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Infinite Procedural Infrastructured World Generation

Abstract:

This Master’s thesis describes and provides an implementation of a novel algorithm

for generating infinite deterministic worlds with both man-made and natural features

commonly found in the civilized regions of the temperate climate zone. Considering

that infinite worlds have to be generated in a piecewise manner without any of the

neighbouring pieces necessarily existing, ensuring continuity and deterministic results

for the generation of such features can be challenging. The algorithm uses an exponential

generation technique, which enables the generation of varying sized features from traffic

signs to rivers. The algorithm generates infinite road networks of different tiers, named

cities and villages, power lines between them and common traffic signs like speed limits

and navigation signs. Rural areas are generated based on three types of land usage –

forestry, cultivation of crops and untouched nature reserves. The thesis also gives an

overview of the previous work in the field of procedural world generation and proposes

multiple new ideas for further expansion of infinite infrastructured terrain generation.
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Lõpmatu protseduurilise taristuga maailma genereerimine

Lühikokkuvõte:

Käesolev magistritöö kirjeldab uudset algoritmi lõpmatu deterministliku maailma ge-

nereerimiseks koos üldlevinud tehislike ja looduslike struktuuridega, mis leiduvad pa-

rasvöötme asustatud piirkondades. Kuna lõpmatuid maailmu tuleb genereerida jupikau-

pa ning ilma ühegi naabruses oleva tüki olemasoluta, on genereeritavate struktuuride

järjepidev ja deterministlik genereerimine keeruline. Kirjeldatav algoritm kasutab eks-

ponentsiaalse genereerimise metoodikat, mis võimaldab genereerida erineva suurusega

struktuure alates liiklusmärkidest kuni pikkade jõgedeni. Algoritm genereerib erinevat

tüüpi lõpmatuid teede võrgustikke, nimedega linnu ja külasid, elektriliine ja levinumaid

liiklusmärke nagu kiiruspiirangud ja suunamärgid. Asulatest väljaspool olev maastik ge-

nereeritaske kolme üldlevinud maakasutuse kategooria vahel – metsandus, viljakasvatus

ning looduskaitsealad. Lisaks kirjeldatavale algoritmile antakse ülevaade eelnevast tea-

dustööst lõpmatu protseduurilise maailma genereerimise valdkonnas ning kirjeldatakse

edasiarendusvõimalusi lõpmatute asustatud maailmade genereerimiseks.

Võtmesõnad:

Protseduuriline genereerimine, arvutigraafika, eksponentsiaalne genereerimine, lõpmatu

maastiku genereerimine, taristu genereerimine, lõpmatu teede genereerimine, linnade

genereerimine, külade genereerimine, põllumajanduse genereerimine, põldude gene-

reerimine, taimede paigutus, elektrivõrgustiku genereerimine, simpleksmüra, kurvid,

splainid.

CERCS:

P150: Geomeetria, algebraline topoloogia;

P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine;

P175: Informaatika, süsteemiteooria.
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1 Introduction

The creation of high quality and large visual assets with little variance manually can be

an arduous and costly process. For this reason, it is wise to automate the asset creation

pipeline as much as possible and to create some of them procedurally. Procedural

generation is the application of algorithms to procedurally generate content based on some

input parameters [HMVDVI13]. Procedural generation in general is a pretty thoroughly

investigated area in scientific research [HMVDVI13, SKK+14] and can be applied for

a wide range of purposes, such as texture generation [Per85, LGD+18] and placement

[LN03, LRD07], terrain [PGGM09, Ers12, Sep16], vegetation [OBRvdK17, Tun12],

city [PM01, Per16] and building generation [MWH+06, EBP+12].

However, despite being popular in gaming1, the scientific coverage of infinite world

generation has been small, especially in regard to deterministic and complex worlds.

Most existing infinite world generation solutions focus on terrain generation [BPd09] or

city generation [SKK+14], but there is only one known solution for combining several

complex features [eM17]. The goal of this thesis is to create a novel deterministic

infinite world generation algorithm, that is capable of generating a varied world with

different structures commonly found near civilized regions in the temperate climate zone.

The algorithm generates an infinite road network with multiple tiers, including major

highways and minor side roads with infrastructure like traffic signs and utility poles;

cities, villages and rural areas. The rural areas are refined to look like respective real-life

areas, where most of the land is in active use for cultivation or forestry while some is

being preserved as a nature reserve. The algorithm could be used as a part of a game

world for either a single- or a multiplayer experience; part of a learning environment for

various artificial intelligence, such as self-driving vehicles, or a basic driving simulator.

With some alterations, it could also be used as a world for a flight simulator.

1http://pcg.wikidot.com/category-pcg-games
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Although a large number of papers on the topic of finite world generation already

exist [STBB14], the existing techniques can not usually be easily converted for use in

infinite world generation. The conversion problems arise from peculiar characteristics

of infinite generation. First, an infinite world has to be divided into smaller discrete

areas and each area has to be generated separately to match other pieces without any

neighbouring pieces actually existing. Secondly, if the infinite world is desired to be

deterministic, it is necessary for each generated area to always provide the same results

when regenerated.

It is also possible for a world generation algorithm to not be globally deterministic

by only considering existing world areas and generating new areas to match the existing

area edges. This way circling back to the same area in world space will not necessarily

provide the same results, as the generated areas depend on the direction from which it

was approached. This is commonly seen in infinite runner games2 where the player can

choose between multiple paths and the track is only generated for the path chosen by the

player, with everything behind disregarded.

To generate an infinite world, it is empirical to divide the world into handleable

finite pieces, which can be generated independently and in parallel. The simplest and

most common approach is to divide the world into cuboid shaped chunks, which will

be placed spatially next to one another. However, as complex features can span a large

number of chunks, it can be difficult to determine which features should be generated on

a chunk without first determining the properties of other nearby chunks. For example, to

determine the existence of a river on a chunk, it is usually necessary to know where all

the nearby rivers start and end along with their shapes before the existence of any rivers

on the current chunk can be determined.

As discussed by Johansen[Joh15], three common approaches to world generation

exist . The simulation approach generates the environment by simulating the processes

2https://en.wikipedia.org/wiki/Temple_Run_2
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that create it in near real-life, such as erosion, sunlight coverage and wind. These simula-

tions usually run for a large number of iterations and are therefore usually unsuitable for

real-time generation of infinite terrain, as the player will be moving to new areas and the

generation has to keep up in real-time. The planning approach is used to generate worlds

with specific constraints around which the world is generated. For example, it might be

necessary for a guaranteed path to exist between two locations on the terrain and the

world is generated around this path. As these constraints are usually reserved for use

in games with specific goals, they are not commonly used in infinite world generation.

Lastly, functional approach tries to approximate the environment’s end result by using

mathematical functions. For example using gradient noise to generate a heightmap of the

terrain. Functional approach algorithms are usually quick to evaluate and are therefore

perfect for an infinite world where new areas need to be generated in real-time.

Another important property of infinite generation is context sensitivity [Joh15], which

describes how much neighbouring data has to be calculated in order to evaluate features

at given coordinates. For example, in case of a featureless flat world, there is no context

sensitivity since the position of terrain can be evaluated at any position by checking the

coordinate values. On the contrary, checking if some given coordinates contain a river

usually requires knowledge of all the nearby rivers that can reach this position.

In chapter 2, an overview of previous work in the field of procedural world generation

is given. The featured papers mainly focus on one of four topics – terrain, road, city or

vegetation generation.

In chapter 3, an overview of the main background concepts are described. The chapter

starts with the description of the world representation, consisting of 2 differently sized

types of nested chunks, called macrochunks and mesochunks. The chapter continues

with the description of the algorithm’s context sensitivity, generation of deterministic

pseudorandomness at any world position, used methods to place vegetation on the terrain

and a flowchart of the devised algorithm’s generation pipeline. The second half of the
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chapter focuses on more abstract concepts like computer generated noise, curves, splines

and boolean operations on arbitrary polygons.

In chapter 4, the generation of the larger pieces of the world, called macrochunks is

detailed. Macrochunks are used for generating local highways and the locations and the

outlines of nearby cities.

Chapter 5 describes the generation of smaller chunks, called mesochunks. The

mesochunks are generated inside the macrochunks and use the macrochunks data to

generate smaller features. Mesochunks first generate side roads, a type of minor roads,

and the overlapping internal layout of a city if one is present. Areas outside the cities

are mostly populated with agricultural land and other smaller settlements. Additionally,

traffic signs and utility poles are generated in suitable areas. Lastly, after generating their

data, a description of how mesochunks are rendered is provided.

Chapter 6 details the implementation of the algorithm. That is followed by a visual

and a performance assessment of the results. The visual assessment is done by comparing

the algorithm’s output to real-life imagery. Performance assessment chapter gives an

overview of average frame rendering times, speed of world generation and memory usage

of the algorithm.

In chapter 7, potential future expansions for the devised algorithm are discussed.

The largest chunk, called megachunks, is introduced, which could be used to generate

railroads and water bodies like rivers and lakes. Furthermore, a possible integration of

AI agents, a more intricate electric network and improved junctions is discussed.

Appendix I contains the phrases used in the settlement name generation algorithm.

Appendix II contains details of the final application created for the thesis. Appendix III

contains the glossary of the new terms introduced in this thesis.

The reader is expected to know the terminology covered by the Master’s program of

Computer Science and the basic terminology used in computer graphics.
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2 Previous Work

This chapter gives an overview of various existing solutions used to generate procedural

worlds and their elements. The first subchapter gives an overview of methods used to

generate procedural terrain and water bodies. The following subchapters give an overview

of road and city generation and the last subchapter discusses vegetation generation and

placement.

2.1 Terrain Generation

Terrain is perhaps the most common element to be procedurally generated other than

textures. Modelling terrain by hand can give great results. However, working on vast

areas gets cumbersome and a lot of terrain creation workflows involve at least some

procedural generation [SDKT+09].

Terrain is most commonly presented as a 2D grid, called a heightmap, where each

value represents the elevation at the given location. As Smelik et al [SDKT+09] point

out, heightmaps are easy to implement and can be efficiently compressed and stored

on GPUs. Heightmaps are usually generated using gradient noise, such as Perlin noise

[Per85] or its improved successor simplex noise [Per02] which are further discussed in

Chapter 3.6. Sometimes, noise-based terrain does not necessarily yield good enough

results and further terrain processing is done with physics-based algorithms. These

algorithms usually simulate the erosion by weather. As mentioned by Smelik et al

[STBB14], erosion is typically implemented as a global operation and runs for thousands

of iterations, making it unsuitable for infinite and real-time generation. However, they

also point out that GPGPU programming has enabled ways to speed up erosion simulation

remarkably for interactive use [VBHS11, KBKŠ09].

Heightmap based terrains are limited to variation on a single upwards axis and are

not capable of generating overhangs. Several other approaches exist, which enable the
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generation of more complex terrain with volumetric data structures with the use of voxels

[Sep16] and their advancements (Figure 1) [PGGM09]. As fully procedurally generated

landscapes with little user input can be rather monotonous, a notable amount of work

has been done to the enable direct sculpting of the terrain. For example, The Arches

framework (2009) enables the user to interactively sculpt the terrain by sweeping with

a brush, which also places smaller terrain features like rocks automatically (Figure 2)

[PGGM09]. Zhou et al described a method for generating terrain from 2D user line

drawings and combining it with a pre-existing digital elevation model [ZSTR07]. Their

system extracts features from the original digital elevation models, like mountain ridges

and ravines, and uses the drawn sketch to apply these extracted features along the drawn

lines. Gain et al and Hnaidi et al created systems to generate terrain from user-drawn

3-dimensional curves [GMS09, HGA+10], which lets the user also control the height of

the terrain in the up direction.

Figure 1. Arches terrain generation pipeline

[PGGM09].

Figure 2. Terrain gener-

ated by the Arches frame-

work [PGGM09].

In addition to general terrain generation algorithms, additional adaptations are re-

quired to also generate water bodies. Although water body generation has been somewhat

under-addressed according to Smelik et al [STBB14], a few solutions do exist. The

simplest way to generate water is to pick a specific height level as the global sea level
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Figure 3. A procedural river that

has been integrated with a terrain

heightmap [GGG+13].

Figure 4. A river with vegetation

generated with user controlled control

points [HDBB10].

and render a plane of water at that height. This is especially useful for infinite world

generation, as different water levels for different bodies of water would normally require

knowledge of the whole body of water, which might not be available. Additionally, water

bodies can be generated using flood algorithms for arbitrary water levels in different

terrain basins. The generation of more complex water bodies like rivers requires a more

intricate approach. Commonly either the terrain heightmap is generated with the rivers

integrated into it (Figure 3) [KMN88, GGG+13] or the terrain is post-processed to fit a

river to an existing heightmap, with the latter usually enabling the user to have interactive

control over the shape of the river (Figure 4) [STdKB11, HDBB10].

