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The State of the Art of Automatic Programming 

Abstract: 

Automatic programming or code generation is a type of computer programming where the 

code is generated using some tools allowing developers to write code at higher level of 

abstraction. Implementing these types of programs into the software development process 

is a good way to boost programmers’ performance by focusing on the task at hand rather 

than implementation details. Current literature on the subject reviews single approach or 

method. Very few of them are reviewing state of the art in general. This paper reviews the 

state of the art of automatic programming by overviewing the existing literature on the topic 

using systematic literature review method. The paper overviews approaches and algorithms 

of the topic, examines issues and open questions in the field and compares the state of the 

art to the state of the practice. Of 37 relevant studies, 19 addressed general definitions and 

subtopics of automatic programming. 30 presented specific algorithms or approaches. 2 of 

proposed techniques were implemented in practice. Currently, the focus of automatic pro-

gramming shifted from program synthesis to inductive programming, caused by a break-

through in artificial intelligence. Definition of the term and subtopics is consistent between 

scholars. However, formulating correct specification and providing sufficient information 

for automation is still an open research question. 

Keywords: 

Automatic programming, program synthesis, inductive programming, code generation 

CERCS: P170 - Computer science, numerical analysis, systems, control 
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Ülevaade automaatprogrmmeerimise hetkeseisust  

Lühikokkuvõte: 

Automaatprogrammeerimine või koodi genereerimine on teatud tüüpi arvutiprogrammide 

loomisviis, kus kood genereeritakse mõne tööriista abil, mis võimaldab arendajatel koodi 

kirjutada kõrgemal abstraktsioonitasemel. Selliste programmide rakendamine tarkvaraar-

enduse protsessis on hea viis programmeerijate produktiivsuse tõstmiseks, võimaldades neil 

keskenduda pigem käesolevale ülesandele kui implementatsiooni detailidele. Senises tea-

duskirjanduses on vaadeldud konkreetseid lähenemisi või meetodeid eraldi. Väga vähesed 

uurimustööd vaatlevad aga kogu valdkonna viimast taset. Käesolevas töös käsitletakse au-

tomaatprogrammeerimist olemasoleva kirjanduse süstemaatilise kirjandusülevaate meetodi 

abil. Töö teeb ülevaate teemaga seonduvatest algoritmidest, probleemidest ning uurmis-

valdkonna avatud uurimisküsimustest ning võrdleb valdkonna hetketaset praktika hetket-

asemega. Vaaldeldud 37 asjakohasest uuringust tegelesid 19 automaatprogrammeerimise 

üldise määratlemise ja alateemadega. 30 pakkusid välja konkreetse algoritmi või lähenemis-

viisi. Esitatud tehnikatest rakendati 2 praktikas. Viimasel ajal on automaatprogrammerimise 

fookus nihkunud programmide sünteesilt induktiivsele programmeerimisele, mille on 

põhjustanud läbimurded tehisintellekti valdkonnas. Mõistete ja alateemade määratlus on 

teadlaste vahel ühtne. Õigete spetsifikatsioonide sõnastamine ja piisava teabe andmine au-

tomatiseerimiseks on endiselt lahtine uurimisküsimus. 

Võtmesõnad: 

Automaatprogrammeerimine, programmide süntees, induktiivne programmeerimine, koodi 

genereerimine 

CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, kontroll 
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1 Introduction 

Automatic programming or code generation is a type of computer programming where the 

code is generated using some tools allowing developers to write code at higher level of 

abstraction. During the last years, vast amount of papers have been published concerning 

automatic programming. Most of them are comprehensive but are focused on a single case, 

method or algorithm. Very few of them are reviewing state of the art of code generation in 

the whole [1]. Having research paper examining the state of the art of the field has a big 

scientific value as it will provide scholars base for the future research. 

This paper analyses and reviews state of the art of automatic programming by overviewing 

existing literature and best practices of the topic. 

The main aim is to review existing techniques and algorithms in this space find issues and 

open questions and compare it to the state of the practice, with an emphasis on the use of 

these methods for computer program generation. 

The research questions this paper tries to answer to are following: 

RQ1: How is automatic programming defined by different scholars and what are subtopics 

of the subject? 

RQ2: What are the algorithms and approaches used in the field? 

RQ3: What are the limitations and open questions on the topic? 

RQ4: How does the level of the state of the practice compare to the state of the art or the 

subject? 

As the main aim of the paper is to formalize the state of the art, many in-depth details will 

be omitted and simplified from all papers to achieve readability and briefness. Paper en-

courages the reader to see reference paper for a more exhaustive analysis of an algorithm or 

approach. 

The paper structure is as follows: in Section 2 the background of the topic will be presented. 

Section 3 will address the research method used in this paper. Section 4 will overview the 

results of the literature review. In section 5 research question will be discussed and finally 

in section 6 paper will be summarized. 
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2 Background 

This section of the paper will introduce the field of automatic programming by describing 

theoretical and technological concepts of the topic. At first, the concept of Metaprogram-

ming and genetic programming will be overviewed. Second, origin and history of the auto-

matic programming will be described. Finally, an overview of different types of automatic 

programming and used technologies will be presented. 

2.1 Metaprogramming 

Metaprogramming is a type of programming where computer programs are treating other 

programs as their data. This means that programs are designed in a way that they are able to 

generate, analyse, read or transform itself or other programs [2]. This allows developers to 

reduce codebase, have more flexibility, move computations from run-time to compile-time, 

to generate code during compilation. Metaprogramming language is called metalanguage 

and the language of the programs that are being manipulated object language. The main 

feature of Metalanguages is reflection or reflexivity that facilitates the whole concept of 

metaprogramming. 

2.2 Genetic Programming 

Genetic programming (GP) is a type of programming where programs are regarded as genes 

and then are evolved using genetic algorithms (GA). The main aim of GP is to improve the 

program in performing a predefined task. According to K. Becker [3], the Genetic algorithm 

takes as an input set of instructions or actions that are regarded as genes. Then a random set 

of this instructions are selected to form an initial chain of DNA. The whole genome is then 

executed as a program and results are scored in terms of how well the program solved the 

defined task. Then top scorers are mated together and offspring is rated again until the 

desired program is produced. To achieve diversification evolutionary techniques such as 

roulette selection, crossover, and mutation are used. Even though genetic programming is 

usually research subject of artificial intelligence its ideas and techniques are occasionally 

used in automatic programming as well [4]. 

2.3 History of Automatic Programming 

There have been different approaches to this problem and the term definition itself was var-

ying through time. From the early 1940s when term considered the description of the manual 
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process of punching paper tape. After some time when compilers started to appear, auto-

matic programming was describing a translating process from high-level code to low-level 

(For example C to bytecode). Even today there is no deterministic formulation of the defi-

nition, but the generally accepted meaning of the term is that Automatic programming is 

programming in a higher level of abstraction than it is available to the programmer [5]. 

2.4 Automatic Programming 

Automatic programming or code generation is a type of computer programming where the 

code is generated using some tools allowing developers to write code at the higher level of 

abstraction. There are different approaches to the automatic programming, one of them is 

program synthesis which aims to generate programs based on specifications that are usually 

“non-algorithmic statements of an appropriate logical calculus" [2]. In contrast to that in-

ductive programming aims to derive computer programs from input-output examples or 

constraints, i.e. incomplete specifications. In order to learn missing specifications, inductive 

programming utilizes artificial intelligence and machine learning algorithms [5], [1]. 
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3 Method 

The review of the literature on this topic is done by systematic literature review and is based 

on the research protocol and in this section of the paper research-strategy, the sources, the 

studies selection, the selection execution and the data extraction will be defined. 

3.1 Search Process 

A search of the appropriate literature was carried out on the databases presented in Table 1 

as well as manual search in references. 

Table 1. List of databases and corresponding acronyms 

Source Acronym 

ACM Digital Library ACM 

IEEE Xplore IEEE 

SpringerLink SL 

 

The search keywords were “automatic programming”, “inductive programming”, “program 

synthesis”, “automated refactoring”, “DSL” and “domain-specific language”. 

After conducting a search on the above-mentioned databases and after applying inclusion 

and exclusion criteria, references from and to this papers were analysed to identify addi-

tional papers. 

3.2 Inclusion and exclusion criteria 

The Inclusion criteria were the following: 

IC1 The study must be written in English. 

IC2 The study must be about automatic programming. 

IC3 The study should describe one or more algorithm or technique of automatic 

programming. 

The exclusion criteria were the following: 



10 

 

EC1 The full-texts of the study was not accessible by the library proxy of the Uni-

versity of Tartu. 

