
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Georg Vann

Literature Review: Open Innovation in
Software Engineering

Bachelor’s Thesis (9 ECTS)

Supervisor(s): Dietmar Pfahl

Tartu 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237085022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Literature Review: Open Innovation in Software Engineering

Abstract:

This thesis explores how the principles of open innovation have been applied in the software

engineering domain. To methodically gather and analyze studies, the systematic literature

review approach is adopted. The relative novelty of open innovation means that there is a

lack of models and tools that adopt the principles of open innovation according to different

activities of software engineering, such as software testing. Software projects that do employ

open innovation are mostly fostered by partnerships between large enterprises and higher

education institutions, but small-medium enterprises and government institutions are slowly

adopting the open innovation approach as well. All in all, it seems there is need of research

that would clearly establish the possibilities of adopting open innovation in software engi-

neering projects.

Keywords:

Systematic literature review, open innovation, software engineering

CERCS: P170 Computer science, numerical analysis, systems, control

Süstemaatiline analüüs: avatud innovatsioon tarkvaratehnikas

Lühikokkuvõte:

Antud töö uurib, kuidas on avatud innovatsiooni põhimõtteid rakendatud tarkvaratehnika

valdkonnas. Selleks, et asjakohast teaduskirjandust struktureeritult otsida ja töödelda, läh-

tutakse süstemaatilise analüüsi meetodist. Kuna avatud innovatsioon on üsna uudne nähtus,

siis on praegu puudus mudelitest ja tööriistadest, mis aitaksid avatud innovatsiooni

põhimõtteid rakendada sellistes spetsiifilistes tarkvaratehnika protsessides, nagu seda on

näiteks tarkvara testimine. Need tarkvaraprojektid, kus avatud innovatsiooni põhimõtteid on

rakendatud, on põhiliselt koostööd suurettevõtete ja kõrgkoolide vahel; aga ka väike- ja

keskmise suurusega ettevõtted ja riigiasutused kohandavad vähehaaval avatud inno-

vatsiooni põhimõtteid. Üldiselt on täheldada puudust teadustööst, mis annaks selgesõnalise

ülevaate avatud innovatsiooni rakendamise võimalustest tarkvaraprojektides.

Võtmesõnad:

Süstemaatiline analüüs, avatud innovatsioon, tarkvaratehnika

CERCS: P170 Arvutiteadus, arvanalüüs, süsteemid, kontroll

3

Table	of	Contents	

1 Introduction ... 4

2 Methodology ... 6

2.1 Search Procedure ... 6

2.2 Study Selection .. 6

2.2.1 Study Quality Assessment ... 6

2.3 Data Extraction .. 6

2.4 Data Synthesis ... 7

2.5 Methodological Idiosyncrasies and Limitations ... 7

3 Search Procedure ... 8

3.1 Research Sources .. 8

3.2 Search Strategy .. 8

3.2.1 IEEExplore Command Search .. 9

3.2.2 ACM Digital Library Advanced Search ... 10

3.2.3 SpringerLink Advanced Search .. 11

3.3 Search Results ... 11

4 Study Selection .. 13

4.1 Inclusion Criteria ... 13

4.2 Exclusion Criteria .. 13

4.2.1 Quality Assessment Criterion ... 14

4.3 Study Selection Results ... 14

5 Data Extraction .. 15

6 Data Synthesis ... 17

6.1 Open Innovation in Different Activities of Software Engineering 17

6.2 Partnerships That Pursue Open Innovation in Software Engineering 18

6.3 Origins of Selected Studies ... 20

7 Summary ... 22

8 References ... 23

Appendices .. 25

I. List of Selected Studies ... 25

II. License .. 28

4

1 Introduction	

Ever since the concept of open innovation was formulated by Henry Chesbrough in 2003, it

has gained ever more momentum in both research (Chesbrough, Vanhaverbeke, & West,

2014) and application (Cricelli, Greco, & Grimaldi, 2015). When Munir and others con-

ducted their systematic mapping study in 2016, they found that while open innovation is

present in the software engineering domain, the studies up to that point had only covered

certain aspects of the phenomenon (Munir, Wnuk, & Runeson, 2016).

The aim of this thesis is to apply the principles of a systematic literature review to answer

specific research questions regarding the application of the principles of open innovation in

software engineering projects. Thus, relevant research is acquired and analyzed in a way

that would allow generalizations and lead to wider conclusions.

Chesbrough first defined open innovation as “a paradigm that assumes that firms can and

should use external ideas as well as internal ideas, and internal and external paths to market,

as the firms look to advance their technology” (Chesbrough H. W., 2003, p. xxiv). After the

concept had seen some three years of existence, Chesbrough updated the definition as “the

use of purposive inflows and outflows of knowledge to accelerate internal innovation, and

expand the markets for external use of innovation, respectively” (Chesbrough H. , 2006, p.