Magalhães generates water bodies for his infinite world by using a fixed water level

and using Perlin noise-based heightmap to determine if a point is underwater [eM17].

He also generates rivers with two different approaches. The first approach determines

a number of random points in the world by sampling high frequency Perlin noise and

picking vertices that are the local maximums of noise. Rivers are then constructed

through these points in a fixed size area by traversing them, starting from a point in water.

Each next point is chosen within a fixed radius with the smallest possible elevation still

higher than the current point. (see Figure 5). The second approach also starts from the

water and picks points on the heightmap with the minimal neighbouring height that is
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higher than the current height Figure 6). The first approach generates longer rivers as it is

possible for the rivers to pass local maximums on the terrain, while the second approach

gets stuck at local maximums and ends earlier. Due to the first approach sometimes

possibly going uphill, extra care has to be taken in the surrounding area to smooth out

the terrain near the river. This is not a problem for the second approach as the river will

always be guaranteed to only increase in elevation when starting from the initial water

body. As both of these approaches also enforce a maximum river length, surveying an

area with the given radius around any chunk will be guaranteed to find any intersecting

rivers.

Figure 5. Rivers generated on in-

finite terrain through pseudorandom

points (black) determined by Perlin

noise [eM17].

Figure 6. Rivers generated on infinite

terrain by picking the direction with

minimal elevation increase. [eM17].
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2.2 Road Generation

To generate an urban environment the generation of roads is required. Smelik et al point

out in their survey that procedural road generation has primarily been addressed for city

generation, with interstate and country roads requiring further attention [STBB14].

For the urban area generation, usually a street network is first generated and used a

basis for building generation [KM07, PM01, Per16]. For example, the Citygen (2007)

algorithm first generates a high level graph for determining the connected road nodes

and then generates a low level graph to make each high level graph edge adapt to the

terrain (Figure 9) [KM07]. For the terrain adaptation, 3 different strategies are discussed:

minimum elevation, least elevation difference and even elevation difference (Figure 10).

After the primary road network generation, the plots of land confined between roads

are each separately considered for further subdivision with the secondary roads. For

secondary roads, three approaches are discussed: a grid based pattern, an industrial

and an organic growth pattern (Figure 11). Another solution called CityEngine (2001)

uses an extended L-system to generate 3 types of frequently appearing road patterns:

branching, radial and grid-like (Figure 7); and additionally constraints the road placement

near bodies of water by either following the shoreline or creating a bridge (Figure 8)

[PM01]. For the country roads, bridge and road generation is also discussed by Galin et

al [GPGB11]. The authors’ algorithm places the roads by using an A*-based approach

with a cost function dependent on the slope, bodies of water and surrounding vegetation

(Figure 12). Another solution by McCrae et al exists which lets the user sketch rural

roads, which are then placed on arbitrary terrain with support for bridges and tunnels

[MS09].

For infinite road generation, e Magalhães generates city street networks by taking an

axis-aligned grid bound by city borders and deterministically disturbing its vertices and

adding some new edges by using Perlin noise (Figure 13) [eM17]. This creates a very
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Figure 7. Frequent road patterns from CityEngine [PM01].

Figure 8. Street network with bridges generated with CityEngine [PM01].

Figure 9. Road graph in CityGen. Yellow: high

level graph. Red: low level graph that has been

adapted to the terrain [KM07].

Figure 10. Adaptive road types

in CityGen. Blue: minimum el-

evation. Red: least elevation dif-

ference. Green: even elevation

difference [KM07].
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Figure 11. Grid-like, industrial and or-

ganic secondary road network patterns

in CityGen [KM07].

Figure 12. Procedurally generated adap-

tive roads with a bridge [GPGB11].

Figure 13. Grid and Perlin noise based

street network for an infinite world by e

Magalhães [eM17].

Figure 14. Cities and highways gen-

erated on infinite terrain by e Magal-

hães [eM17].
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dense and oddly uniform street network. For intercity highways, cities are connected

with straight highways fitted to the terrain (Figure 14).

Many other algorithms employ a similar approach to CityGen and CityEngine by

first generating a primary road network and then generating additional secondary roads.

For example, Chen et al use tensor fields to generate secondary roads by tracing the

streamlines from seed points on primary roads (Figure 15) [CEW+08]. Lechner et al use

an agent-based technique, which looks for unconnected areas and then connects them with

optimal roads and generates smaller streets around them (Figure 16) [LWW03, LRW+06].

The agent-based approach gives good-looking results, but has a very long running time,

making it unsuitable for real-time generation.

Figure 15. A street network generated

from a tensor field [CEW+08].

Figure 16. A street network gen-

erated with an agent-based tech-

nique [LRW+06].
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2.3 City Generation

Procedural city generation is a widely covered topic with various approaches. Commonly,

the cities are generated in a finite space [Per16, KM07] or infinitely covering the whole

space [SKK+14, GPSL03]. Usually a street layout is generated and then the plots

between the streets are filled with procedurally generated buildings. Common methods for

street layout generation were covered in the previous chapter. Some building generation

algorithms also take into consideration the location of the plot within the city (Figure 17)

[LHdV17, Per16] and generate appropriate buildings for each city district. For example,

the central areas of the city tend to contain tall and commercial buildings while the city

outskirts contain mainly lower residential or industrial buildings.

Figure 17. Procedural city land use distribution as demonstrated by Lyu et al [LHdV17].

Procedural building generation is a generally well covered area of procedural genera-

tion and commonly uses some form of a formal rewriting system, such as an L-system,

a split grammar or a shape grammar [STBB14]. For example, Greuter et al gener-

ate buildings by combining primitive polygons for a floor plan and extruding them to

different heights (Figure 18) [GPSL03]. Müller et al generate buildings via extended

shape grammars [MWH+06], which are specifically designed for building facade gener-
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Figure 18. A: Generating building floor plan by combining primitive polygons. B: Ex-

truding the building shape from the combined polygons [GPSL03].

Figure 19. Procedurally generated

buildings in the style of Pompeii

[MWH+06].

Figure 20. Procedurally generated build-

ings in a modern style [MWH+06].

Figure 21. A procedurally generated

village on a coast [EBP+12].

Figure 22. A procedurally generated

flower with temporal growth [PHM93].
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ation (Figures 19 and 20). Coelho et al generate buildings using L-systems [CdSF05].

Additionally, there has also been notable work done in the field of building interior

generation, which is discussed in greater detail by Smelik et al [STBB14]. Silveira et al

generate buildings using a predefined floor plan and building style semantics [SCM+15].

Contrary to cities, there has been less work in the field of procedurally generating

smaller settlements. Emilien et al generate villages by first generating a suitable outline

for the village based on the surrounding terrain and then generating suitable meshes and

locations for the houses (Figure 21) [EBP+12].

2.4 Vegetation Generation

Although the algorithm developed in this thesis does not generate vegetation meshes pro-

cedurally and uses pre-existing models instead, many solutions to generating vegetation

procedurally exist. One approach to generate plants is to use L-systems [Lin68] which

can be used to create a large number of unique but similar looking plants [Tun12] and to

simulate continuous plant development (Figure 22) [PHM93]. For higher interactivity, an

algorithm by Longay et al enables the user to alter the shape of the generated structures

by manually placing splines [IMG] [LRBP12].

Figure 23. Procedurally generated

meadow with multiple types of plants

[OBRvdK17].

Figure 24. Procedurally generated

forest with multiple species of trees

[LGL+18].
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For procedural vegetation placement, multiple solutions exist. Deussen et al generate

the placement of multiple varied sized plants using a simulation approach which runs for

many iterations in a fixed area [DHL+98]. The algorithm also simulates plant survival by

eliminating some neighbouring plants as they grow and compete for resources. Due to

the slower simulation approach of their algorithm and the fact that plants being placed in

the system described in this thesis have much less variance in size, a different approach

was taken. Another solution by Hammes et al uses the elevation, slope and noise to

select one of predefined ecosystems [Ham01]. Each ecosystem determines the number of

plants for each species, which are then scattered randomly on a grid. Their system uses a

grid where each tile can be independently and recursively divided into smaller tiles to

any depth. With each final tile containing up to one plant, which has been slightly offset

within the bounds of the tile. This could in theory cause a noticeable grid-like layout

when its not wanted in a very densely populated area and was therefore not used for

the current algorithm. Onrust et al discuss methods to place plants based on ecological

statistical data and landscape maps and rendering them (Figure 23) [OBRvdK17], but

the goal of this thesis was to try to use pre-existing data as little as possible and therefore

the developed algorithm did not use this approach. Li et al discuss large-scale forest

generation to achieve realistic forests (Figure 24) [LGL+18] by scattering seeds and

letting natural clusters of different species of trees to emerge. In the current algorithm,

the tree generation is handled by a slightly similar approach where instead every forest

area is subdivided beforehand and each subdivided area is separately populated with

different types of forests with some regard for neighbouring forests.
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3 Generation Preliminaries

This chapter gives an overview of the main concepts that are used throughout the follow-

ing generation chapters. In the first half algorithm-specific methods and in the second

half more general concepts are discussed. The first half covers the world representation

as chunks, chunk window-based generation, generating a deterministic sequence of pseu-

dorandom numbers for each chunk, generating vegetation placement and an overview of

the pipeline of the created generation algorithm. The second half covers more general

techniques concepts such as noise, splines and boolean operations on 2-dimensional

polygons.

3.1 World Representation

As different real life features from rivers to street signs differ greatly in scale, it is a good

idea to adapt to this. To accommodate the varied size features, an exponential generation

technique is used. Exponential generation uses exponentially sized nested chunks similar

to a quadtree3 – each large chunk contains a number of a tier smaller chunks, which in

turn contain a number of the next tier chunks and so on. As the different tier chunks

vary a lot in size, they are suitable for generating features of their respective size. For

example, a large chunk with width in hundreds of kilometers could be used for generating

gigantic features such as mountain ranges and large rivers while smaller chunks with

width in hundreds of meters can be used for generating smaller features like city streets

and traffic signs. The generation of any chunk assumes that all the larger tier parent

chunks containing this chunk have already been generated. It is then possible for smaller

chunks to query their parent chunks for the larger features.

In the context of the algorithm described in this thesis, the world is considered to be

an infinite plane, which is divided into chunks (see Figure 25). Each chunk is responsible

3https://en.wikipedia.org/wiki/Quadtree
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for generating everything from bottom to the top of the world within its bounds of the

world plane. There are 2 types of these chunks in the current implementation:

• mesochunks of size 512× 512 meters;

• macrochunks of size 8192× 8192 meters (16× 16 mesochunks).

Figure 25. 2 macrochunks (green) with 9 mesochunks (blue) inside one of them.

Macrochunks are used to generate large scale features like highways and city outlines

and act as data containers for generating mesochunks. Mesochunks can then query

their parent macrochunk for the locations of cities and highways and generate smaller

features like side roads, villages and inner city structure. It is necessary for a parent

macrochunk to exist before a mesochunk can be generated. A third potential chunk

called a megachunk is also discussed in Chapter 7, which could be used to generate water

bodies and rivers. Each chunk has distinct global 2-dimensional integer coordinates,

defining their position in the world space.
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3.2 Chunk Window

For context sensitivity, the described algorithm uses a window-based approach, which

ensures that a cluster of neighbouring chunks, called a chunk window, around any specific

chunk will contain all the data required to generate the specific chunk (Figure 26). It

is important to note that the other chunks in the window do not have to actually exist

to generate the central chunk. All the required context data for the other chunks can be

quickly calculated based on their coordinates as discussed in the upcoming chapters.

Figure 26. To generate a specific chunk (green), some context data about its neighbouring

chunks (yellow) in a 7× 7 window is required.
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3.3 Chunk-Based Pseudorandomness

To ensure that the algorithm’s output is deterministic but still random-looking, a method

of providing deterministic pseudorandom numbers to each chunk is required. A simple

method for this is to use the given chunk’s unique global coordinates. The coordinates

can be used as an input for a 2-dimensional integer hash function fhash : Z2 → Z and the

hash used to instantiate a seeded pseudorandom number generator4 (PRNG). The hash

function used in this algorithm is

fhash : (x, y) = (x · 73856093)XOR(y · 83492791).5

The described algorithm requires every chunk to provide a lot of different pseudoran-

dom values for the generation of various features. To remain consistent, it is important

that when asked for the n-th element of a chunk’s PRNG output, the same value is always

returned. However, PRNGs only provide one number at a time based on the previously

generated number and generally do not provide a way to roll back to fetch previously

previous values. Therefore, to get the n-th element, it is necessary to either cache each

chunk’s PRNG output in an array or to recreate a PRNG and to iteratively generate the

n-th element.

As further described in Chapter 4.2, the generation of one macrochunk requires

generating pseudorandom values for itself and its 48 neighbours, which would require 49

PRNG instances. As such, it is wiser to instead cache the first 32 pseudorandom values,

which are most commonly needed, for each chunk and use these instead to save some

overhead. If in some cases more than 32 values are required, an instantiated PRNG can

be used to generate more values.

