
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Sander Tars

Multi-Domain Neural Machine
Translation

Master’s Thesis (30 ECTS)

Supervisor: Mark Fišel, PhD

Tartu 2018

Multi-Domain Neural Machine Translation

Abstract: In this thesis we present an approach to neural machine translation (NMT) that
supports multiple domains in a single model and allows switching between the domains
when translating. The core idea is to treat text domains as distinct languages and use
multilingual NMT methods to create multi-domain translation systems; we show that this
approach results in significant translation quality gains over fine-tuning. We also propose
approach of unsupervised domain assignment and explore whether the knowledge of
pre-specified text domains is necessary; turns out that it is after all, but also that when it
is not known quite high translation quality can be reached, and even higher than with
known domains in some cases. Additionally, we explore the possibility of intra-language
style adaptation through zero shot translation. We show that this approach is able to style
adapt, however, with unresolved text deterioration issues.

Keywords: Neural machine translation, unsupervised clustering, zero shot translation,
multi-domain, domain tuning, style adaptation

CERCS: P176 Artificial intelligence

Mitme-domeenne tehisnärvivõrkudel põhinev masintõlge
Lühikokkuvõte: Käesolev magistritöö kätkeb endas neurotõlke lähenemist, mis toetab
mitme-domeenseid tekste ja võimaldab tõlkimisel arvestada domeenide eripära. Antud
lähenemine lähtub põhimõttest, et me käsitleme domeene kui eraldiseisvaid keeli, ning
kasutame nende tõlkimiseks mitmekeelse neurotõlke meetodeid. Samuti näitame et mai-
nitud lähenemise tulemusena tõlkekvaliteedi hinnang paraneb märgatavalt. Käesolevas
töös pakume välja ka lähenemise domeenide automaatseks määramiseks ja uurime kas
eelnev domeenijaotuse info on üldse vajalik. Tuleb välja, et on, kuid kui sellist infot ei
ole, on automaatset määramist kasutades võimalik samuti kõrge tõlkekvaliteedini jõuda,
kohati isegi kõrgemani kui eelnevat domeenijaotuse infot kasutades. Lisaks uurime selles
töös, kas keelesisene stiilile kohandamine tühipauk(zero-shot) tõlke kaudu on võimalik.
Näitame, et see lähenemine on võimeline stiilile kohanduma, kuid koos siiani lahenduseta
kvaliteedilangusega.

Võtmesõnad: neurotõlge, juhendamata klasterdamine, tühipauk(zero-shot) tõlge, mitme-
domeenne, domeenile sobitamine, stiili kohandamine

CERCS: P176 Tehisintellekt

2

Contents
1 Introduction 4

2 Background 6
2.1 Data . 6
2.2 Vector representations . 7
2.3 Machine Learning . 8
2.4 Neural Networks . 10
2.5 Neural Machine Translation . 11

3 Related Work 12

4 Methodology 13
4.1 Domain as a Tag . 14
4.2 Domain as a Feature . 14
4.3 Automatic domain tags . 15
4.4 Zero-shot style adaptation . 16

5 Experiments with Known Domains 17
5.1 Mining Wikipedia for Translations . 17
5.2 Technical Settings . 18
5.3 Results . 18

6 Experiments with Automatic Domains 21
6.1 Automatic single-domain tagging . 21
6.2 Unsupervised multi-domain tagging 24

7 Experiments with zero-shot style adaptation 36

8 Conclusions 37

References 42

Appendix A 43

Appendix B 45

Appendix C 46

Licence 49

3

1 Introduction
It the last decade, machine translation (MT) has become widely used tool. The uses range
from translating manuals and professional texts to translating texts in order to create
parallel training data for MT itself. There are several reasons for the advance of MT.

Firstly, the amount of parallel data has increased for many languages to the level,
where it is sufficient to train usable MT systems. There are many parallel data sources,
for example OpenSubtitles (Lison and Tiedemann, 2016) and European parliament
texts (Koehn, 2005).

Secondly, the increase in computational power and use of GPU-s has allowed the
use of artificial neural networks. Neural networks have been shown to produce results
superior to statistical machine translation when enough data is provided. For this reason,
many MT systems, for example Google Translate, have migrated to neural machine
translation (NMT) and MT has become almost synonymous with NMT.

The field of NMT is still rapidly evolving and there are many aspects to be improved.
One of these is the domain effect on translation quality. Data-driven machine translation
systems, like NMT systems, depend on the text domain of their training data. In a typical
in-domain MT scenario the amount of parallel texts from a single domain is not enough
to train a good translation system, even more so for neural machine translation (NMT,
Bahdanau et al., 2014); thus models are commonly trained on a mixture of parallel texts
from different domains and then later trained on in-domain texts to fine-tune the model
to specific domain (Luong and Manning, 2015).

In-domain fine-tuning has two main shortcomings: it depends on the availability
of sufficient amounts of in-domain data in order to avoid overfitting and it results in
degraded performance for all other domains. The latter means that for translating multiple
domains one has to run an individual NMT system for each domain.

In this thesis we treat text domains as distinct languages: for example, instead of
English-to-Estonian translation is seen as translating English news to Estonian news. We
use the idea of viewing domain as a distinct language in all three parts of the thesis.

In the first part of the thesis we test two multilingual NMT approaches (Johnson
et al., 2016; Östling and Tiedemann, 2017) in a bilingual multi-domain setting and show
that both outperform single-domain fine-tuning on all the text domains in conducted
experiments.

However, this only works when the text domain is known both when training and
translating. In some cases the text domain of the input segment is unknown – for example,
web MT systems have to cope with a variety of text domains. Also, some parallel texts
do not have a single domain while they are either a mix of texts from different sources
(like crawled corpora) or naturally constitute a highly heterogeneous mix of texts (like
subtitles or Wikipedia articles).

In the second part of this thesis, we address these domain knowledge issues by
replacing known domains with automatically derived ones. At training time we cluster

4

parallel sentences and then the multi-domain translation approach is applied to these
clusters. When translating, we classify the input segments as belonging to one of these
clusters and translate with this automatically derived information.

Finally, in the third part of this thesis, we present initial experiments on intra-language
translation between different text domains. The aim of these experiments is to explore
the possibility of intra-language style adaptation. Since no parallel data is available for
such a task we exploit the zero-shot learning feature of Johnson et al. (2016) and train a
multilingual multi-domain NMT system.

In the following related work is reviewed in Section 3, the used methodology of
multi-domain NMT and sentence clustering is presented in Section 4. After that, the
conducted experiments are described in Section 5, Section 6 and Section 7 and the results
are discussed in Section 8 concluding the thesis.

5

2 Background
In this section the descriptions of most relevant used methods and related definitions
is given. These are grouped into four groups: data, vector representations, machine
learning, and neural networks.

2.1 Data
Text corpus

There are mainly two types of corpora used in MT - parallel corpora and monolingual
corpora.

Parallel language corpus is a set of sentences that are aligned as each others transla-
tions. Parallel corpora can be either bilingual or multilingual. Parallel corpora are usually
domain-specific. For example, OpenSubtitles corpus concentrates on movie subtitles,
EuroParl corpus on the texts of european parliament, and so on. The corpora have
different degrees of cleanness, which means how much there are non-parallel sentences.

For low-resource parallel corpus languages, the parallel corpora can be extended
through the process of backtranslation. Backtranslation is the process of translating
monolingual corpus of target language to source language. The direction is important, so
that the text that model learns to generate would be still correct. Backtranslated texts are
very noisy, which means they have to be thoroughly cleaned, which is usually done by
using attention info of the neural neural network that was used to backtranslate the texts.

Parallel corpus

A parallel corpus is a corpus that consists of parallel sentences. In most cases, parallel
corpora are bilingual, meaning each parallel sentence pair is between language L1 and
language L2. Parallel corpora can also be multilingual, i.e. they can contain more than
two languages. This means that not only sentences between L1 and L2 are there, but
also L1− L3, L3− L4, etc.

Depending on the use case, a bilingual, one-to-many, or many-to-many training
corpus may be extracted from parallel corpus, depending on whether bilingual, one-to-
many, or many-to-many model is to be trained.

Related to parallel corpora are comparable corpora. Comparable corpus consists of
texts which are similar in content (same genre, topic, etc.), but the content is not parallel.
For example, in this thesis we use Wikipedia as a big comparable corpus where articles
are aligned by topic, but content is usually not parallel.

6

2.2 Vector representations
Embedding

An embedding is a mapping from discrete objects like words, to vectors of real numbers.
For example, 100-dimensional word-embeddings could include:

word1 : (0.01359, 0.00075997, 0.24608, ...,−0.2524, 1.0048, 0.06259)
word2 : (0.01396, 0.11887,−0.48963, ..., 0.033483,−0.10007, 0.1158)

The dimension values in these vectors typically have no deeper meaning. What holds
the information, is the overall patterns of location and distance between vectors - the
property that machine learning takes advantage of. Neural networks train best on dense
vectors, where the vector values together define an object. Since texts and words do not
have a natural dense vector representation, embedding functions have to be applied to
create that representation.

Embedding vectors can also serve as an output to evaluate similarity of objects, for
example Euclidean distance between vectors applied in nearest neighbor method.