1). The latest iteration of the definition takes into account the possibility of non-pecuniary

information circulation as such: “We define open innovation as a distributed innovation

process based on purposively managed knowledge flows across organizational boundaries,

using pecuniary and non-pecuniary mechanisms in line with the organization’s business

model” (Chesbrough, Vanhaverbeke, & West, 2014, p. 27). Two features stand out in all

these definitions:

• the existence of several parties (i.e. organizations);

• the voluntary exchange of knowledge and ideas (i.e. intellectual capital) in pursuit

of innovation.

These are the defining characteristics that are being considered when judging if the princi-

ples of open innovation have been applied.

Munir, Wnuk, & Runeson (2016) suggested in their mapping study that the roles of testing

and requirements engineering have been largely unstudied in the context of open innovation

software engineering – this led to the more general RQ1.

5

West, Salter, Vanhaverbeke & Chesbrough (2014) reviewed the evolution of open innova-

tion during the decade following Chesbrough’s (2003) coining of the term and hinted at the

possibility that the profile of those organizations adopting open innovation has broadened,

e.g. nonprofits and smaller enterprises. This suggestion led to RQ2.

The fact that open innovation in software engineering is quite a new phenomenon led to

RQ3 to see where and by whom has the model sparked more interest and where to perhaps

expect future research.

The specific research questions are as follows:

• RQ1: In which activities of software engineering have the principles of open inno-

vation been applied (e.g. software requirements, software testing etc.)?

• RQ2: What type of partnerships are behind the software engineering projects (e.g.

SME-government institution, large enterprise-large enterprise etc.)?

• RQ3: Which institutions and scholars have published case studies involving open

innovation? Do any institutions or individuals stand out?

The methodology of the thesis is explained in Chapter 2. Chapters 3-6 represent the neces-

sary steps to conduct a systematic literature review: searching for studies, selecting relevant

studies, extracting relevant information from given studies and presenting found infor-

mation, respectively. Chapter 7 summarizes the whole thesis. The detailed list of analyzed

studies is included as a separate Excel file called “dataExtraction.xlsx”. The summarized

list of the studies included with their respective study identifiers is presented in Appendix I.

6

2 Methodology	

This thesis follows the guidelines formulated by Barbara Kitchenham (2007) for conducting

a systematic literature review in a way which would take into account the characteristics of

software engineering as a distinct domain. In large, a literature review consists of five steps

which are now briefly explained, all based on the aforementioned guidelines (Kitchenham,

2007).

2.1 Search	Procedure	

This first stage is about deciding on the fitting research sources and clarifying the search

strategy. A systematic literature review requires definite documenting of conducted work.

The reader must be able to make sure where and how the articles have been searched. In

addition to this, the reader should be able to reproduce the whole search process.

2.2 Study	Selection	

After obtaining the initial pool of studies, it is necessary to single out those, which are rele-

vant in the light of the review questions. The selection is carried out by defining explicit sets

of selection criteria:

• inclusion criteria ensure that desired themes and properties are present;

• exclusion criteria, conversely, filter out studies with unwanted themes and proper-

ties.

The studies that make it through this step are the ones that are actually analyzed.

2.2.1 Study	Quality	Assessment	

The guidelines also emphasize the need to assess the “quality” of the acquired studies as a

separate step. The recommendation is to go through extensive quality checklists to check

the attributes of each individual study. However, in this case, the author has opted to define

a separate exclusion criterion which eliminates all studies coming from sources which may

provide subpar studies. Thus, the quality assessment is carried out as a part of the study

selection procedure.

2.3 Data	Extraction	

This is the stage where the information, that is needed to address the review questions, is

obtained. This is done with the help of a data extraction form – a single form covering all

7

the relevant attributes regarding the research questions. The form is then compared against

each individual study.

2.4 Data	Synthesis	

The final stage is where the extracted information is summarized and presented by both

descriptive and quantitative means. On this summary, generalizations and final conclusions

can be drawn.

2.5 Methodological	Idiosyncrasies	and	Limitations	

Although these stages represent actual steps taken in that very order, it is worthwhile to note

that when conducting the research, the whole process is iterative. When working on later

sections, it might have an impact on small details of the previous ones and thus provoke

small adjustments.

A very important fact to consider is that in the context of this thesis, only research of aca-

demic nature is considered. Needless to say, the majority of software engineering projects

do not make it into academic research papers. This approach strongly narrows the potential

scope of the research but guarantees that the material collected can by analyzed according

to the guidelines and that by referring to the sources, it is possible to uncover the objectives,

methodology and origins of the material and the bias that may accompany those factors.