EC2 Study is non-peer reviewed research. 

EC3  Study is about a topic that has already been included in the selection (in that 

case papers are evaluated compared to each other and the better one is se-

lected. For comparison references to each other are checked and if one paper 

refers to another the former is excluded. If there are no relevant references 

then common reference on that topic is found and this paper is included in-

stead of other two). 

3.3 Study Selection 

The Literature review was carried out by searching with the keywords defined in section 3.2 

on databases in Table 1. The results of the initial first search are presented in Table 2. 

Table 2. Initial search results by query and database 

Query/Data-

base 

auto-

matic 

pro-

gram-

ming 

inductive 

pro-

gram-

ming 

auto-

mated 

refactor-

ing 

DSL & 

domain-

specific 

language 

Program 

Synthe-

sis 

Total 

ACM 253 15 56 326 154 804 

IEEE 2,035 3 44 437 212 2,731 

SL 451 33 10 179 97 770 

Total 2,739 51 110 942 463 4,305 

 

After the first iteration of searching, 4,305 papers were identified to apply inclusion and 

exclusion criteria. 

Before applying inclusion criteria duplicates were rejected from each library as shown in 

Table 3. 
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Table 3. Duplicates identified in the results 

Database Duplicates Removed Total Left 

ACM 284 520 

IEEE 338 2,393 

SL 125 645 

Total 747 3,558 

 

Additionally, 412 duplicates were rejected from the results of all libraries combined, thus 

leaving only 3146 papers for applying inclusion and exclusion criteria on. 

Inclusion criteria were applied one criterion at a time followed by exclusion criteria. 

Results of applying inclusion criteria are following: 

 2969 papers satisfied IC1. 

 784 papers satisfied IC2 based reviewing their titles. 

 124 papers satisfied IC3 based on their abstracts. 

Results of applying exclusion criteria are following:  

 EC1 eliminated 8 papers, leaving 116. 

 EC2 eliminated 10 papers, leaving 106. 

 EC3 excluded 75 papers, leaving 31. 

Then citations and references of selected papers were analysed manually to find additional 

6 relevant papers that were not found by querying databases. 

Finally, 37 papers were selected for the review. These papers are listed in Appendix I. 

3.4 Data Extraction 

Selected papers were further analysed and relevant data for the research questions were ex-

tracted. During extraction the following extraction criteria were taken into consideration: 

EC1: Title, abstract, authors, publishing year 

EC2: Theoretical overview (definitions, subtopics etc.) 
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EC3: Algorithm, approach or technique researched in paper 

EC4: Issues, problems and limitations of the EC3 

EC5: Tools utilizing proposed algorithm, approach or technique 

Data extracted from the papers with the criteria defined above was used to answer research 

questions and categorize papers. Specifically, Table 4 shows the mapping of research ques-

tions to corresponding data extractions criteria. 

 

Table 4. Research question mapping with Data extraction criteria 

Research Question Data extraction criteria 

RQ1 EC1, EC2, EC3 

RQ2 EC2, EC3, EC5 

RQ3 EC2, EC4 

RQ4 EC5 

 

Papers were classified into following criteria (Appendix I): 

 Compilers 

 Program Synthesis 

 Inductive Programming 

Next chapter will formalize the state of the art of the automatic programming based on the 

classification defined above. 
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4 Results 

The state of art of the automatic programming can be split into three categories: compilers, 

program synthesis and inductive programming [1]. Compilers are usually considered sepa-

rately as they do not tend to create new logic not defined in the original code but translate 

latter into a different programming language [6]. As for program synthesis and inductive 

programming, even though these two terms are sometimes used interchangeably, they are 

disparate and utilize contrasting principles for code generation.  

To begin with, it is important to mention that setting unreal expectations to the automatic 

programming is a frequent issue and we need to be cautious when analysing purposes of the 

automatic programming. Claims, that automatic programming systems do not need domain 

knowledge or that it is possible to implement fully autonomous general-purpose program-

ming framework has no empirical evidence [7]. Discussing automatic programming in that 

perspective is a philosophical debate that can be related to artificial general intelligence 

(AGI). 

The first comprehensive paper on code generation was Automatic Programming: A Tutorial 

on Formal Methodologies by Alan W. Biermann (1985) who was the first one to divide 

concept into program synthesis and inductive programming and analysed multiple ap-

proaches from both sides [1]. 

In this section, the state of art of the automatic programming will be analysed based on the 

papers listed above. For the base of the discussion, this research will use Biermann’s paper 

and supplement it with more recent works, as well as analyse completely different ap-

proaches to this topic. First, automatic programming will be reviewed form the perspective 

of compilers, followed by program synthesis and finally inductive programming.  

According to Gulwani [8], Automatic programming problem can be categorized into three 

main dimensions: intent specification, program space, and search strategy. Intent specifi-

cation implies how should the desired application be specified and what information should 

be included in the specification. Program space defined search space of the desired program 

with domain-specific insights such as DSLs. The search strategy is concerned with what 

approaches and methodologies should be used for actual synthesis (Deductive synthesis, 

divide and conquer of strategic approach, syntax-guided synthesis, etc.). 
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Domain-specific language 

A domain specific language (DSL) is a is a special purpose computer language that is spe-

cialized for computations in a specific domain [9] One good example of DSL is Structured 

Query Language (SQL) which by itself does not comprehend anything that cannot be ex-

pressed using general purpose languages such as C or Java. SQL encompasses actions and 

functions required for communication with the database engine. 

In the literature, there are two major types of DSLs: first-class language and embedded lan-

guage as shown in Figure 1. The first-class language has its own interpreter and compiler 

and only operates in a predefined environment, while embedded languages are closely tied 

to the host language and utilizes latter’s semantics, however, they may have distinct look 

and feel. 

 

 

Figure 1. Type of domain-specific languages [9] 

 

Embedded DSL (EDSL) has the look and feel and semantics of a language it is embedded 

to. But it is specialized for a specific domain. Since it resembles host language very much 

developing and maintaining DSL is easier. According to A. Gill [9], Haskell’s concise syn-

tax made developing the vast amount of EDSLs possible. Combining multiple terms in DSL 

gives us deeply embedded DSL which can be considered as a library of provided functions 

[9]. In contrast to shallow EDSL, where values are computed directly, deep EDSL constructs 

Domain-Specific 

Language  

Stand Alone DSL Embedded DSL 

Shallow EDSL Deep EDSL 
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syntax trees. The result of computation of shallow EDSL is valued while deep EDSL returns 

structure that can later be evaluated into a value. 

4.1 Compilers 

Computer programs are written in programming languages that specify specific command-

set in their syntax. A computer processor, on the other hand, accepts sequences of instruc-

tions in contrast to program texts. The computer in order to be able to understand program 

text first needs to be translated into proper instructions. This process can be automated by a 

specific program referred as compiler and the translation process itself is called compiling 

[10]. More formally, a compiler is a computer program that is used to translate source code 

written in one language to another programming language [6]. 

There are many different types of compilers designed for different purposes. The term is 

usually referred to the software that translates high-level language code (e.g. C/C++) into a 

lower-level language (assembly, machine code). Other types of compilers include: cross-

compiler that has ability to compile code for different CPU or architecture; bootstrap com-

piler that is written in the same language as the target [11]; decompiler that translates code 

from low-level language to high-level [12]; source-to-source compiler that translates be-

tween two high-level programming languages [6]; and compiler-compiler used for design-

ing syntax analysers. 

The compilers must follow two fundamental principles: The compiler must preserve the 

meaning of the program being compiled and the compiler must improve the input program 

in some discernible way [6]. The first principle cannot be ignored as if we allow change of 

the meaning, what will limit compiler to produce completely different program then we 

intended to write. The second principle is more practical than formal, if we define improve-

ment as optimization, for example making the program perform faster, then the compiler 

can overlook this principle. But if improvement is understood as a creation of a value, for 

example, the creation of executable program from source code, then the compiler is indeed 

improving input. 

The compiler usually adopts separation of concerns principle and is structured in two or 

three parts: Front-end, Middle end or Optimizer and Back-end. Difference between two and 

three-part structure is that two-part structure does not have optimization. Figure 2 presents 

the structure of a common compiler. 
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Figure 2. Structure of a common compiler [6] 

 

Front-end receives source code and is responsible for analysing and building an intermediate 

representation (IR) of it. Usually, front-end process is divided into following parts: line 

reconstruction, pre-processing, tokenization, syntax analysis, semantic analysis. 

Middle end or optimizer receives intermediate representation as an input runs it through 

series of optimization algorithms and outputs improved intermediate representation. The 

focus of each optimization algorithm varies from compiler to compiler. Following are the 

most frequent optimizer directions: speed, size, number of page faults, and energy consump-

tion. 