In this thesis, we use embedding vectors in neural networks for word representations
and as domain embedding vector. We also use sentence vectors in sequence classification
in Section 6.

FastText classification

FastText is an open-source library that allows learning text representations and text
classifiers (Bojanowski et al., 2016; Joulin et al., 2016).

One thing that makes fastText vector representations special is that it also considers
subword units, unlike word2vec which treats word as the smallest unit. FastText considers
words as composed by overlapping n-gram characters. For example, "plant" is composed
of [pla, plan, plant],[plant,lant,ant], etc. By default fastText considers n-grams at least
three characters long.

FastText also produces fast and accurate text classification. The reasons for good
results of fastText are that is uses hierarchical tree structure for categories instead of
flat structure, which decreases time complexity from linear to logarithmic in respect
to number of classes. Also, fastText uses Huffman coding algorithm to account for
imbalanced classes. FastText text low dimensional representation vector is produced by
summing the word representation vectors that are present in the text.

In this thesis we use fastText in Section 6 to classify new sequences into automatically
generated clusters.

7

Sent2vec

Sent2vec (Pagliardini et al., 2017) produces numerical vector representations for short
texts or sentences similarly to fastText. Sent2vec can be thought of as an unsupervised
version of FastText for sentences. Sent2vec is able to produce sentence embedding vectors
using word vectors and n-gram embeddings and simultaneously train the composition
and embedding vectors.

Sent2vec outperforms most state-of-the-art on most benchmark tasks. Most important
for this thesis is the fact that sent2vec vectors show excellent performance on sentence
similarity tasks.

In this thesis sent2vec is used in Section 6 to produce sentence vectors in an unsu-
pervised manner. The vectors are used to automatically derive text domains and cluster
sentences into those.

2.3 Machine Learning
Byte pair encoding

Byte pair encoding (BPE) (Shibata et al., 1999) is a data compression technique that
replaces iteratively the most frequent pair of bytes in a sequence with a single, unused
byte, e.g. aaabdaaabac becomes ZabdZabac with the replacement of aa = Z. In this
thesis an adaption of this algorithm is used for word segmentation (Sennrich et al.,
2016a). Instead of merging frequent pairs of bytes, most frequent characters or character
sequences are joined in the used approach.

In adapted BPE version the following takes place. Firstly, the vocabulary is initialized
with character vocabulary, and each word is represented as a character sequence. A
special end-of-word symbol is also added. Then all symbol pair are iteratively counted
and replaced with the joined version of most frequent pair, e.g. pair (′c′,′ e′) becomes
′ce′. Final vocabulary size is the size of the initial vocabulary, plus the number of join
operations, which is given as a input to the algorithm. In this thesis the joint BPE is used,
which means that the segmentation is learned on all of the input data jointly and the same
segmentation is applied to all input languages.

Over- and underfitting

Overfitted model is a model that is fitted to model the training data too well and loses
much of its ability to generalise.

Overfitting is caused by model learning the detail patterns and noise in the training
data precisely enough that it has an negative impact on the model performance on new
data. The reson for this negative impact is that the patterns learned on training data do
not exists in data generally and thus it is called overfitting.

8

Underfitted model is a model that is too general in modelling both training data and
new data. Underfitting is easier to discover than overfitting, because it causes bad
performance on both training and new datasets, since it does not learn the characteristics
for neither.

KMeans clustering

K-means is a unsupervised clustering algorithm. The KMeans clustering is done in four
simple steps. The steps in total aim to minimize an objective function that determines
the goodness of the clustering. The objective function can be for example average of
squared Euclidean distances from the cluster center of each vector in the specific cluster.
The algorithm is composed of the following steps:

1. K points, called centroids, are placed into the clustering space.

2. Each object is assigned to the group that has the closest centroid.

3. When all objects have been assigned a specific, the positions of the K centroids
are recalculated based on the points in the cluster.

4. Previous two steps are repeated until the centroids no longer move. This process
separates the objects into K clusters.

There are several things to be considered in KMeans clustering, for example how the
initial centroids are placed and what is the optimal K.

In this thesis KMeans clustering is used in Section 6 to produce automatic domain
segmentation through unsupervised sentence vector clustering.

t-SNE

t-distributed stochastic neighbor embedding (t-SNE) is a machine learning algorithm
for visualization (van der Maaten and Hinton, 2008). t-SNE works by mapping high-
dimensional datapoints into two or three dimensions for visualization purposes. t-SNE
mapping works in a way where similarity of datapoint projections indicates with high
probability the similarity of objects.

The projections are achieved in two stages. In the first stage, t-SNE constructs
a probability distribution over pairs of high-dimensional objects in such a way that
similar objects have much higher probability of being picked than dissimilar objects.
In the second stage, the low-dimensional projections are further separated by similar
probabilistic distribution in a low-dimensional mapping. Also mechanism is applied that
helps avoid crowding the points in center. The benefits of the approach include that it is
capable of revealing some important global structure such as clusters while retaining the

9

local structure of the data. The algorithm can use various similarity metrics, for example
Euclidean distance.

In this thesis t-SNE is used in Section 6 to examine clustering differences through
two-component t-SNE projections of sentence embedding vectors.

2.4 Neural Networks
Recurrent neural network

Recurrent neural networks (RNNs) make use of sequential information. These process
every element of a sequence, with the output being dependent on the computations of the
previous element sequence. RNNs are set to usually look back on only a few steps.

Figure 1. The figure of a typical RNN being unrolled into a full network. Figure is
taken from http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-
introduction-to-rnns/

Figure 1 shows a typical RNN which is unrolled into a full network. xt is the input
at time step t. For example, a one-hot vector corresponding to the second word of a
sentence. st is the hidden state - the "memory" of the network - at time step t. st is
calculated based on the previous hidden state and the input at the current step. ot is the
output at step t. For example, in predicting the next word in a sentence it would be a
vector of probabilities across our vocabulary.

A RNN shares the same parameters (U, V, W on Figure 1) across all steps to reduce
the number of parameters learned greatly, compared to regular deep NN-s.

The most commonly used types of RNNs in NLP are LSTMs and GRUs.

LSTM and GRU

Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) units are parts
of LSTM layers of a recurrent neural network (RNN). Such RNN is referred to as an
LSTM network. A standard LSTM unit parts are a cell, an input gate, a forget gate, and

10

an output gate. The cell serves as a "memory" by remembering the processed values over
some time intervals. The LSTM gates can be thought as regulators for the value that go
through it the - hence the denotation "gate". The gates output numbers between zero and
one, describing how much of each component should be let through.

LSTMs are well-suited to handle the classification, process and predict time series
given time lags of unknown size and duration between important events.

Gated recurrent units (GRU) (Cho et al., 2014) control information flow similarly
to LSTM units. However, GRU only has a reset gate and an update gate. These gates
control how much each hidden unit remembers while reading or generating a sequence.
GRU does not make use of a memory unit. For this reason GRU has fewer parameters
than LSTM and thus trains faster.

GRUs and LSTMs perform similarly, thus GRU is often used instead of LSTM
because it is more lightweight. The neural network architecture in this thesis also uses
GRU.

2.5 Neural Machine Translation
Neural Machine Translation (NMT)

Neural machine translation (NMT) means using the neural network type models to train a
statistical model for machine translation. In case of NMT a single system can be trained
directly on source and target text to translate, unlike statistical MT that requires the
pipeline of systems in between.

The main NMT architecture used is the encoder-decoder architecture with attention
mechanism. An RNN encoder-decoder is able to take a sequence as input and generate
another sequence as output. Since the simple encoder-decoder architecture has problems
with long sequences, an attention mechanism is added to it. The attention mechanism
allows the model to learn to place the attention on each entity of input sequence to
produce an output sequence.

Interestingly, the encoder-decoder architecture allows for NMT to encode-decode
several language pairs within a single model. Modeling several language pairs (e.g
Estonian–English and Finnish–Russian) is called multilingual NMT. To model this, both
Estonian–English and Finnish–Russian would have to be present in training sentences
with appropriate distinction. This multilingual NMT can be achieved in several ways, for
example using language tags as in Johnson et al. (2016).

BLEU score

BLEU (Papineni et al., 2002) is a metric for evaluating the quality of machine translation.
BLEU is one of the most popular automatic metrics. The popularity of BLEU is due to
its good correlation with human judgement, speed, language-independence, and the fact

11

that it is inexpensive to run compared to a human evaluator. BLEU is designed to work
at a corpus level as a average scoring of individual sentences, and should not be used
for individual sentences. The BLEU scores range from 0 to 1. Score 1 means that the
translation sequences and reference sequences are identical – something which rarely
happens, thus even human evaluators do not achieve BLEU score 1.

BLEU is calculated as

BLEU = BP ∗ exp(
N∑

n=1

wn log pn), (1)

where

BP =

{
1, if c > r.

e(1−r/c), if c ≤ r.
(2)

Where wn in (1) means n-gram weight, pn means n-gram precision, N means
maximum n− gram length, and BP means brevity penalty. BLEU is usually used with
parameters N = 4 and wn = 1/N i.e. uniform weights. Brevity penalty (BP) is used to
consider differences in translation lengths. BP calculation is shown in (2), where c is the
candidate translation and r the reference translation. As we can see, the penalty is only
applied when the candidate translation is shorter than the reference translation.