8

3 Search	Procedure	

Since software engineering is a relatively new field and open innovation as a scientific term

is even newer, it is wise to focus on searching by using the digital means, as opposed to

fields that maybe have a longer history. Besides, using digital databases simplifies the pro-

cesses of defining search criteria and reproducing the search procedure. Furthermore, using

the digital means is a much faster approach and allows much more content to be covered.

3.1 Research	Sources	

Brereton et al. (Brereton, Kitchenham, Budgen, Turner, & Khalil, 2007) have identified

eight digital databases as credible sources of scientific and academic research. After getting

familiar with the possibilities of the search engines of the different databases, two of them

were selected. In addition to those, the SpingerLink database has been used, as it provides

access to journals like Empirical Software Engineering and Springer Conference Proceed-

ings (Kitchenham, 2007). Thus, content is acquired from three sources:

• IEEExplore1;

• ACM Digital Library2;

• SpringerLink3.

It is crucial to point out that access to the databases has been gained through the service

provided by the University of Tartu Library4, which involves certain rights and certain re-

strictions. Should the reader try and replicate the search procedure with different access

rights, the results might differ because of that very reason.

3.2 Search	Strategy	

All those databases have an advanced search option of different kinds, which allow for more

specific search configurations – these are crucial to comprehensively shape the search strat-

egy. The search configurations allowed by the individual search engines differ from on an-

other: ACM Digital Library and IEEExplore provide extensive options, whereas Spring-

erLink’s possibilities are somewhat restricted. All three, however, allow the following:

• searching for keywords (including exact phrases) in the body and in the title;

1 https://ieeexplore.ieee.org/Xplore/home.jsp
2 https://dl.acm.org
3 https://link.springer.com
4 https://utlib.ut.ee/en/databases%20

9

• exclude the presence of keywords from the body;

• specify the author of the study;

• specify the time frame of the studies on a yearly basis.

The keywords, which are being used, fall into two categories: the first set of keywords as-

sures that the content would be related to software engineering and the second set assures

that the content would also involve the principles of open innovation.

According to the SWEBOK guide, software engineering as a domain encompasses 15 dif-

ferent stages and processes ((Eds.) Borque & Fairley, 2014). Considering this, seven key-

words (or rather, phrases) have been selected that seem the most relevant considering the

possibilities of open innovation: software engineering, software requirements, software de-

sign, software testing, software maintenance, software quality, software development.

Keywords, that could indicate the ideas of open innovation, are very numerous – collabo-

ration, co-operation, etc. It is essential to consider, that the keywords being used would

reflect the co-operation between organizations or companies, rather than smaller units, such

as development teams or even individuals. Bearing this in mind, the following are suitable

keywords describing open innovation: open innovation, inter-organizational, interorgani-

zational, cross-organizational, cross-company, partnership.

The term open innovation became relevant only after the pioneer of the discipline, Henry

W. Chesbrough, presented the concept in 2003 (Chesbrough H. W., 2003). To take this into

account, the time frame of the studies is restricted as 2003-2018.

Hereinafter, the specific search criteria for all three databases are defined.

3.2.1 IEEExplore	Command	Search	

In the case of the IEEExplore Command Search5, the Metadata Only search scope is used.

The string for the query is as follows:

("open innovation" OR inter-organizational OR interorganizational OR cross-organizational

OR cross-company OR partnership) AND ("software engineering" OR "software

requirements" OR "software design" OR "software testing" OR "software maintenance" OR

"software quality" OR "software development")

After the search query two more filters are applied, as seen in Table 1.

5 https://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder

10

Table 1. IEEExplore filters applied after command search.

Filter Value 1 Value 2

Content Type Conferences Journals & Magazines

Year (Range) 2003 2018

This search configuration yielded 258 results as of 27.02.2019.

3.2.2 ACM	Digital	Library	Advanced	Search	

In the case of ACM Digital Library Advanced Search6, the first thing to pay attention to is

that search is being conducted using the scope provided by The ACM Guide to Computing

Literature option. In addition to this, three conditions are provided, that are presented in

Table 2.

Table 2. ACM Digital Library advanced search configuration.

Field Criterion Values

Any field matches any "open innovation" "inter-organizational"

"interorganizational" "cross-organizational" "cross-

company" "partnership"

Abstract matches any "software engineering" "software requirements"

"software design" "software testing" "software

maintenance" "software quality" "software

development"

Publication Year is in the range 2003 <…> 2018

This search configuration yielded 194 results as of 07.03.2019.