Back-end receives output from the optimizer, in case of a two-part compiler, or from the 

front end, in case of three-part compiler, and translates it to CPU and architecture specific 

instruction set. Its main aim is to maximize the efficiency of available resources utilization. 

The backend is a multi-stage process that includes: Machine dependent optimizations, which 

rewrites particular instructions of assembly language to be more efficient on the given pro-

cessor; Code generation, which refers to translation from assembly language to machine 

language. 

The benefit of multi-part compilers and separation of concerns principle is that front and 

back ends can be changed with different ones, to support numerous languages, processors 

and architectures, while maintaining optimizations. This is frequent practice and the biggest 

and most common example if GNU Compiler Collection (GCC) that supports multiple lan-

guages and platforms. 

4.2 Program Synthesis 

Program synthesis is a process of the deriving program from a given full specification. The 

desired program should be synthesized by specifying features or behaviours but not exact 

Compiler 

Front-End Optimizer Back-End 
IR IR Source 

Program 
Target 

Program 
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algorithms. Usually, specification consists of human-provided insights and general descrip-

tion of the domain. Regardless it should be specified enough information to successfully 

derive desired program [13], [1]. Even though computers’ main job is to derive the low-

level details, human intervention by specifying additional insights is valuable [14]. More 

formally, the program synthesis addresses the problem of finding function f such that will 

satisfy function ϕ that checks the correctness of f in terms of specification (i.e. ϕ stating that 

f is a valid program) [13]. 

Many approaches of program synthesis relay on mathematical theorem proving algorithms 

as well as metaprogramming, however, more recent studies started researching different 

approaches to program synthesis such as A. Solar-Lezama’s Program Synthesis by Sketch-

ing [14]. Moreover, an essential part of this subtopic relays on domain-specific languages. 

In the following chapters, the current state of the art of the program synthesis will be for-

malized. 

Strategical Approach 

Strategical approach for program synthesis was first introduced by Bibel and Hornig in 1984 

[1]. They proposed logical program synthesis system LOPS whose main features include 

acquiring specification, manipulating domain, proposing and proving critical theorems and 

last but not least constructing code. 

The main idea behind the strategical approach is to identify the relationship between the 

input and output. The system does this by searching for the portion of the input that can give 

any insight on output. If that kind of portion is found then system tries to find a repetition 

of the original specification with already processed part of input and it continues reducing 

the problem that way until all of the input is a process, thus completing the synthesis. 

However, when required theorems are not available to process input further, synthesis 

blocks and invokes model exploration capability, which on the other hand tries to generate 

additional examples to derive missing theorem by generalizing the examples observed pre-

viously. 

This approach resembles human reasoning to find new relationships in the domain and to 

generalize on the previous evidence. Theorem proving methodologies and generalization 

from examples capabilities are a crucial part of this approach [1]. 
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Divide and Conquer 

The widespread approach in developing software is the “top-down” design, where the orig-

inal problem specification is divided into subtasks. Then each subtask is analysed, it can be 

trivial enough to be solved directly or still complex as original specification. If they are not 

primitive enough, they are further broken into parts, until all of the subtasks are simple 

enough to be solved individually. After that, the decomposed and solved subtasks are com-

bined together to assemble a complete solution. The divide and conquer methodology of 

automatic programming as reviewed by A. Biermann [1] follows the strategy defined above. 

It partitions the problem input into multiple parts and tries to solve each sequence individu-

ally. In other words if the desired program is f, which accepts input x, with divide and con-

quer approach system will first check if f is simple enough to be solved directly, otherwise, 

it will split x into parts and repeats the process on each part of x individually. Finally, the 

results of each computation are collected together to produce the result of f. The main ap-

plication of this approach is the class of sorting programs, where the different decomposition 

operator can generate different sorting programs. 

Deductive Program Synthesis 

There are several approaches to the program synthesis. One of them is deductive program 

synthesis pioneered by Z. Manna and R. Waldinger [15]. In this approach, program synthe-

sis is considered as a problem of proving a mathematical theorem and utilizes theorem-

proving methods such as transformation rules, mathematical induction and unification. The 

authors introduced deductive tableau, which is a two-dimensional structure used for encom-

passing the proof [16]. 

To overview proposed method we need to define formal terms and notions used in the paper. 

The terms encompass constants and variables, expressed in Latin symbols. The term can be 

constructed by application of different functions such as 𝑓(𝑎, 𝑔(𝑎, 𝑥)) [16]. Additionally, 

if-then-else is defined which is considered as a term constructor. Atomic sentences construc-

tion consists of applying predicate symbols (𝑝, 𝑞, 𝑟) to terms. Sentences consist of atomic 

sentences and truth symbols true and false, their construction is based on the application of 

connectives (∧, ∨, ¬,…) and quantifiers (∀𝑥, ∃𝑥) to other sentences as well as conditional 

connective (if-then-else) for implication. 

Paper also defined different types of expressions: closed which does not contain any free 

variables; ground which does not contain any expressions at all; and herbrand which is a 
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ground expression that does not contain any connectives, term constructors or equality sym-

bols. 

The total reflexive theory TR is defined by the following two axioms: 

 

𝑢 ≽ 𝑢 (𝑟𝑒𝑓𝑙𝑒𝑥𝑖𝑣𝑖𝑡𝑦) 

𝑢 ≽ 𝑣 ⋁ 𝑣 ≽ 𝑢 (𝑡𝑜𝑡𝑎𝑙𝑖𝑡𝑦) 

 

Table 5 presents basic deductive tableau, which is denoted by assertions and goals, rows 

and output columns. The tableau represents proof itself and derivation and the output col-

umns are used for extracting a program. The authors present several features for deductive 

tableau: suiting, satisfying and equivalence that is then used in deriving deduction rules and 

finally deducting required program [16]. 

 

Table 5. Deductive Tableau [15] 

Assertions Goals 𝑓1(𝑎) … 𝑓𝑛(𝑎) 

    ro
w

s 

𝐴1  𝑠1  𝑠𝑛 

 𝐺1 𝑡1  𝑡𝑛 

  Output columns  

 

Deduction rules add new rows to a tableau. They intend to preserve similarity but can violate 

equivalence. In other words, they leave primitive closed terms that satisfy the tableau un-

touched. Accordingly, the main feature of deduction rules is that by applying them to the 

program that satisfies the tableau, the program stays same. 

The deductive tableau framework defined following deduction rules: 

 Splitting rule, that splits rows into logical components. 

 Resolution rule takes sub-sentence of two rows and performs truth case analysis on 

them. 
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 Equivalence rule that takes sub-sentence and replaces it with an equivalent sentence. 

 Skolemization rule that removes quantifiers 

 Equality rule that replaces sub-term with an equal term 

 Mathematical induction rule that assumes the correctness of the desired program on 

inputs smaller than the given one. 

To illustrate the complete process of deducting program Z. Manna and R. Waldinger [15] 

present the following example: 

The desired program is to find two outputs for a given nonempty string s:  

 the last character of s – last(s) 

 all but the last character of s – front(s) 

For example: for the s =”example” program should output O1 =”example” and O2 =”e” 

The formal specification of this problems is as follows: 

 

〈𝑓𝑟𝑜𝑛𝑡(𝑠), 𝑙𝑎𝑠𝑡(𝑠)〉 ⇐ {

𝑓𝑖𝑛𝑑 〈𝑧1, 𝑧2〉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

𝑖𝑓 ¬(𝑠 = Λ)

𝑡ℎ𝑒𝑛 𝑐ℎ𝑎𝑟(𝑧2) ∧ 𝑠 = 𝑧1 ∗ 𝑧2

} 

 

Table 6 represents complete deductive tableau of the defined problem. 