Several modifications of BLEU exist, but these are still similar in principle to the one
described here.

Transfer learning

Transfer learning in machine learning generally means that a model trained for one
specific task is reused as the basis for a second machine learning task which has got
different characteristics from the original task.

The usage of transfer learning is widespread approach in machine learning, especially
for image processing, where it can be used to drastically reduce computational cost. A
"pure example" of transfer learning in NLP are the "zero-shot" approach and also the
language vector sharing that are descirbed in Johnson et al. (2016).

Transfer learning also discussed in this thesis in Sections 5, 6, and 7 to produce a
superior multi-domain NMT model.

3 Related Work
In this section we describe the works related to the integral methods of this thesis.

The baseline to which we compare the translation part of this thesis to is fine-tuning
NMT systems to a single text domain (Luong and Manning, 2015). In fine-tuning the
NMT system is first trained on a mix of parallel texts from different domains and then

12

fine-tuned via continued training on just the in-domain texts. The method shows improved
performance on in-domain test data but degrades performance on other domains.

In Sennrich et al. (2016b) the NMT system is parametrized with one additional input
feature (politeness), which is included as part of the input sequence, similarly to one of
two approaches in this thesis – the domain tag approach. However, their goal is different
from ours.

In Kobus et al. (2017) additional word features are used for specifying the text domain
together with the same approach as Sennrich et al. (2016b). Although both methods
overlap with the first part or this thesis’ work (domain features and domain tags), they
only test these methods on pre-specified domains, while this thesis includes automatic
domain clustering and identification. Also, they use in-domain trained NMT systems
as baselines even for small parallel corpora and do experiments with a different NMT
architecture. Finally, their results show very modest improvements, while in our case the
improvements are much greater.

Other approaches also define a mixture of domains, for example Britz et al. (2017);
Chen et al. (2016), however, both define custom NMT methods. This means that
the approaches cannot be easily integrated into modern NMT approaches like Trans-
former (Vaswani et al., 2017), whereas one of our two approaches - domain tagging, is
compatible with Transformers and many other modern NMT approaches.

Additionally, the related approaches limit the experiments to the cases where the text
domain is known, whereas we explore the performance in automatic domain assignment
also.

4 Methodology
In the following section we describe two different approaches to treating text domains
as distinct languages and using multi-lingual methods, resulting in multi-domain NMT
models. The first approach is inspired by Google’s multilingual NMT (Johnson et al.,
2016) and the second one by the cross-lingual language models (Östling and Tiedemann,
2017). The mentioned approaches are only applicable in the scenario where domain
knowledge exists. Since domain knowledge can often be absent in training and/or
translating, we propose approaches of automatic domain segmentation that can be
used to extend both of the approaches to any given text corpus without pre-existing
domain knowledge. We also propose substituting the pre-defined domain knowledge
with automatic domain segmentation to test if automatic domain segmentation can
produce better domain segmentation than pre-defined domain knowledge.

13

4.1 Domain as a Tag
The first approach is based on Johnson et al. (2016). Their method of multilingual
translation is based on training the NMT model on data from multiple language pairs,
while appending a token specifying the target language to the beginning of the source
sequence. No changes to the NMT architecture are required with this approach. They
show that the method improves NMT for all languages involved. As an additional benefit
this approach causes no increase in the number of parameters, since all language pairs
are included in the same model.

We adapt the language tag approach to text domains, appending the domain ID to
each source sentence; thus, for instance, “How you doin’ ?” from OpenSubtitles2016
(Lison and Tiedemann, 2016) becomes “__OpenSubs How you doin’ ?”.

The described method has two advantages. Firstly, it is independent of the NMT
architecture, and scaling to more domains means simply adding data for these domains.
One can assign a domain to each sentence pair of the training set sentence pair, or set the
domain to “other” for sentences whose domain we cannot or do not want to identify.

Secondly, they state that in a multilingual NMT model, all parameters are implicitly
shared by all the language pairs being modeled. This forces the model to generalize
across language boundaries during training. It is observed in the underlying article that
when language pairs with little available data and language pairs with abundant data
are mixed into a single model, translation quality on the low resource language pair is
significantly improved.

We expect this effect to be even more useful for text domains. Traditional tuning
to a low-resource domain, or for any specific domain for that matter, would result in a
likely over-fitting to that domain. This approach, where all parameters are shared, learns
target domain representations without harming other domains’ results while maintaining
the ability to generalize also on in-domain translation, because little to no over-fitting
will be caused. Furthermore, since domains are much more similar than languages, the
parameter sharing is expected to have a stronger effect.

4.2 Domain as a Feature
The second approach is based on Östling and Tiedemann (2017) for continuous multilin-
gual language models. The authors propose to use a single RNN model with language
vectors that indicate what language is used. As a result each language gets its own embed-
ding, thus ending up with a language model with a predictive distribution p(xt|x1...t−1, l)
which is a continuous function of the language vector l.

In this thesis, we implement the same idea via word features of Nematus (Sennrich
et al., 2017), with their learned embeddings replacing the language vector of Östling
and Tiedemann (2017). For example, translating "This is a sentence ." to the Estonian

14

Wikipedia domain would mean an input of "This|2wi is|2wi a|2wi sentence|2wi .|2wi"1

Having a single language model learn several languages helps similar languages
improve each others representations (Östling and Tiedemann, 2017). Also, they point out
that this greatly alleviates the problem of sparse data for smaller languages. We expect
the same effect to hold for text domains, especially since similarity between different
domains of the same languages is higher than between different languages. Moreover,
similarly to the domain tag approach, the usage of many domains in one model helps
bypass the over-fitting problem of smaller domains.

4.3 Automatic domain tags
Te aforementioned approaches are only applicable in a scenario where domain knowledge
exists. Since for many scenarios there is no pre-existing domain knowledge, we propose
the domain of each of the source–target sentence pair to be defined automatically. We
take two different approaches to achieve the annotation.

We apply Supervised approach only in single domain setting. It involves assigning
categories to roughly 10,000 Wikipedia articles, for which it could be done with high
certainty. Assigning categories to more articles is problematic, because the categories
assigned in Wikipedia can often be misleading in terms of content. Next each sentence is
tagged with the article category.

After tagging the sentences, we train a FastText (Bojanowski et al., 2016; Joulin
et al., 2016) classification model with default settings and apply it to classify the rest of
the sentences that were not classified based on the article categories. We tag the test/dev
set sentences using the same FastText model that is used to cluster training data.

We apply Unupervised approach also to sentence-split data. We treat multi-domain
data still as a single domain data of which no domain structure knowledge exists. In
this approach we train a sent2vec (Pagliardini et al., 2017) model and use it to calculate
sentence vectors in an unsupervised manner. After that, we apply KMeans clustering
to identify the clusters in the set of calculated sentence vectors. Finally, we tag each
sentence with the label that it was assigned by KMeans. To find the optimal number of
clusters, we create several versions with different numbers of clusters.

To tag the test/dev set sentences, we train a FastText supervised classification model
on the tagged training set. For each of the cluster versions and for each language pair, we
train a separate FastText model. The additional benefit of this kind of clustering is that
each new input sentence can be efficiently assigned its cluster. Also, because of more
potentially homogenous train-set clusters, the new sentence is hypothetically assigned
more appropriate domain than it would be assigned in case of the pre-defined domains.

1the "|" is a special symbol in Nematus for delimiting input features.

15

The potential benefit of the unsupervised approach over supervised approach is that
it does not assume any prior knowledge of the data and thus the domain structure does
not rely on potentially faulty pre-defined domain structure. This in turn allows the
multi-domain translation approach to be applied to any data without the knowledge of its
domain structure.

4.4 Zero-shot style adaptation
Another shown feature in Johnson et al. (2016) is that modeling several language
pairs in a single model enables translation between language pairs the trained model
has never seen in this combination during training. For example, a multilingual NMT
model trained with Portuguese→English and English→Spanish examples can generate
reasonable translations for Portuguese→Spanish although it has not seen any data for
that language pair. This phenomenon is referred to as zero-shot translation. Zero-shot
translation serves as an example of transfer learning within NMT models.

We apply this approach to test the possibility of within-language style adaption
through zero-shot translation. This would mean that having training examples of
ET_medicine− EN_medicine and EN_news− ET_news could be used to "trans-
late" ET_medicine− ET_news. Having this kind of style adaptation could potentially
be used to simplify scientific text to be readable by wider audiences. Also, this could be
used to improve user experience in applications like chatbots, by adapting to the style
that client uses, e.g transferring EN_general to EN_manchester. The reason why we
try to use zero-shot translation, is that there is no universal parallel data for direct style
adaption through NMT.

To test the possibility of style adaption we train a domain-tagged EN-ET-EN NMT
model. We train this model on data that contains both EN–ET and ET–EN parallel sen-
tences. We tag each source sentence with language and domain tag. On the source side for
instance, “How you doin’ ?” from OpenSubtitles2016 becomes “__toETOpenSubs How
you doin’ ?”. Similarly, on the source side “Kuidas sul läheb ?” from OpenSubtitles2016
becomes “__toENOpenSubs Kuidas sul läheb ?”.