 	

6 https://dl.acm.org/advsearch.cfm?coll=DL&dl=ACM

11

3.2.3 SpringerLink	Advanced	Search	

Since SpringerLink Advanced Search7 yields very unexpected results when using Boolean

operators, a much simpler strategy is applied, as seen in Table 3.

Table 3. SpringerLink advanced search configuration.

Field Value

with the exact phrase "open innovation"

where the title contains software

Show documents published between 2003 <and> 2018

Include Preview-Only content <unchecked>

This search configuration yielded 72 results as of 24.03.2019.

3.3 Search	Results	

With all three databases combined, the whole search procedure yielded 472 unique results.

The overlap (i.e. number of duplicates) between the results of the three databases is provided

in Table 4.

Table 4. Overlap of search results.

 IEEExplore ACM Digital Library SpringerLink

IEEExplore 50 0

ACM Digital Library 50 2

SpringerLink 0 2

The results of ACM Digital Library and IEEExplore had a significant overlap which was

expected, considering the similarity of the queries. On the other hand, out of the 72 results

7 https://link.springer.com/advanced-search

12

provided by SpringerLink, there were only two duplicates with ACM Digital Library. This

is due to two reasons: the different search strategy imposed by SpringerLink’s limitations

and SpringerLink’s unique access to the specific aforementioned journals.

13

4 Study	Selection	

Out of the 472 unique results yielded by the search procedure, most are expected to be ir-

relevant in the context of this review. To identify the studies that do provide insight, study

selection criteria are applied to every one of the 472 studies.

4.1 Inclusion	Criteria	

The inclusion criteria are applied in logical conjunction, which means that all need to apply

for the study to be included in the final selection.

The inclusion criteria are as follows:

1. the study is or involves a (multiple) case study;

2. the principles of open innovation have been followed, that is

a. the existence of several parties (i.e. organizations),

b. the voluntary exchange of knowledge and ideas (i.e. intellectual capital) in

pursuit of innovation;

3. the study involves software engineering activites as defined by the SWEBOK guide

((Eds.) Borque & Fairley, 2014).

The second and third criteria are self-explanatory considering the research questions formu-

lated in Chapter 1. The first criterion is necessary because case studies

• are “aimed at investigating contemporary phenomena in their context” (Runeson &

Höst, 2009, p. 134);

• “gather information from on or a few entities (people, groups or organizations)”

(Benbasat, Goldstein, & Mead, 1987, p. 370).

These are important factors because they ensure that the study is specific, and the processes

are described thoroughly enough so that definitive conclusions can be made regarding the

research questions. Since Runeson & Höst (2009) argued that different taxonomies are used

to categorize studies, then the term “case study” might be too restricting to have been used

as a keyword in the search strategy.

4.2 Exclusion	Criteria	

The exclusion criteria are applied in logical disjunction, which means that if any single one

of the criteria applies, then the study is discarded.

14

The exclusion criteria are as follows:

1. the study is a secondary study;

2. notice of extraction;

3. not in English;

4. overview of workshop or conference;

5. books;

6. full study not available;

7. the affiliated organizations or their relationship has not been clearly defined.

4.2.1 Quality	Assessment	Criterion	

As mentioned in Section 2.2.1, an additional exclusion criterion is defined to make certain

that the studies that make it to the final selection are of considerable quality. This criterion

is applied in logical disjunction with the other exclusion criteria.

The quality assessment exclusion criterion is as follows:

• the source of the study has a CORE Rankings Portal8 category C.

The CORE Rankings portal8 is a generally accepted ranking system and provides a non-

subjective way of quality assessment.

4.3 Study	Selection	Results	

Having applied the selection criteria on the initial pool of 472 studies, 27 studies were found

to comply with the criteria and thus make it to the final selection. The 27 studies featured

32 cases of open innovation in software engineering.

8 http://www.core.edu.au/conference-portal

15

5 Data	Extraction	

In this stage, the 27 studies are evaluated one at a time. Each study is reviewed with the help

of the data extraction form devised in the next section. The aim of the data extraction form

is to make certain that each and every study is assessed on the same terms – this offers a

systematic approach where subjectivity on a study-to-study basis is minimized.

An important thing to consider is the possibility of having two or more studies that refer to

the same subject case. Should this occur, the subject case itself is only considered once to

avoid skewing the quantitative results.

Hereinafter the data extraction form is presented in Table 5. The data items in the form serve

the purpose of:

• identifying the study at hand;

• providing data to be later quantified in Chapter 6.

Table 5. Data extraction form with possible values and respective research questions.