 

Table 6. Complete Deductive Tableau 

Nr Assertions Goals 𝑓𝑟𝑜𝑛𝑡(𝑠) 𝑙𝑎𝑠𝑡(𝑠) 

1  𝑖𝑓 ¬(𝑠 = Λ) 

𝑡ℎ𝑒𝑛 𝑐ℎ𝑎𝑟(𝑧2)

∧ 𝑠 = 𝑧1 ∗ 𝑧2 

𝑧1 𝑧2 

2 𝑖𝑓 ¬(𝑠 = Λ)    

3  𝑐ℎ𝑎𝑟(𝑧2) ∧ 𝑠

= 𝑧1 ∗ 𝑧2 

𝑧1 𝑧2 
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4  𝑐ℎ𝑎𝑟(𝑧2) ∧ 𝑠

= 𝑧2 

Λ 𝑧2 

5  𝑐ℎ𝑎𝑟(𝑠) Λ s 

6  𝑐ℎ𝑎𝑟(𝑢)

∧ 𝑐ℎ𝑎𝑟(𝑦2) ∧ 𝑠

= 𝑢 ⋅ 𝑦1 ∗ 𝑦2 

𝑢 ⋅ 𝑦1 𝑦2 

7 𝑖𝑓 𝑥′  ≺𝑤 𝑠 

𝑡ℎ𝑒𝑛 𝑖𝑓 ¬(𝑥′ = Λ) 

𝑡ℎ𝑒𝑛 𝑐ℎ𝑎𝑟(𝑙𝑎𝑠𝑡(𝑥′))
−

∧ 

𝑥 ;

=  𝑓𝑟𝑜𝑛𝑡(𝑥;)

∗ 𝑙𝑎𝑠𝑡(𝑥 ;) 

   

8  𝑥 ≺𝑤 𝑠 ∧ 

¬(𝑥 = Λ) ∧ 

𝑐ℎ𝑎𝑟(𝑢) ∧ 

𝑐ℎ𝑎𝑟(𝑙𝑎𝑠𝑡(𝑥))
+

∧ 

𝑠 = 𝑢 ∙ 𝑥 

𝑢 ∙ 𝑓𝑟𝑜𝑛𝑡(𝑥) 𝑙𝑎𝑠𝑡(𝑥) 

9  𝑥 ≺𝑤 𝑠 ∧ 

¬(𝑥 = Λ) ∧ 

𝑐ℎ𝑎𝑟(𝑢) ∧ 

𝑠 = 𝑢 ∙ 𝑥 

𝑢 ∙ 𝑓𝑟𝑜𝑛𝑡(𝑥) 𝑙𝑎𝑠𝑡(𝑥) 

10  ¬(𝑠 = Λ) ∧ 

𝑡𝑎𝑖𝑙(𝑠) ≺𝑤 𝑠+ ∧ 

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠)) 
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¬(𝑡𝑎𝑖𝑙(𝑠) = Λ)

∧ 

𝑐ℎ𝑎𝑟(ℎ𝑒𝑎𝑑(𝑠)) 

11  ¬(𝑠 = Λ) ∧ 

¬(𝑡𝑎𝑖𝑙(𝑠) = Λ)

∧ 

𝑐ℎ𝑎𝑟(ℎ𝑒𝑎𝑑(𝑠))+ 

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

12  ¬(𝑠 = Λ) ∧ 

¬(𝑡𝑎𝑖𝑙(𝑠) = Λ)+ 

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

13  ¬(𝑠 = Λ)+ ∧ 

𝑐ℎ𝑎𝑟(𝑠) 

ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

14  ¬𝑐ℎ𝑎𝑟(𝑠)− ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

15  𝑡𝑟𝑢𝑒 𝑖𝑓 𝑐ℎ𝑎𝑟(𝑠) 

𝑡ℎ𝑒𝑛 Λ 

𝑒𝑙𝑠𝑒 ℎ𝑒𝑎𝑑(𝑠)

∙ 𝑓𝑟𝑜𝑛𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

𝑖𝑓 𝑐ℎ𝑎𝑟(𝑠) 

𝑡ℎ𝑒𝑛 s 

𝑒𝑙𝑠𝑒 𝑙𝑎𝑠𝑡(𝑡𝑎𝑖𝑙(𝑠)) 

 

 

First, we begin with the basic goal line (1), then by applying if-split, we get a line (2) and 

(3). Then by the equality rule, we derive (4). With applying resolution rule to the reflexivity 

axiom we obtain (5). With applying equality rule to the axiom for concatenation we get (6). 

Then we apply induction rule on (1) to get (7). With applying equality rule to (7) and (6) we 

get (8). By applying resolution rule to (7) we get (9). With applying resolution rule to de-

composition property of strings and to (9) we get (10). Then with the resolution rule twice 

we get (11) and (12). Then applying resolution rule to the trichotomy property of strings we 

get (13). By applying resolution rule to (2) we get (14). And finally, with the applying res-

olution rule to the (5) and (14), we obtain (15), thus the final program. 
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Syntax-Guided Synthesis 

In syntax-guided synthesis (SyGuS) a programmer specifies the outlines of a program, i.e. 

incomplete program and the synthesizer tries to fill in the missing details. To do so the 

system needs user-defined specifications and assertion [13]. 

According to R Alur, et al. [13] syntax-guided synthesis had many potential benefits com-

pared to classical synthesis problem that consists of only the specification. Few of the po-

tential advantages include: 

 Candidate set L, which limits search space of possible implementations, thus gaining 

computational performance for solving the synthesis problem. 

 Flexibility to specify the desired programme with the use of syntactic and semantic 

constraint.  

 This approach can be considered for machine learning and inductive inference as in 

the end results in finding correct expression from the syntactic space. 

Additionally, syntax-guided synthesis defines three constraints: 

1. Background theory constraints logical symbols and their interpretation. 

2. Background theory limits specification ϕ to a first-order formula and all its variables 

are universally quantified. 

3. Syntactic expression in grammar restricts the universe of possible functions f 

Accordingly, as R. Alur et al. [13] states, the syntax-guided synthesis problem can be for-

malized in the following way: 

Given a background theory T, a typed function symbol f, a formula ϕ over the vo-

cabulary of T along with f, and a set L of expressions over the vocabulary of T and 

of the same type as f, find an expression e ∈ L such that the formula ϕ[f /e] is valid 

modulo T. 

Oracle-Guided Synthesis 

Oracle-Guided Synthesis researched by Susmit Jha et al. [17] is an approach of automatic 

programming that is designed for loop-free programs. The method is a fusion of oracle-

guided learning from examples and constraint-based synthesis which by itself uses satisfia-

bility modulo theories (SMT) solvers. The main application of this approach is bit-manipu-

lation programs and deobfuscation (converting difficult to understand program into simpler 

one) programs. The method takes as an input the following: 
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 A validation oracle 𝑉, that checks whether the synthesized program is the desired 

one. 

 An I/O oracle 𝐼, that returns correct output for given input. 

 A set of specifications {〈𝐼𝑖⃗⃗ , 𝑂𝑖, 𝜙𝑖(𝐼𝑖⃗⃗ , 𝑂𝑖)〉|𝑖 = 1,… ,𝑁} called library. Where 𝐼𝑖⃗⃗  s list 

of input variables, 𝑂𝑖 is output variable, and 𝜙𝑖(𝐼𝑖⃗⃗ , 𝑂𝑖) specifies the relationship be-

tween input and output.  

The goal of the oracle-guided synthesis approach is to find program P that satisfies follow-

ing requirements:  

 can be checked with validation oracle V 

 only utilizes components from the library 

 takes 𝐼  as an input and outputs O 

 Uses {𝑂1, … , 𝑂𝑛} as an intermediate or temporary variables 

 Has form defined in (1) 

𝑃(𝐼 ):    𝑂𝜋1 ≔ 𝑓𝜋1(�⃗� 𝜋1);    … ;     𝑂𝜋𝑛 ≔ 𝑓𝜋𝑛(�⃗� 𝜋𝑛);     𝑟𝑒𝑡𝑢𝑟𝑛 𝑂𝜋𝑛     (1) 

Additional constraints for the form are that �⃗� 𝜋𝑖 is either input variable or a temporary vari-

able (C1); and  𝜋𝑖 , … , 𝜋𝑛 is a permutation of 1,… , 𝑛 (C2). 

The synthesis procedure is the following: 

1. Encode the space of all possible programs with a formula. 

2. Constraint formula based on input-output pairs. 

3. Solve constraint defined previously. 

4. If the solution is not the desired program then generate new input-output pair. 

5. Constraint formula further and check again until the correct solution is found. 

For encoding, authors define THEOREM 1 that state that there exist two formulas 𝜓𝑤𝑓𝑝 

and 𝜙𝑓𝑢𝑛𝑐. First one represents syntactically well-formed programs, while the second for-

mula embodies all semantic I/O behaviours of a well-formed program. 

THEOREM 1. There exists a set of integer-valued location variables L, a 

well-formedness constraint 𝜓𝑤𝑓𝑝(𝐿) over L, a mapping Lval2Prog, and a 

functional constraint 𝜙𝑓𝑢𝑛𝑐(𝐿, 𝐼 , 𝑂) over 𝐿 ∪ {𝐼 , 𝑂} such that the following 

properties hold: 



25 

 

 Lval2Prog is a bijective mapping from the set of values L that satisfy 

the constraint 𝜓𝑤𝑓𝑝(𝐿) to the set of programs that satisfy constraints 

C1 and C2. 

