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Accuracy Affecting Factors for Optical Handwritten Character Recog-
nition

Abstract:
Optical character recognition (OCR) refers to a technique that converts images of typed,
handwritten or printed text into machine-encoded text enabling automatic processing
paper records such as passports, invoices, medical forms, receipts, etc. Pattern recogni-
tion, artificial intelligence and computer vision are all research fields that enable OCR.
Using OCR on handwritten text could greatly benefit many of the emerging information
systems by ensuring smooth transition from paper format to digital world. Nowadays,
OCR has evolved into a multi-step process: segmentation, pre-processing, feature extrac-
tion, classification, post-processing and application-specific optimization. This thesis
proposes techniques to improve the overall accuracy of the OCR systems by showing
the affects of pre-processing, feature extraction and morphological processing. It also
compares accuracies of different well-known and commonly used classifiers in the field.
Using the proposed techniques an accuracy of over 98% was achieved. Also a dataset of
handwritten Japanese Hiragana characters with a considerable variability was collected
as a part of this thesis.

Keywords:
Optical character recognition, Computer vision, Machine learning, Feature extraction,
Morphological processing

CERCS: P170, P176
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Optilist käekirjatuvastust mõjutavad tegurid
Lühikokkuvõte:
Optiline kirjatuvastus viitab tehnikale, mis konverteerib trükitud, kirjutatud või prinditud
teksi masinkodeeritud tekstiks, võimaldades sellega paberdokumentide nagu passide,
arvete, meditsiiniliste vormide või tsekkide automaatset töötlemist. Mustrituvastus,
tehisintellekt ja arvuti nägemine on kõik teadusharud, mis võimaldavad optilist kirjatu-
vastust. Optilise kirjatuvastuse kasutus võimaldaks paljudel kasvavatel informatsiooni
süsteemidel mugavat üleminekut paberformaadilt digitaalsele. Tänapäeval on optilisest
kirjatuvastusest väljaskasvanud mitme sammuline protsess: segmenteerimine, andmete
eeltöötlus, iseloomulike tunnuste tuletamine, klassifitseerimine, andmete järeltöötlus
ja rakenduse spetsiifiline optimiseerimine. See lõputöö pakub välja tehnikaid, millega
üleüldiselt tõsta optiliste kirjatuvastus süsteemide täpsust, näidates eel-töötluse, iseloomu-
like tunnuste tuletamise ja morfoloogilise töötluse mõju. Lisaks võrreldakse erinevate
enimkasutatud klassifitseerijate tulemusi. Kasutades selles töös mainitud meetodeid
saavutati täpsus üle 98% ja koguti märkimisväärselt suur andmebaas käsitsi kirjutatud
jaapani keele hiragana tähestiku tähti.

Võtmesõnad:
Optiline kirjatuvastus, Arvuti nägemine, Masinõpe, Iseloomilike tunnuste tuletamine,
Morfoloogiline töötlus

CERCS: P170, P176

3



Acknowledgment

The author would like to thank the Chair of Distributed Systems of the Institute of
Computer Science at the University of Tartu, Ms Eri Miyano and her students from the
Department of Languages of Asian Region at the University of Tartu for helping in the
data collection campaign of the Hiragana dataset used in this research work and most
importantly the guidance of my supervisor Dr. Amnir Hadachi from the Intelligence
Transport Systems lab at the University of Tartu.

4



Contents

1 Introduction 7

2 Related Work 9
2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Adopted Methodology 12
3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Morphological processing . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Projection Histogram . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Zoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 Histogram of Oriented Gradients . . . . . . . . . . . . . . . . . 18

3.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.1 k-Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.4 Convolutional Neural Network . . . . . . . . . . . . . . . . . . 32

4 Data and Classification Framework 38
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Classification framework . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experimental Results 42
5.1 Classifier wise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Feature wise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Copmarison and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5



5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 47

References 52

Appendix 53
I. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
II. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6



1 Introduction

The proof that we have engaged the digitalization era can be seen in our handling of
day to day personal and professional activities. The technological advancement has
made technology a part of our daily traditions among all fields and domains like industry
[BA17], medicine [HSPD10], education [AKHI15], transportation [AAP+08], etc. As a
result, researches and also industrial are using their resources to develop technologies
capable of preforming document analysis and automated information extraction presented
on paper in handwriting and initially addressed to human interpretation.

The widespread use of personal computers, smartphones and tablets has introduced
and amplified the need and the use for digital information. Nevertheless, the transition is
far from being completed, as we are still using paper format and have old legacy archives
practices that need to be processed. Smoothing of this transition and transformation still
offers challenges that must be addressed. Hence, a need for an effective way to digitalize
large amount of handwritten documents or files.

Optical character recognition can be seen as the art of recognizing written characters
with the help of machines. It can be separated into two different modes: online and
offline mode. Online mode usually refers to a real-time handwriting recognition using
a digitizer with timed sequence of pen coordinates. The two-dimensional coordinates
of the special pen on an electronic surface are recorded and analysed. However, offline
mode uses digitalized scans of already written or printed texts as an input. Online mode
yields good results due to the fact that more information can be captured in the online
mode such as the direction, speed and order of strokes, which is not usually the case for
offline mode [PS00].

Generally handwriting recognition systems include the following steps: pre-processing,
feature extraction and recognition. In some cases segmentation, post-processing and
application-specific optimization are added. Segmentation can serve the purpose of
segmenting text to characters or characters smaller parts. Post-processing can use the
help of language specific semantics to increase the accuracy and application-specific
optimization narrows the input to something specific like a form or something similar to
that. This thesis focuses on investigating the effects of pre-processing, feature selection
and classification on the OCR systems accuracy based on handwritten Japanese Hiragana
characters.

The thesis is split into five chapters. The first chapter focuses on prior work and
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state of art in optical character recognition. It gives an overview of which techniques are
generally used, as well as shows in which direction the current research is heading.

The second chapter talks about the methodology adopted in the thesis to conduct the
investigation of the effects of pre-processing, feature selection and classification. Also
explains each part in depth.

The third chapter introduces our datasets and introduces used parameters used in the
classifiers and the overall framework of classification.

The fourth chapter titled "Experimental Results" presents the findings of our investi-
gation and explains the possible reasons for the results.

The fifth chapter called "Conclusion" wraps up our investigation and notes all the
work on in this thesis. In this chapter we also point out the techniques that have positive
or negative effects on the optical character recognition system. It also notes the possible
improvements and ideas that were not yet explored in this thesis but might be worth
looking into.

8



2 Related Work

The field of handwriting recognition research has gained a lot of momentum because
of its importance in handling large amounts of data such as addresses written on en-
velops, forms, surveys, checks and archives of anything else written by hand in need
of digitalization. Generally handwriting recognition process follows three main steps:
pre-processing, feature extraction, and classification. Sometimes additional steps like
segmentation, semantic post-processing or application specific optimizations are added
[BRB+09, Alg13].