4https://en.wikipedia.org/wiki/Pseudorandom_number_generator
5http://www.beosil.com/download/CollisionDetectionHashing_VMV03.pdf
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3.4 Vegetation Placement

As the described algorithm has to place a large number of plants in areas like forests and

farms, it is necessary to have a performant solution to quickly choose their positions.

Some solutions for this were discussed in chapter 2.4, which were not directly suitable for

use here. Instead, another system with two types of vegetation placement was developed.

The grid placement method replicates the way plants are planted in farms and planted

forests by aligning plants with the bounds of the area they are generated in. Poisson-Disk

placement method replicates the natural placement of plants, where no clear pattern

emerges but each plant is at least a fixed minimal distance away from its neighbours.

3.4.1 Grid Placement

Figure 27. Grid sampled

points in a polygon, aligned

with its longest edge.

When plants are planted by humans, they are usually

planted with a distinct pattern. This is especially clear

on farmlands, where plants have been planted in rows

with roughly uniform steps, but it can also be seen in

planted forests. An approach to simulate this distribu-

tion for a region is to take the region’s longest edge

and sample points at uniform intervals parallel to it as

seen in Figure 27. Easiest way to do this is to rotate the

polygon so that its longest edge is aligned with the x-

axis and then calculate the new polygon’s axis-aligned

bounding box. Next, axis-aligned points can be sam-

pled within the bounding box and checked if they are

contained in the rotated polygon. After a point has been determined to be inside the

rotated polygon, it can be translated back to the original polygon’s space.
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3.4.2 Poisson-Disk Placement

When plants have grown without direct interference by humans, they are usually placed

quasirandomly. This means that there is no direct pattern to their positions, however their

placement is rather uniform with some minimal distance between neighbouring plants,

due to their competitive nature for sunlight and nutrition. For this reason, generating

plain pseudorandom points for their positions would not work, as some objects would

overlap with each other, be very packed in some areas and be very sparse in other areas.

One suitable algorithm for generating such a distribution is called Poisson-disk

sampling. It produces points that are uniformly distributed but no closer to one another

than a specified minimum distance d (Figure 28). Such a distribution of n objects can be

generated with Θ(n) complexity [Bri07]. This distribution can be used to place plants in

nature reserves and other regions that require a natural looking distribution.

In addition, Poisson-disk can be modified to also place a secondary type of plants,

albeit less frequently, with unlikely collisions between either type. By storing the last

sampled Poisson-disk point and comparing the distance from it to the next sampled

Poisson-disk point, it is possible to place a secondary plant in the midpoint of these 2

points as long as the edge is shorter than 1.75d (Figure 29).
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Figure 28. Poisson-disk sampled points. Figure 29. Poisson-disk sampled points

(blue) with secondary points (red).

3.5 Generation Pipeline

This chapter gives a visual overview of all the steps involved in the developed system,

which are explained in further detail in upcoming chapters. The generation pipeline is

visualized in Figure 30. The user can request any macro- or mesochunk to be generated,

though only requesting mesochunks is enough, as any required macrochunks for them

will be generated automatically.
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Figure 30. Generation pipeline of the described algorithm.
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3.6 Noise

Computer generated visual noise is one of the fundamental tools for generating rich

visual detail for synthetic images as introduced by Perlin [Per85]. Noise functions are

also widely used in procedural terrain generation. The value of a noise function can be

evaluated at any point without the need for any other neighbouring data to exist, but

neighbouring values will still be similar. This makes noise very useful for generating

simple and continuous infinite terrain, as a 2-dimensional noise function can be used as

an infinite heightmap that can be queried in a fast and simple manner (Figure 31).

Figure 31. A heightmap generated using simplex noise that can be easily expanded in

any direction.

The first commonly used type of gradient noise was Perlin noise [Per85], which was

later improved by himself to become what is now commonly known as simplex noise

[Per02]. Simplex noise is computationally cheaper and has no noticeable directional
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Figure 32. Left: 6 separate layers of noise. Right: The same 6 layers combined together

forming the final noise image. The first layer has frequency 1
64

. Lacunarity is 2 and

persistence is 0.5. Dark colors show minimum values and light colors show maximum

values.

artifacts [Gus05] and is extensively used throughout the algorithm. Simplex noise is

constructed by combining multiple layers of different frequency noise values together into

a single noise value. Each layer has a frequency, which determines the minimal distance

after which the noise gradient can change direction. Usually only the frequency of the

first layer is explicitly denoted and the frequencies of the following layers are determined

using a lacunarity multiplier. Lacunarity multiplier determines the frequency of a layer

by taking the frequency of the previous layer and multiplying it by the lacunarity. Lastly,

a persistence multiplier is used to determine the amplitude of effect of each layer in the

final result. The amplitude of a layer is calculated by taking the last layer’s amplitude,

starting with 1, and multiplying it with the persistence multiplier. The result of this

process with each separate layer can be seen in Figure 32.
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3.7 Curves and Splines

The generation of roads in Chapter 4.2 requires a way to generate smoothly bending

roads through a set of fixed points on the road to imitate the shapes of real-life roads. This

chapter gives a short overview of terminology involved with curves and splines, based

on the Fundamentals of Computer Graphics book by Marschner and Shirley [MS15] and

introduces a new type of curve that is used to generate suitable road shapes in the devised

algorithm.

A curve is a continuous image of some interval in an n-dimensional space. Intuitively,

any drawn line on a piece of paper can be regarded as a 2-dimensional free-form curve.

In current context, only 2-dimensional curves are of interest, as the road curvature is

viewed from top down.

A curve can be specified mathematically by using a parametric representation. A

parametric curve is a curve that provides a mapping from a parameter t to the set of

points on a curve using a parametric function. For example, time can be considered

the parameter of a hand drawn curve on paper. In 2-dimensional space, the parametric

function f(t) of a curve maps to a point (x, y) on the curve. For instance, a unit circle

can be represented as a parametric curve f(t) = (cos t, sin t) for t ∈ [0, 2π).

To represent an arbitrary curve as a parametric curve, a divide-and-conquer approach

is taken. The curve is broken into a number of smaller segments, each of which can be

described using a simple polynomial function, called a parametric piece. Each parametric

piece has its own parametric curve representation fi(t) for t ∈ [0, 1]. These parametric

pieces can be grouped into a single piecewise polynomial function, called a spline, which

then approximates the arbitrary curve.

The part of a spline where two sequential parametric pieces fi and fi+1 meet can have

various properties. If fi(1) 6= fi+1(0), then the curve is not positionally continuous as

the end and start positions of respective pieces are not at the same position. In addition to
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positional continuity, the derivatives of the pieces can be compared. If f ′
i (1) 6= f

′
i+1(0),

then the first derivatives at the meeting point for both pieces are different, which makes

the spline have an abrupt change at the given point. To describe how smooth a spline is

at the meeting points of parametric pieces a Cn continuity property is used. If a spline is

said to be Cn continuous, the first n derivatives of each sequential parametric pieces are

continuous throughout. As seen in Figure 33, with increasing n, the spline gets smoother.

Empirical testing showed that a suitable continuity level for a road is C1, which

ensures that meeting road segments merge realistically and is quicker to compute when

compared to higher levels of continuity.

Figure 33. 3 splines with 2 parametric pieces (blue and black) with various Cn continu-

ities at parametric piece meeting points[MS15].

Some special types of curves have control points, which can be moved to alter

the shape of the curve. For example, a Bézier curve uses a number of control points

which when moved change the curve (Figure 34). A Bézier curve with 4 control points

p0, p1, p2, p3 is called a cubic Bézier curve and is only guaranteed to pass through its

endpoints p0 and p3.

When generating an arbitrary road segment in the devised algorithm, commonly

only 4 fixed sequential points v0, v1, v2, v3 on the road are known and a curve has to be

generated between the middle points v1 and v2. The curve must be generated so that

when the two other curves between v0v1 and v2v3 have also been generated using their

respective 4 sequential road points, the resulting three curves between v0v1, v1v2 and

v2v3 form a C1 continuous spline.

6http://www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Curves_learningObject2.html
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Figure 34. Two cubic Bézier curves with different control points6.

Figure 35. Four cardinal splines with 7 control points and different tensions. Tension 1

creates a linear spline, which is not C1 continuous, while the other splines are.
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Figure 36. Red, green: 2 cardinal splines that bulge in the bottom left corner due to large

variation in control point distances. Blue: a custom spline that avoids these bulges.

Next, 2 ways to generate a curve between v1 and v2 are discussed. To generate one

such curve using these points, a cardinal spline [MS15] construction can be used. A

cardinal spline uses n control points to generate n− 2 parametric pieces, with the first

and last control point pair ignored and is guaranteed to pass through all the control points

except the first and the last. In current case, this would mean that with 4 control points a

single parametric piece would be calculated connecting the middle points v1 and v2. A

cardinal curve also has a parameter called tension, which controls how much the curve

can deviate from a simple linear curve between control points (Figure 35). cardinal

splines with tension 6= 1 are C1 continuous. Although cardinal curves seem to be

suitable for the roads, due to the way they are constructed, undesirable results can happen

in some cases (Figure 36) where the spline bulges too much. For this reason, a different

type of curve construction was developed. The custom road curve is generally similar to

a cardinal curve but generates some additional control points around pre-existing road

points v1 and v2. More specifically, 4 points p0, p1, p2, p3 are derived from the existing

points, which are then used to construct a cubic Bézier curve. Since a Bézier curve

36



is guaranteed to only pass through its endpoints, v1 and v2 are assigned to p0 and p3

respectively. The additional points p1 and p2 are calculated by offsetting the points v1

and v2 based on the following formula. First, the neighbouring points of v1 and v2 are

taken and unit vectors ûv1 and ûv2 parallel to the neighbours found:

ûv1 =
v2 − v0
|v2 − v0|

, ûv2 =
v1 − v3
|v1 − v3|

.

Secondly, the offset distance d is found by taking the shorter edge from edges v0v2 and

v1v4 and multiplying its length by 0.3:

d = min(|v2 − v0|, |v1 − v3|) · 0.3.

The points p2 and p3 are derived by offsetting points v2 and v3 in the previously found

direction by the given amount:

p2 = v1 + ûv1 · d, p3 = v2 + ûv2 · d.
Lastly, the points are used to construct a cubic Bézier curve (Figure 37) by evaluating

t ∈ [0, 1] at uniform steps using the curve function:

g(t) =p0 · (1− t)3

+p1 · 3 · (1− t)2 · t

+p2 · 3 · (1− t) · t2

+p3 · t3.

The spline generated by joining these curves as parametric pieces will also be C1

continuous like the cardinal spline. When 2 sequential curves u and v are constructed for

sequential 5 road points v0, ..., v4, 4 points will be calculated for each: p0, p1, p2, p3 and

q0, q1, q2, q3 respectively (see Figure 38). These points have the following properties:

• the last point p3 of the curve u is the same as the first point q0 of the curve v;

• points p3(= q0); p2 and q1 are collinear;

• the distance between p3 and p2 is the same as the distance between p3 and q2.

These properties are the same constraints imposed by Stärk for a C1 continuous

Bézier curve construction [[Stä76] via [PBP13]], which is proven to be C1 smooth.
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Figure 37. A Bézier curve (pink) generated by using the points p0, p1, p2, p3 derived from

4 fixed road points v0, v1, v2, v3.

Figure 38. A C1 continuous Bézier spline (green and orange) generated through 5 road

points v0, ..., v4.

38



3.8 Boolean Operations on Polygons

Several parts of the described algorithm require the manipulation of various polygons.

For example, an intersection operation is required to determine the intersection of a road

polygon (see Chapter 4.2) and an union operation is required to calculate the full outline

of a city (see Chapter 4.3). A suitable algorithm is the Vatti’s clipping algorithm [Vat92],

which implements 4 boolean operations on any number of arbitrary subject polygons

with any number of arbitrary clip polygons. The 4 operations are intersection, difference,

union and xor (Figure 39). As an alternative, Greiner-Hormann clipping algorithm

[GH98] could be used, which can perform better than the Vatti clipping algorithm. The

shortcoming of Greiner-Hormann clipping algorithm is that it can not handle common

edges or intersections exactly at vertices. Their paper suggests perturbing the vertices

to remove these degeneracies. However, as these special conditions occur often in this

algorithm and would require specific handling, Vatti’s clipping algorithm is used instead

as it is fast enough for this application. The implementation uses the Clipper 7 library,

which extends the original Vatti’s algorithm and also implements polygon offsetting

based on the discussion by Chen and McMains [CM05].

This concludes all the preliminary algorithms used in the devised algorithm. Now

the thesis proceeds with describing the actual world generation algorithm.

7http://www.angusj.com/delphi/clipper.php
8http://www.angusj.com/delphi/clipper.php
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Figure 39. The 4 boolean operations on polygons using Vatti’s clipping algorithm8.