 Let 𝐿0 be a satisfying assignment to the formula 𝜓𝑤𝑓𝑝. If α and β are 

any candidate input and output values, then the formula 

𝜙𝑓𝑢𝑛𝑐(𝐿0, 𝛼, 𝛽) is true iff the program Lval2Prog (𝐿0) returns the 

value β on the input α. 

This paper will not the proof of this theorem for the sake of simplicity but it can be obtained 

from [17]. 

The key step in the oracle-guided synthesis is defining constraint (I/O-behavioral constraint) 

whose solution will guide us to the program desired. 

I/O-Behavioral constraint is denoted with the following formula: 

𝐵𝑒ℎ𝑎𝑣𝑒𝐸(𝐿) =  ⋀ 𝜙𝑓𝑢𝑛𝑐(𝐿0, 𝛼𝑗 , 𝛽𝑗)

(𝛼𝑗,   𝛽𝑗 ∈ 𝐸)

      (2) 

Where E is a set of input-output examples. 

Authors then define THEOREM 2 which gives us the ability to search for a candidate pro-

gram in the finite search space of input-output pairs. 

THEOREM 2 (I/O-behavioural Constraint). For any satisfying solution L0 to 

the I/O-behavioural constraint, the input-output behaviour of the program 

Lval2Prog (L0) matches all the input-output examples in the set E. 

Program synthesized with the above constraints then need to be checked with the validation 

oracle and since it is an expensive operation Susmit Jha et al. [17] define an additional dis-

tinguishing constraint that differentiates between two candidate programs: 

𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐸,𝐿(𝐼 ) = ∃𝐿′, 𝑂, 𝑂′ 𝐵𝑒ℎ𝑎𝑣𝑒𝐸(𝐿
′) ∧ 𝜙𝑓𝑢𝑛𝑐(𝐿, 𝐼 , 𝑂) ∧ 𝜙𝑓𝑢𝑛𝑐(𝐿

′, 𝐼 , 𝑂′) ∧ 𝑂 ≠ 𝑂′ (3) 

THEOREM 3 (Distinguishing Constraint). If α is a satisfying solution to the 

distinguishing constraint 𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐸,𝑃(𝐼 ), then there exists a program P’ 

such that P and P’ have different behaviours on input α, but have the same 

behavior on all the inputs in the set E. 

The synthesising procedure generates new programs in a loop that satisfy more and more 

inputs. In the beginning, only one input is selected corresponding program is synthesized 
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and then using distinguishing constraint different input is searched. If it is found then next 

iteration begins with expanded input set and the loop continues until the correct program is 

found. Otherwise, the system returns stating that not enough information is provided for 

successful synthesis. Additionally, Satisfiability Modulo Theory (SMT) is used for solving 

I/O behavioural and distinguishing constraint. 

Program Synthesis by Sketching 

The combination of high-level design and low-level algorithms is required for implementa-

tion of complex challenging programs. Even though computers’ main job is to derive the 

low-level details, but without human intervention by specifying additional insights synthe-

sizers cannot complete its tasks [14]. Therefore establishing synergy between the synthe-

sizer and the programmer is one of the main challenges in program synthesis. 

To approach this challenge, A. Solar-Lezama [14] in 2003 introduced a new strategy for 

synthesis sketching which tries to find a solution to the synergy problem. As it is already 

shown in the paper previous work on this subject was utilizing meta-programming or theo-

rem proving algorithm to deduce an implementation form the specification. One of the prob-

lems with synthesized programs was that they were hard to read and understand and pro-

grammers needed to get used to the way of thinking to efficiently extend or reuse synthe-

sized programs. 

Sketching, on the other hand, removes that complexity form synthesis by allowing 

programmers to specify sketch, outline or high-level structure of an implementation, leaving 

low-level details to the synthesizer. Sketching utilizes Boolean satisfiability problem based 

synthesize which using a just small number of test cases can efficiently synthesize an im-

plementation. Authors of this research also define counterexample guided inductive synthe-

sis procedure (CEGIS) that uses the above-defined synthesizer as its core additionally adds 

validation procedures. This procedures can automatically generate test inputs and validate 

generated program correctness in regards to specification. Moreover, CEGIS can operate of 

concurrent program and is able to solve problems ranging from bit-level cypher to manipu-

lation of linked data structures. As authors claim [14] programs that the system was able to 

synthesize complete optimized AES cypher, multiple concurrency problems such as a fine-

locking scheme for a concurrent set, the solution to the dining philosophers problem, and 

sense reversing barrier. 
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4.3 Inductive Programming 

Inductive programming is a subtopic of automatic programming which is focused on gen-

erating programs from incomplete specifications, like input-output examples, in contrast to 

program synthesis where specifications are usually complete. The research of inductive pro-

gramming spans from programming to artificial intelligence and mainly research functional 

and recursive programs [18], [19]. 

There are multiple types of inductive programming depending on the programming para-

digm. For example, inductive functional programming is used with the functional paradigm 

or inductive logic programming used in logic programming languages such as Prolog. 

According to S. Gulwani et al. [20], the input of inductive programming system is an 

incomplete specification that usually consists of: 

 Inputs and corresponding output examples, occasionally instead of outputs output-

evaluation-function is being passed to the system. For describing intended 

behaviours. 

 Action sequences describing the process of computing provided outputs 

 Logical constraints to limit the search space of possible programs. 

 Background knowledge, or domain specification 

 Program templates, predefined functions and heuristics or other biases. 

The output of an inductive programming system is a program consisting of any Turing-

complete representations, such as loops, conditionals, recursive controls, etc. 

In contrast to program synthesis where provided specification should be complete, inductive 

programming operates on an incomplete specification such as input-output examples, thus 

generated program should be correct in terms of provided partial specification [21]. 

The prominence of inductive programming is mostly based on its potential for enabling 

programmers to provide examples instead of full specifications. Examples are much easier 

to write than logical specifications as they can be incomplete. However, according to O. 

Polozov [22], inductive programming has three major limitations: 

1. Requirements of deep domain-specific insight. 

2. Extensive implementation efforts that can take up to 1-2 man-years. 

3. Lack of extensibility as a small change in the underlying DSL causes non-trivial 

changes to the system implementation. 
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IGOR II 

IGOR II [23] is the inductive programming system designed to learn recursive programs. 

To achieve full synthesis the system separates input partitioning or finding patterns and 

predicates in the input, and code synthesis that computes the desired output. IGOR II does 

partitioning completely and systematically instead of randomly or using greedy search and 

does this in parallel.  

According to M. Hofmann [23], a search of the desired expression is complete and traceable 

even for a complex program. The reason as authors claim is the construction of hypotheses 

in IGOR II is data driver and that the system combines analytical program synthesis with 

the search. 

The system defines E the set of example equations and B a set of background knowledge 

and both of them have constructor terms on their right-hand side and both describe input-

output behaviours on their domain. This two notions together with the declaration of all used 

data types, the IGOR II system outputs a set of equations P which is correct in the following 

space: 

{
∀(𝐹(𝑖) = 𝑜)  ∈ 𝐸

𝐹(𝑖)
!
→𝑃∪𝐵 𝑜

         (1)  

The result is constructor system which rewrites each left-hand side of equations form an 

example set E to its right-hand side. 

Let’s define P as the signature of the induced program. Then it is possible to define signature 

Σ of 𝐸 ∪ 𝐵 and 𝑃 = Σ ∪ 𝐷𝐴. Where DA is a set of function not in the example of background 

sets, but defined through synthesis. 

The system constraint auxiliary function is two ways:  

 Input types of auxiliary function and function calling should be identical. This limits 

IGOR II to automatically infer auxiliary parameters 

 Auxiliary function symbols are constrained with the right-hand side of calling func-

tion, i.e. these symbols cannot occur on the right-hand side. 

These restrictions are called language bias [24]. By definition of property (1), there are in-

finitely many solution P, accordingly IGOR II, as almost all inductive programming meth-

ods, define preference bias that chooses the most appropriate solution form the set of possi-
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ble solutions. The selecting criteria for the system are the number of subsets used for parti-

tioning the example inputs, and since search is complete it is possible to systematically se-

lect the best solution. 

The start state or the initial hypothesis is a constructor system (CS) with one rule for each 

target function in E. Next the best hypothesis is selected using preference bias, an unfinished 

rule is chosen and system replaces it with its successor rules. IGOR II contains multiple 

functions for computing successor rules, thus results of substation can be multiple and the 

best one is selected from this set using preference bias [24]. 