2.1 Pre-processing

The pre-processing is an important phase in handwriting recognition since it is crucial
for good recognition accuracy. The authors of [CMLS15] proposed pre-processing
approaches based on filtering and Hough transform for removing the noise which had
a significant impact on the recognition rate. Equally, the authors of [HZK07] propose
a pre-processing approach for capturing handwriting in online mode, by starting with
the removal of duplicate points(points that have the same coordinates), followed by the
elimination of hooks using point interpolation and sharp point detection, and topping it
off with smoothing and normalization. Their work shows an average of 10% increase for
digits, 13.5% for uppercase characters and 16% for lower case characters. Also, there
are studies giving clear insight about the impact of pre-processing on the handwritten
recognition rate as illustrated in [JH17], where the authors demonstrate the impact of
pre-processing phase on the increase of the recognition accuracy. It is clear from the
literature that pre-processing plays a huge roll in achieving good results in handwriting
recognition.

2.2 Feature extraction

Additionally, recognition accuracy remains dependent also on feature extraction, which
can either be structural or statistical. Statistical representation of handwritten characters
focus on extracting the distribution of foreground pixels of their image intensities to
characterize the characters. The most commonly used approaches are as follows:

• Histogram projection: is a way to represent characters’ by projecting them into
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different direction and create a 1-Dimensional or 2-Dimensional vector. It focuses
on counting the number of pixels in each row and column in an image to construct
a vector [KYS88].

• Zoning: is a feature that divides the image containing the character or characters
into several zones; then the intensities of pixels in each zone are added and
converted into a vector [RR09, SLR+14].

• Crossings and distances: is about the numbers of crossings of a contour by a line
segment in a specific direction. The character frame is partitioned into a set of
regions, following different directions and from each partition a feature is extracted
[RS14].

Structural features are founded around the characters topological and geometrical
characteristics. They extract global and local properties of the characters using topologi-
cal and geometrical representations. These features help to discover the main structure
components that build up the characters and are also useful for representing characters
with high variability and distortions. The most used approaches in the category are as
follows:

• Chain coding: is the process of mapping the strokes of a character into 2-Dimensional
spaces [MB01].

• Topological structure: is about extracting and counting features as lines, curves,
crossing locations, loops etc. It uses the patterns and strokes in defining the
topological aspect of the creation of the character [SR13].

• Geometrical properties: is about measuring and estimating geometrical physiog-
nomy of the characters like the ratio between the width and height of the bounding
box of the frame, relative distance between the start point of the character and the
last one, comparison between the length of two successive strokes, or changes in
the curvature [FSTV97, IA13].

• Graphs: are related to the aspect of extracting some properties of the characters
such as stroke, curve or cross points and using them to build a relational graph.
The written character is transformed into a representation using graphs [LFC09].
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2.3 Classification

The actual recognition if performed in the classification phase. One of the most commonly
used techniques is support vector machine (SVM). SMV is a classifier that used hyper-
planes in a high dimensional space to perform the classification. For example in [Saa14]
the authors present a pooling SVM approach for handwritten digit recognition achieving
good recognition rate at low computational cost.

A combination of neural network and k-nearest neighbour classifiers designed by
the authors of [MPV13] managed to achieve an accuracy of 99.3% on highly distorted
real-life images from gas- and electricity-meters. They based their training data on the
angle of the digits instead of the pixels, so the technique is insensitive to the digit rotation.

Additionally, hidden Markov chain based approach as illustrated in [Sen94] using the
extracted skeleton graph, built using edge detection, achieved an average performance of
98% accuracy on a dataset that did not have a high variability of the writing style.

Usage of neural networks (NN) for handwriting recognition is quite popular. There
are many applications where NN are used for character recognition. However, in order
to reach optimal recognition rates a lot of work needs to be done regarding the feature
extraction and training process [GSM11].

2.4 Summary

From the literature it is clear that a lot of work and progress has been done on offline
handwriting recognition. However, for online or real-time recognition the challenges are
still there to make these algorithms work with the same accuracy and performance.

There are works exploring usages of different techniques to speed up the training
process. For example, in [LLW10] the authors propose a learning algorithm based
on analysis-by-synthesis paradigm where they used the compact representation and
convolute mixture of primitives to represent the handwriting movement primitives. This
speeds up the process since the identification of the activation times of the primitives is
done while the primitive factorization is occurring.

From these perspectives, this thesis focuses on investigating the affects of the com-
monly used techniques on optical handwriting character recognition accuracy.
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3 Adopted Methodology

This section gives a more precise overview of the methodology used in this thesis. The
methodology consists of four steps: pre-processing, morphological processing, feature
extraction and classification (fig. 1). Each step contains several sub-steps or variations.
Pre-processing contains normalization, grayscaling, smoothing and binarization. This
is followed with morphological erosion or dilation and for comparison skipping of this
step. In the next phase, five different features are extracted, which are then used to train
the four different classifiers.

Figure 1. The Adopted Methodology

3.1 Pre-processing

Image pre-processing is an essential part of any computer vision system. It aims to
enhance the image features, improve its data by removing any unwilling distortions and
making sure that it is ready to be fed into the image recognition system. Commonly used
techniques in computer vision include denoising, color enhancement, artifact removal,
image stabilization high dynamic range, etc. Due to the fact that we are using still
images of handwritten text, our pre-processing consists of four steps. To make characters
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comparable to one another they need to have same dimensions. For this we chose 50x50
pixels, a total of 2500 pixels per character image. Normalization takes input image of a
character, removes the whitespace from all four sides of the character and then resizes it
to 50x50 pixels. The normalized image is then converted to grayscale, leaving it with
only pixel intensity values and is represented exclusively by different shades of gray. It
is then smoothed with a Gaussian blur to reduce the noise. The smoothed image then
goes into the last step of our pre-processing, which is binarization. We use the Otsu’s
method [Ots79], leaving all the foreground pixels white and background pixels black.
Step by step progress of pre-processing is visualized on figure 2.

Figure 2. Pre-processing steps: a) input image, b) normalized image, c) grayscaled
image, d) smoothed image, e) inverse binarized image

3.2 Morphological processing

Morphology is the study of shakes. Mathematical morphology uses sets to describe
shapes. It is used for the analysis and processing of geometrical structures. Most
commonly applied to digital images, but also works well on graphs, spatial structures,
solids and surface meshes. Mathematical morphology was initially developed to be used
on binary images, but was later extended for grayscale images [Ser83, Ste86].