40



4 Macrochunks

Macrochunks are the largest chunks with an area of about 8 × 8 km2. They are used

to generate large connected features that cover large areas and distances in real life,

for example highways and cities. Macrochunks only generate basic information about

cities, such as their outlines and positions in the world. Macrochunks are mainly used as

data containers by mesochunks. Mesochunks query data about their parent macrochunk

features for the generation of mesochunk features, such as city internal structure, villages,

rural roads and agricultural land. Every macrochunk also generates a low resolution

heightmap, which is used to generate and render low resolution terrain far away from

the camera to increase the render distance. More specifically, macrochunks generate the

following:

1. low resolution terrain (chapter 4.1);

2. highways that overlap with the chunk (chapter 4.2);

3. the centers and outlines of any cities that overlap with the chunk (chapter 4.3).
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4.1 Terrain Generation

Each macrochunk generates a heightmap using simplex noise and builds a mesh for it.

Since these meshes are only visible from far away, they can have a relatively low level of

detail. The noise used for the terrain has 4 octaves, a base frequency of 1
16384

, lacunarity

2 and persistence 0.5. The generated noise value in range [0, 1) is then multiplied with

1024, defining the maximum variance in elevation in meters. The noise is sampled at 64

meter intervals and a texture is chosen for each vertex. First, a check is made if the vertex

is inside a city (discussed further in chapter 4.3), which would mean a concrete-like

texture is chosen. If the vertex is not inside a city, the type of land there is determined

(discussed further in chapter 5.2), based on which either a grass or a brown soil texture

is chosen. Description of how the type of land is determined with the use of another

simplex noise function is explained further in the upcoming chapter 5.2. This results

in a landscape as seen in Figure 40. The terrain is also offset by 10 meters downwards

so when later mesochunks are generated on top of it, the macrochunk terrain will not

intersect with mesochunks’ geometry. As the transition point from macrochunks mesh to

mesochunks mesh is far away from the camera, the 10 meter difference in their elevation

is unnoticeable.

Figure 40. Simplex noise heightmap based textured terrain generated for macrochunks.
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4.2 Highway Generation

The macrochunk generation algorithm begins by generating highways. In current context,

highways are a type of paved major roads that have two 3 meters wide lanes in both

directions and are used for high throughput traffic over large distances. Highways also

have an 8 meters wide margin on both sides to enable better visibility and clearing for

roadside infrastructure.

4.2.1 Graph Generation

The process starts with generating an Euclidean graph9, where each vertex, called a

highway node, represents a highway junction and each edge corresponds to a highway

segment between the two end vertices. The later generated highway segments do not

follow the precise Euclidean path of the graph edges, although they are guaranteed to

pass through the end vertices of the edge. Instead, for the final highways, each graph edge

is processed and a C1 continuous spline is generated, representing the final curvature of

the highway segment with a more natural look.

To generate an ideal Euclidean graph for highways on a specific macrochunk, the

following conditions should be met:

1. If the macrochunk contains a highway going out of the chunk, the neighbouring

chunk must also contain the same highway and vice versa;

2. The graph must avoid singular disconnected edges and be reasonably connected;

3. The graph must not be too dense to avoid unnatural-looking short cycles.

One method to generate a graph suitable for real-time use that adheres to these 3

conditions in nearly all the cases works by generating a small graph for each macrochunk

that overlaps and matches the neighbouring macrochunks’ graphs. To do this, first a

number of deterministically calculated highway nodes are found in the vicinity of the

9http://mathworld.wolfram.com/EuclideanGraph.html
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generating macrochunk. The vicinity that will be considered for the generation of a

specific macrochunk is bound by a 7 × 7 macrochunk window around the generating

macrochunk.

For simplicity’s sake, each macrochunk can contain at most 1 highway node. The

probability p of a macrochunk containing a highway node is fixed. Empirical testing

showed that a good probability value is 0.22, which ensures that the highway nodes are

not too far apart and also not too crowded. To determine, if a macrochunk contains a

highway node, the chunk’s first PRNG sequence value r1 is mapped to range [0, 1] and

compared against the static threshold p. If the value is below the threshold, the location

of the highway node on the macrochunk is determined with the next 2 PRNG sequence

values r2 and r3. They are used to determine the local x- and y-axis coordinates on

the macrochunk respectively. By using this approach, the positions of all the highway

nodes in any 7× 7 macrochunk window can be cheaply evaluated by using the respective

chunks’ PRNG sequences. This will not require any of the macrochunks in the window to

be previously generated and every macrochunk will always evaluate to the same highway

node position if any.

After all the highway nodes in the current macrochunk window have been determined,

it is necessary to determine the highway edges. This is done by first generating a relatively

dense Euclidean graph using the highway nodes and then culling some of its edges. The

initial graph is constructed by considering all the highway nodes as graph vertices and

then adding an edge for every pair of highway nodes, which are at most 2 macrochunks

apart from each other on their longer axis. This produces a graph as seen in Figure 41.

Then, the graph edges are culled. As the first step, the graph is traversed and all

intersecting edge tuples are removed. This ensures that highway junctions can only

appear at the positions of highway nodes. Secondly, all pairs of 2 neighbouring edges are

iterated and the angle between them calculated. If the angle between the neighbouring

edges is smaller than a fixed threshold, the longer of the 2 edges is removed. Empirical
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Figure 41. Local highway graph before

culling.

Figure 42. Local highway graph after

culling.

testing showed that a good threshold is 58 degrees, which reduces the number of relatively

parallel highways, yielding a more realistic road network.

At the end of this process, all the highway nodes and edges in the macrochunk

window have been found, yielding a good-looking highway network that is not too sparse

or dense, as seen in Figure 42.

It is possible for this approach to breach the first condition of the ideal highway graph

conditions. This can happen if an edge is not culled at the boundary of the macrochunk

window due to some of its neighbouring highway nodes being outside of the current

window. It is then possible for this extra edge to propagate erroneous edges in the graph

towards the middle of the window, causing an extra or a missing edge on the central

chunk. Ultimately this would mean that a macrochunk could have a specific intersecting

edge but its neighbour would not generate it or vice versa. However, empirical testing

over very vast areas showed that the probability of this happening is minuscule and

not really noticeable, making this algorithm suitable for the fast generation of highway

networks.
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4.2.2 Spline Generation

Since the edges of the graph are straight lines, they are not suitable for direct use as

highways. Instead, a curve for each edge is generated using the technique that was

discussed in chapter 3.7. The generated graph covers a large macrochunk window

but only the highway curves that the central macrochunk intersects with are needed.

Checking the macrochunk bounds and edge intersections to determine for which graph

edges a curve has to be generated is not enough, because an edge might not intersect with

the macrochunk but the curve generated for it might.. As such, all edges with at least one

node inside a 3× 3 macrochunk window are considered for a chunk-curve intersection.

The curve generation algorithm described in chapter 3.7 used 4 fixed points on the

highway to generate a curve through the middle two of them. These fixed points can be

chosen from the highway nodes with some additional considerations. Since each highway

node can have more than 2 adjacent highway nodes, a choice of adjacent highway node

pairs has to be made through which the highway will be C1 continuous. All of the

curves can not form a C1 continuous spline with each other, because a shared derivative

at the junction would look odd. For every node, all adjacent node pairs are iterated

and the pair with the maximal difference in their directions is marked as a continuous

pair. If the degree of the highway node is 3 or higher, this process is repeated with the

remaining adjacent node pairs to determine any other node pairs that should also form

C1 continuous highways through the given highway node. If a highway node has an odd

degree, one adjacent node will simply end up without an opposite adjacent node. The

same happens if a highway node only has one edge.

After theC1 continuous adjacent highway node pairs are determined for each highway

node, all the edges within the 3× 3 macrochunk window are iterated. For each edge v2v3,

a check is made to determine if the edge is part of a C1 continuous adjacent highway

node pair at nodes v2 and v3. If the edge is part of a C1 continuous highway at node

v2, the other adjacent node of that C1 continuous pair is selected as v1. Similarly, v4 is
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found by checking if the edge is part of a C1 continuous highway at node v3. If the edge

happens to be the one edge at v2 or v3 that did not get an opposite adjacent node due to

an odd degree for a C1 continuous highway, v1 is set to v2 or v4 set to v3 respectively.

This also applies to nodes with a single edge. After doing this, 4 points v1, v2, v3, v4 have

been determined for each edge v2v3 and the curve construction from chapter 3.7 can be

applied. The result of the spline generation on a small scale can be seen in Figure 43

and a larger highway network can be seen in Figure 44. The curves are stored for each

highway edge as a list of points that have been generated at uniform steps of t ∈ [0, 1]

using the Bézier curve function g(t). The points are then connected linearly.

Figure 43. Highway splines generated from the highway graph. In case of highway node

C, the curves generated for edges BC and CD form a C1 continuous spline, because the

highway nodes B and D were marked as a C1 continuous adjacent node pair for highway

node C. In contrast, highway node B did not find an opposite adjacent highway node for

node C and the curve for edge BC does not have C1 continuity through node B.
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Figure 44. A highway network for 31× 23 macrochunks, covering 254 · 188km2 of land.
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4.2.3 Highway Dilation

After the curves of each highway edge that intersects with the generating macrochunk

have been created, the curves are dilated to form the highways’ outlines and their margins’

outlines in the form of polygons as seen in Figure 45. These outlines are later used to

determine which parts of a chunk are covered by a road and to leave enough space (the

margin) for generating the roadside features like traffic signs and utility poles.

Figure 45. Highway outlines (magenta) and highway margin outlines (orange) calculated

for highway curves (blue) for each curve segment. Note that this highway has been 50×

upscaled to be better visible on the massive 8192 · 8192 m2 macrochunk.
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The generation of the dilated outlines begins with a check to determine if the

macrochunk contains a highway node. If the macrochunk does contain a highway

node, the curves of its edges are sorted in a clockwise order based on the direction of

each curve’s first segment. That makes it possible to get the neighbouring curve to the

left of right of a specific curve. Next, the points surrounding each curve are generated.

Each curve was stored as a list of points q0, ..., qn−1 and these points are iterated. The

first points to the left and right of the curve (see Figure 45 A) are generated by using

the first segment of the curves to the left and right of the current curve. This ensure that

neighbouring road segment outlines do not overlap and match each other at points A

for highways and B for margins in the figure 45. The locations of the rest of the points

(see C in the figure 45) on both sides of the curve from q1 onwards are calculated by

determining a direction perpendicular to the sum of the last and next line segment vectors.

For example, for placing points corresponding to curve point qi, a vector perpendicular

to the sum of the segments qi−1qi and qiqi+1 is found. By the end of processing each

curve, most of the needed highway outlines are found. However generating the polygons

for highways did not cover the middle area of the junction (the polygon defined by points

A in the figure). The polygon for the middle of the junction is constructed by taking the

first position to the right of q0 on each curve forming a list of the needed points.

For the highway curves that intersect with the macrochunk but are not one of the

macrochunk’s highway node curves (see D in the figure), the approach with a perpendic-

ular vector described in the above paragraph is used. The found polygons are saved with

each edge of the highway graph of the macrochunk for later use.
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4.3 City Outline and Name Generation

After the positions and shapes of highways have been generated, the algorithm determines

if the generating macrochunk will contain any cities. The highway nodes are considered

for possible locations of city centers. If a highway node has exactly one or more than

three edges, it is considered suitable for a city. The reasoning being that if a highway has

a single edge, a city placed there ensures that the highway does not end in the middle

of nowhere. Additionally, it is reasonable for a city to be located at the convergence of

multiple major roads, such as in the case with more than 3 highways converging.

The maximum city size is limited to 2×2 macrochunks or roughly 16×16 km2. This

ensures that when a 3×3 macrochunk window centered around a generating macrochunk

is evaluated, all cities that overlap with the central macrochunk will be found. Therefore,

the highway nodes of all the 9 macrochunks in the window are considered for city centers.

Figure 46. Simplex noise based

vertex offsetting for malforming

regular polygons.

After the positions of the city centers in the win-

dow are found, the algorithm generates the outline

of each of these cities. The outlines are then com-

pared with the central chunk’s bounds to find the

cities that overlap with the macrochunk. To gener-

ate a city’s outline, some additional points inside

the city, called city subcenters, are generated and an

dilated outline encapsulating them is created. The

positions of the city subcenters are determined by

using the edges of the highway node that represents

the main city center. For each edge, the correspond-

ing macrochunk’s PRNG sequence values r4, ... are

used to generate a linearly interpolated point on the line between the main city center

position and the highway edge’s other end vertex. The distance of this interpolated point
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from the city center is bound in the range [0.15, 0.2], meaning that a city subcenter is

placed at most 20% of the edge length away from the main city center. Then the radius

of the city subcenter is calculated by taking the distance between the city subcenter and

an another point on the edge, that is 40% of the edge length away from the main city

center. This ensures that the subcenter radius is between 0.2 and 0.25 of the edge length.