The system defined three different methods for successor rule replacement: 

 The splitting rule by pattern refinement, which uses pattern refinement to split rules 

and replace rule p with at least to or more specific patterns. That way the system 

achieves a case distinction. 

 Introducing auxiliary functions and generating new induction problems on, in other 

words, new example equation in set E. 

 Function calls that either recursively calls itself or other defined function from target 

background, or auxiliary function sets. It should be noted that finding arguments for 

such functions are perceived as separate induction problem. 

The process then continues to apply preference bias on the hypotheses and finishes when at 

least one of them is finished. At that point, induction is finalized and derived program is 

outputted [23]. 

Automatic Design of Algorithms through Evolution (ADATE) 

Automatic design of algorithms through evolution (ADATE) is a framework for automatic 

programming that was introduced by R. Olsson [25]. The system induces functional pro-

grams containing recursion, invented auxiliary functions and numerical constants. 

ADATE’s flexibility allows programmers to generate programs from scratch or improve 

existing ones. 

ADATE works very well with high-performance applications where optimizations happen 

experimentally, such as implementations of heuristics. Since heuristics that give very high-

quality results efficiently are difficult to design, automating this task is very beneficial [26] 

[27]. 
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In more detail, ADATE maintains a population of programs structured hierarchically. The 

most important entities in the ADATE taxonomy are families which itself is divided into 

races which in turn consists of species. Species consists of similar programs that are derived 

from one single founding program using compound program transformations. As in genetic 

programming main principle for ranking population is that program should perform better 

than previously observed ones. After each transformation in varying combinations newly 

generated programs are ranked to be considered in the population. The transformation pro-

cess is systematic and does not introduce any randomness [25]. 

Object-Oriented Design and Genetic Programming 

The system proposed by N. Pillay and C. Chalmers [4] consists of two components: a rule-

based expert system and a genetic programming system, and aims to induce object-oriented 

programs from specifications and input-output examples.  The expert system uses problem 

specification to generate an object-oriented design (OOD), while GP system induces the 

methods of each class. 

 

Figure 3. Overall Process [4] 

Problem Specifi-

cation 

Rule-Based Ex-

pert System 

Object-Oriented 

Design 

GP System 

 

Object-Oriented 

Program 

JAVA Program 

Program Transla-

tor 



31 

 

The system takes problem specification as an input, the latter consists of the application 

domain represented as descriptions of entities and several input-output examples. With this 

method, programs are generated in an internal representation language but creating a 

translator for converting it into convenient programming languages. The overall process is 

visualized in Figure 3. The specification of each entity consists of its characteristics and 

behaviours. For example, if we have bank cheque as an entity “CHEQUE” its characteristics 

would be account number, profile and balance, while its behaviours would be a deposit and 

withdraw. In the specification, behaviours are represented as an input and output values. 

The specification also supports constants for defining application domain. It should be noted 

that the system is typed, accordingly in the specification types of each characteristic and 

input-outputs should be defined. Figure 4 shows example specification for the CHEQUE 

entity. 

 

 

Figure 4. Example Specification [4] 

 

The actual synthesis is done using genetic programming. For each method of the entities 

that need to be induced, the specification is passed to the genetic programming system, 

CHEQUE 

accountnumber balance profile 

integer real character 

 

*Deposit* 

#Input amount Real 100 , 50 , 200 

#Input balance Real 1000 , 2300 , 400 

#Output balance Real 1100 , 2350 , 600 

 

*Withdrawal* 

#Input amount Real 100 , 50 , 200 

#Input balance Real 1000 , 2300 , 400 

#Output balance Real 900 , 2250 , 200 
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which employs the generational control model [4]. The system then generates an initial pop-

ulation of programs that are constructed by randomly selecting elements from the functions 

and terminal sets. Then this population is refined by using genetic programming techniques 

such as evaluation, selection and regeneration, to generate better programs. This process 

continues until the desired program is synthesized or until a predefined number of iterations 

is exhausted. 

Data-Driven Domain-Specific Deduction 

Data-driven domain-specific deduction (D4) is novel approach by O. Polozov and S. Gul-

wani [22] that unifies deductive, syntax-guided, and domain-specific synthesis approaches 

into one meta-algorithm by utilizing strengths of each approach: 

 D4 operates over a DSL, thus its program space is syntactically restricted. 

 D4 reduces synthesis problem into smaller sub-problems by utilizing deductive syn-

thesis techniques. 

 D4, in contrast to deductive synthesis, were program space is searched with a com-

plete logical specification, operates on input-output examples thus it is data-driven. 

In D4 uses I/O examples for specifying intent, utilizes syntax-guided synthesis for reducing 

search space and for search deductive strategy is employed. Since program space is limited 

with the provided DSL, as in SyGuS, it drastically speeds up a search of the desired program 

(as authors claim synthesis of commons real-life tasks take less than a second [22]). The 

easiest form of specification is input-output specifications, this approach also employs a 

similar strategy with the addition of output properties, which is input states map to some 

properties of the output. Search strategy for D4 is a novel deductive inference that is based 

on witness functions. These functions capture the inverse semantic of underlying DSL op-

erator. Moreover, the deductive inference is combined with enumerative search. 

FlashMeta 

FlashMeta is a declarative framework based on D4, which facilitates design, implementation 

and maintenance of efficient inductive program synthesizers [22]. The system operates on 

DSL that synthesizer developer should parameterize and provide as an input. Then Flash-

Meta automatically generates an inductive synthesizer that will utilize provided DSL. Ad-

ditionally, the system provides a predefined library of witness functions and generic opera-

tors that can be reused by the developers with any conformant DSL. As authors claim [22], 
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a predefined modelling of properties of operators, it becomes a lot easier to develop synthe-

sizer as only required task for a developer is an exploration of various design choices in 

DSL structure. The most notable examples of using FlashMeta framework in the industry is 

FlashFill and FlashExtract, shipped with Microsoft Excel and Windows PowerShell respec-

tively [22]. 

FlashFill is a system for synthesizing string transformation is spreadsheets from input-out-

put examples. It defined DSL LFF which takes a tuple of user inputs as an input and outputs 

some transformation of input. It should be noted, that FlashFill was implemented manually 

by S. Gulwani in 2011 [28] but rewriting it with the help of FlashMeta framework resulted 

in 7 times less time and efforts and the system discovered optimizations that were not ex-

ploited in the original implementation. 

FlashExtract is a system for synthesizing scripts for extracting data from unstructured 

documents [29]. Currently, it is integrated into PowerShell 3.0, shipped with Windows 10, 

and Azure Operational Management Suite for analysing logs. As FlashFill, FlashExtract 

operates on specific DSL LFE that takes the textual document as an input and outputs se-

quence of spans in that document. Selection of spans is done using Filter and Map functions 

applied to the document provided. 

Neuro-Symbolic Program Synthesis 

Neuro-Symbolic Program Synthesis (NSPS) is a novel technique by E. Parisotto [30] that 

can be trained to generate the desired program incrementally without the need for an explicit 

search. According to authors NSPS is capable of synthesizing programs based on input-

output examples provided a test time. The system utilizes two novel architectures of the 

modular neural network: 

 Cross-correlation I/O network, that produces a continuous representation of input-

output examples. 

 Recursive-Reverse-Recursive Neural Network (R3NN), that takes input result of 

cross-correlation I/O network and by incrementally expanding partial programs syn-

thesizes desired program. R3NN has a tree-based architecture and by utilizing rules 

from a context-free grammar (the DSL) constructs a parse tree. 

The formal definition of the NSPS is as follows:  
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Given a DSL L, The system learns a generative model of programs in the L. The model is 

trained on input-output examples to constraint the search space of a consistent program. 

Figure 5 illustrates the training phase of NSPS which uses a large training set of programs 

form the DSL with equivalent input-output examples. 

 

 

Figure 5. NSPS Training Phase [30] 

 

For a neural network to be accurate it needs large training set to train on. The rule-based 

strategy is used to compute input string for uniformly samples programs form the provided 

DSL. Outputs then are generated by running inputs on the selected programs. These tree 

components sample set of programs, inputs, and outputs combines the training set used for 

NSPS. 

The system treats DSL as a context-free grammar that consists of a start symbol S, set of 

non-terminals and corresponding expansion rules. The most straightforward way to run a 

search is to start synthesis with the start symbol S and then randomly choose non-terminals 

to extend tree until every leaf of the tree is a terminal. The NSPS, on the other hand, assigns 

probabilities to the non-terminals and expansion rules to optimize search for complete der-

ivations. The generative model of the system utilizes Recursive-Reverse-Recursive Neural 

Network (R3NN) for partial tree encoding. Each node in the partial tree encodes global 

insight on every other node in the tree. The vector representation is assigned to every symbol 
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and expansion rule in the grammar. Then given a partial tree, the system applies vector 

representations to the leaves and recursively backtracks to the root node to encode the global 

insight. In the end, reverse recursive pass starting from the root node is invoked to update 

global representations of each node in the tree. 