Correct use of mathematical morphology can lead to noise removal, image enhance-
ment, image segmentation or even edge detection, all while preserving the shape of the
images and eliminating irrelevancies [HSZ87]. It uses operations defined in set theory to
transform input images as sets.
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Morphological operations describe the interaction of an input image and a given
structuring element. The latter one is usually small compared to the input image. Input
images serve as the images to be modified but the structuring element in conjunction
with the operation determine the details of the modifications.

This thesis focuses on the two operations that make up all other operations in mathe-
matical morphology: erosion and dilation.

3.2.1 Erosion

Erosion is a morphological transformation that combines two sets using the vector
subtraction of set elements (Fig 3). If A and B are sets in the Euclidean space E and A
is a binary image, then the erosion of the binary image A by the structuring element B is
defined as:

A	B = {x ∈ E | x+ b ∈ A, ∀b ∈ B} (1)

Example of an erosion operation:

A = {(0, 0), (0, 1), (1, 0), (1, 1),

(1, 2), (1, 3), (2, 1), (2, 2),

(2, 3), (2, 4), (3, 2), (3, 3), (4, 5)}

B = {(0,−1), (−1, 0), (0, 0), (0, 1), (1, 0)}

A	B = {(1, 1), (2, 2), (3, 2)}

Figure 3. Illustration of the erosion process

This is the definition used for erosion operation by [HSZ87]. A simple way to think
about is that the structuring element B is slid across the binary image A and where B is
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contained in A, its origin point (0, 0) is present in A	B. Figure 4 shows the input and
output images on a Japanese "あ" character.

Figure 4. On the left input image for erosion, on the right output of erosion

3.2.2 Dilation

Dilation is a pseudo-inverse of the erosion. Instead of combining two sets using vector
subtraction of set elements, it uses their addition (Fig. 5). IfA andB are sets in Euclidean
space and A is a binary image, then the dilation of the binary image A by the structuring
element B is defined as:

A⊕B = {c ∈ E | c = a+ b, ∃a ∈ A, ∃b ∈ B} (2)

Example of dilate operation:

A = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)}

B = {(1,−1), (0, 0), (0, 1)}

A⊕B = {(2, 0), (1, 1), (2, 1), (3, 1),

(1, 2), (2, 2), (3, 2), (4, 2),

(1, 3), (2, 3), (3, 4), (2, 4), (3, 4)}

This is the definition used for erosion operation by [HSZ87]. Another way to view it
is that the structuring element B can be slid across the binary image A and wherever the
origin point of B matches a point on A, the structuring element B can be stamped onto
image A, creating A⊕B. An example result of dilation process on an actual character is
shown on figure 6.
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Figure 5. Illustration of dilation process

Figure 6. On the left input image for dilation, on the right output of dilation

3.3 Feature Extraction

Image representation plays one of the main roles in a recognition system. To achieve
the desired results it is usually suggested not to use a simple binary representation of
an image. A more compact characteristic rendition of an image is required to avoid
unnecessary complexity and to improve the overall recognition accuracy for many of the
recognition systems [AYV01].

Distinguishing between different classes of characters while remaining invariant to
characteristic differences within the class can be done by extracting a set of features for
every class represented in the data [OLS99]. In the following section, we describe the
features this thesis covers.

3.3.1 Raw data

This thesis considers raw data as a separate feature to compare the other features with,
as we want to show that the extracted features play an important roll in a recognition
system. Here, raw data indicates the output of pre-processing, which in our case is a
vector with 2500 values.
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3.3.2 Projection Histogram

A projection histogram (PH) can be used to represent a two-dimensional image signal
into a one-dimensional signal. This thesis combines vertical and horizontal projection
histograms to detect both vertical and horizontal chracteristic features of the characters.
How it works with a binary image is that it counts the foreground pixels in each column
and row in an image and turns those values into a feature vector with a size of n +m,
where n and m represent the dimensions of the image. An example of it can be see on
figure 7.

Figure 7. Input image with vertical and horizontal projection histograms

3.3.3 Zoning

Zoning describes a feature that divides the input image into a set of predefined zones,
with predefined dimensions and shapes, and adds up the intensities of the foreground
pixels in any given zone [SLR+14]. The values are then transformed into a vector with a
size of l, where l denotes the number of zones.

If f(i, j) is a digital image and I(i, j) is the pixel intensities of that image, then the
summation pixel intensities I(i, j) of an image f(i, j) in the kth zone are calculated by

17



the following equation:

Vk =
n∑
i=1

m∑
j=1

Ik(i, j) (3)

where 1 ≤ k ≤ l, where l is the number of zones, n and m are the dimensions of the
zone.

The final vector is a list of intensities of every zone.

V = [Vk], 1 ≤ k ≤ l (4)

In our approach, instead of adding up the intensities we just count the foreground
pixels in every zone as we have binary input images. We tested with two variations of
zoning features, zone25 and zone100 where the number indicates the number of equally
sized squares the input image is split into and the results can be seen on figure 8.

Figure 8. On the left the input image is shown. In the middle, the result of a zone100
feature is shown. On the right there is the output from zone25 feature.

3.3.4 Histogram of Oriented Gradients

The basic idea of histogram of oriented gradients (HOG) is that even without exactly
knowing the corresponding gradient or edge position, the distribution of local intensity
gradients or edge directions can often quite well characterize the objects appearance and
shape [DT05].

This is achieved by dividing the image window into small regions called cells.
For each of those, a local one-dimensional histogram of gradient directions or edge
orientations is accumulated over the pixels in that cell. To increase the accuracy of the
descriptor it is useful to normalize the cell values with the values of the local histograms
from a slightly larger region containing multiple cells, called blocks. The resulting
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normalized descriptor blocks form the final representation of HOG [DT05] and the
visualized version of it can be seen on figure 9.

Figure 9. Input image on the left and extracted and visualized HOG feature on the right

3.4 Classification

Classification is the problem of identifying to which category a new observation belongs,
based on a set of observations where the category has been previously identified. An
algorithm that implements classification is called a classifier, but can also be used for a
mathematical function, that assigns a category to the input data.

Classification in machine learning can be divided into two: supervised learning and
unsupervised learning. Supervised learning refers to a case where a set of correctly
identified observations exists. The latter of the two is known as clustering and groups
data into categories based on some similarity or distance. All of the classifiers covered in
this thesis use supervised learning techniques.

Supervised learning itself usually consists of training and testing phases. Let there
exist a dataset where all the observations have correct classes attached to them and we
want to measure the accuracy of our classifier or the whole recognition system together.
Usually the dataset will be divided into training and testing sets, most commonly with
80 : 20 distribution. The training set is used to train the classifier in question and the
testing set is used to validate the trained classifier. This is a commonly used technique in
the industry and research to measure the effectiveness of a classifier. On another note we
want to show that not only the classifier affects the effectiveness of a recognition system.