During translating, the Opensubs source sentence “__toETOpenSubs How you doin’
?” would be given for example a tag “__toENEuroparl” to see how the sentence changes.
Note that the model does not see pair “ENOpensubs”–“ENEuroparl” during training, so
any difference is produced by the transfer learning effect – zero-shot translation. The aim
of this experiment is to see if NMT can be potentially used to style adapt intra-language
without additional mechanisms and whether there is ground for future research.

16

5 Experiments with Known Domains
In the following we describe the experiments using domain info as a tag and domain info
as an embedding and compare the results to baseline and domain-tuning approach.

In the experiments we use mixed-domain parallel data consisting of Europarl (Koehn,
2005), OpenSubtitles2016 (Lison and Tiedemann, 2016), parallel data extracted from
English-Estonian Wikipedia articles and some more mixed parallel corpora from the
OPUS collection (Lison and Tiedemann, 2016). The size of the corpora is shown in
Table 1. For each corpus we use a randomly chosen and held-out test set of 3̃000 parallel
sentences.

Table 1. Data sizes for the training data.

Corpus Sents EN tok ET tok
Opensubs 10.32 83.57 67.56
Europarl 0.644 17.18 12.82
Wiki 0.135 2.281 2.089
Other 7.972 169.9 143.5
Total 19.07 272.9 225.9

Number of tokens (tok) given in Table 1 above is pre-BPE. All of the numbers are given
in millions

5.1 Mining Wikipedia for Translations
Wikipedia2 itself is a big set of articles. The articles have two properties, which are
extremely useful from this thesis’ task point of view. Firstly, the articles have links
to the articles of same topic, but in different languages, which makes it easier to find
comparable data from which to extract parallel data. Secondly, each article has one or
several categories attached to it. This means that hypothetically domains can be assigned
to at least some of the articles based on these categories.

Since Wikipedia is not traditionally used in MT as a parallel dataset, at least not for
EN-ET language pair, data extraction and processing has to be done prior to the usage of
the data.

To extract meaningful text from the Wikipedia XML dumps, we use the WikiExtractor
tool3. We extract the data in a way that preserves article and paragraphs boundaries. The
extraction is done separately for English and Estonian version.

2http://www.wikipedia.org/
3https://github.com/attardi/wikiextractor

17

http://www.wikipedia.org/
https://github.com/attardi/wikiextractor

After extracting text from the dumps, we apply another custom-made solution to
detect parallel articles. The number of Wikipedia articles in English is well over 5 million
whereas for Estonian it is just over 100 thousand. All Estonian articles are kept and only
those English articles that have a parallel article in Estonian articles. This leaves us with
roughly 70 thousand English articles.

The parallel articles form a comparable corpus. In case of this comparable corpora it
is know that the articles are parallel in terms of topics but not in sentences. To extract
parallel sentences from parallel articles, the LEXACC (Stefănescu et al., 2012) tool is
used, which is a part of the ACCURAT toolkit (Pinnis et al., 2012; Skadin, a et al., 2012).
Parallel sentence identification allows also to maintain the info of article origin, which
means that direct domain assigning is possible. The identification process also assigns
score to each sequence pair, which allows the creation of parallel sets with different grade
of purity. The optimal grade of purity produced 340 thousand parallel sentences. The size
of Estonian Wikipedia in total is 2.8 million sentences. To the rest 2.5 million sentences
back-translation is applied to extend the Wikipedia dataset for EN-ET direction; the
back-translated sentences are also filtered based on attention weights (Rikters and Fishel,
2017) with a 50% threshold.

5.2 Technical Settings
In preprocessing we apply BPE segmentation (Sennrich et al., 2016a) in a joint learning
scenario, learning from the input and the output, limiting the vocabulary to 65,000
entries. The acquired segmentation mostly corresponds to the linguistic intuition on
frequent tokens (which are left intact) and medium-frequency tokens (which are split
into compound parts or endings off stems); low-frequency tokens (also names, numeric
tokens) are split into letters and letter pairs.

The NMT model we use is encoder-decoder with an attention mechanism (Bahdanau
et al., 2014), implemented in Nematus (Sennrich et al., 2017). All settings (like em-
bedding size, number of recurrent layers in encoder and decoder, etc.) are kept at their
default values. Batch size in experiments is 50 sequences.

5.3 Results
For the Baseline experiment we first train a baseline modelon all the datasets together,
and used for translation. Then in the Tuned approach we fine-tune the Baseline model
to each corpus separately.

Baseline results using the BLEU score are given in Table 2, along with out-of-domain
translation results to show how the models are only suitable to translate one domain.
Displayed corpora are: Eu–Europarl, Op–Opensubs, Wi–Wikipedia. Columns indicate
the corpus to which the model in translation was tuned. Rows indicate the corpus that is
used in translation. Best scores for each corpus are shown in bold. Scores lower than

18

baseline are shown in gray. The expected behaviour is that for each corpus the best
score is for the model that was tuned to the corpus i.e. bold. Second best should be the
baseline, and all the rest should be lower than baseline i.e gray. The expected behaviour
holds in this experiment also. The models were tuned to an optimal point where score of
in-domain translation showed low improvement and other corpora started to deteriorate
faster.

Table 2. BLEU scores for the English-Estonian direction all tuned scores.

Corp Base Eu Op Wi
Eu 24.37 27.21 13.82 12.01
Op 25.07 18.93 25.34 9.09
Wi 11.79 10.20 8.08 12.83

Table 3 and Table 4 show the BLEU scores and the p-values of the statistical signif-
icance of their difference for Baseline, fine-tuned baseline, domain tags, and domain
feature approaches. For both domain tagging (Tag) and domain embedding (Feat), the
Baseline translation approach is taken with the aforementioned modifications to the data;
no fine-tuning step is performed.

For the comparability of the results, the number of iterations during training (800,000)
and input parameters are kept equal for Baseline, Tag, Feat. The tuning of Baseline is
done for additional 60,000 iterations. One iteration means one batch seen during training.

Table 3. BLEU scores and p-values for Estonian-English direction.

Corp Baseline Tuned Tag Feat
Eu 33.0±0.3 35.4±0.3 36.2±0.3 37.3±0.3
Op 27.9±0.6 28.1±0.6 30.5±0.6 30.3±0.6
Wi 15.3±0.4 15.4±0.4 16.9±0.4 17.7±0.4
Corp Baseline Tuned Tag Feat
Eu 0.0001 / 0.0001 0.009 / 0.0001 - / 0.0001 0.0001 / -
Op 0.0001 / 0.0001 0.0001 / 0.0001 - / 0.1 0.1 / -
Wi 0.0001 / 0.0001 0.0001 / 0.0001 - / 0.001 0.001 / -

The Baseline model in the Table 3 is trained without domain tags. Tuned is achieved by
tuning these models with the specific corpus. Tag is trained with data that has domain tag
prepended to each source sentence. Feat is trained with data that has domain embedding
added as a feature to each source sequence word. p-values are given for significance
against Tag and Feat respectively, separated with /.

19

Table 4. BLEU scores and p-values for English-Estonian direction.

Corp Baseline Tuned Tag Feat
Eu 22.5±0.3 25.3±0.3 25.4±0.3 24.9±0.3
Op 24.2±0.6 24.5±0.6 24.8±0.6 25.3±0.6
Wi 11.8±0.4 12.1±0.4 12.5±0.3 12.8±0.4
Corp Baseline Tuned Tag Feat
Eu 0.0001 / 0.0001 0.3 / 0.04 - / 0.04 0.04 / -
Op 0.01 / 0.001 0.09 / 0.03 - / 0.06 0.06 / -
Wi 0.01 / 0.001 0.06 / 0.03 - / 0.14 0.14 / -

Baseline model in Table 4 is trained without domain tags. Tuned is achieved by tuning
these models with the specific corpus. Tag is trained with data that has domain tag
prepended to each source sentence. Feat is trained with data that has domain embedding
added as a feature to each source sequence word. p-values are given for significance
against Tag and Feat respectively, separated with /.

Results show that both of the additional domain info models perform really well. The
domain tag (Tag) model outperforms both of its baseline (Baseline) and tuned (Tuned)
counterpart in ET–EN direction. It even goes as far as exceeding the Tuned approach by
more than 1.0 BLEU in all domains. The same holds, but even more strongly, for the
version where the domain embedding is added as an input feature for each word (Feat).

For EN–ET direction the results do not show such strong improvements. In this
direction both Tag and Feat outperform Baseline for all domains. However, the scoring
is quite close to the Tuned approach with the results between Tag and Feat also being
closer than in ET–EN case. All in all, the fact that the domain tagging results are
essentially on-par with Tuned approach, means it is superior to the Tuned approach in
practice because of the fact that it requires only one model rather than three.

Table 5 shows an example of improved ET–EN translation. This is an example of
improvement by removing the characteristic translation repetition ("only one can only
be one") in Tag and Ref compared to Base. Also the Feat translation feels like a better
mapping of Ref than translation of Tag. Additionally we observed improvements in
both Tag and Feat like not missing out on adverbs and using rare words in translation,
for example "pertinent" instead of "relevant". Since the quality of Tuned is close to
Tag and Feat, it is omitted from the comparison since the differences would be highly
circumstantial and would not hold much information in small scale.

20

Table 5. An example of Europarl corpus translations from Estonian to English using the
Baseline, Tag and Feat methods.