Data Item Possible values Respective research ques-

tion

Study identifier S1, S2… -

Case identifier C1, C2… -

Name of study - -

Year of publication 2003-2018 -

Authors - RQ3

Universities involved - RQ3

Conference - -

Publication - -

16

Activities of software engi-

neering that are performed

Software requirements,

software testing, software

maintenance, software engi-

neering management, soft-

ware quality, software de-

velopment generally

RQ1

Nature of partnership Any combination of follow-

ing types: large enterprise,

small-medium enterprise,

government institution,

higher education institution,

open source community

RQ2

As mentioned before, the data extraction form is applied to every single study. The detailed

results of data extraction are provided as a separate Excel file called “dataExtraction.xlsx”.

The summarized list of the studies included with their respective study identifiers (S1, S2…)

is presented in Appendix I. Hereinafter, the studies are referred to with their study identifi-

ers.

17

6 Data	Synthesis	

All the data provided in this chapter is based on the data extraction results which have been

analyzed in the Excel environment. Each one of the three following sections answers to one

of the three research questions formulated in Chapter 1.

6.1 Open	Innovation	in	Different	Activities	of	Software	Engineering	

When judging the application of open innovation principles in the different software engi-

neering activities defined by the SWEBOK guide ((Eds.) Borque & Fairley, 2014), it be-

comes clear that most case studies reviewed do not concentrate on specific activities but

rather the overall process of software development. The occurrences are listed in Table 6.

Some of the 32 cases reviewed featured several different activities.

Table 6. Occurrences of different software engineering activities.

Software engineering activity Occurrences

Software development generally 26

Software maintenance 1

Software testing 5

Software engineering management 4

Software requirements 1

The reasoning behind such distribution can very well be the novelty of open innovation as

a possible method of producing innovation. When Fernandez & Svensson (2017, p. 310)

studied the use of open innovation in the requirements engineering process, they found that

87% of the respondents reported to have “received, somehow, ideas from external sources”;

however, many participants also claimed to having difficulties understanding the concept of

open innovation. There has also been previous discussion on the lack of specific tools and

methods for requirements engineering that have been adapted to the context of open inno-

vation (Wnuk, Pfahl, Callele, & Karlsson, 2012). Out of the 10 studies that featured the 11

cases of activity-specific approach, only three (S8, S11, S13) described their innovation

18

processes using a somewhat generalized model or tool that could be applied in a different

case – all others were purely case-specific. This supports the conjecture that there is a lack

of such models, tools and frameworks in the academic literature that explicitly adapt the

principles open innovation.

6.2 Partnerships	That	Pursue	Open	Innovation	in	Software	Engineering	

There are five different types of parties differentiated in the case projects:

• large enterprise (i.e. LE);

• small or medium-sized enterprise (i.e. SME);

• government institution (i.e. GOV);

• higher education institution (i.e. HEI);

• open-source software (i.e. OSS) community.

The boundary between large enterprises and SMEs is at 250 employees, as defined by the

European Commission (Eurostat STRUCTURAL BUSINESS STATISTICS & GLOBAL

BUSINESS ACTIVITIES, 2019).

Open-source software has in general been defined as software with public source code, that

can be freely modified and used, given that the work of the original author is acknowledged

(The Open Source Definition (Annotated): Open Source Initiative, 2019). Open-source soft-

ware with its contributing communities are a good example of a certain kind of open inno-

vation practice (West & Gallagher, 2006).

The occurrences of relationships between different types of parties are listed in Table 7.

Table 7. Number occurrences of relationships between different types of parties.

 LE SME GOV HEI OSS

LE 17 6 1 27 10

SME 6 1 0 7 6

GOV 1 0 0 3 1

HEI 27 7 3 7 3

19

OSS 10 6 1 3 0

Figure 1 better visualizes the relationships between different types of parties – a thicker

chord between two different types of parties represent a bigger number of such relationships.

Figure 1. Chord diagram of the relationships between different types of parties.

Collaboration between large enterprises and HEIs are dominating the scene with a signifi-

cant amount SMEs and open-source communities involved as well. A few government in-

stitutions are present as well.

20

The large number of LEs practicing open innovation comes as no surprise, since their in-

volvement has been studied and confirmed since the emergence of the open innovation par-

adigm (van de Vrande, de Jon, Vanhaverbeke, & de Rochemont, 2009). The large number

of HEIs involved can be considered somewhat of a surprise. While certain previous trends

have suggested an increase in collaboration between academia and industry (Perkmann &

Walsh, 2007), the broad quantitative study of Cricelli, Greco, & Grimaldi (2015) pointed

out the relative scarcity of having universities and research institutions as open innovation

partners when studying the adoption of open innovation by European firms.