 

 

Figure 6. NSPS Testing Phase [30] 

 

After the model is trained it is tested on the testing set of DSL and input-output examples, 

as shown in Figure 6. Depending on the approaches used for encoding or distributing prob-

abilities the accuracy varies but in the optimal selection as authors claim accuracy is industry 

applicable [30]. 

Microsoft research group utilized NSPS to implement RobustFill that leverages data-driven 

approach to remove any hand-crafted rules from the synthesis [31]. RobustFill uses the 

attentional sequence-to-sequence neural network to synthesize the program from the input-

output examples. For the example, authors used FlashFill real-life dataset, trained neural 

network and then evaluated the outcomes. The system turned out to have 92% accuracy. 
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4.4 Additional Approaches 

The current state of the art of automatic programming consists of additional approaches that 

cannot be categorized with above-mentioned criteria, i.e. they do not completely fit in the 

compiler, program synthesis or inductive programming specifications but are still employ-

ing some kind of automation. Accordingly, it was decided to include them here as the main 

aim of this paper is to review the state of the art of automatic programming in depth. 

The AI Programmer introduced by K. Becker and J. Gottschlich [3] is solely dependent on 

genetic programming (GP) algorithms but in contrast to previously mentioned approaches 

AI Programmer can operate only on a tightly constrained programming language consisting 

of just a few instruction sets, thus drastically limiting the search space and making GP fea-

sible with a minimum human intervention. Table 7 shows the AI Programmers instruction 

set and gene map. 

 

Table 7. AI Programmer Instruction Set and Gene Map [3] 

Instruction Gene Range Operation 

> (0, 0.125] Increment the pointer 

< (0.125, 0.25] Decrement the pointer 

+ (0.25, 0.375] Increment the byte at the pointer 

- (0.375, 0.5] Decrement the byte at the pointer 

. (0.5, 0.625] Output the byte at the pointer 

, (0.625, 0.75] Input a byte and store it at the ptr 

[ (0.75, 0.875] Jump to matching ] if current 0 

] (0.875, 1.0] Jump back to matching [ unless 0 
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It should be noted that AI Programmer’s language is Turing-complete, i.e. is theoretically 

capable of performing any programming task (in the scope of the single-taped Turing ma-

chine) given unlimited time and memory [3]. 

Another application of automatic programming is refactoring legacy code to utilize new 

features of the language. The paper by R. Khatchadourian [32] provides an automated 

approach for translating legacy java code to employ new Java enumeration types. Their al-

gorithm for transformation produces code that is simple, easy to understand, type-safe and 

free from brittleness problem. The system uses interprocedural type inferencing to track the 

lifecycle of the enumerated values. Authors claim that their approach can successfully re-

factor large legacy java projects with a large number of fields. 

One more application of automatic programming is in web-service composition and gen-

erating API adapter for cloud-based APIs. The approach by A. Omer and A. Schill [33] 

proposes methods for solving runtime problems that are occurring in service-oriented archi-

tecture (SOA) type environment by composing (semi-) automatically crucial points of the 

system. Authors also deal with dependencies that are emerging from combinations of inde-

pendently developed web services. As for generating API adapters, the main problem de-

fined by E. Hossny et al. [34] is that in the cloud environment where multiple services and 

applications are dependent on each other and are communicating via API calls, slight change 

of API specification causes big overhead in updated adapter for different dependants. To 

solve this problem authors propose automatic adapter generation method that is constructed 

upon semantic annotations and search. This method requires that conceptual meanings of 

inputs and outputs are specified based on a common domain ontology. 

Other less important approaches include Automatic Model Generation from Documen-

tation for Java API Functions by J. Zhai et al. [35] this approach takes API documentation 

of Java libraries whose source code representation in unknown and generate simple model 

from this documentation allowing developers to easily analyse and understand the function-

ality that could be difficult to process solely by documentation. The core of the generation 

is natural language processing (NLP) that has received big attention in the recent years. 

One more application of automatic programming is Code completion suggestions to make 

the development process more efficient. There are several approaches to this problem [36] 

[37] [38], the most popular one is Being Developer Assistant (BDA) [36] that uses data 

mining techniques to collect analyse and store sample codes form public repositories such 
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as GitHub. Authors provide a plugin for the Microsoft Visual Studio that enables developers 

to automatically, based on their code get sample suggestions mined with the BDA. Another 

approach for code completion is Statistical Language Models [37] that uses several auto-

matic programming methods and synthesizes code completions based on the partial imple-

mentation of the program, it uses machine learning and data mining techniques as well as 

treats program as a natural language and analyses it with big data collected from public 

repositories using NLP algorithms, thus providing high accuracy sample codes to fill in the 

holes in the implementations. 

4.5 Limitations and Open Questions 

Even though automatic programming is capable of synthesizing complex programs it still 

has many limitations and open questions for further research. This subsection will overview 

this issues with regards to RQ3. 

To begin with, it should be noted that most of the automatic programming methods are 

operating on the tightly constrained domain-specific languages and scaling it to even slightly 

modified language requires rewriting the systems from the scratch. Thus the main limitation 

of approaches overviewed is the limited scope of operation [20]. 

Deductive synthesis is limited to first-order input-output relations and only applies to an 

applicative program set with only output and no side effects. Generally, it is important to 

research deductive program synthesis for high-level specification such as a description of 

the properties, not just input-output relations [16]. 

Divide and Conquer strategy requires very high-level specification that, in some cases, can 

be regarded as an executable program itself [1]. 

Deductive and Syntax-Guided Synthesis both require complete formal specification. Writing 

it is, in most, cases as complex as the implementation itself thus advantages of automatic 

programming cannot be utilized [30]. 

Benchmarking and comparison are difficult because most of the automatic programming 

approaches operate on a very specific narrow domain, thus it is impossible to find a bench-

marking task that most of them would be able to work on [39]. 

For inductive programming the following limitations are apparent: 

Domain change: Today most of the IP approaches operate only on a specific DSLs thus 

changing to a new domain is a hard challenge. The cause of this is that IP approaches are 
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relatively new to the real-world application and there is not enough experience in exploring 

the space of the application. In the long term, meta-synthesizers will appear as a dominant 

approach in IP thus allowing synthesizers to be scalable across different domains [21]. 

Noise Tolerance: Since inductive programming takes input-output examples as an input, in 

the real world it is difficult to provide accurate data, thus provided information will always 

have some noise in them. Currently available approaches cannot identify this noise, 

accordingly, synthesis accuracy lowers as nose level raises [21]. Only RobustFill, that uti-

lizes Neuro-Symbolic Program Synthesis, is able to treat noise at some level, still returning 

accurate results and deriving correct desired programs to the end users [31]. 

 Neuro-Symbolic Program Synthesis currently utilizes supervised-learning approach, that 

assumes the availability of desired programs during training, but in real life, there can be 

the cases where sample programs are not provided, or there is an oracle that returns correct 

output for the input. Current research does not give us insight into this problem, indicating 

that further research is required in that direction [30]. 

4.6 The State of the Practice 

Even though automatic programming is popular research subject since the 1970s [1], but 

this research remained in the scope of artificial intelligence and did not transfer into the 

industry. The main reason for that could be that current systems lack usability and are very 

hard to transfer synthesizer implemented in each approach to a different domain. 

First and most notable application of automatic programming in industry level software was 

FlashFill and FlashExtract shipped with Microsoft Excel [29], [22]. Other applications that 

provide user friendly automatic programming tools are TerpreT that is a domain specific 

language for expressing program synthesis problems [40], PushGP which is a family of 

programming languages suited for evolutionary computations, i.e. genetic programming 

[41], MagicHaskeller that is an inductive functional programming system for Haskell that 

uses systematic search for induction [42]. 

Recently Microsoft launched its new product Meta-synthesizer Microsoft Program Synthe-

sis using Examples (PROSE) that encapsulates FlashMeta [22] framework as well as Ro-

busFill [31] system to provide high level, user-friendly meta-synthesizer that is capable of 

generating synthesizers for user-defined DSL and train it on input-output examples [43]. 
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5 Discussion 

In this chapter evaluation of the state of art and state of practice of automatic programming 

will be provided.  

5.1 Definition and Subtopic 

This subsection answers RQ1: How is automatic programming defined by different scholars 

and what are subtopics of the subject? 