Src vastuseid saab muidugi olla ainult üks
(ET) : lõpetada kohe igasugused

läbirääkimised Türgiga .
Ref there is , of course , only one possible
(EN) response : to immediately cease all

negotiations with Turkey .
Base only one can only be one : stop any
(EN) negotiations with Turkey immediately .
Tag the answer , of course , can only be
(EN) one : stop all the negotiations with

Turkey immediately .
Feat there is , of course , only one answer :
(EN) to put an end to all negotiations with

Turkey immediately .

6 Experiments with Automatic Domains
The methods applied in Section 5 work well, but these require pre-existing domain
knowledge. For many scenarios however, previous domain knowledge does not exist,
rendering the methods unusable. In the following section to overcome this problem, we
propose to produce an automatic domain assignment. To test the approach, we conduct
experiments with two data settings.

In the first experiment, we consider a single heterogeneous text domain. We apply
both supervised and unsupervised tagging on this single text domain based on sentence
vectors.

In the second experiment, we use texts from several domains but ignore the pre-
specified text domains and replace these with automatic clustering based on sentence
embeddings.

For both of the scenarios we take the domain tagging approach: even though domain
features show better results, domain tags are more generic and compatible with any NMT
architecture.

6.1 Automatic single-domain tagging
Text domains are often very diverse, consisting of many sub-domains. In the following
we experiment if automatically detecting these sub-domains can improve translation. In
this experiment Wikipedia is chosen as the non-homogeneous text domain. To make use

21

of multi-domain approach, sub-domains need to be mined from the data and sentences
annotated with the resulting clusters. To receive the annotation, two different approaches
are taken.

Supervised approach involves assigning categories to roughly 10,000 articles, for
which it could be done with high certainty. Assigning categories to more articles is
problematic, because the categories assigned in Wikipedia can often be misleading in
terms of content. With this approach 5-domain distribution is most logical, decided based
on the Wikipedia category hierarchy. Next we sentence-tokenized the articles and tag
each sentence in the article with the domain tag based on the categories assigned to the
article.

After tagging the sentences we train a FastText classification model with default
settings and apply it to classify the rest of the sentences that were not classified based on
the article categories.

Unupervised approach involves firstly sentence splitting the whole Estonian Wikipedia
data that was left after the filtering of backtranslation. Secondly, we train a sent2vec
model and use it to calculate sentence vectors in an unsupervised manner. After that we
apply unsupervised KMeans clustering to identify the clusters in the set of calculated
sentence vectors. Finally, we tag each sentence with the label that it was assigned by
KMeans. To find the optimal number of clusters, we create a version of 4, 5, 6, 8, and
12 clusters. The check for best number of clusters we do a sweep by training a model
for each number of clusters. The input data for this is the whole Wikipedia corpus.
The models are trained for 12 hours, which should be sufficient to make them diverge
enough to choose the best number of clusters. We also train a regular model without data
clustering for reference.

It is important to note that for this experiment a different test set is used than in the
full data experiments. Thus the scores in Table 6 are not comparable to scores presented
earlier.

Table 6. Dev set BLEU scores for Unsupervised Wikipedia parameter setting.

NClust C4 C5 C6 C8 C12 Ref
BLEU 19.7 19.5 19.6 19.5 20.0 17.9

The initial sweep indicates that the best option for the unsupervised classification is
12 clusters. Also, the 12 hours – 100,000 iterations are already showing the effect that
domain tagging has over the regular reference approach, making other clusterings also a
viable choice.

22

Wikipedia Translation Results

In the final experiment, three models are trained:

• Supervised 5-domain source tag model

• Unsupervised 5-domain source tag model

• Unsupervised 12-domain source tag model

• Regular not domain-tagged model

Unsupervised 5-domain model is included to compare the performance of supervised
and unsupervised approach with the same amount of domains, giving an indication of
the "goodness" of these cluster assignments. The Unsupervised 12-domain model is
included to compare the performance of best unsupervised clustering and the intuitively
optimal supervised clustering. Supervised 12-domain model is not presented because it
was not possible to produce such reasonable structure from ET Wikipedia. The results
are presented in Table 7. The models were trained for 48 hours.

Table 7. BLEU scores and p-values for test on Wikipedia-only data to compare the
effect of Unsupervised clustering (Usup12, Usup5), supervised clustering (Super) and
no-clustering baseline approach (Base).

NClust Base Usup12 Usup5 Super
BLEU 23.6±0.4 26.0±0.4 25.2±0.4 25.8±0.4
pBase - 0.0001 0.0001 0.0001
pU12 0.0001 - 0.01 0.1
pU5 0.0001 0.01 - 0.03
pSup 0.0001 0.1 0.03 -

The p-values in Table 7 are shown in respect to the version where the value is -.

As shown in Table 7, the Supervised approach (Super) with five clusters slightly
outperforms Unsupervised 5-cluster approach (Usup5). The best option for Unsupervised
clustering (Usup12) performs as well as the Supervised approach. The results show that
Unsupervised approach is comparable in performance to the Supervised approach, which
means that at least in this setting both of the approaches are viable. Even more so, when
obtaining labelled data for supervised clustering can often require a lot of additional
effort, the unsupervised approach is not chained by the (lack) of pre-existing knowledge
about the data.

Most important is the fact that both of the unsupervised cluster versions outperform
the regular reference (Ref) version where sentence cluster tags were not used. This

23

shows that the unsupervised clustering approach can potentially be used in settings that
previously were viewed upon as single clusters. For example OpenSubtitles corpus could
be clustered further, to improve the translations.

6.2 Unsupervised multi-domain tagging
Hinging on the fact that domain tagging approach outperformed the traditional tuning
approach and on the results that unsupervised Wikipedia dataset clustering produced, the
"traditional" approach of text domains should be given another look. One possible action
is to cluster or sub-cluster the existing parallel data to restructure it from the domain
point of view.

In addition to the results produced on wikipedia dataset, the hypothesis on why
this would work, is that large text domains are probably not very homogeneous. Also,
different domains have probably pretty big overlap of similar sentences. This would
mean that the usual approach of domain tuning or domain tagging does not achieve its
true potential, because predefined domains are de facto several domains and the same
domains are actually present in other predefined domains also.

To check for this property and its potential benefit for NMT, we cluster existing
parallel sentences of known domains together to n clusters in the previously described
unsupervised manner. On this data, we train NMT models with domain tagged sentences,
and finally, cluster the test set sentences in a supervised manner with a supervised
clustering model that is trained on the data obtained from unsupervised clustering.

The training is done using Nematus with the same settings as in the initial experiment
with domain tags. Firstly, we do a sweep of clusters by training 4, 8, 16, and 32 cluster
versions for both EN–ET and ET–EN direction. After that we choose the version that
has achieved the best BLEU scores on the dev sets for both of the directions and train it
for the same number of iterations and with same parameters as in the initial domain tag
experiment with full data.

Results of unsupervised multi-domain tagging

To evaluate the model performance, we train a supervised FastText classification models
on the tagged training data. We apply these models on the test/dev sets to classify the
sentences. This means that each of the sets – Opensubs, Europarl, and Wiki – gets
actually tags from several clusters, depending on which cluster the FastText model
assigns to each of the sentences. This means that for each source test set we create four
different versions, each for cluster numbers 4, 8, 16, and 32.

The initial parameter sweep shows that the best option is 16 clusters for both EN–ET
direction in Table 8 and ET–EN direction in Table 9 across all test sets. Hence the final
models are both trained with 16 clusters.

24

Table 8. BLEU scores for English-Estonian direction sweep.

Corp C4 C8 C16 C32
Eu 4.13 3.19 5.94 4.17
Op 9.41 9.36 10.80 10.62
Wi 1.09 0.94 1.31 0.81

The model used in Table 8 is trained on parallel data that is tagged in unsupervised
manner using sent2vec + Kmeans clustering. The dev sets are clustered based on this
tagged data using FastText. The best scores for each corpus are presented in bold.

Table 9. Test set BLEU scores for Estonian-English direction sweep.

Corp C4 C8 C16 C32
Eu 20.48 19.88 20.82 18.43
Op 20.05 19.54 20.17 20.01
Wi 4.61 4.38 5.50 4.32

The model used in Table 9 is trained on parallel data that is tagged in unsupervised
manner using sent2vec + Kmeans clustering. The dev sets are clustered based on this
tagged data using FastText. The best scores for each corpus are presented in bold.

25

The final results, where the 16 cluster models are trained for the same amount of
iterations as in the initial full data experiments, are presented in Table 10 and Table 11
for EN–ET and ET–EN language pairs respectively.

Table 10. Test set BLEU scores and p-values for English-Estonian direction.

Corp Baseline Tuned Tag Unsup
Eu 22.5±0.3 25.3±0.3 25.4±0.3 24.5±0.3
Op 24.2±0.6 24.5±0.6 24.8±0.6 24.6±0.6
Wi 11.8±0.4 12.1±0.4 12.5±0.3 11.1±0.4
Corp Baseline Tuned Tag Unsup
Eu 0.0001 / 0.0001 0.3 / 0.03 - / 0.004 0.004 / -
Op 0.01 / 0.03 0.09 / 0.4 - / 0.2 0.2 / -
Wi 0.01 / 0.01 0.06 / 0.005 - / 0.0001 0.0001 / -

Baseline model in Table 10 is trained without domain tags. Tuned is achieved by tuning
these models with the specific corpus. Tag is trained with data that has domain tag
prepended to each source sentence. Unsup is trained with data that has domain tags
assigned to each sentence in an previously described unsupervised manner. p-values are
given for significance against Tag and Unsup respectively, separated with /.