The following sections introduce classifeirs used in this thesis in more detail.
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3.4.1 k-Nearest Neighbours

Since the beginning of the 1970’s k-Nearest Neighbours (kNN) has been a widely used
technique in statistical estimation and pattern recognition to classify new observations
based on a majority vote of its neighbours found in the training set [CH67]. The
mentioned neighbours are found based on a similarity measure, most commonly based
on Euclidean or absolute distance between the test sample and training samples.

Formally kNN can be defined as follows [HS04]: Let

T = {(ci, xi), i = 1, 2, ..., nT} (5)

be the training set, where ci ∈ 1, 2, ..., y signifies the class membership and vector
xi = (xi1, xi2, ..., xip) denotes the feature vector values. For any new observation (c, x)

its nearest neighbour (c(1), x(1)) in the training set is determined by

d(x, x(1)) = mini(d(x, xi)) (6)

and c(1), the class of the nearest neighbour, is set as the predicted class c of the new
observation (c, x). Where x(j) and c(j) describe the jth nearest neighbour of x and its
class.

As previously mentioned the commonly used distance functions is the Euclidean
distance

d(xi, xj) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + ...+ (xip − xjp)2 =

√√√√ p∑
s=1

(xis − xjs)2

(7)
or the absolute distance

d(xi, xj) = |xi1 − xj1|+ |xi2 − xj2|+ ...+ |xip − xjp| =
p∑
s=1

|xis − xjs| (8)

The parameter k is selected by the used and indicates how many of the closest
neighbours the classifier bases its prediction of the new observations class on.

Let kr be the number of observation in the previously found nearest neighbours, that
belong to class r:

y∑
r=1

kr = k. (9)
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The new observation is predicted to be a member of class l with

kl = maxr(kr) (10)

In case of a tie for max occurrences, the overall summation of the distances per class
is used as the tiebreaker.

Basic majority voting classification has a drawback that is tied to the class distribution
in the dataset. Classes that appear more frequently in the dataset tend to also dominate the
prediction of the new observation and due to their large number they tend to commonly
appear among the k nearest neighbours.

In addition, selection of the parameter k depends on the data. Larger k helps reduce
the effects of the noise in the classification but on the other hand blurs the boundaries
between different classes (Fig 10).

Figure 10. Example of kNN classification. Red circle indicates the test sample to be
classified to either the first class of blue triangle or the second class of green diamonds.
Middle solid circle indicates k = 3 which classifies the test sample to the second class
as there are two samples from the second class and one from the first. If k = 5, or the
dashed line, the test sample is classified to the first class, as there are three samples from
the first class and two from the second class.

The votes received by the nearest neighbour’s algorithm are sometimes weighted
based on their distance from the test sample. This reduces the influence of further away
samples and can achieve better accuracy.
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3.4.2 Support Vector Machine

Support Vector Machine is a supervised machine learning algorithm that uses the optimal
separating hyperplane to separate the two classes and maximize the distance to the closest
point from either class [Sai96]. This provides a unique solution to the separating hyper-
plane problem and maximizing the margin between the two classes leads to improved
performance of the classification.

Finding the optimal separating hyperplane can be seen as a optimization problem
defined by the authors of [FHT01] as follows.

Let the training data consist of N pairs (x1, y1), (x2, y2), ..., (xN , yN), with xi ∈ R,
yi ∈ −1, 1 and a hyperplane defined by

x : f(x) = xTβ + β0 = 0, (11)

where β is a unit vector: ||β|| = 1.

max
β,β0,||β||=1

M

subject to yi(xTi β + β0) ≥M, i = 1, ..., N
(12)

These conditions ensure that the decision boundary defined by β and β0 is at least a
signed distance M from all the points and that we are looking for the largest possible M
and associated parameters. The ||β|| = 1 constraint can be get rid of by replacing the
conditions with

1

||β||
yi(x

T
i β + β0) ≥M, or equivalently yi(x

T
i β + β0) ≥M ||β||. (13)

Any β and β0 satisfying these inequalities mean that any positively scaled multiple
also satisfies them, we can set ||β|| = 1/M making (12) equivalent to

min
β,β0

1

2
||β||2

subject to yi(xTi β + β0) ≥ 1, i = 1, ..., N.

(14)

The constraints define the margin around the linear decision boundary of thickness
1/||β|| and we choose β and β0 to maximize its thickness turning it into a convex
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optimization problem or better yet, Lagrange function to be minimized with respect to β
and β0 as

LP =
1

2
||β||2 −

N∑
i=1

αi[yi(x
T
i β + β0)− 1]. (15)

Setting the derivatives to zero

β =
N∑
i=1

αiyixi (16)

0 =
N∑
i=1

αiyi (17)

and substituting these in (15) a so-called Wolfe dual is obtained

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
k=1

αiαkyiykx
T
i xk

subject to αi ≥ 0.

(18)

The solution is obtained by maximizing the LD while satisfying the Karush-Kuhn-
Tucker conditions, which include (16), (17), (18) and

αi[yi(x
T
i β + β0)− 1] = ∀i. (19)

From which we can see that

• if αi > 0, then xi is on the boundary of the margin;

• if αi = 0, then xi is not on the boundary of the margin.

Equation (16) shows that the solution vector β is defined in linear combination of the
support points xi - ones defined to be on the boundary of the margin. Figure 11 a) shows
a linear optimal separating hyperplane for an example case where it exists, meaning the
two classes are perfectly linearly separable.

In reality, data or classes that can be perfectly separated with a linear optimal sepa-
rating hyperplane are rare, which is why a generalized version has been derived for a
nonseparable case, where the classes can not be separable by a linear boundary.
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Figure 11. Support vector classifiers. Panel on the left shows a linearly separable case
where the decision boundary is the solid line and the yellow area is the maximal margin
(2M = 2/||β||). On the right we have a nonseparable case, where the ξ∗j are points on
the wrong side of their margin by ξ∗j = Mξj , while the points on the correct side have
ξ∗j = 0.

Continuing the previously used notation, equation (12) can be more conveniently
rephrased using the distance 2M , or the margin as

min
β,β0
||β||

subject to yi(xTi β+β0) ≥ 1, i = 1, ..., N,
(20)

where the ||β|| = 1 constraint has been dropped, as M = 1/||β||.
A way to deal with the overlap in feature space is to still maximize M while allowing

for some points to be on the wrong side of the margin by defining slack variables
ξ = (ξ1, ξ2, ..., ξN). The standard way to modify the constraint in (12) is a bit unnatural,
measuring the overlap in relative distance:

yi(x
T
i β + β0) ≥ M(1− ξi), (21)

as this keeps results in a convex optimization problem. As in (14) the norm constraint on
β can be dropped and by defining M = 1/||β|| we can rewrite (12) as

min ||β|| subject to

yi(xTi β + β0) ≥ 1− ξ∀i,

ξ ≥ 0,
∑
ξi ≤ constant.