After the distances from the city center and radii of every subcenter is found, the smallest

subcenter radius is picked and also used as the radius for the main city center.

After the center positions and their radii have been calculated, an regular icosite-

tragon10 approximation of a circle is generated for each of these positions with their

respective radius. Next, the vertices of every icositetragon are offset. A low frequency

simplex noise, yielding a pseudorandom offset in the range [−1, 1) for every vetrex. The

noise value is then multiplied by a factor of 0.1 of the respective subcenter’s highway

edge length. The resulting value is then used to offset each vertex on a line through the

center position and the vertex’s original position as seen in Figure 46. This gives each

polygon a more varied shape. The offset is chosen so that if two cities happen to share a

highway edge, they can not intersect with one another, because both cities are no more

than 0.45 of the shared edge length away from their respective main city centers. The

use of low frequency noise ensures that neighbouring vertices have a similar noise value

and therefore form a less spiky polygon than regular pseudorandom offsets.

After all the polygons have been calculated, they are combined into one large polygon

using a polygon union operation. This polygon defines the final outline of the city as seen

in Figure 47. After all the 9 macrochunks in the window of interest have been evaluated

for cities, the final city outline polygons are checked for intersection with the generating

macrochunk’s bounds and stored in the macrochunk for later use.

As the very last step, a pseudorandom name is generated for the city using lists of

common prefixes and suffixes. The algorithm generates localized names that seem like

10https://en.wikipedia.org/wiki/Icositetragon
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Figure 47. Highway edges (purple), city centers (black dots) and outlines (black lines) of

2 neighbouring cities.

plausible real places in Estonia, but could be changed to generate names for any country

with ease. There are 2 types of names generated. The first type uses combined names,

where an actual word is chosen as a prefix and suffixed with another actual word. This

generates names like Meresalu, Paunsoo and Kurelaane. The other type of names uses

partial phrases which are also combined to create the final name. Possible generated

names include names like Kurnja, Kabaste and Räpsa. The full list of possible name

prefixes and suffixes is available in appendix II. To determine the name of a city, the hash

of the city center’s position is taken and the the remainder of the hash after division by

100 taken. For the hash function, the hash function from Chapter 3.3 is reused. As city

centers are placed pseudorandomly, this will yield a relatively pseudorandom number

in the range [0, 99]. If the value is less than 80, a long name is generated and otherwise

a short name is generated. To determine the suffix, the chunk position is multiplied by

73 and hashed once more. The remainder of the hash after division by the length of

either the combined name or short name prefix list is then used as an index for the suffix

selection. The same is then done for the prefix, however the coordinates are instead

multiplied by 89 to reduce the possibility of overlapping hashes.
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5 Mesochunks

Mesochunks are medium sized chunks with a size of 512 × 512 m2. They are used

to generate medium-sized and computationally more expensive features that are not

necessarily visible to the camera from large distances. These features include higher

resolution terrain, side roads, internal city structure, villages, vegetation, traffic signs and

utility poles. The generation of a mesochunk assumes that its parent macrochunk has

already been generated and can be used to query data about city outlines and highways.

More specifically, mesochunks generate the following:

1. side roads that overlap with the mesochunk (subchapter 5.1);

2. intersecting rural areas, villages and their features (subchapter 5.2);

3. city streets, building shapes and classifications (subchapter 5.3);

4. utility pole networks (subchapter 5.4);

5. traffic signs for cities and villages (subchapter 5.5);

6. meshes for the terrain, all types of roads and terrain objects (subchapter 5.6).

5.1 Side Road Generation

Side roads are supplementary roads to highways that can be found throughout civilized

areas. In current context, they are paved, have one lane in both directions and are 8

meters wide. Similarly to highways, they have a 6 meter margin on each side for a

clearing for placing traffic signs, utility poles and sidewalks.

The general idea behind side road generation is very similar to the one of highway

generation as discussed in chapter 4.2. The main difference is that side road nodes are

generated differently from highway nodes. Side road nodes are generated on a smaller

scale and have some additional constraints on their placement.

Similarly to highways, a 7 × 7 mesochunk window is fixed around a generating

mesochunk. It is possible that some of these mesochunk positions in the window are
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contained on a different macrochunk that does not exist yet. As the process of determining

the position of side road nodes requires knowledge about intersecting highways and

cities, it is therefore necessary to also generate any missing macrochunks for all the

mesochunks inside the current window before proceeding.

First, the first values of the PRNG output sequence of each mesochunk in the window

is used to determine which mesochunks contain a side road node and the positions of

the side road nodes within the corresponding mesochunks. While highway generation

used the probability 0.22 for a macrochunk to contain a highway node, mesochunks use

a slightly higher probability of 0.25. This makes the side road network slightly more

dense, as there are more supporting roads than major roads in the real world. However,

if the mesochunk happens to intersect with a city, the probability threshold is ignored

and the mesochunk is guaranteed to contain a side road node. This means that near and

inside cities the side road network is even denser due to the large amount of people living

in the area.

After it has been determined if a mesochunk contains a side road node, the node’s

position is calculated. First, a check is made to detect if the mesochunk overlaps with

any highways. If the mesochunk does overlap with a highway, the overlapping segment

of the highway is found and its midpoint marked as the position of the side road node.

This ensures that side road nodes stick to nearby highways if one is present. If, however,

a mesochunk does not overlap a highway, another check is made to determine if the

mesochunk overlaps with a city. If the mesochunk does not overlap with a city, the

previous procedure of using the chunk’s PRNG output to determine the side road node

position is used. In case the mesochunk does overlap with a city, two possibilities for

the side road node placement are considered. When looking at the layouts of real cities,

commonly 2 different patterns emerge. Some cities have naturally evolved and expanded

over time, with less options for uniform urban planning because of historic preservation

and various other reasons as seen in Figure 48. However, some cities have instead been
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Figure 48. Partial street layout of Tartu, Estonia. Image taken from Google Maps.

Figure 49. Partial street layout of Barcelona, Spain. Image taken from Google Maps.
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planned more in advance with some neighbourhoods or even whole cities following a

strict grid pattern for more optimal land use as seen in Figure 49. For the algorithm to

generate both of these types of street layouts, a simple approach can be taken. The center

of each mesochunk containing a city can be taken and used to calculate a low frequency

simplex noise value in the range [0, 1). If the value is less than 0.5, a more random layout

is chosen and if not, a more uniform layout is chosen. If the random layout is chosen, the

previous procedure of using the chunk’s PRNG output is used. If the uniform layout is

chosen, the side road node is simply placed in the middle of the mesochunk. Since low

frequency noise is used, neighbouring mesochunks are likely to have a noise value in

a similar range. This enables some areas of cities to have a more random layout while

other areas have a more planned, grid-like look.

Figure 50. Side roads generated inside a city

(black) and one highway (the thicker line). Some

regions of the city use the more uniform side

node placement while others use a more random

placement.

Figure 51. Rural side roads and

one highway (the thicker line).

After the positions of the side road nodes have been determined in the window, an

identical process to highway node processing is applied. A number of edges is added to
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an Euclidean graph between every side road node pair that is no more than 2 mesochunks

apart on their longer axis. Next, all intersecting edges and neighbouring edges with an

inner angle below a threshold are culled. A side road network generated for a city can be

seen in Figure 50 and a side road network for a rural area in Figure 51.

5.2 Countryside Generation

This chapter gives an overview of the methods used to populate the areas outside of cities

with various natural and man-made features. The algorithm works by subdividing the

land into large polygons, called regions. Each region is assigned a general type and some

are then further subdivided into smaller, more specialized regions.

The algorithm generates one large region per mesochunk. To generate this region, a

point is fixed on the generating mesochunk that will serve as the center of the region. If

the mesochunk contains a side road node, the node’s position is selected as the center.

Otherwise, the mesochunk’s PRNG output sequence values r10 and r11 are used to

determine the point on the mesochunk at random. Then additional 8 points are found

for the 8 immediate neighbours of the central mesochunk in the same fashion. The 9

points are used to calculate a Voronoi cell [Aur91] around the central mesochunk’s region

center. The Voronoi cell is then considered as the outline of the region. This process can

be repeated for any mesochunk and due to the deterministic choice of points on each

mesochunk, neighbouring Voronoi cells will share the same edges.

Before proceeding, the algorithm checks if the region overlaps with a city. If the

region is completely covered by a city, the city takes priority and the region is dropped

from subsequent generation. If the region is only partially covered, the segment covered

by the city is subtracted from it and the algorithm proceeds with a smaller portion of the

initial Voronoi cell.

Next, each region is assigned a general type. The 4 possible types are village, nature

preserve, forestry and cultivation. First, it is determined if the region will be a village. If
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the mesochunk contained a side road node, the number of its edges is considered. If the

side road node has one edge, the region is marked as a village to make sure side roads

do not end in the middle of nowhere. Additionally, if the side road node has more than

2 edges, the chunk’s PRNG output sequence normalized value r12 ∈ [0, 1] is compared

against a static threshold of 0.35. If the value is below the threshold, the region is also

marked as a village. If the region was not marked as a village, a low frequency simplex

noise value at the position of the region center is sampled and used to determine the type

as seen in Table 1.

Table 1. The distribution of the types of the large regions based on noise value.

Noise Range Region Type Region Description

[0, 0.43) Cultivation Further subdivided land consisting mostly of farms

[0.43, 0.69) Forestry Further subdivided land consisting mostly of forests

[0.69, 1) Nature reserve Land consisting of undisturbed nature

Figure 52. Subdivided region polygons.

After the region outline and the type has been determined for a generating mesochunk,

the algorithm proceeds with generating the internal structure of each region. First, all

the regions are subdivided into smaller subregions. The regions are subdivided via
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a recursive algorithm that divides a polygon into multiple sections as can be seen in

Figure 52. Starting with the original outline of the region, the following procedure is

applied:

1. Pick the longest edge e of the polygon;

2. Calculate the centroid c of the polygon;

3. Calculate the orthogonal projection c′ of point c on line e;

4. Cut the polygon with a line formed through points c and c′;

5. Repeat from step 1 for each new polygon if the new polygon’s area is above a

threshold and maximum depth is not reached.

Next, the generation of cultivation, forestry and nature reserve regions are further

discussed.
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5.2.1 Cultivation Generation

Subregions of large regions marked for cultivation are assigned a type with the proba-

bilities shown in Table 2. To determine the type, sequential values of the mesochunk’s

PRNG values are used. After the subregions have been assigned one of these types, each

subregion is populated with the corresponding terrain objects. The objects are placed

by using the corresponding vegetation placement algorithm, as discussed in chapter 3.4.

The generated farmlands can be seen in Figure 53.

Table 2. Cultivation subregion types and their probabilities.

Proba-

bility

Subregion

Type

Placement

Algorithm

Subregion Description

0.35 Large Crop

Farmland

Grid Farmland with several meters tall crops.

0.35 Small Crop

Farmland

Grid Farmland with small crops.

0.1 Empty

Farmland

Poisson-disk Empty farmland with mostly nothing growing.

Contains a few random plants sprouted from

last season’s seeds.

0.2 Grove Poisson-disk Land with a small group of trees growing on

it. If near a road, has a 0.2 chance to contain a

house with a garden.
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Figure 53. A selection of generated farmlands and a grove. A: an empty farm. B:

farmland with small crops. C: A grove. D: farmland with larger crops.
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5.2.2 Forestry Generation

The forestry regions are mainly subdivided into different types of forest subregions.

The subregions are assigned a type with the probabilities shown in Table 3. Subregions

next to a road also have a 0.2 chance to have a rural house with a garden placed in it

(Figure 54). After the subregions have been assigned a type, they are populated with

objects like cultivation subregions, as seen in Figure 55.

Table 3. Forestry subregion types and their probabilities.

Proba-

bility

Subregion

Type

Placement

Algorithm

Subregion Description

0.15 Coniferous

Forest

Grid A spruce forest with shrubs that has been

planted by humans.

0.2 Coniferous

Forest

Poisson-disk A spruce forest with shrubs that has grown nat-

urally.

0.15 Deciduous

Forest

Grid A maple forest with shrubs that has been

planted by humans.

0.2 Deciduous

Forest

Poisson-disk A maple forest with shrubs that has grown nat-

urally.

0.2 Mixed For-

est

Poisson-disk A natural forest with all types of trees.

0.1 Sparse

Field

Poisson-disk A field with some trees and shrubs.
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Figure 54. Two houses with gardens generated in a forest next to a road.

Figure 55. A selection of generated forests. A: a planted coniferous forest. B: a sparse

field. C: a natural deciduous forest. D: a mixed forest. E: a natural coniferous forest.
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5.2.3 Nature Reserve Generation

The nature reserves are populated using the Poisson-Disk sampling as the vegetation

there has grown naturally. The type of the plant is chosen by sampling 2 octaves of

low frequency simplex noise. Poisson-disk sampled points with large noise values are

populated with mainly trees creating a large mixed forest, medium values with mainly

shrubs with occasional trees and low values nearly exclusively with shrubs as seen in

Figure 56.