The results show that the unsupervised clustering approach performs similarly to the
pre-defined tag version with only some performance issues. In case of EN–ET translation
the unsupervised approach performs worse than Tuned and Tag for Europarl and worse
than all other three for Wikipedia. In case of ET–EN the unsupervised approach performs
slightly worse than Tag for Wikipedia, but outperforms other versions.

Since the clustering approach is pretty much applied out-of-the-box, then improved
clustering could provide considerable improvements. This means that with improved
clustering the unsupervised tagging approach can serve as a viable alternative to the
pre-defined domain tagging approach.

Our hypothesis is that the good results of unsupervised approach are caused by the
pre-defined domains being less homogeneous in content than expected. Also, since
the unsupervised clustered "domains" produce similar results, we expect the domain
homogeneity to be similar to that of pre-defined clusters. In the following section we
explore the pre-defined domain and unsupervised cluster structures and the relations
between them to validate these hypotheses.

26

Table 11. Test set BLEU scores and p-values for Estonian-English direction.

Corp Baseline Tuned Tag Unsup
Eu 33.0±0.3 35.4±0.3 36.2±0.3 36.0±0.3
Op 27.9±0.6 28.1±0.6 30.5±0.6 30.2±0.6
Wi 15.3±0.4 15.4±0.4 16.9±0.4 16.0±0.4
Corp Baseline Tuned Tag Unsup
Eu 0.0001 / 0.0001 0.009 / 0.01 - / 0.3 0.3 / -
Op 0.0001 / 0.0001 0.0001 / 0.0001 - / 0.1 0.1 / -
Wi 0.0001 / 0.004 0.0001 / 0.009 - / 0.01 0.01 / -

Baseline model in Table 11 is trained without domain tags. Tuned is achieved by tuning
these models with the specific corpus. Tag is trained with data that has domain tag
prepended to each source sentence. Unsup is trained with data that has domain tags
assigned to each sentence in an previously described unsupervised manner. p-values are
given for significance against Tag and Unsup respectively, separated with /.

Unsupervised cluster structure

The main question for the unsupervised approach is, how does unsupervised clustering
differ from pre-defined clustering. To examine this, we produce t-SNE figures to check
how placements in unsupervised projections differ from the predefined ones. Each dot
on the figures stands for the two-component projection on one test sentence vector.
The sentence vectors are calculated using unsupervised sent2vec models trained on
the training data, since these are independent from both of the clusterings. Also, in
the following figures each color stands for separate cluster. In case of the pre-defined
clusters we just color the dot according to the origin corpus. For unsupervised approach,
we tag the test sets using FastText models trained on tagged train set and color these
accordingly. The unsupervised cluster differences with pre-defined clusters can be
examined in the following Figure 2 and Figure 3. Figure 2 shows that the difference
between unsupervised and predefined label coloring is quite extensive. Firstly, the
clusters seem to be less disperse and with smaller overlap in predefined coloring case
compared to unsupervised clustering. Also, because unsupervised approach has more
clusters, the data is clustered into further parts in unsupervised case. Similar effects can
be examined in Figure 3 for Estonian. These figures indicate that the current version
of unsupervised sentence clustering does produce viable clusters,but the pre-defined
clusters are still more homogeneous. This is probably the reason why pre-defined domain
tagging in most cases slightly outperforms the unsupervised clustering. However, since
the unsupervised clustering in this case is applied out-of-the-box, there is plenty of room
for improvements. Also, since pre-defined clusters still have a considerable overlap in

27

the projection, the unsupervised clustering should be able to surpass the pre-defined
clustering in cluster separation and homogeneity.

40 20 0 20 40 60

0

50

Labels unsupervised

40 20 0 20 40 60

0

50

Labels predefined

Figure 2. The t-SNE 2-component projections of English joint test set sent2vec sentence
vectors, coloured based on unsupervised clusters and same joint test set sentence vectors
coloured based on predefined domains.

To examine the cluster differences in more precise numbers, we display the unsu-
pervised cluster sharing of different domains in Table 12 and Table 13. The cluster
sharing shows that different corpora actually share similar sequences, at least from
sentence vectors point of view. For example in Table 13 C1 is prominently present
in both Europarl (Eu) and Wikipedia (Wi), however almost non-existent in Opensubs.
C15 however is present in all three. Similar behaviour can be examined in Table 12.
The sharing structures indicate that the hypothesis of pre-defined domains consisting of
several sub-domains holds. Also, it is visible that many of these domains are present in
most or all of the corpora used, meaning that unsupervised domain tagging could actually
produce tags that are more descriptive of the sequence than the tags originating from
pre-defined domains.

28

40 20 0 20
50

0

50

Labels unsupervised

40 20 0 20
50

0

50

Labels predefined

Figure 3. The t-SNE 2-component projections of Estonian joint test set sent2vec sentence
vectors, coloured based on unsupervised clusters and same joint test set sentence vectors
coloured based on predefined domains.

Additionally, cluster structure differences between languages can be examined. If the
clusters for both English and Estonian were aligned, the columns in both tables would
also align more or less with one another. However, there are visible differences. Firstly,
parallelity for Europarl and Wikipedia is swtiched in Estonian compared to English. The
largest cluster of Europarl corresponds to second largest in Wikipedia and vice versa in
Estonian, but in English these are aligned. Secondly, in Estonian, Opensubs has one main
cluster, whereas is English it has two. Cluster structure differences between languages
are further illustrated in the following t-SNE Figure 4. The plot shows that for both
Estonian and English distinct clusters exist with some overlap. The cluster structure
however is different between languages.

All this means that the domain structure from sentence vector point of view is different
for English and Estonian, which means it is probably reasonable to apply clustering to
these separately. However, the possibility of joint clustering should be investigated in

29

Table 12. Unsupervised cluster sharing between different domains in English.

Corp C14 C12 C9 C3 C6 C15 C1
Eu 2417 430 42 22 21 16 2
Os 18 1331 - 181 1015 7 398
Wiki 1056 1811 4 - 9 69 1

Table 13. Unsupervised cluster sharing between different domains in Estonian.

Corp C1 C15 C12 C6 C8 C2
Eu 2469 431 26 11 9 4
Os 21 2282 364 - 282 1
Wiki 1732 1212 2 2 2 -

80 60 40 20 0 20 40 60
100

50

0

50

English cluster structure

60 40 20 0 20 40 60
100

50

0

50

Estonian cluster structure

Figure 4. The t-SNE 2-component projections of Estonian joint test set sentence vectors
and English joint test set sentence vectors, both coloured based on unsupervised clusters.

future work.

30

To further examine the unsupervised clustering, we produce some intra-domain
assessments. Since we do not use backtranlsated data in the multi-domain tagging
experiments to reduce the variable components, the Wikipedia dataset with 135,000
parallel sentences is quite small part of the full data. Thus the integral part of the
following analysis is done on the OpenSubtitles corpus, which is the biggest single
corpus in the data and probably also consists of several sub-domains.

Table 14 displays the OpenSubs test sets cluster structure. The test sets are tagged
using FastText models trained on tagged train set. One can see that different train
set clusters produce different granularity in test sets also. For C4, C8 the OpenSubs
structure is similar, same holds for other test sets. C16 vs C8 however shows a significant
difference in test set clustering. Here we see that OpenSubs, which based on content
is probably not homogeneous domain, is separated quite granularly in C16, producing
3–4 main sub-domains. In C32 the test set is clustered even further, but based on sweep
scores, it could be said that the achieved clustering is already too granular.

Table 14. Cluster structure of FastText tagged English OpenSubs test sets.

Corp N1 N2 N3 N4 N5 N6
C4 2921 29 - - - -
C8 2907 43 - - - -
C16 1331 1015 398 181 18 7
C32 1137 828 356 293 241 71

The test sets in Table 14 are clustered based on tagged train data. The clusters are
numbered left to right based on size. Here only top 6 clusters are shown. For C32
N7 = 11, N8 = 6, N9 = 3, N10 = 2, N11 = 2. Test set structures for Estonian sets
are similar.

Considering that the used OpenSubs cluster is 10 million sentence pairs in size, it
can be said that C16 finds 5 significant sub-domains and one less significant sub-domain
inside it. This shows that, at least from sentence vectorizing point of view, there exists
more than one domain inside OpenSubs, and similarly in other domains.

The domain structure of English OpenSubs is further visualised in Figure 5. The plots
are 2-component t-SNE projections of Opensubs test set sentence vectors. The sentence
vectors are produced using previously trained FastText model. On the plots, the axes
are the components of t-SNE projections. As we see with the option of 8 clusters and 4
clusters, the test set is clustered almost entirely as one domain. The smaller sub-domain
(N2 in Table 14) is visible on both plots as occasional blue dots. For 16 and 32 clusters
we see already distinguishable clusters, to show that OpenSubs texts consist actually of
many sub-domains.