(22)

24



To find the Support Vector Classifier it is convenient to re-express (22) in its equivalent
form

min
β,β0

1

2
||β||2 + C

N∑
i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi∀i,

(23)

where C, or the "cost" parameter, replaces the constant in (22).
The primal Lagrange function of it is

LP =
1

2
||β||2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi, (24)

which is minimized with regard to β, β0 and ξi. Setting the respective derivatives to zero,
we get

β =
N∑
i=1

αiyixi, (25)

0 =
N∑
i=1

αiyi, (26)

αi = C − µi,∀i, (27)

in addition to positivity constraints αi, µi, ξi ≥ 0∀i. We can obtain the Lagrangian Wolfe
dual objective function by substituting (25),(26) and (27) into (24)

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′ , (28)

giving us a lower bound on the function (23) for any feasible point. We maximise LD
subject to 0 ≥ αi ≥ C and

∑N
i=1 αiyi = 0. The Karush-Kuhn-Tucker conditions also

include the constraints

αi[yi(x
T
i β + β0)− (1− ξi)] = 0, (29)

µiξi = 0, (30)

yi(x
T
i β + β0)− (1− ξi) ≥ 0, (31)

for i = 1, ..., N . Equations (25) - (31) characterize the solution to the primal and
dual problem.
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Solution for β comes from (25) in the form of

β̂ =
N∑
i=1

α̂iyixi, (32)

with nonzero coefficients α̂i only for observations i for which constraints in (31) are
exactly met, they are the so called support vectors, since β̂ is represented in terms of
them alone.

So far we have described how to find linear boundaries in the input feature space.
The procedure can be made more flexible by enlarging the feature space using basis
expansions [FHT01]. Better training-class separation is generally achieved with linear
boundaries with the enlarged space, which translates to nonlinear boundaries in the
original space. The procedure remains same once the basis functions hm(x),m =

1, ...,M are selected. The support vector classifier is fitted using input features h(xi) =
(h1(xi), h2(xi), ..., hM(xi)), i = 1, ..., N , and produce the function f̂(x) = h(x)T β̂+ β̂0.

The SVM classifier is an extension of this idea, allowing the enlarged space to
scale extremely, infinitely in some cases. It seems that the computation could become
prohibitive or overfitting could become an issue, but SVM has techniques to deal with
those issues.

The optimization problem (24) and its solution can be represented in a way that only
involves the input features via inner products using the trandormed feature vectors h(xi),
as for particular choices of h, the inner products are computationally very cheap.

The Lagrange dual function (28) has the form

LD =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′〈h(xi), h(xi′)〉. (33)

We can see from (25) that f(x) can be written

f(x) = h(x)Tβ + βo

=
N∑
i=1

αiyi〈h(x), h(xi)〉+ β0.
(34)

Just like before, ai, β0 are determined by solving yif(xi) = 1 in (34) for any xi where
0 < ai < C.
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Actually, the transformation h(x) does not need specified, but we need to know the
kernel function

K(x, x′) = 〈h(x), h(x′)〉 (35)

that computes the inner products in the transformed space. K has to be a symmetric
positive definite function, one of the most popular choices for K in the literature is
dth-Fegree polynomial: K(x, x′) = (1 + 〈x, x′〉)d.

This is called the kernel trick and from (34) we see that the solution can be written as

f̂(x) =
N∑
i=1

α̂iyiK(x, xi) + β̂0. (36)

With this we know how we can differentiate between two classes using SVMs.
Upgrading a SVM to the multi-class case is not too straightforward due to outputs not
being on a calibrated scale making comparing them to each other hard. This is why the
two different approaches used are one-versus-all and one-versus-one.

In one-versus-all we train K binary classifiers, fK(x), where the data from class k is
treated as positive case, and all other classes as negative.

The other approach is one-versus-one, where we train K(K − 1)/2 classifiers to
discriminate all pairs fK,K′ and the point is classified into the class that has the most
votes. [FHT01]

3.4.3 Neural Network

Nowadays, the term Neural Network can be heard almost everywhere, a lot of companies
are generating a great deal of hype surrounding it and making it seem like an all capable
mythical unicorns. In reality, normal Neural Networks are just nonlinear statistical
models [FHT01].

A neural network is a classification model, usually represented with a network dia-
gram as in figure 12. Applying this network for K-class classification, there are K units
are the right, with the kth unit modeling the probability of class k. The measurements
Yk, k = 1, ..., K, each coded as a 0− 1 variable for the kth class, total of K classes.

Features Zm are derived from linear combinations of the inputs Xp, and the target Yk
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is modeled as a function of linear combinations of the Zm,

Zm = σ(α0m + αTmX),m = 1, ...,M,

Tk = β0k + βTk Z, k = 1, ..., K,

fk(X) = gk(T ), k = 1, ..., K,

(37)

where Z = (Z1, Z2, ..., ZM), and T = (T1, T2, ..., TK).
The σ(v) denotes the activation function, that performs a certain fixed mathematical

operation on it. Commonly chosen to be the one of the followings:

• Sigmoid - its non-linearity has the mathematical form of σ(v) = 1/(1 + e−v) and
is plotted on figure 13. It squashes the real-valued inputs into a range between 0
and 1, where large negative number become 0 and large positive numbers become
1. Sigmoid has seen persistent use in the history due to its nice interpretation as
a firing rate of a neuron, but recently in practice it has fallen out of favor and is
rarely used. Reasoning behind that are its two major drawbacks, it saturates and
kills gradients and the outputs are not zero-centered.

• Tanh - is simply a scaled sigmoid neuron where the following holds tanh(x) =
2σ(2x) − 1. This makes tanh zero-centered, but its activations still saturate. In
practice tanh non-linearity is preferred to the sigmoid non-linearity. Tanh squashes
the real-valued inputs to the range [−1, 1] and can be seen plotted on figure 14.

• ReLU - The Rectified Linear Unit has grown in popularity in the last years. Its
activation is simply thresholded at zero f(x) = max(0, x) as shown on figure 14.
It is faster compared to tanh / sigmoid neurons, but the units can be fragile and
die with large gradients causing a neuron to never activate again, but this can be
remedied with proper setting of the learning rate.

Sometimes neural networks have an additional bias unit feeding into every unit in
the hidden layer and output layers that add an additional constant input feature, which
captures the intercepts α0m and β0k in model (37).

The final transformation of the outputs T is done by the output function gk(T ), which
in early works in K-class classification was the identity function gk(T ) = Tk, but was
abandoned in favor of the softmax function

gk(T ) =
eTk∑K
l=1 e

Tl
. (38)
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Figure 12. Sample of a single hidden layer, feed-forward neural network.