As shown in Appendix I, out of 37 papers reviewed, 22 (59%) were on inductive program-

ming, 19 (51%) were on program synthesis and only 5 (14%) were on compilers. 

This distribution can be explained by analysing trends and semantics of each subtopic. For 

example, compilers are usually regarded separately as they do not tend to create new logic 

not defined in the original code but translate latter into a different programming language 

[6]. Accordingly, selection keywords for this literature review were more targeted on the 

papers that were focused on deriving additional insights from the specification, not just 

translation or compilation. 

As it is evident, that inductive programming and program synthesis are selected equally. 

This can be conditioned for several reasons. First of all, we need to look into the distribution 

of term trends as shown in Figure 7. 

 

Figure 7. Distribution of research papers on automatic programming 
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From the graph, if we take a closer look at the trend lines it is easily seen that popularity of 

inductive programming was more rapidly growing than program synthesis. But since most 

of the inductive programming approaches utilize program synthesis to some extent they are 

still reviewing that topic, thus the current indicator of the popularity of program synthesis 

might be distorted. One reason for that trend is that in the 1990s, artificial intelligence tech-

niques were not researched in an in-depth manner and machine learning, deep learning or 

neural networks were not that popular research subject, thus the time was spent mostly 

thinking how to create mathematical models for generation or how to model specifications 

that can be full and easy to write at the same time. Moreover, it should be noted that last 

year number of research papers on IP was far above the average number of papers per year, 

4 and 1 respectively. 19 papers were discussing general definition or subtopics of automatic 

programming, out of which 10 (53%) were defining inductive programming, 12 (63%) were 

on program synthesis and 4 (21%) were on compilers. This distribution is in line with the 

previous reasoning. 

5.2 Algorithms and Methods 

This subsection answers RQ2: What are the algorithms and approaches used in the field? 

Out of the selected 37 papers, 30 (81%) were focused on one or more approaches to the 

automatic programming. 6 (16%) were reviewing more than one algorithm or method and 

24 (65%) were dedicated solely on a single approach. 2 (5%) papers were an improvement 

or enhancement of previously introduced research. 

5.3 Limitations and Issues 

This subsection answers RQ3: What are the limitations and open questions on the topic? 

Out of the selected 37 papers, 9 (24%) were discussing the issues, limitations or open ques-

tions in automatic programming. From this 9 papers, 3 were the original work for the ap-

proach and 6 were overviewing one or more methods. 

The limited scope of the operation and the complexity of domain change was mentioned in 

the 5 (%) papers. 

The limitation of deductive synthesis to operate only on applicative programs, as well as, 

the issue with program synthesis and the specification complexity, discussed in Section 4.5, 

was stated in 3 papers. 
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Noise tolerance and applicable scope for neuro-symbolic program synthesis were reviewed 

only in one paper. The reason behind this is the lack of literature on the approach as that 

neuro-symbolic program synthesis was introduced recently and it still it requires compre-

hensive research. 

5.4 Comparison to the State of the Practice 

This subsection answers RQ4: How does the level of the state of the practice compare to the 

state of the art or the subject? 

From the approaches reviewed in the selected papers, only a few of them were actually 

transferred to practice (FlashMeta, FlashExtract and RobustFill), other applications listed in 

section 4.6 were not explicitly analysed but were mentioned in several papers as a similar 

method. The reason behind that low transfer rate is that current systems lack usability and 

are very hard to transfer synthesizer implemented in each approach to a different domain. 

This limits possible applications to a single fixed domain but in real life, domains change 

rapidly and the required time for keeping up synthesizer to the domain is not worth the 

benefit automatic programming could give. But current approaches of meta-synthesizers 

will most probably promote the use of inductive programming in the industry. 
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6 Conclusion 

This thesis has presented the state of the art of automatic programming by reviewing existing 

literature on the topic. 

From the results of literature review, we can conclude, that automatic programming is gen-

erally categorized into three sub-topics: compilers, program synthesis and inductive pro-

gramming. 

Program synthesis was a much more popular research subject in the late 90s and early 2000s. 

There are many reasons for that, one of them is that at that time available computational 

power did not allow researchers to consider expensive operations (deep learning, neural 

networks, etc.), thus the time was spend mostly thinking how to create mathematical models 

for generation or how to model specifications that can be full and easy to write at the same 

time. But as the technology developed and with the advance of research in artificial intelli-

gence inductive programming became more popular as its domain of deriving desirable pro-

grams from input-output examples or incomplete specifications matched the domain of ma-

chine learning and artificial intelligence.  

The extensive research on the automatic programming throughout time introduced many 

interesting and breakthrough approaches. For program synthesis the state of the art ap-

proaches are Strategical Approach, Divide and Conquer, Deductive Program Synthesis, 

Syntax-Guided Synthesis, Oracle-Guided Synthesis, and Synthesis by Sketching. For In-

ductive programming, the state of the art approaches is IGOR II, ADATE, Object-Oriented 

Design and Genetic Programming, Data-Driven Domain-Specific Deduction (that inspired 

FlashMeta) and Neuro-Symbolic Program Synthesis. Additional approaches that cannot be 

regarded as any of upper mention sub-types include: AI Programmer (utilizing genetic pro-

gramming), automatic refactoring, web-service composition and generating API adapter, 

and Automatic Model Generation from Documentation 

The current most important limitations and open questions regarding automatic program-

ming as identified in the literature are different for the sub-topics. For program synthesis, 

writing specification that by definition should be formally complete that is most of the times 

as complex as writing the actual implementation. For inductive programming, several issues 

arise, one of them is extending synthesize to different domains when actually a small change 

in the domain can lead to rewriting the whole synthesizer. The approaches using machine 

learning and neural networks are early birds in the subject thus their potential is not yet fully 
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embraced. For example, Neuro-Symbolic Program Synthesis currently utilizes supervised-

learning approach currently does not give us insight on reinforced learning that is the 

essential case in the domain, indicating that further research is required in that direction. 

As for the comparison to the state of the practice, the current situation in that direction is 

marginal that is only a few approaches (FlashMeta, MagicHaskeller, etc.) end up in the in-

dustry level software and are accessible for users. Recent efforts by the Microsoft research 

group provided PROSE framework that will further catalyse this transfer from research to 

practice, as it is providing tools for easily building inductive synthesizers. 
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Appendix 

I. Selected Papers 

ID Title Author Date Topic Area 

S1 Automatic Programming: A Tutorial on 

Formal Methodologies [1] 

Alan W. Bier-

mann 

1985 Inductive Pro-

gramming, Pro-

gram Synthesis 

S2 Fundamentals of Deductive Program 

Synthesis [16]s 

Zohar Manna, 

Richard 

Waldinger 

1992 Program Syn-

thesis 

S3 Inductive functional programming using 

incremental program transformation [25] 

Roland Olsson 1995 Inductive Pro-

gramming 

S4 A Hybrid Approach to Automatic Pro-

gramming for the Object-Oriented Pro-

gramming Paradigm [4] 

Nelishia Pillay, 

Caryl K. A. 

Chalmers 

2007 Inductive Pro-

gramming 

S5 Web Services Composition using In-

put/output Dependency Matrix 

Abrehet Moham-

med Omer, Alex-

ander Schill 

2009 Inductive Pro-

gramming 

S6 I/O Guided Detection of List Catamor-

phisms: Towards Problem Specific Use 

of Program Templates in IP 

Martin Hofmann, 

Emanuel Kit-

zelmann 

2010 Inductive Pro-

gramming, 

Generative Pro-

gramming 

S7 Oracle-Guided Component-Based Pro-

gram Synthesis [17] 

Susmit Jha et al. 2010 Inductive pro-

gramming, pro-

gram synthesis 

S8 Ideas for connecting inductive program 

synthesis and bidirectionalization 

Janis Voigtlander 2012 Inductive Pro-

gramming 
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S9 FlashMeta: A Framework for Inductive 

Program Synthesis [22] 

Oleksandr 

Polozov, Sumit 

Gulwani 

2015 Inductive Pro-

gramming 

S10 Inductive Programming Meets the Real 

World [21] 

Sumit Gulwani et 

al. 

2015 Inductive Pro-

gramming 

S11 Semantic-Based Generation of Generic-

API Adapters for Portable Cloud Appli-

cations 

Eman Hossny et 

al. 

2016 Inductive Pro-

gramming 

S12 Automated refactoring of legacy Java 

software to enumerated types 

Raffi Khatcha-

dourian 

2016 Program Syn-

thesis 

S13 Disrupting Developer Productivity One 

Bot at a Time 
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