The apperance of a notable amount of SMEs confirms previous research, which has stated

their increasingly extensive involvement in open innovation activities (van de Vrande, de

Jon, Vanhaverbeke, & de Rochemont, 2009). A relatively large proportion of SME

partnerships is with OSS communities. This can be contributed to the fact that OSS

principles have been covered more widely in the software engieering literature - as opposed

to the more general paradigm of open innovation - and the notion that SMEs relatively have

the most to gain from OSS practices (Munir, Wnuk, & Runeson, 2016).

The small number of government institutions developing their frameworks (S4, S20,

S22/S23) can be contributed to the novelty of the Government 2.0 movement (Chun,

Shulman, Almazan, & Hovy, 2010). There rest of the studies featuring government involve-

ment are of a specific military and/or tactical nature (S15, S25, S26). However, these studies

featuring government institutions do confirm the notion of West, Salter, Vanhaverbeke, &

Chesbrough (2014) that there has been an increase in nonpecuniary motivations – in this

case developing software for government use – for adopting open innovation.

6.3 Origins	of	Selected	Studies	

The analysis of the origins of the final pool of the studies suggests no inclinations toward

any universities or scholars that prevail in the case studies. All institutions and scholars

occur only once in the selected pool. However, three scholars do stand out by having studied

the phenomenon of open innovation in software engineering on a individual case level

(S13), as well as, with a wider scope (Munir, Wnuk, & Runeson, 2016; Wnuk, Pfahl, Callele,

& Karlsson, 2012) and – H. Munir and P. Runeson once and K. Wnuk twice. Wnuk,

especially, seems to concentrate his efforts on the possibilites of applying open-source

software solutions to achieve innovation. Such inexistent levels of consolidation of research,

can, once again, be attributed to the novelty of the phenomen of open innovation in software

21

engineering – practitioners of software engineering are slowly becoming more familiar with

such opportunities. Higher volumes of case studies will probably become available in the

coming years.

22

7 Summary	

The goal of this thesis was to investigate the application of open innovation principles in the

software engineering domain. Three distinct aspects were explored: the different activities

of software engineering that could benefit from open innovation (RQ1); the different types

of partnerships that foster open innovation in software engineering projects (RQ2); the

origin of relevant studies to find out about current trends in this research field (RQ3).

To find relevant studies, the systematic literature review approach was adopted. This method

enables a systematic search and selection of studies followed by a systematic retrieval of

data from the selected studies.

Regarding the different activities of software engineering, it became apparent that most case

studies focused on software development generally, rather than more specific activities,

such as software requirements or software testing. Some cases of software maintenance,

software testing, software engineering management and software requirements were pre-

sent, however. This relative absence of specialization respective to the different activities

was attributed to the lack of theoretical models and tools that would support such specific

approach.

The partnerships that were most prevalent were between large enterprises and higher edu-

cation institutions, followed by different combinations where small-medium enterprises,

open-source software communities and even a few government institutions were present as

well. As principles of open innovation become more widely known, the number of small-

medium enterprises, government institutions and perhaps even civic nonprofits is expected

to rise.

No universities and only a few scholars stood out when examining the origins of selected

studies. H. Munir, P. Runeson and especially K. Wnuk were singled out as those with a

more serious degree of research regarding this matter.

There is one overarching feature that characterizes all three aspects and open innovation in

software engineering in general, and that is one of novelty. While the paradigm of open

innovation itself is gaining ground, its possibilities in software engineering specifically are

still relatively little-explored and thus cases of software engineering that employ open inno-

vation are few and far between.

23

8 References	

(Eds.) Borque, P., & Fairley, R. (2014). Guide to the Software Engineering Body of
Knowledge, Version 3.0. xxxii. IEEE Computer Society.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research Strategy in Studies
of Information Systems. MIS Quarterly, 11, 369-386.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software, 571-583.

Chesbrough, H. (2006). Open Innovation: A New Paradigm for Understanding Industrial.
Open Innovation: Researching a New Paradigm, 1.

Chesbrough, H. W. (2003). Open Innovation: The New Imperative for Creating and
Profiting from Technology. Boston: Harvard Business School Press.

Chesbrough, H., Vanhaverbeke, W., & West, J. (2014). New Frontiers in Open
Innovation. Oxford: Oxford University Press.

Chun, S., Shulman, S. W., Almazan, R. S., & Hovy, E. (2010). Government 2.0: Making
Connections Between Citizens, Data and Government. Information Polity, 1-9.

Cricelli, L., Greco, M., & Grimaldi, M. (2015, October). Assessing the open innovation
trends by means of the eurostat community innovation survey. International
Journal of Innovation Management.

Eurostat STRUCTURAL BUSINESS STATISTICS & GLOBAL BUSINESS ACTIVITIES.
(2019, April 30). Retrieved from European Commission Web Site:
https://ec.europa.eu/eurostat/web/structural-business-statistics/structural-business-
statistics/sme

Fernandez, S., & Svensson, R. B. (2017). A Survey of Practitioners Use of Open
Innovation. Euromicro Conference on Software Engineering and Advanced
Applications, (pp. 305-312).