This produces positive estimates in the range (0, 1) that sum to one.
As shown on figure 12 the network consists of input, hidden and output layers. Units

on the hidden layer Zm, are called hidden units because the values Zm are not directly
observed and can be thought as basis expansion of the original inputs X , making the
neural network a standard linear model, or linear multilogit model, using transformations
as inputs. In most of the neural nets there are more than one hidden layer.

Introduction of the nonlinear transformation σ enlarges the class of linear models.
The unknown parameters that make the model fit the training data well, often called

weights, are sought after in the neural networks. We denote the complete set of weights
by θ, which consists of

{α0m, αm; m = 1, 2, ...,M}M(p+ 1)weights,

{β0k, βk; k = 1, 2, ..., K} K(M + 1)weights.
(39)

For classification either squared error or cross-entropy (deviance) is used:

R(θ) = −
N∑
i=1

K∑
k=1

yik log fk(xi), (40)

and the classifier is G(x) = argmaxkfk(x). The softmax activation function and the
cross-entropy error function make the neural network model a linear logistic regression
model in the hidden units where the parameters are estimated by maximum likelihood.
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Figure 13. Plot of the sigmoid function σ(v) = 1/(1 + e−v) (red) used in the hidden

layers of a neural network. Also included are σ(sv) for s =
1

2
(blue) and s = 10 (green),

where s is s scale parameter controlling the activation rate.

Figure 14. Left: The tanh activation function tanh(x) = 2σ(2x)− 1. Right: Rectified
Linear Unit (ReLU) activation function f(x) = max(0, x)

To avoid likely overfitting of the solution global minimizer ofR(θ) should be replaced
by minimizing R(θ) by gradient decent, which in this setting is called back-propagation.
The compositional form of the model makes the gradient easily derivable by using the
chain rule for differentiation.
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Let zmi = σ(α0m + αTmxi), from (37) and let zi = (z1i, z2i, ..., zMi), then we have

R(θ) =
N∑
i=1

Ri

=
N∑
i=1

K∑
k=1

(yik − fk(xi))2,

(41)

with derivatives

∂Ri

∂βkm
= −2(yik − fk(xi))g′k(βTk zi)zmi

∂Ri

∂αml
= −

K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkmσ′(αTmxi)xil.
(42)

According to these derivatives, a gradient decent update at (r + 1)th iteration has the
form

β
(r+1)
km = β

(r)
km − γr

N∑
i=1

∂Ri

∂β
(r)
km

,

α
(r+1)
ml = α

(r)
ml − γr

N∑
i=1

∂Ri

∂α
(r)
ml

(43)

where γr is the learning rate. Now (42) can be written as

∂Ri

∂βkm
= δkizmi,

∂Ri

∂αml
= smixil.

(44)

The quantities δki and smi are errors from the current model at the output and hidden
layer units that satisfy

smi = σ′(αTmxi)
K∑
k=1

βkmδki, (45)

known as the back-propagation equations. Taking this into account, the updates in (43)
can be implemented with a two-pass algorithm. Forward pass fixes the current weights
and computes the predicted values f̂k(xi) from formula (37). The errors δki are computed
in the backward pass and then back-propagated via (45) to get errors smi. Finally, both
sets of errors are used to compute the gradients for the updates in (43), via (44). [FHT01]
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3.4.4 Convolutional Neural Network

Convolutional Neural Networks, or Convolutional Networks, are neural networks for
processing data that has a known grid-line topology. Most commonly used with image
data, which can be thought as a two-dimensional grid of pixels or with time-series with
sample at regular time intervals as one-dimensional data. The name indicates that the
network uses a mathematical operation called convolution, which is a specialized kind of
linear operation in at least one of their layer instead of general matrix multiplication.

A convolution is an operation on two functions of a real-valued argument which is
easier to follow with example of two functions one might use.

Let’s say that we are tracking an object with a sensor. The sensor provides a single
output x(t), the position of the object at time t. Both x and t are real valued, meaning,
we can get a different reading from the sensor at any time.

Suppose that our sensor is noisy and to obtain a less noisy estimate of the object’s
position, we would like to average several measurements. We want it to be a weighted
average that gives more weight to recent measurements making them more relevant. This
can be done by using a weighting function w(a), where a is the age of a measurement.
Applying this at every moment, the new function s providing a smoother estimate of the
position of the object is reflected as following:

s(t) =

∫
x(a)w(t− a)da. (46)

This operation i called convolution and is typically denoted with an asterisk:

s(t) = (x ∗ w)(t). (47)

In our example, for the output to be a weighted average, w needs to be a valid probability
density function and has to equal to 0 for all negative arguments, or it will look into the
future. In general, convolution is defined for any functions for which the above integral is
defined and may be used for other purposes besides taking weighted averages. [GBC16]

In terminology, x or the first argument to the convolution is commonly referred as the
input, and the second argument w as the kernel. Its output can be referred as the feature
map.

When working with real data on a computer, the data is more discretized, so it might
be more realistic to assume that our sensor provides a measurement once per second
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making the values of t integers. Assuming that x and w are defined only on integer t, a
discrete convolution can be defined:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a). (48)

In machine learning applications, the input data is typically a multidimensional array,
thus making the kernel a multidimensional array of parameters, adapted by the learning
algorithm. These arrays are referred to as tensors. Since every element of the input and
kernel must be explicitly stored, it is assumed that these functions are zero everywhere
but in the finite set of points for which the values are stored.

Like previously mentioned convolutions are commonly used over more than one
axis at a time, it is also important to use a same dimensional kernel. In case of a two-
dimensional image I as the input, we also use a two-dimensional kernel K making the
convolution equal to:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (49)

or by using the commutative properties of convolution its equivalent

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n). (50)

The commutative property arises from flipping the kernel relative to the input. The
kernel is flipped only to obtain the commutative property.

An example of convolution applied to a two-dimensional tensor is shown on figure
15.

Discrete convolution can be viewed as multiplication by matrix, but the matrix has
several entries constrained to be equal to other entries. For univariate discrete convolution,
each row of a matrix is constrained to be equal to a row above shifter by one element,
also known as s Toeplitz matrix. In two dimensions, a doubly block circulant matrix
corresponds to convolution. In addition, convolution usually corresponds to a very sparse
matrix, the reason being that the kernel is usually much smaller than the input image.
[GBC16]

Convolution uses three important ideas that help improve machine learning:

• Sparse interaction - In traditional neural network every output unit interacts
with every input unit due to the use of matrix multiplication between different
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Figure 15. An example of two-dimensional convolution without kernel flipping. Output
is restricted to positions where the kernel lies entirely within the image. Boxes with
arrows indicate how the upper-left element of the output tensor is formed by applying
the kernel to the upper-left region of the input tensor. [GBC16]

layers. Convolutional networks typically have sparse interactions, also referred
to as sparse connectivity or sparse weights, which is achieved by making the
kernel smaller than the input. Instead of using all the whole input we detect small,
meaningful features with kernel with a fraction of the input. This leads to storing
fewer parameter, which improves the models statistical efficiency and reduces
the memory requirements. Also, computing the output requires fewer operations.
These improvements in efficiency are usually quite significant. With m inputs and
n outputs, the matrix multiplication requiresm×n parameters, and needsO(x×n)
runtime. By limiting the number of connections each output to k, then the sparsely
connected approach requires only k × n parameters and O(k × n) runtime. In
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practice, it is possible to achieve good result and good performance while keeping k
multiple orders of magnitude smaller than m. A graphical demonstration of sparse
connectivity can be seen on figures 16 and 17. Additionally, in deep convolutional
network, units in the deeper layers indirectly interact with a larger portion of the
input, as shown in figure 18.