Figure 56. A generated nature reserve. A: a medium density field with shrubs and trees.

B: A large mixed forest.
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5.2.4 Village Generation

A village is a small settlement with a small number of houses, usually located in rural

areas. As described in Chapter 5.2, some of the generated large regions were assigned

to contain villages if they contained a side road node and had met additional conditions

regarding the number of the node’s edges. Each village is also assigned a name using the

same naming algorithm as discussed in chapter 4.3. To generate the internal structure of

the village, first a number of supplementary unpaved roads within the region are generated.

Secondly, the outlines of the plots of land between roads are calculated. Each plot is

considered for multiple residences. Then, suitable plots are populated with buildings and

vegetation. Unsuitable plots are populated with the features of neighbouring mesochunks

to make them blend in with the village surroundings.

To generate the unpaved roads, first the side road node’s number of edges is checked.

If the number of edges is odd, the edge representing the first not C1 continuous road is

found. Then the first unpaved road is placed from the side road node to village outline

based on the direction of the first segment of the found road (Figure 57). If the number of

edges is even, the previous step is skipped. This divides the village into an even number

of simple polygons with almost convex shapes.

Each of these simple polygons bound by both the roads and the village outline is

processed separatedly. Each polygon is subdivided recursively using a similar algorithm

to the one discussed for countryside generation with one additional step (5):

1. Pick the longest edge e of the polygon;

2. Calculate the centroid c of the polygon;

3. Calculate the projection c′ of point c on line e;

4. Cut the polygon with a line formed through points c and c′;

5. If c or c′ lie on a road, mark the new edge formed on the line also as a road;

6. Repeat from step 1 for each new polygon if the new polygon’s area is above a

threshold and maximum depth is not reached.
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Figure 57. Left and center: First placed unpaved road (red) in the case of uneven number

of previously existing side roads (blue) inside a village (black). Right: If there is an even

number of side roads, no such unpaved road is placed.

These additional unpaved roads are merged with existing side roads and highways

and form the village road network as seen in Figure 58. The polygons between the roads

and the village outlines are then calculated and their edges, which are next to a side

road or a highway, are offset inwards. This is done so there is a clearing for the later

generation and placement of utility poles and traffic signs. The resulting polygons are

then subdivided using the region subdivision algorithm that was discussed in chapter 5.2

and each subdivided polygon is tested for a residence. If the subdivided polygon is next

to at least one road, the polygon is considered suitable for a residence. An attempt is

made to place a house inside the polygon next to the middle of the polygon’s longest

edge next to a road. If the house placed there would not be bound the polygon, the next

longest edge next to a road is considered. If no suitable position for a house is found,

the polygon is no longer considered suitable for a residence and is instead filled with

the features of the closest countryside region. Currently, one house out of 9 available

premodelled houses is chosen at pseudorandom, however as discussed in Chapter 2, a

custom country house generation algorithm could be implemented if one so desires. If

the house plot happens to be the closest plot to the village center and no church has been

placed yet, a church model is placed instead (Figure 60).
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Figure 58. Final road network for a village, consisting of side roads (highlighted) and

unpaved roads (outlined).

Figure 59. Subdivided polygons considered for residences (green). For most (A), a place

for a house (red) is found. If no house is able to be placed (B), the plot is instead filled

with the features of the neighbouring mesochunk. Note that the polygons next to side

roads (purple)have been offset away using side road margins (grey) to leave space for

later placement of traffic signs and utility poles.
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Figure 60. A typical rendered village.
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5.3 City Generation

After the side roads that overlap with the generating mesochunk have been generated, the

mesochunk generation process moves on to generating the internal structure of any cities

that the mesochunk overlaps with. First, an overview of the 3 different approaches for

generating street networks are discussed. Secondly, the division of land into plots and the

assignment of a a general plot type like suburban, industrial and commercial to each are

covered. Thirdly, the description of the used building generation algorithm is described.

5.3.1 Street and Plot Generation

The first approach would generate the whole city at once. As described in chapter 2, many

solutions for generating detailed finite procedural cities exist. Since every city generated

by the current system has a known finite outline, many of the existing algorithms could

be adapted for use in the devised algorithm. However, this is not always desired as

generating a large scale city can take too long for real-time use. In addition, this will

become a larger problem if the maximal size of the city is changed. Although the

algorithm described in this thesis limits the city size to 16 × 16 km2, it can be fairly

trivially modified to support cities with larger areas, which would increase the time to

generate a whole city at once even more. This problem can be alleviated by modifying the

chosen finite city generation algorithm when possible to only generate what is necessary

for a specific part of the city.

The second approach would generate a city partially, one district at a time. A district

would be defined as a plot of land enclosed with side roads, highways and the city

outline. Since every mesochunk that overlaps with a city is guaranteed to have a side

road node, these districts are relatively small, usually covering 2 × 2 mesochunks as

seen in Figure 61. Each district could then be independently filled with additional streets

and buildings as seen in Citygen [KM07] for example. However, some districts cover an
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area larger than the currently generating mesochunk has accurate side road data about.

For example, one such district is the highlighted district in Figure 61, where the bottom

left mesochunk (A) would not have enough information to calculate the whole district

outline without generating additional side road data in the upper right area (B). This

makes determining the outlines of some districts difficult by requiring one of the two

approaches. First, additional side road information could be generated in the direction

that the district of interest is extending towards. Second, every too large district could be

cut into smaller pieces so each mesochunk’s generated side road network is sufficient to

determine all the city districts within the mesochunk.

Figure 61. Districts (grey) generated by the

second approach between highways and side

roads (purple) with one district highlighted.

Size of mesochunks grid (green) for scale.

Figure 62. City street network (purple) gen-

erated by the third approach.

Since city generation has been thoroughly covered in previous research as discussed

in Chapter 2, a simpler third approach was taken to generate the internal structure of

the city and focus on the generation of other features. The devised approach overlays
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an axis-aligned grid over the side roads and highways within the city one mesochunk

at a time and places city streets on some of these grid lines. To add some variance, the

grid size varies between mesochunks, with some having streets every 86, 128 or 172

meters. Each grid edge also has a probability of 0.1 to not be placed at all, making some

plots of land longer and wider. To reduce odd street placement near side road junctions

and highway junctions, all placed streets that are too parallel to a nearby road are also

removed. This results in a street network as seen in Figure 62, which can then be filled

with buildings for each plot between streets.

Figure 63. 2 different districts

(red/brown and blue/white) meet

at the line dividing 2 city subcen-

ters.

Figure 64. The final city layout. A: an industrial region,

B: a commercial region, C: a tall residential region with

apartment buildings, D: a suburban area with smaller

houses (not rendered)

After the street layout has been generated, the polygon for each plot of land between

the streets is found and assigned a type. If the plot is less than 500 m2, the plot is marked

as a small park with some vegetation. Otherwise, the distance to the city border is

72



determined. If the plot is closer than 800 meters to the city border, the plot is marked as a

suburban area. If the plot is further inside the city, the type of the plot is determined with

the use of the city center and subcenters. The main city center is marked as a commercial

region. The furthest city subcenter is marked as an industrial region and the rest of the

subcenters are evenly divided between tall residential areas, industrial areas and suburban

areas. To determine the type of a plot using the city center and the subcenters, the closest

city center to the plot is found and the type of the city center taken. To prevent a more

noticeable division line between two centers (see Figure 63), a small chance, depending

on the distance from the second closest city center, to instead pick the type of the second

closest city center is applied. The final distribution of the types of plots for a small city

can be seen in Figure 64.

5.3.2 Building Generation

After each plot has been assigned a type, an attempt to generate buildings for it is made.

As the first step, each plot is offset inwards by a pseudorandom amount ranging from

2 to 7 meters. If the offset plot is convex and the plot is marked for tall residential or

commercial buildings, the offset plot is further subdivided (Figure 65). The offset plot

polygon is iterated with its longest edges processed first. A pseudorandom building width

w is picked and a new line parallel to the longest edge w units away through the plot

polygon is generated, which slices the polygon into two polygons. The smaller polygon

is then marked as a building and the process repeated for the remaining polygon with

the condition that the next edge can only be chosen from the original plot polygon.The

remaining area in the middle of the polygon will not be visible to the user travelling by

land and is left empty.

As the algorithm above does not work for high residential and commercial plots

with a concave outline, a single large building outline is generated for them instead.

For industrial plots, the initial offset outline is used to generate a tall concrete fence
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with probability 0.9. If a fence was generated, another further inwards offset polygon is

generated and used as the building outline. If no fence was generated, the initial offset

outline is used as the building outline instead.

Figure 65. A city building plot

(blue) after subdivision into multi-

ple building outlines (A).

The buildings are then generated by first deter-

mining the lowest height of the building. To do

this, terrain height is sampled at every corner of

the house and the midpoint of every edge and the

lowest height chosen. The height of the building is

then determined at pseudorandom, with a bias for

taller buildings near the center of the city and a tex-

ture chosen depending on the type of the building.

Next, each edge of the building outline is iterated

and a rectangular wall for the facade generated and

lastly the building outline polygon is triangulated

and a mesh for the roof generated (Figure 66).

For suburban areas, each plot is subdivided using the same algorithm used in the

village generation chapter and a selection from pre-existing house models is made. Each

plot also has a 0.005 chance to place a church instead of a house. Additionally fences are

generated around the houses and the gardens are populated with different vegetation.

Figure 66. Generated city buildings in downtown.
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5.4 Utility Pole Generation

To add more finer detail to the world, utility poles are generated. Utility poles are

commonly placed alongside roads in the real life for the ease of access of maintenance.

Although it is not uncommon to see utility poles pass through a forest without any major

roads. In the devised algorithm, utility poles are placed next to side roads on their

margins, which are free from any nearby trees.

To place utility poles next to a side road, the length of the road curve has to be

calculated. The number of poles to be placed next to a road is determined by dividing

and then rounding the length of the road curve with the average distance of 40 meters

between poles. The road curve is then iterated with the given step and an attempt to

place an utility pole made at the roadside of each point on the curve. To determine on

which side of the road the utility pole should go, the direction vector v of the curve at

the given point is checked. If vx ≤ vz, the segment is placed to the right of the direction

vector; otherwise to the left. If the initial utility pole position happens to intersect with

an intersecting feature like a street or an unpaved road, up to 4 additional attempts to

place the pole in increments of 2 meters further along the road are made. If no suitable

place for an utility pole is still found, the pole is not placed. This happens sometimes in

the cities when streets cause a pole to not be placed. This leaves a gap in the power lines

but unless the user is actively looking for these gaps, they are infrequent enough to not

be noticed.

To connect utility poles with power lines, each utility pole generates a list of neigh-

bouring utility poles it should connect to. This is trivial in the middle of the curve as each

utility pole has 2 neighbours, with only side road junctions requiring special care. At side

road junctions, a single utility pole is placed close to the junction and rotated towards

the center of the junction. The first pole of every road originating from the junction is

then added to the neighbour list of the pole placed close to the junction. To simulate the
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Figure 67. Generated utility poles with their connections at a side road junction.

realistic shape of hanging electric cables, a catenary11 curve is used. The final generated

utility poles and power lines are illustrated in Figure 67.

5.5 Traffic Sign Generation

The devised algorithm also generates settlement enter and exit signs, navigation signs,

speed limit signs and crossroads (Figure 68). The settlement enter (see figure 68 A)

and leave signs (see figure 68 B) are generated for both cities and villages. As villages

were only generated on mesochunks that contained a side road node, the road curves

corresponding to each of the side road node edges are iterated and the intersection point

with village borders found. The signs are then be placed to the right of the intersection

point next to the road. The same is done with cities, where signs are first added to

highways and then to every side road which has one end inside the city and the other

11https://en.wikipedia.org/wiki/Catenary
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outside the city.

Furthermore, direction signs (see figure 68 C and D) are generated at every side road

node by traversing the local side road graph of the node. If a highway connecting to a

city or a village is found up to 2 side road nodes away, a named sign with the distance is

generated. Note that the city or the village does not have to exist yet since the city and

village naming is based on their highway and side road node positioning respectively.

This means that the settlement name can be generated well in advance of the settlement

instead with the use of the corresponding road node. For villages, this means that a

direction sign can appear up to roughly 2 kilometers ahead of it which is the maximal

distance without increasing the size of a mesochunk’s local side road graph window. In

practice this is not a major problem as the user is unlikely to look for a specific village.

The maximal distance for city signs is about 20 kilometers.

A crosswalk (see figure 68 E) is generated at every side road node that has at least 2

neighbours in a village and a city. The outline of the crosswalk is determined by taking

the first segment of each road curve and calculating a rectangle perpendicular to it. Then

texture coordinates of each corner of the rectangle are found with the use of the road

curve direction vector.