31

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

32 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

16 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

8 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

4 Clusters

Figure 5. The t-SNE 2-component projections of English Opensubs sentence vectors,
coloured based on unsupervised clusters.

Interestingly for 16 cluster option two of the big clusters - red and blue - overlap in
large part. For 32 cluster option the cluster are however more separate and on visual
inspection seem better. However, this does not come out in the results, which raises
the question of why 16 clusters produces better results than 32 clusters. The question
should be investigated in future work. One possible course of action is to train 32 cluster
option also fully and see, how much the results differ between 16 and 32 clusters on fully
trained models.

Table 15 displays the English Europarl test sets cluster structure. The test sets are
tagged using FastText models trained on tagged train set. Unlike the Opensubs cluster
structure in Table 14, the Europarl cluster structure is much more compact. For each
number of clusters a distinct main cluster and a second slightly smaller one exists,
which indicates that Europarl as a corpus is more homogeneous that Opensubs. The
difference between larger number of clusters is that the main cluster gets some small
parts "chipped off". To examine the effect further the t-SNE 2-component projections
of English Europarl sentence vectors are presented on Figure 6. The figure shows that

32

Table 15. Cluster structure of FastText tagged English Europarl test sets.

Corp N1 N2 N3 N4 N5 N6
C4 2463 486 1 - - -
C8 2614 316 20 - - -
C16 2469 431 26 11 9 4
C32 2270 482 60 54 30 21

The clusters in Table 15 are numbered left to right based on size. Here only top 6 clusters
are shown. For C32 N7 = 15, N8 = 10, N9 = 3, N10 = 2, N11 = 2, N12 = 1. Test
set structures for Estonian sets are similar.

the cluster projections of Europarl are much more disperse than those of Opensubs.
This indicates two things. Firstly, Europarl really seems to be more homogeneous
that Opensubs. Secondly, the fact that Europarl is 0.6 million parallel sentences in
size, whereas OpenSubs is 10 million parallel sentences, could mean that the produced
sentence vectors are tuned more to separate OpenSubs sequences than Europarl sequences.
This is another question in unsupervised tagging which should be investigated further in
future work. One possible course of action would be to compare this version of clustering
and a stratified version of clustering to see if the stratified clustering can produce better
separation for all of the involved corpora than the current one.

TSNE 2-component projections for rest of the English and Estonian test sets are
also calculated and these are presented in Appendix C. The cluster structure tables for
corpora not displayed in this section, are presented in Appendix A

When looking at the number of clusters present in Table 14, one could notice that
the clusters present is less than number of clusters defined. It should be kept in mind
that 3 main text sources are used in training set and also fourth mixed-corpus which
could be divided into 5-6 parts, so 8-9 text domains in total. Also, some sentences are
quite distinct from the others based on full train set cluster structure as visible from the
train set structure of C16 in Figure 7. Train set structure of Estonian C16 is presented in
Appendix B

All-in-all, taking into consideration the fact that unsupervised approach allows new
sentences to be translated with potentially more appropriate domain assigned to them,
the unsupervised tagging approach can be seriously considered as the go-to approach
for multi-domain translation models and with some improvement, it could actually
surpass the pre-defined domain tagging in translation quality. The models trained using
unsupervised tagging and tagging test sentences using FastText classification model are
also integrated into open-source Neurotõlge translation service (Tars et al., 2017)4.

4Specifically in Nazgul part of Neurotõlge. Documentation for Nazguls is on https://github.com/

33

https://github.com/TartuNLP/nazgul
https://github.com/TartuNLP/nazgul

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

32 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

16 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

8 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

4 Clusters

Figure 6. The t-SNE 2-component projections of English Europarl sentence vectors,
coloured based on unsupervised clusters.

TartuNLP/nazgul

34

https://github.com/TartuNLP/nazgul
https://github.com/TartuNLP/nazgul

C14 25.5%

C12

23.3%

C919.4%

C1

14.5%

C3

7.4%

C15

4.3%

C6

3.7%

Other

1.8%

Figure 7. A piechart of English training set cluster proportions. The ’Other’ cluster
contains nine smallest clusters.

35

7 Experiments with zero-shot style adaptation
In this following section we show the results of zero-shot style adaption. The aim of
the approach is to explore the possibility of intra-language style adaptation to transform
text into more appropriate form (e.g EN_Manchester to EN_formal) through zero-shot
translation.

To test the possibility of zero-shot style adaptation, we train a EN–ET+ET–EN neural
system. The system has both language and domain information included in the preceding
tag.

In the test setting we take sentences from English test set and tag each with 2eneu (to
english europarl), 2enos (to english opensubs), and 2enwi (to english wiki). The expected
behaviour of the model would be that "translating" into the true tag, the sentence does
not change while "translating" into the false tags, the sentence is more prone to change
intra-language in style. Mostly the sentences remained the same, which is indicated by
the BLEU scores of 86.7, 85.5 and 85.6 respectively, compared to the source text.

To observe the changes more thoroughly, we sample 100 sentences from the transla-
tion set. In general four types of changes are observed:

• Omission of a word or sequence of words

• Translation of a word into Estonian rather into another domain of English

• Transition from a short form to longer form or vice versa, e.g. didn ’t – did not

• Single word replacements

In the following Table 16, Table 17, Table 18 some examples of these occurances are
shown.

Table 16. Style transition from a short form to longer form.

Domain Sentence
OS I didn ’t !
to_OS I didn ’t !
to_EU I did not !
to_WI I did not !

The example in Table 16 is a nice example of the style adaptation as transition from a
short form to longer form of "didn ’t" – "did not". In subtitles domain the short forms
are okay, whereas in formal corpora such as Europarl and Wikipedia, short forms are not
acceptable. Of course this substitution has errors too, such as "can ’t" – "could not".

36

Table 17. Deletion of word sequence during style adaption translation.

Domain Sentence
OS Dwight : how about you , cuz ?
to_OS Dwight :
to_EU Dwight : how about you , cuz ?
to_WI Dwight :

Table 18. Translation of a word into Estonian rather into another domain of English.

Domain Sentence
WI the term sciatica describes a symptom ...
to_OS the term sciatica describes a sümptom ...
to_EU the term sciatica kirjeldab a sümptom ...
to_WI the term sciatica describes a sümptom ...

In example Table 17 two of the domains delete the sequence that follows ":". Inter-
estingly enough this occurs also in the original domain. Probably due to the training data
profile.

In example Table 18 all of the domain transitions translate "symptom" into "sümp-
tom", which is an accurate translation into Estonian, but not the intended outcome.
Europarl also translates (accurately) describes to kirjeldab.

All in all it can be said, that yes, to some extent the intra-language domain adaptation
works, but with our experimental setting it produces more noise than usable output.
This effect could be alleviated by training the model more and having data that is more
representative of the involved domains. However, it is probable that those modifications
would need some additional mechanism to produce usable results.

8 Conclusions
The results from the experiments - EN–ET and ET–EN direction parallel translation,
Wikipedia data translation, and unsupervised sentence tagging - show that both of the
two chosen multi-domain approaches outperform regular approach of uniform translation
and domain-tuning.

This indicates the hypothesis that the parameter sharing effect discussed in Google’s
zero-shot article would benefit domain translation holds. The translation scores even
outperform domain fine-tuning approach, which could be explained by the same pa-
rameter sharing. In fine-tuning the model is tuned to translate sentences characteristic
to the domain it has been tuned to. This means that domain-characteristic sentences
get translated really well. On the other hand, the not-so-characteristic sentences get

37

neglected. The parameter sharing effect of the multi-domain approach helps negate the
negative effect by the support of other domains while still learning to more effectively
represent each domain by the additional domain info.

Furthermore, the results indicate that adding domains as an input feature can have
even stronger effect on the translation scores. This shows that concatenating the domain
feature embedding with word embedding at each timestep - basically remembering the
source domain equally throughout the sequence improves model performance. This
could be explained by the fact that in tag prepending case, the neural net may "forget"
for longer sequences what the input tag was, making the effect of it weaker. However,
the differences in scores are not drastically different from the domain tag prepending.
This means that for the sake of data simplicity and model simplicity the tag prepending
approach could prove more reasonable of the two for in-production settings. Also, unlike
domain embeddings, the tag prepending approach is compatible with many modern NMT
architectures, for example Transformers.

Additionally, to expand the domain tagging approach to texts without domain knowl-
edge, we produced an approach of automatically detecting clusters in text corpora. The
performance of unsupervised domain tagged model indicates that the approach could
possibly substitute the pre-defined domain tagging approach. The unsupervised tagging
certainly serves as an improvement in less homogeneous single domain settings, where
we showed on the example of Wikipedia that the sub-domain detection provides a clear
improvement compared to baseline no-tagging version in translation scores.

No less important are the facts that the unsupervised tagging approach can ensure
better domain assignment to each new sentence and can efficiently incorporate new data
from various small domains to fortify each of the learned "domain" (clusters). We noted
considerable differences in cluster distribution between pre-defined defined domains
and automatically detected domains, with the latter being less separated in the cluster
structure, but promising approach with improvements to the clustering approach. It has
to be taken into account that the unsupervised clustering performed in these experiments
is applied basically in out-of-the-box manner, which means that domain assignments can
be improved and thus the translation scores should also improve.