Figure 16. Sparse connectivity highlighting one input unit and the units it affects. On the
top we see a s formed by convolution with a kernel of width 3, showing that only three
outputs are affected by x3. On the bottom we see a case where s is formed by matrix
multiplication, showing a non-sparse connectivity, where all outputs are affected by x3.

• Parameter sharing - Using the same parameter for multiple functions in a model.
Traditional networks use each element in the weight matrix once for computing
the output layer. However, in a convolutional neural net, the whole kernel is
used at every position of the input, making it possible to learn just one set or
parameters instead of a set of parameters for every location. This reduces the
storage requirements of the model to k parameters, and k is usually several orders
of magnitude smaller than m making the convolution significantly more efficient
than dense matrix multiplication.

• Equivariant representation - Usage of convolution causes the layer to have a
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Figure 17. Sparse connectivity highlighting one output unit and the units it is affected by,
also known as the receptive field. On the top we see a s formed by convolution with a
kernel of width 3, showing that only three inputs affect s3. On the bottom we see a case
where s is formed by matrix multiplication, showing a non-sparse connectivity, resulting
in all inputs affecting the output unit s3.

property called equivariance to translation. This means that the functions changes
to input change the output in the same way. In mathematical terms, a function f(x)
is equivariant to function g if f(g(x)) = g(f(x)). A commonly used example is
shifting data: let I be a function returning image brightness at certain coordinates
and g be a function mapping one image function to another, such that I ′ = g(I)

is the image function with I ′(x, y) = I(x− 1, y), meaning it shifts ever pixel of
I one unit to the right. Applying transformation to I , then applying convolution
results with the same output as if we applied convolution to I ′ and then applied the
transformation g to the output. Convolutions are not naturally equivariant to all
transformations, such as changes in rotation or scale of an image.

A commonly used layer after convolutional layer in a convolutional neural networks is a
layer that that uses a pooling function to further modify the output. A pooling function
replaces the output of the previous layer at a certain location with a summary of statistic
of the nearby layers. There are a few commonly used pooling functions are

36



Figure 18. Units on deeper layers of a convolutional network have a larger receptive field
of the units in the shallow layers. Meaning, units in the deeper layers can be indirectly
connected to all of most of the input image.

• max pooling - outputs the maximum output within a predefined m× n neighbour-
hood,

• average pooling - outputs the average of a neighbourhood,

• weighted average - based on the distance from the central pixel.

The added value of the pooling layers reveals itself in making the representation
approximately invariant to small translations of the input, meaning that if the input is
translated by a small amount, the values for most of the pooled outputs will not change,
as demonstrated on figure 19.

The use of pooling layers can greatly improve the statistical efficiency of the network,
as well as, improve it computationally as the pooling region can be space k units apart
making the following layer have roughly k times fewer inputs to process.
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Figure 19. Max pooling example. On the top we see an initial input and output of a max
pooling layer. On the bottom we see the same network, but the input has been shifted
to the right by one. In the input all the values have changed, but only half of the values
in the output are affected, displaying that max pooling units are sensitive to only the
maximum value in the neighborhood, not its exact location.

4 Data and Classification Framework

This section introduces the two different datasets used in this thesis that were used to
conduct the experiments on. Also, it goes over the parameters used in the classifiers and
the neural network architectures used.

4.1 Datasets

The first dataset of handwritten Hiragana characters used in this thesis was collected by
the author with the help of Tartu University’s Department of Languages of Asian Region
and its students.

Technique used to collect the dataset were template forms (fig. 20) that were handed
out to students that were studying Japanese at that time. The students were asked to fill
the forms.
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Figure 20. Example of a filled template.
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Figure 21. Dataset variability per character. Green represents characters variability
before pre-processing and yellow after pre-processing.

The dataset consists of 12211 unique representations of Hiragana characters, ap-
proximately 172 unique samples for each of the 71 different Hiragana characters in 28
different handwriting from students with varying experience with the language. This
gives our dataset a significant average variability about 49% before pre-processing and
22% after. Per character variabilities are shown on figure 21.

Additionally, a dataset from Electrotechnical Laboratory (ETL) Character Database
[ETL16] is tested with, which also includes handwritten Hiragana characters in ETL-8
dataset. This dataset contains handwriting samples from 160 different writers totaling
in 12000 unique samples. The provided images are pre-segmented, centered gray-scale
characters that are 64 x 64 in size.

Both of the datasets include sample with diacritics, known as dakuten and handakuten,
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which are shown on figure 22.
The latter dataset is used to compare the best resulting combination of techniques

from the methodology with the best result from the article [Tsa16].

Figure 22. Samples of diacritics in Hiragana. On the left we have a regular "ha", in the
middle we have dakuten version of it, "ba" and on the right we have handakuten version
"pa".

4.2 Classification framework

For all combinations of different methods, the metric used to compare them to each
other was the classification accuracy, which is the percentage of correctly classified
example from the testing dataset. The used dataset was split 80:20, for training and
testing respectively.

Experiments with kNN classifier showed that the most optimal k = 3 and k = 5.
Also, distance wise weighted versions of it were also explored.

With SVM two different kernels were used: 3rd degree polynomial and linear. Both
of them with penalty parameter C at 2.67.

Classic neural networks were used in several different hidden layer configurations. All
layers used ReLU as the activation function and Adaptive Moment Estimation (Adam),
solver [KB14] for weight optimization. The different layer setups are listed in table 1.
Training was carried out for 60 epochs.

Convolutional neural networks were also used in a few different network configu-
rations. Similarly to classic neural network testing also the ReLU activation function
was used and weight optimization Adam with the default parameters as provided in the
paper [KB14] β1 = 0.9, β2 = 0.999 and ε = 10−8. All trainings were carried out over
40 epochs.

Convolutional layers use a stride of 3. Max-pooling layers are calculated over a 2× 2

pixel window with a stride of 2.
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Table 1. Explored classic neural network configurations. Input layer size depends on
the feature vector, HL refers to hidden layer and the numbers in the table indicate the
number of units in that layer. All output layers have 71 units, which is the number of
possible classes.