Some speed limit signs are placed throughout the world. The 70 km/h speed limits

(see figure 68 F ) are placed about 100 meters ahead of the settlement enter signs. They

are generated together with settlement enter signs and placed 100 meters further down

the spline in the direction heading out of the settlement. The 90 km/h speed limits (see

figure 68 G) are placed similarly a few hundred meters after settlement exit signs as

a reassurance of the current speed limit. Lastly, 110 km/h signs (see figure 68 H) are

placed on highways after junctions with side roads, to alert drivers entering the highway

of a higher speed limit.
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A:

C:

E:

G:

B:

D:

F:

H:

Figure 68. Various traffic signs placed throughout the world. A: a settlement enter

sign. B: a settlemente xit sign. C and D: direction signs indicating the distance to a

settlement. E: crosswalks at side road junctions. F and G: speed limit signs placed

on side roads near entering and exiting settlemetns. H: speed limit signs placed on

highways near side roads merging with the highway.
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5.6 Rendering

This chapter gives an overview of how the generated features are rendered. First, the

methods used to generate the terrain meshes are discussed, followed by the road mesh

generation. The last subchapter gives an overview of how other terrain objects like the

trees, fences and traffic signs are placed and removed from the world.

5.6.1 Terrain Mesh Generation

To generate a terrain mesh for a mesochunk, the same noise function as discussed in

the macrochunk terrain generation chapter 4.1 is used. Instead of sampling it every 64

meters, it is sampled every 8 meters, creating a higher resolution heightmap. As every

mesochunk is divided into multiple regions with different types of ground textures, each

region is processed separately. Each region is triangulated into a terrain mesh so that it

would generate vertices for each heightmap grid point contained inside the region along

with any additional vertices required to create the outline triangles as seen in Figure 69.

This is done by finding all the intersecting heightmap tiles. Two triangles are generated

for the tiles that are completely within the region. For tiles that intersect with the region

border, the intersection points between the tile and the region border are found and used

to generate a triangle fan12 fitting the tile.

12https://en.wikipedia.org/wiki/Triangle_fan
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Figure 69. Two mesochunk regions (outlined with green) after being divided into triangles

(black).
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5.6.2 Road Mesh Generation

To generate the road mesh, an approach similar to the terrain generation is used with the

addition of having to generate rotated texture coordinates for each road segment. For each

straight road segment, the vertices shared with the heightmap grid and any additional

vertices on the outline of the road segment are calculated. For texture coordinates, a

line in the direction of the road and a line perpendicular to the road are calculated (see

Figure 70) and the texture coordinates of every vertex interpolated using the texture

coordinates at the endpoints of these lines.

Figure 70. Texture coordinates (blue) and the triangulation of a road segment. Red

vertices are taken from the heightmap, green vertices are calculated based on the outline

of the road.
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5.6.3 Terrain Object Instantiation and Rendering

Although terrains and roads are generated for several kilometers ahead, performance

problems emerge when trying to populate it all with vegetation and other terrain objects.

To control the number of these objects, a maximum terrain object instantiation radius is

defined, within which terrain objects are created. The performance of various instantiation

radii are discussed in chapter 6.3. To improve performance, all plants have several levels

of detail, which are dynamically switched as the camera moves (Figure 71). The lowest

level of detail uses a technique called billboarding, which renders a single 2D textured

quad instead of a 3D model.

Figure 71. Left to right: decreasing level of detail of a maple tree.
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6 Implementation and Assessment

This chapter gives a brief overview of the software used for the devised algorithm’s

implementation and describes the user interface. Afterwards, the visual results of the

algorithm are compared with real-life imagery and an overview of conducted performance

testing is given. Lastly, the key differences with existing solutions are discussed.

6.1 Implementation

The algorithm described in the previous chapters was implemented using the Unity13

game engine. Unity was chosen because of the ease of development as it provides a lot

of useful high level functionality and the author had previous experience with it. The

algorithm uses an implementation of FastNoise SIMD14 library for the fast generation

of simplex noise by utilizing the SIMD capabilities15 of the CPU when possible. For

polygon clipping, the clipper library16 is used, which enables high performance usage of

boolean operations on arbitrary polygons. The main algorithm logic is separated into

separate classes with minimal code specific to the Unity engine. Unity calls are handled

by special wrapper classes to enable easier porting to a different engine if one so desires.

The source code is available as an attachment and from a Bitbucket git repository17 and a

build is available as an attachment or from Google Drive18.

The implementation is multithreaded, with all the macro- and mesochunks data being

generated on separate threads. Both types of chunks have their own thread pool. The

meshes are created and objects instantiated on the main thread due to constraints by the

Unity engine. For this reason, they are created in limited size batches to prevent severe

13https://unity3d.com/
14https://github.com/Auburns/FastNoiseSIMD
15https://en.wikipedia.org/wiki/SIMD
16http://www.angusj.com/delphi/clipper.php
17https://bitbucket.org/AndreasGP/mastersthesis/
18https://drive.google.com/open?id=1QSqh7hQItECjR_iY_IJRj1XpkMSdltfs
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frame rate drops.

Figure 72. The user interface of the application while driving in a car.

The user can choose to fly around freely or drive around in a default car provided by

Unity. The user interface enables the user to also control different render distances to

reduce or increase performance. Additionally, a list of common points of interests are

provided (Figure 72).

84



6.2 Visual Assessment

This chapter compares the results of the algorithm to real world imagery from Google

Maps19 and suggests potential future improvements based on them.

The rural road networks generated by the devised algorithm are mostly connected,

but dead-end roads are quite common (Figure 73). To mitigate this, villages were placed

at the ends of such roads to give each road a function. In real life, rural roads tend to be

longer and do not contain as short length cycles as the generated roads (Figure 74). In

addition, rural roads branch frequently into more minor dead-end roads which lead to

remote residences or agricultural roads. Real roads also have more turbulence in their

shapes.

Figure 73. Rural side roads gen-

erated by the devised algorithm.

Figure 74. Road network near Rakvere, Estonia.

Taken from Google Maps.

The generated side road junctions (Figure 75) are very basic and could be improved

by introducing additional turn lanes and branches along with proper road markings

(Figure 76).

The generated highway junctions merge with each other like side roads do. These

junctions could be vastly improved by generating multi-tiered junctions to help the traffic

flow (Figure 77).
19https://maps.google.com/
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Figure 75. Rural side roads generated

by the devised algorithm.

Figure 76. Road junction near Jõgeva,

Estonia. Taken from Google Maps.

Figure 77. A clover junction near Leipzig, Germany. Taken from Google Maps.
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The generated city layouts are of acceptable quality when travelling on land. From

top view, the axis-aligned streets of the city emerge (Figure 78). This could be improved

by adapting a more refined city generation algorithm from chapter 2. Additionally, more

concentric circular roads could be introduced to be generated around city centers, as seen

in Tirana, Albania for example (Figure 79).

Figure 78. City street layout generated by the

devised algorithm.

Figure 79. A street network in

Tirana, Albania. Taken from

Google Maps.

The generated villages (Figure 80) approximate real villages pretty well (Figure 81).

The generated forests (Figure 82) are divided into relatively small patches with

different growth patterns due to being grown and owned by different entities. Similar

division can be seen in real life (Figure 83).

The generated farmlands (Figure 84) are also similar to real world farmlands (Fig-

ure 85), with occasional forest groves and farms commonly aligned with roads.

The generated nature reserves (Figure 86) are quite simplistic and could use more

plant variety when compared to real nature reserves (Figure 87). However when moving
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Figure 80. Village generated by the devised

algorithm.

Figure 81. A village named Drelów,

Poland. Taken from Google Maps.

Figure 82. Forests generated by the devised

algorithm.

Figure 83. A forest near Jõgeva, Es-

tonia. Taken from Google Maps.

Figure 84. Farmland plots generated by the

devised algorithm.

Figure 85. Agricultural land usage

near Tartu, Estonia. Taken from

Google Maps.
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Figure 86. Nature reserves generated by the

devised algorithm.

Figure 87. Nature Reserve in Saare-

maa, Estonia. Taken from Google

Maps.

around a nature reserve, it is clear that is more natural than the planted forests and

farmlands.

6.3 Performance Assessment

The devised algorithm was tested on two computers. The first computer had an Intel

Core i5 4460 processor, 16 GB of RAM, a Nvidia GeForce GTX970 4GB graphics card

and was tested on the highest quality setting with a 1920 × 1080 px resolution. The

second computer had an Intel Core i5 3437U processor, 8 GB of ram, an Intel HD

Graphics 4000 integrated graphics card and tested on the lowest quality setting with a

1366× 768 px resolution. The two most important parameters that the user can change

are the mesochunk generation radius and the terrain object instantiation radius. The

mesochunk generation radius controls how many mesochunks around the player will

be generated in every direction. The terrain object instantiation radius controls up to

how far from the player terrain objects like trees will be instantiated. There were 2

tests done with both computers with different mesochunk and terrain object radii. The

tests included measuring average frame rates when looking around in different regions
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while remaining stationary (Figure 88) and when moving through different areas at 100m
s

(360km
h ) (Figure 89). Furthermore, additional tests measured the time taken to generate

specific features 4.

As can be seen from the data in table ??, the frame rate drops the most in forests due

to a large number of terrain objects. This could be improved by buying or creating more

optimized tree models. The average frame rates on the first machine were acceptable.

To maintain a relatively consistent 60+ frames per second, mesochunk radius of 2 and

terrain object instantiation radius of 200 meters could be used. The second machine

suffered pretty heavily in frame rates, averaging about 40 frames per second due to

an integrated graphics card. On modern hardware, the application is usable and could

possibly be further optimized to run steadily even on the older, second machine. The

movement speed (360km
h ) used in the test was quite high and users travelling by land

are less likely to experience lag induced by quick movement, as their speed will likely

be lower. As the application had to work with only freely available models of varying

quality, the frame rates on lower end computers and even on higher end computers in

dense forests were lower than they could be. Additional frame rate problems were caused

by non-optimal usage of object pooling, which could be further improved in future work.

As can be seen from the data in table 4, macrochunk generation is quick even if it

contains a city and most of the time is spent generating mesochunks, which take half a

second to generate their data and another half a second to generate meshes and instantiate

objects. On computer 1, a total average generation time of 728 ms for a mesochunk

would indicate that 82 mesochunks could be generated and rendered per minute, however

as the mesochunks are generated in parallel on different threads, 50 chunks were able to

be generated in 10 seconds on machine 1 and 14 seconds on machine 2. Extrapolating

these numbers yields that machine 1 could roughly generate 300 mesochunks (9 · 9 km2)

of fully detailed land per minute and machine 2 could roughly generate 214 mesochunks

( 7.5 · 7.5 km2) per minute.
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Figure 88. Average (circle), minimum (square) and maximum (triangle) frame per

second while looking around in various environments. The near settings used mesochunk

generation radius 1 and terrain object instantiation radius 150 meters.

Figure 89. Average (circle), minimum (square) and maximum (triangle) frame per

second while moving through and generating various environments. The near settings

used mesochunk generation radius 1 and terrain object instantiation radius 150 meters.
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Table 4. Average generation times of different features.

Computer 1 Computer 2

Macrochunk generation without a city

(overall)

7 ms 15 ms

Macrochunk generation with a city (over-

all)

18 ms 27 ms

Mesochunk data generation (overall) 413 ms 553 ms

Mesochunk city data generation 82 ms 117 ms

Mesochunk village data generation 270 ms 361 ms

Mesochunk rural region data generation 320 ms 423 ms

Mesochunk mesh generation and object

instantiating (overall)

315 ms 448 ms

Mesochunk terrain mesh generation 142 ms 218 ms

Mesochunk road mesh generation 8 ms 20 ms

Mesochunk terrain object instantiating 137 ms 187 ms
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6.4 Comparison with Previous Work

This chapter outlines the main new features of the devised algorithm that are not previ-

ously described for infinite world generation. The three known works on infinite world

generation are the Charack framework by Bevilacqua et al [BPd09], which discusses infi-

nite terrain generation; infinite city generation framework by Steinberger et al [SKK+14]

and the most closely related framework by Magalhães [eM17].

The Charack framework is used to generate infinite worlds with no artificial features.

It focuses on land and sea generation with a large focus on generating coastlines. The

algorithm devised in this thesis uses a noise-based heightmap, which generates more

basic terrain and could potentially be integrated with the Charack framework.

The infinite city generation framework by Steinberger et al generates infinite cities on

the CPU using shape grammars. The achieved speeds of generation are very impressive,

but as the city layout was not a large focus, they used an axis-aligned grid with a few

diagonal lines for the streets, which has significantly less variance than the devised road

generation algorithm in this thesis.