Kitchenham, B. A. (2007). Guidelines for performing Systematic Literature Reviews in
Software Engineering. Keele: Keele University.

Munir, H., Wnuk, K., & Runeson, P. (2016, April). Open innovation in software
engineering: a systematic mapping study. Empirical Software Engineering, pp.
684-723.

Perkmann, M., & Walsh, K. (2007). University–industry relationships and open
innovation: Towards a research agenda. International Journal of Management
Reviews, 9(4), 259-280.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 131-164.

The Open Source Definition (Annotated): Open Source Initiative. (2019, May 2).
Retrieved from Open Source Initiative web site:
https://opensource.org/docs/definition.php

van de Vrande, V., de Jon, J. P., Vanhaverbeke, W., & de Rochemont, M. (2009). Open
innovation in SMEs: Trends, motives and management challenges. Technovation,
423-437.

West, J., & Gallagher, S. (2006). Challenges of open innovation: the paradox of firm
investment in open-source software. R&D Management, 319-331.

West, J., Salter, A., Vanhaverbeke, W., & Chesbrough, H. (April 2014. a.). Open
innovation: The next decade. Research Policy, 805-811.

24

Wnuk, K., Pfahl, D., Callele, D., & Karlsson, E.-A. (2012). How can Open Source
Software Development Help Requirements Management Gain the Potential of
Open Innovation: An Exploratory Study. Proceedings of the ACM-IEEE
international symposium on Empirical software engineering and measurement,
(pp. 271-279). Lund.

25

Appendices	

I. List	of	Selected	Studies	

Study
identifier

Study

SpringerLink studies

S1 Richomme, M., Suddul, G., Basgeet, R., & Soobul, A. (2010). Emerginov:
How Free Software Can Boost Local Innovation, a Win-Win Deal
between Operator and Local Innovation Partners. AFRICOMM
2010: E-Infrastuctures and E-Services for Developing Countries
(pp. 132-140). Berlin: Springer.

S2 Eklund, U., & Bosch, J. (2012). Introducing Software Ecosystems for
Mass-Produced Embedded Systems. ICSOB 2012: Software
Business (pp. 248-254). Berlin: Springer.

S3 Kautz, K., Bunker, D., Rab, S. M., & Sinnet, M. (2011). Investigating
Open Innovation and Interorganizational Networks in the IT
Industry: The Case of Standard Software Customization.
Researching the Future in Information Systems (pp. 231-246).
Berlin: Springer.

S4 Choi, Y., Lee, Y.-G., & Ra, J. (2012). A Case of Standard Develop
Framework Based on Open-Source Software in Korea Public
Sector. Computer Applications for Graphics, Grid Computing, and
Industrial Environment (pp. 210-214). Berlin: Springer.

S5 Henttonen, K. (2011). Libre Software as an Innovation Enabler in India
Experiences of a Bangalorian Software SME. Open Source
Systems: Grounding Research (pp. 220-232). Berlin: Springer.

S6 Mahajan, A., & Clarysse, B. (2013). Technological Innovation and
Resource Bricolage in Firms: The Role of Open Source Software.
Open Source Software: Quality Verification (pp. 1-17). Berlin:
Springer.

S7 Mian, S. Q., Teixeira, J., & Koskivaara, E. (2011). Open-Source Software
Implications in the Competitive Mobile Platforms Market. Building
the e-World Ecosystem (pp. 110-128). Berlin: Springer.

S8 van der Linden, F. (2013). Open Source Practices in Software Product
Line Engineering. Software Engineering (pp. 216-235). Berlin:
Springer.

S9 Lindman, J., Rajala, R., & Rossi, M. (2010). FLOSS-Induced Changes in
the Software Business: Insights from the Pioneers. Software
Business (pp. 199-204). Berlin: Springer.

ACM Digital Library studies

S10 Faria, K. A., de Andrade Freitas, E. N., & Vincenzi, A. M. (2017).
Collaborative Economy for Testing Cost Reduction on Android
Ecosystem. Proceedings of the 8th ACM SIGSOFT International
Workshop on Automated Software Testing (pp. 11-18). New York:
ACM.

26

S11 Enoiu, E. P., & Čaušević, A. (2014). Enablers and Impediments for
Collaborative Research in Software Testing: An Empirical
Exploration. Proceedings of the 2014 international workshop on
Long-term industrial collaboration on software engineering (pp.
49-54). New York: ACM.

S12 Carroll, E. R. (2005). Estimating Software Based on Use Case Points.
OOPSLA '05 Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications (pp. 257-265). New York: ACM.

