigtlander 2012 Inductive Pro-

gramming

50

S9 FlashMeta: A Framework for Inductive

Program Synthesis [22]

Oleksandr

Polozov, Sumit

Gulwani

2015 Inductive Pro-

gramming

S10 Inductive Programming Meets the Real

World [21]

Sumit Gulwani et

al.

2015 Inductive Pro-

gramming

S11 Semantic-Based Generation of Generic-

API Adapters for Portable Cloud Appli-

cations

Eman Hossny et

al.

2016 Inductive Pro-

gramming

S12 Automated refactoring of legacy Java

software to enumerated types

Raffi Khatcha-

dourian

2016 Program Syn-

thesis

S13 Disrupting Developer Productivity One

Bot at a Time

Margaret-Anne

Storey, Alexey

Zagalsky

2016 Other

S14 AI Programmer: Autonomously Creating

Software Programs Using Genetic Algo-

rithms [3]

Kory Becker, Jus-

tin Gottschlich

2017 Inductive Pro-

gramming, Ma-

chine Learning

S15 On the Difficulty of Benchmarking In-

ductive Program Synthesis Methods [39]

Edward Pantridge

et al.

2017 Inductive Pro-

gramming, a

Tool compari-

son

S16 Program Synthesis [20] Sumit Gulwani et

al.

2017 Inductive Pro-

gramming, Pro-

gram synthesis

S17 Generative And Component-based Soft-

ware Engineering [2]

Krzysztof Czar-

necki, Ulrich W.

Eisenecker

1999 Generative Pro-

gramming

51

S18 Automatic Model Generation from Doc-

umentation for Java API Functions

Juan Zhai et al. 2016 Program Syn-

thesis

S19 Inductive Programming [19] Pierre Flener 2001 Inductive Pro-

gramming, Pro-

gram synthesis

S20 Analysis and Evaluation of Inductive

Programming Systems in a Higher-Order

Framework [23]

Martin Hofmann

et al.

2008 Inductive Pro-

gramming

S21 Compilers and Compiler Generators [11] P.D. Terry 1996 Compilers

S22 Automating String Processing in Spread-

sheets Using Input-Output Examples

[28]

Sumit Gulwani 2011 Inductive Pro-

gramming

S23 Bing Developer Assistant: Improving

Developer Productivity by Recommend-

ing Sample Code

Hongyu Zhang et

al.

2016 Inductive Pro-

gramming,

Code [Data]

mining

S24 Compiler Construction [10] Niklaus Wirth 1996 Compilers

S25 Code Completion with Statistical Lan-

guage Models

Veselin Raychev

et al.

2014 Inductive Pro-

gramming,

NLP

S26 Program Synthesis by Sketching [14] Armando Solar-

Lezama

2003 Program Syn-

thesis

S27 Syntax-Guided Synthesis [13] Rajeev Alur et al. 2013 Program Syn-

thesis

S28 Engineering a Compiler [6] Keith D. Cooper,

Linda Torczon

2012 Compilers

52

S29 Approaches to Automatic Programming

[7]

Charles Rich,

Richard C. Waters

1992 Inductive Pro-

gramming

S30 Domain-Specific Languages and Code

Synthesis Using Haskell [9]

Andy Gill 2014 Program Syn-

thesis

S31 RobustFill: Neural Program Learning

under Noisy I/O [31]

Jacob Devlin et

al.

2013 Program Syn-

thesis

S32 A Deductive Approach to Program Syn-

thesis [15]

Zohar Manna,

Richard

Waldinger

1980 Program Syn-

thesis

S33 Neuro-Symbolic Program Synthesis [30] Emilio Parisotto

et al.

2017 Inductive Pro-

gramming

S34 Machine Learning of Human Language

through Automatic Programming [27]

Roland Olsson,

David Powers

2003 Inductive Pro-

gramming

S35 Generating meta-heuristics optimization

code using ADATE [26]

Arne

Løkketangen, Ro-

land Olsson

2009 Inductive Pro-

gramming

S36 Dimension in Program Synthesis [8] Sumit Gulwani 2010 Program syn-

thesis, Induc-

tive Program-

ming

S37 FlashExtract: A Framework for Data Ex-

traction by Examples [29]

Vu Le, Sumit

Gulwani

2014 Inductive Pro-

gramming

53

II. Abbreviations

Abbreviation Description

TR Total reflexive theory

car(x) A function that returns the first element of

the list

cdr(x) A Function that returns the list without the

first element

GP Genetic Programming

SMT Satisfiability modulo theorem

SAT Boolean satisfiability problem

OOD Object-Oriented Design

SyGuS Syntax Guided Synthesis

54

III. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Giorgi Gogiashvili,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term

of validity of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term of

validity of the copyright,

The State of the Art of Automatic Programming,

supervised by Siim Karus,

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual

property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