Magalhães’s master’s thesis focuses on a similar topic to this thesis. He generates

2-dimensional procedural infinite worlds with some infrastructure, namely cities and

highways, along with basic terrain and water bodies. For the land and oceans, a Perlin

noise based heightmap is used with points below a global water level threshold marked

as oceans. In addition to oceans, he also generates rivers in a fixed size area, which was

described in chapter 2.1. The devised algorithm for this thesis does not generate water as

reimplementing the fixed global water level based approach had little novel value and the

generation of other new features was a priority. For the cities and highways, Magalhães

describes two approaches, which were discussed in chapter 2.2. A shortcoming of his

algorithm is that the city street networks look very artificial and the city outlines have

a relatively convex Voronoi cell-like shape (Figure 90). Additionally, no internal city
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structure is generated and his highways are placed as almost straight lines between cities,

which go through water (Figure 91). No additional features are generated outside the

cities, other than the rivers and highways.

Figure 90. A city layout generated by

Magalhães [eM17].

Figure 91. Cities and highways gener-

ated by Magalhães [eM17].
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7 Future Work

This chapter discusses possible expansions of the algorithm to further expand the variety

of the generated features. First, a potential new large chunk, called a megachunk, is

introduced and the possibilities of using them for water body and railway generation are

discussed. Next, a brief description of an improved utility pole generation algorithm and

ideas for improving the junctions are discussed.

7.1 Megachunks

Chapter 3.1 introduced 2 types of chunks: macrochunks of size 8192 × 8192 m2 and

mesochunks of size 512× 512 m2. However, the larger, macrochunks, are not necessarily

big enough to generate more intricate large scale features like rivers and varied height

lakes. Therefore, even larger chunks, called megachunks, could be implemented to

support these features. A megachunk would be 128 × 128 km2 of size and therefore

contain 16× 16 macrochunks.

Similarly to how a macrochunk generated a low resolution heightmap that was later

refined by a higher resolution heightmap for mesochunks as discussed in chapter 4.1, an

even lower resolution heightmap could be generated for a megachunk using the same

noise. The generated heightmap would then roughly approximate the terrain of any

macrochunks generated on top of it.

7.1.1 Water Bodies

The heightmap of a megachunk could potentially be used to generate rivers. Each

megachunk could be considered separately for a river in the area bounded by the

megachunk. Since a megachunk covers a relatively large area of 128 × 128 km2, the

generated rivers would be of a reasonable length and it would be unlikely for the user

to notice that rivers do not cross any megachunk borders as they are so infrequent. By
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limiting the area for the river generation to a single megachunk and having access to the

heightmap of the megachunk, a previously existing algorithm from chapter 2.1 could be

implemented which generates rivers by post-processing the heightmap to find suitable

paths. The generated rivers could then be stored in the megachunk’s data and when a

macrochunk or a mesochunk is being generated, queried from it.

The addition of rivers would require some changes to the macrochunk and mesochunk

generation process. First, the roads must also generate bridges when crossing the rivers

and avoid generating roads in places, where a river could overlap with a road in the same

direction. The bridges could be generated modularly with the use of a predefined 3D

model of a bridge segment. That could then be placed sequentially over the distance of

the river, with parts of the bridge clipped under the terrain. To avoid too long road and

river overlaps, a check could be made for the roads near rivers to determine the rough

distance of the overlap and to remove the road from generation.

With the generation of rivers, the city placement algorithm could be changed to favour

areas close to rivers as cities have historically emerged near rivers due to water commerce

and having a source of food. The generation of the inner structure of cities could stay

largely unchanged and just clip the areas near rivers from street and building generation,

although it would be possible to further expand this by introducing special waterfront

generation for areas near water. Furthermore, villages could also be placed near rivers

with a higher frequency, with the river areas culled from the building generation step.

Forthe rural areas, a new special region for the riverside could be introduced, which

could contain plants accustomed to near water bodies.

In addition to the rivers, varied height lakes could be generated. Lakes could be

generated similarly to the rivers with the use of a megachunk’s heightmap and being

bound by the megachunk’s borders. A grid of points could be sampled on the heightmap

and some, that are the local minima of the surrounding area, considered as the lake seed

points. Then, each seed point could be generated on the heightmap with a flood algorithm
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until water levels reach a specific height or a maximum surface area is reached.

As lakes are usually passable by going around and bridges are rarely built on lakes,

the road algorithm should be modified to discard any roads that intersect with a lake. As

another improvement, it would be possible to modify the road algorithm so instead of

completely discarding a road, several attempts would be made to place the road so that it

would follow the shoreline [PM01, Per16].

7.1.2 Railroads

In addition to water bodies, megachunks could be used to generate railroads. Railroad

generation differs from road generation by having to generate longer continuous tracks

and paying more attention to the terrain and junctions. As trains are more sensitive to

terrain gradient than cars, the train tracks should be placed on the terrain with minimal

elevation differences. As train tracks are a lot less frequent in real life, generating a few

tracks on megachunks would be enough. The tracks could be generated by attempting

to connect different cities on the megachunk by finding a minimal elevation path using

the megachunk’s heightmap. Special care has to be taken at railway junctions as tracks

should merge without any sharp turns. For example, at a junction with 3 tracks, two of

them could be merged with the third track with C1 continuity by picking a derivative at

the junction in the direction directly between the two tracks merging with the third one.

7.2 AI Navigation Agents

As all the road networks are available as graphs, it would be possible to implement

AI agents driving around on the roads to add a new layer of immersion to the world.

However these agents can likely not be generated to be temporally deterministic, as

determining their locations would require simulating their interactions with other agents.

In addition to vehicles, it would also be possible to add pedestrian agents in settlements.
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7.3 Improved Utility Pole Generation

As a future improvement, it would be possible to tweak the side road generation algorithm

to also generate power lines through areas without roads. To do this, a network very

similar to side road network could be generated using the same side road nodes, but

during the graph culling phase a smaller angular threshold could be used. This would

create a network that would have nearly all the same edges as the side road network

plus some extra edges that were not culled. That network could then be used to place

utility poles directly instead of the current side road network. This would also require

the countryside and city generation algorithms to be modified to accommodate the more

advanced placement of utility poles.

7.4 Improved Junctions

Figure 92. A junction generated by Galin et

al [GPGB11].

As discussed in chapter 6.2, the currently

generated junctions are not as realistic as

they could be. To improve them, an area of

land around them could be reserved for fur-

ther junction generation, with additional

merge lanes and road markers generated.

In addition to standard junctions, round-

abouts could be generated by generating a

circular road which merges with all the incoming roads. For proper multi-tiered junctions

at highway junctions, a more complex system would have to be developed, enabling the

generation of multi-tiered highways with exit and enter ramps like the one created by

Galin et al (Figure 92) [GPGB11].
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8 Conclusion

In this thesis an algorithm that procedurally generates deterministic infinite worlds with

infrastructure was created. The aim of the thesis was to create an algorithm capable

of generating common infrastructure elements like roads, cities and villages along

with appropriate nature features for areas close to human settlements. The created

algorithm uses a newly devised exponential generation technique, which divides the

world into differently sized nested pieces, called chunks. Each differently sized chunk

was used to generate world features of similar size. Two different chunks, called macro-

and mesochunks, were implemented and third potential chunks, called megachunks,

discussed. The larger of the implemented chunks, macrochunks generated highways and

city locations, shapes and names and provided approximate terrain far away from the

camera for a large render distance. The smaller mesochunks generated side roads, named

villages, city layouts, buildings and traffic signs, including speed limits and direction

signs. Mesochunks also divided the rural areas between different agricultural areas. The

three main types of generated rural land were cultivation, forestry and nature reserves,

each of which were further populated with various vegetation layouts and occasional

residences. The generation of an infinite world with this level of complexity has not

been tackled before to the extent of author’s knowledge. The achieved results were of an

acceptable level with many possibilities for further research. Applications of the devised

algorithm include usage as a base terrain for a computer game, which could make use

of the niche of being infinite or having a very small initial file size. Originally, the idea

of using the algorithm as a world for a flight simulator was entertained, but the current

algorithm is not performant enough to be capable of having an acceptable render distance

for flight, although performance while driving in a car is acceptable.

The generated features were compared with real world imagery and found to share

the basic common traits with them, albeit with less variety than the real world. The main
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constraint for little variety was due to the lack of free high quality assets. The algorithm’s

performance was measured and it was determined to be fast enough to generate 9× 9

km2 of fully detailed terrain per minute on a modern computer. The implementation’s

frame rate suffered slightly from varying quality free assets and unoptimized object

creation in dense forests. By creating high quality optimized assets and implementing

further optimizations, the algorithm could likely be modified to run steadily even on

older computers with integrated graphics cards. The algorithm was implemented in the

Unity game engine and lets the user to fly around freely or to drive around in a car to

explore the infinite world.

Reflecting on the work, devising this algorithm required a lot of experimentation

and clever combining of previously existing techniques to generate seamless infinite

features. A huge help was previous knowledge gained from the author’s bachelor’s thesis,

which discussed infinite terrain generation using voxels. Overall, infinite procedural

world generation is a very interesting topic and the author would recommend anyone to

help further expand this exciting field of research. The development of the algorithm

will continue with initial efforts going towards optimizing performance for lower end

machines and hopefully making the algorithm capable of running on mobile devices.
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Appendices

I. Settlement Name Generator

As initially discussed in chapter 4.3, settlements are assigned a pseudorandom name

by selecting one of the prefixes and one of the suffixes from either the short names or

combined names selection in table 5.
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Table 5. Short and combined settlement name prefixes and suffixes.
Short Names Combined Names

Suffix Prefix Suffix Prefix

Val linn Valge salu

Tar ge Must saare

Tal va Põllu järve

Nar ste Saan nõmme

Kur na Pai jaani

Kaba sa Palu vere

Pär la Kolu metsa

Rap si Ada jõe

Räp nja Ima vee

Sal Kure maa

Põr Tam küla

Lusti kivi

Väike la

Suure mäe

Vana linna

Kohtla laane

Kilingi palu

Paun lepa

Silla kase

Vastse oja

Metsa oru

Jaama mõisa

Järva jala

Soo välja

Männi soo

Harju nurme

Savi nurga

Pika ranna

Aru taguse

Kassi

Koera

Pudu

Taga

Uue

Mere
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II. Source Code and Build

The source code is available as an attachment and from a Bitbucket git repository20 and a

build is available as an attachment or from Google Drive21.

20https://bitbucket.org/AndreasGP/mastersthesis/
21https://drive.google.com/open?id=1QSqh7hQItECjR_iY_IJRj1XpkMSdltfs
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III. Glossary

Billboarding - a technique used to represent 3D objects far away as a simple 2D textured

quad instead to save on performance.

Chunk window - A collection of neighbouring chunks, forming a square shape, that are

used for the generation of the central chunks.

Context sensitivity - Property of infinite world generation that defines the maximum

area around a point in the world that can affect the generation of features at the given

point.

City center - the highway node used as the center of a city. When used plurally, also

city subcenters are included.

City subcenter - a place in a city that serves as a secondary city center away from the

main city center.

Curve - a continuous image of some interval in a 2-dimensional space in the context of

this thesis.

Curve segment - Generated curves in the algorithm are stored as a list of points and

rendered as linear line segments between these points. These line segments are called

curve segments.

Exponential generation - a technique employed in this thesis to generate a nested chunk

structure, where each different sized chunk can be used for generating different sized

features.

Gradient noise - a computer generated visual noise, where each grid point has been

assigned a gradient to control the neighbouring values.

GPGPU programming - General purpose graphics processing unit programming, which

uses the GPU to do highly parallel generic calculations.

Heightmap - a regular 2D grid representing terrain, where each vertex has the height

value at given point. Commonly stored as a greyscale image.
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Highway - the largest type of road used in the thesis. Generated between macrochunks

with up to one highway node per macrochunk.

Highway node - a point on macrochunk that is used as an endpoint for highway edges

and curves.

Highway curve - a Bezier curve generated for an highway edge, that passes through the

highway edge endpoints but has a more bent shape than the straight edge itself.

Highway edge - an edge connecting two macrochunks’ highway nodes.

Highway junction - a highway node that has multiple highway edges.

L-system - short for Lindenmayer system, is a parallel rewriting system and a type of

formal grammar, useful for generating repeating self-similar patterns.

Macrochunk - the larger generated chunk, that generates highways and city outlines,

positions and names.

Mesochunk - the smaller generated chunk, that generates side roads, city internals and

rural regions.

Noise - see gradient noise.

Parametric curve - a curve that can be represented as a polynomial function.

Region - a region of a chunk that has an explicit outline and a type assigned to it. For

example, types can be mixed forest, nature reserve and village.

Side road - the second largest type of road used in the thesis. Generated between

mesochunks with up to one side road node per mesochunk.

Side road node - see highway node.

Side road curve - see highway curve.

Side road edge - see highway edge.

Side road junction - see highway junction.

Spline - a large curve created by joining multiple parametric curves together.

Tensor field - a grid with a tensor assigned to each vertex. Tensors are geometric objects

like vectors.
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Voxel - a value of a regular 3D grid. Commonly visualized as a cube.

Quasirandomness - a seemingly random low-discrepancy distribution that is more

uniform than completely uncorrelated distribution.

Window - see chunk window.
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