Input HL 1 HL 2 HL 3 HL 4 Output
mlp_1 * 50 50 - - 71
mlp_2 * 100 80 - - 71
mlp_3 * 200 100 - - 71
mlp_4 * 50 30 20 - 71
mlp_5 * 100 80 80 - 71
mlp_6 * 50 30 20 20 71

For every network the last output layer is a fully-connected layer with softmax classi-
fier and 71 units, which is the number of possible classes. Used network configurations
are shown table 2.

4.3 Implementation details

K-Nearest neighbour, support vector machine and classic neural network models used
in this thesis were implemented in scikit-learn [PVG+11], a python machine learning
library. The convolutional neural networks were implemented in Theano [BBB+10]
using the Keras interface [C+15].

5 Experimental Results

As previously mentioned, the primary metric for all tasks was the classification accuracy.
Summarized results of all can be seen on in Table 3. Generally, more parameters in
classifier lead to better classification accuracies on the testing set. First we will go over
the results classifier wise, then feature wise and lastly try to summarize the patterns.
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Table 2. Convolutional neural network configurations. In convolutional layers the number
indicates the height and the width of the convolution window.

cnn_1 cnn_2 cnn_3 cnn_4 cnn_5 cnn_6 cnn_7
input

conv-5
conv-5

conv-10
conv-5

conv-10
conv-10
conv-10

conv-10
conv-20

conv-10
conv-10

conv-10
conv-20

maxpool

conv-10
conv-10

conv-20
conv-20
conv-40

conv-20
conv-20

conv-40
conv-80

conv-20
conv-20
conv-40

conv-40

maxpool

conv-40 conv-80
conv-40
conv-40

conv-160 conv-160
conv-160
conv-160

maxpool
FC-71-softmax
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5.1 Classifier wise

Looking at the results of k-nearest neighbour variations it can be seen that with both
k = 3 and k = 5 the results do not differ but a significant margin. On the other hand, the
weighted variants with the same k tend to achieve uniformly higher accuracies with any
of the tested cases.

Support vector machines seem to prefer zoning and raw features. The two different
kernels show us how a linear kernel can not always find the best separating hyperplane,
as it is out preformed by its polynomial counterpart in almost all of the tested cases.

The classical neural networks follow the pattern that increasing the number of units
in layers and making the network deeper by adding additional hidden layers the clas-
sification accuracy increase. It can be noticed that the results are better if none of the
hidden layers have lesser units than the input or the output layers. This is very clearly
demonstrated with the disappointing accuracies with raw feature.

Accuracies achieved by the convolutional neural networks did not disappoint. This is
where the highest classification accuracy was achieved. Model cnn_3 in combination
with raw pre-processed data reached 98.1247% accuracy with the testing set. Identically
to classical neural networks, deeper and wider configurations of convolutional neural
networks achieve higher accuracy. But all of the tested models seem to perform rather
well with zone100 and raw features.

5.2 Feature wise

Feature wise we can say that the PH and HOG are the features that underperformed
compared to other features while reaching 85.65% with pre-processed data with cnn_5
model and 87.08% with dilated data on mlp_4 model respectively.

To the authors surprise the smallest feature, zone25, with only 25 values achieved
90.90% accuracy with polynomial support vector machines. This result comes at 100
times reduction of the initial data.

Previously mentioned features larger version, zone100, is the most uniformly and
consistently performing feature. It does see a small drop in the average accuracy with
neural networks with smaller layers, but overall it is clearly a feature worth investing time
in due to its simplicity, and its characteristic of keeping the initial form of the character
intact with 25 times less features than initially. Also, table 3 shows that exactly this
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feature has the most highest accuracies per classifier.
Next we will go over the results for the raw data. As already mentioned, the highest

accuracy recorded in this thesis was achieved with raw pre-processed data and cnn_7
model. Most of the convolutional models performed well with raw data, but the same can
be said for both of the support vector machine models and even the k-nearest neighbour.
Classical neural networks had difficulties with raw features and the author believes that
it can be accounted to the too small sizes of the hidden layers.

5.3 Copmarison and Errors

Comparing the best performing combination of the pre-processing, feature extraction
and classifier, pre-processed without morphological processing raw data on cnn_7 model,
on the hiragana character dataset used in [Tsa16] achieved a result of 97.6% versus their
96.5%.

In all of the tested cases the most problematic characters were the diacritics dakuten
and handakuten as shown in the previous section. The reason being, that about 90% of
the character is same for all of those cases, which leaves only 10% of the data to differ
between the three different but very similar characters.

5.4 Summary

To summarize the results, it can be said that pre-processing of the input data could be
one of the most important parts of a optical character recognition system. The results
clearly show that in almost all of the cases, pre-processing the input data significantly
increases the accuracy of the whole system. Also, it is important to bare in mind that
the parameters of the classifier need to be tuned according to the input vector size, as
the models mlp_1-mlp_6 demonstrated. Additionally, morphological processing can
increase the classifiers performance.
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6 Conclusion

In this chapter we will be assessing the results and outputs of the thesis. Let’s first recite
the most important parts of the thesis.

It first introduces what OCR is, how it is used and how it could be used in the future.
It gives a brief overview of different types of optical character recognition and the main
components of it.

Next it goes over a wide range of literature on the topic and quickly introduces the
techniques used in the same field of science, regarding all the different parts of the OCR
system.

This is followed by the introduction of the adopted methodology used in the thesis.
All parts of the methodology are explained in depth, the pre-processing, the morpholog-
ical processing, feature extraction and lastly the classification including the classifiers
themselves.

Moreover, a completely new dataset of Japanese hiragana characters with relatively
high variability due to the number of different handwritings and varying level of experi-
ence in the language is collected. This dataset will be made publicly available and freely
accessible to every researcher that has interest in it. Also, the implementation details are
shared including the used classifier models and their parameters.

Lastly, and most importantly, the thesis goes over the results of the experiments
in detail. First, viewing the results classifier wise and explaining the most probable
reasoning for the differences in the accuracy. Secondly, going over the results feature
and pre-processing technique wise, applying similar reasoning to explain the differences.
It shows the importance of proper pre-processing in addition to feature selection and
classifier parameterizing.

Compared to the reviewed literature this thesis achieved a surprisingly high accuracy
maxing out at 98.12%. Furthermore, using the explored techniques a 1.1% higher
accuracy than the previous work by [Tsa16] was reached on a completely different
dataset, validating the used techniques.

There are still several parts of OCR that could be added and researched in order to
increase the accuracy even further or developing an application that could work from
images of handwritten text. Thus, in the future additional research into segmentation and
semantical post-processing could be done.
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