S13 Munir, H., Linåker, J., Wnuk, K., Runeson, P., & Regnell, B. (2018).
Open innovation using open source tools: a case study at Sony
Mobile. Empirical Software Engineering, 23(1), 186-223.

S14 He, Y., Foley, T., Hofstee, T., Long, H., & Fatahalian, K. (2017, July).
Shader Components: Modular and High Performance Shader
Development. ACM Transactions on Graphics (TOG), 36(4).

IEEExplore studies

S15 Higley, H. H., & Harder, R. J. (2003). Tailoring an Electronic Meeting
System to Military Planning and Operations, a Case Study.
Proceedings of the 36th Hawaii International Conference on
System Sciences. IEEE.

S16 Dadeau, F., Castillos, K. C., Ledru, Y., Triki, T., Vega, G., Botella, J., &
Taha, S. (2013). Test Generation and Evaluation from High-Level
Properties for Common Criteria Evaluations - The TASCCC
Testing Tool. 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation (pp. 431-438). IEEE.

S17 Carrozza, G., Faella, M., Fucci, F., Pietrantuono, & Russo, S. (2012).
Integrating MDT in an Industrial Process in the Air Traffic Control
Domain. 2012 IEEE 23rd International Symposium on Software
Reliability Engineering Workshops (pp. 225-230). IEEE.

S18 van der Valk, R., Pelliccione, P., Lago, P., Heldal, R., Knauss, E., & Juul,
J. (2018). Transparency and Contracts: Continuous Integration and
Delivery in the Automotive Ecosystem. 2018 IEEE/ACM 40th
International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP (pp. 23-32). IEEE.

S19 Girard, A., Spry, S., & Hedrick, J. (2005, March). Intelligent cruise control
applications: real-time embedded hybrid control software. IEEE
Robotics & Automation Magazine, 12(1), pp. 22-28.

S20 Monteiro, R. S., Pinel, R. E., Zimbrão, G., & de Souza, J. M. (n.d.). The
MDArte experience: OrgAnizational aspects acquired from a
successful partnership between government and academia using
model-driven development. 2014 2nd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD) (pp. 575-586). IEEE.

S21 Abdul, A., Bass, J. M., Ghavimi, H., & Adam, P. (2017). Product
Innovation with Scrum: A Longitudinal Case Study. 2017
International Conference on Information Society (i-Society) (pp.
22-27). IEEE.

27

S22 Kang, G.-I., Kwon, Y.-I., & Kim, E.-J. (2013). An Analysis of e-
Government Standard Framework (eGovFrame) and Its Effects.
2013 15th International Conference on Advanced Communications
Technology (ICACT) (pp. 860-868). IEEE.

S23 Kang, G.-I., Mun, S.-J., & Kwon, Y.-I. (2012). Development of e-
Government Standard Framework through Open Innovation
Strategy. 2012 14th International Conference on Advanced
Communication Technology (ICACT) (pp. 1117-1122). IEEE.

S24 Aoyama, M., Yabuta, K., Kamimura, T., Inomata, S., Chiba, T., Niwa, T.,
& Sakata, K. (2013). PROMIS: A Management Platform for
Software Supply Networks Based on the Linked Data and OSLC.
2013 IEEE 37th Annual Computer Software and Applications
Conference (pp. 214-219). IEEE.

S25 Santiago, C., Rusu, A., Falconi, L., Petzinger, B., & Crowell, A. (2009).
Overview and flight-by-flight analysis of trajectory prediction
systems using a 2D Galaxy Visualization. 2009 IEEE/AIAA 28th
Digital Avionics Systems Conference (pp. 3.B.3-1 - 3.B.3-8). IEEE.

S26 Alwardt, A. L. (2012). Leveraging the Cloud to create a Network Centric
Support Environment for Support Equipment. 2012 IEEE
AUTOTESTCON Proceedings (pp. 347-351). IEEE.

S27 Zyda, M., Thukral, D., Jakatdar, S., Engelsma, J., Ferrans, J., Hans, M., . .
. Vasudevan, V. (2007). Educating the Next Generation of Mobile
Game Developers. IEEE Computer Graphics and Applications,
27(2), 96-95.

28

II. License	

Non-exclusive licence to reproduce thesis and make thesis public

I, Georg Vann,

1. herewith grant the University of Tartu a free permit (non-exclusive license) to reproduce,

for the purpose of preservation, including for adding to the DSpace digital archives until

the expiry of the term of copyright,

Literature Review: Open Innovation in Software Engineering,

supervised by Dietmar Pfahl.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which al-

lows, by giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation.

Georg Vann

09/05/2019