Finally, the use of the domain tagging approach is explored in multilingual setting
and the possibility of intra-language domain adaptation through zero-shot translation.
The results show clear evidence of this kind of model being able to domain-adapt text,
however, with small but visible text deterioration.

For future work the clustering in fully unsupervised tagging approach should be
improved to see if this gives a visible improvement in translation scores.

Secondly, a more comprehensive sweep on number of clusters should be done. It
would be interesting to see for how many clusters the effect still persists. This however
would need more extensive computational resources and should probably be done with
some model dataset.

38

The differences of the two approaches - source sentence tagging and adding domain
info as an input feature - deserve to be looked into more deeply. More precisely, the
result profiles of the two in different cases of domain granularity.

Finally, in this work domains are still treated as nominal values; it would be interesting
to explore the estimation of domain embeddings at translation time as continuous values.

Acknowledgements
This work was supported by the Estonian Research Council grant no. 1226 and Study-
ITin.ee.

39

Bibliography
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. CoRR, abs/1409.0473, 2014. URL http:
//arxiv.org/abs/1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. CoRR, abs/1607.04606, 2016. URL http:
//arxiv.org/abs/1607.04606.

Denny Britz, Quoc Le, and Reid Pryzant. Effective domain mixing for neural machine
translation. In Proceedings of WMT, pages 118–126, Copenhagen, Denmark, 2017.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi, and Jan-Thorsten Peter. Guided
alignment training for topic-aware neural machine translation. CoRR, abs/1607.01628,
2016. URL http://arxiv.org/abs/1607.01628.

Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder–decoder for statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/D14-1179.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.
URL http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat, Fernanda B. Viégas, Martin Wattenberg, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s multilingual neural machine translation system:
Enabling zero-shot translation. CoRR, abs/1611.04558, 2016. URL http://arxiv.
org/abs/1611.04558.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. CoRR, abs/1607.01759, 2016. URL http://arxiv.org/
abs/1607.01759.

Catherine Kobus, Josep Crego, and Jean Senellart. Domain control for neural machine
translation. In Proceedings of RANLP, pages 372–378, Varna, Bulgaria, 2017.

Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In
Proceedings of MT Summit, volume 5, pages 79–86, Phuket , Thailand, 2005.

40

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.01628
http://www.aclweb.org/anthology/D14-1179
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1607.01759

Pierre Lison and Jörg Tiedemann. Opensubtitles2016: Extracting large parallel corpora
from movie and tv subtitles. In Proceedings of LREC, pages 923–929, Portorož,
Slovenia, 2016.

Minh-Thang Luong and Christopher D Manning. Stanford neural machine translation
systems for spoken language domains. In Proceedings of IWSLT, pages 76–79, Da
Nang, Vietnam, 2015.

Robert Östling and Jörg Tiedemann. Continuous multilinguality with language vectors.
In Proceedings of EACL, pages 644–649, Valencia, Spain, 2017.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence
embeddings using compositional n-gram features. CoRR, abs/1703.02507, 2017. URL
http://arxiv.org/abs/1703.02507.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of ACL, pages 311–318,
Philadelphia, Pennsylvania, USA, 2002.

Mārcis Pinnis, Radu Ion, Dan Ştefǎnescu, Fangzhong Su, Inguna Skadin, a, Andrejs
Vasil,jevs, and Bogdan Babych. Accurat toolkit for multi-level alignment and informa-
tion extraction from comparable corpora. In Proceedings of ACL, pages 91–96, Jeju
Island, Korea, 2012.

Matı̄ss Rikters and Mark Fishel. Confidence through attention. In Proceedings of MT
Summit, pages 299–311, Nagoya, Japan, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of ACL, pages 1715–1725, Berlin, Germany,
2016a.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Controlling politeness in neural
machine translation via side constraints. In Proceedings of NAACL, pages 35–40, San
Diego, California, 2016b.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexandra Birch, Barry Haddow, Julian
Hitschler, Marcin Junczys-Dowmunt, Samuel Läubli, Antonio Valerio Miceli Barone,
Jozef Mokry, and Maria Nadejde. Nematus: a toolkit for neural machine translation.
In Proceedings of EACL, pages 65–68, Valencia, Spain, 2017.

Yusuke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda, Ayumi Shino-
hara, and Takeshi Shinohara. Byte pair encoding: A text compression scheme that
accelerates pattern matching. 09 1999.

41

http://arxiv.org/abs/1703.02507

Inguna Skadin, a, Ahmet Aker, Nikos Mastropavlos, Fangzhong Su, Dan TufiÈ™, Mateja
Verlic, Andrejs Vasil,jevs, Bogdan Babych, Paul Clough, Robert Gaizauskas, Nikos
Glaros, Monica Lestari Paramita, and Mārcis Pinnis. Collecting and using comparable
corpora for statistical machine translation. In Proceedings of LREC, pages 438–445,
Istanbul, Turkey, 2012.

Dan Stefănescu, Radu Ion, and Sabine Hunsicker. Hybrid parallel sentence mining from
comparable corpora. In Proceedings of EACL, pages 137–144, Trento, Italy, 2012.

Sander Tars, Kaspar Papli, Dmytro Chasovskyi, and Mark Fishel. Open-Source Neural
Machine Translation API Server. The Prague Bulletin of Mathematical Linguistics,
109:5–14, October 2017. ISSN 0032-6585. doi: 10.1515/pralin-2017-0034. URL
https://ufal.mff.cuni.cz/pbml/109/art-tars-et-al.pdf.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008. URL http://www.jmlr.org/
papers/v9/vandermaaten08a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
5998–6008. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

42

https://ufal.mff.cuni.cz/pbml/109/art-tars-et-al.pdf
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Appendix A
This appendix displays the unsupervised cluster structures for test sets that were not
displayed in the main part of the thesis. These test sets are Estonian Europarl, Estonian
Wiki, Estonian Opensubs and English Wiki.

Table 19. Cluster structure of FastText tagged English Wiki test sets.

Corp N1 N2 N3 N4 N5 N6
C4 2921 29 - - - -
C8 2907 43 - - - -
C16 1811 1056 69 9 4 1
C32 2184 523 110 80 21 20

The clusters are numbered left to right based on size. Here only top 6 clusters are shown.
For C32 N7 = 11, N8 = 1.

Table 20. Cluster structure of FastText tagged Estonian Opensubs test sets.

Corp N1 N2 N3 N4 N5 N6
C4 2503 465 12 - - -
C8 2486 478 15 1 - -
C16 2282 364 282 21 1 -
C32 1271 1044 285 245 97 27

The clusters are numbered left to right based on size. Here only top 6 clusters are shown.
For C32 N7 = 7, N8 = 2, N9 = 1, N10 = 1.

43

Table 21. Cluster structure of FastText tagged Estonian Europarl test sets.

Corp N1 N2 N3 N4 N5 N6
C4 2175 747 28 - - -
C8 2302 614 28 6 - -
C16 2469 431 26 11 9 4
C32 2173 628 55 42 20 17

The clusters are numbered left to right based on size. Here only top 6 clusters are shown.
For C32 N7 = 8, N8 = 5, N9 = 1, N10 = 1.

Table 22. Cluster structure of FastText tagged Estonian Wiki test sets.

Corp N1 N2 N3 N4 N5 N6
C4 1759 1219 2 - - -
C8 1503 1476 1 - - -
C16 1732 1212 2 2 2 -
C32 2087 777 97 15 2 2

44

Appendix B
This appendix displays the Estonian training set cluster proportions. The cluster assign-
ment is produced in an unsupervised manner.

C15

42.1%

C136.4%

C12

7.2%

C8

6.2%

C6

5.9%

Other

2.2%

Figure 8. A piechart of Estonian training set cluster proportions. The ’Other’ cluster
contains eleven smallest clusters.

45

Appendix C
This appendix displays the t-SNE two-component projections of test sets that were not
displayed in the main part of the thesis. These test sets are Estonian Europarl, Estonian
Wiki, Estonian Opensubs and English Wiki.

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

32 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

16 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

8 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

4 Clusters

Figure 9. The TSNE 2-component projections of English Wikipedia sentence vectors.

46

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

32 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

16 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

8 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

4 Clusters

Figure 10. The TSNE 2-component projections of Estonian Opensubs sentence vectors.

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

32 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

16 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

8 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

4 Clusters

Figure 11. The TSNE 2-component projections of Estonian Europarl sentence vectors.

47

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

32 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

16 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

8 Clusters

80 60 40 20 0 20 40 60 80100
60
40
20

0
20
40
60
80

4 Clusters

Figure 12. The TSNE 2-component projections of Estonian Wikipedia sentence vectors.

48

Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Sander Tars,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Multi-domain Neural Machine Translation
supervised by Mark Fishel

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

49

	Introduction
	Background
	Data
	Vector representations
	Machine Learning
	Neural Networks
	Neural Machine Translation

	Related Work
	Methodology
	Domain as a Tag
	Domain as a Feature
	Automatic domain tags
	Zero-shot style adaptation

	Experiments with Known Domains
	Mining Wikipedia for Translations
	Technical Settings
	Results

	Experiments with Automatic Domains
	Automatic single-domain tagging
	Unsupervised multi-domain tagging

	Experiments with zero-shot style adaptation
	Conclusions
	References
	Appendix A
	Appendix B
	Appendix C
	Licence

