
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Anton Tšugunov

Shuriken Way – An Android Puzzle Game

Bachelor's thesis (9 EAP)

Supervisor:

Raimond-Hendrik Tunnel, MSc

Tartu 2018

2

Shuriken Way – An Android Puzzle Game

Abstract:

The thesis describes the development and testing of an Android video game called Shuriken

Way, which was developed as a game that provides a unique player experience. The game

was developed without the use of game engines. The choice of different technologies is

explained and some alternative routes the development could have taken are analyzed. The

thesis details the implemented game mechanics and the design of prominent game levels.

Finally, the testing stage of the work is described. The game was tested on multiple Android

devices to discover compatibility issues. The game was then compared against other similar

Android games found on the Google Play distribution platform to see how Shuriken Way

compares to them in terms of performance. Lastly, the game was playtested with new

players to uncover any issues that players can face when playing the game. Based on the

results of the tests, improvements were made or proposed for the future developement of

the game.

Keywords:

Game, game development, game design, puzzle game, mobile, 3D, 2.5D, graphics, physics-

based puzzles, VBO, OpenGL, Android

CERCS: P170 Computer science, numerical analysis, systems, control

Shuriken Way – mõistatusmäng Android-seadmetele

Lühikokkuvõte:

Antud bakalaurusetöös kirjeldatakse Android-mängu arendamist ja testimist. Mängu nimeks

on Shuriken Way. Mängu arendati mänguna, mis pakub mängijale ainulaadset mängu-

kogemust. Mängu arendamiseks ei kasutatud mängumootoreid. Erinevate tehnoloogiate

valik on töös põhjendatud ja alternatiivsed lähenemised on analüüsitud. Töös on detailselt

kirjeldatud mängus rakendatud mängumehaanikaid ning väljapaistvamate mängutasemete

disaini. Töö lõpus on kirjeldatud mängu testimine. Mängu testiti mitmes erinevas Android-

seadmes, et avastada ühilduvusprobleeme. Seejärel on töös võrreldud mängu jõudlust teiste

Google Play levitusplatvormist leitud sarnaste Android-mängudega. Lõpuks anti mäng

uutele mängijatele mängimiseks, et selgitada välja probleemid, millega mängijad võivad

mängimisel kokku puutuda. Testimise tulemuste põhjal arendati mängu edasi ning töös on

toodud välja ettepanekud mängu arendamiseks tulevikus.

Võtmesõnad:

Mäng, mängude arendamine, mängu disain, mõistatusmäng, mobiilne, 3D, 2.5D, graafika,

füüsika-põhised mõistatused, VBO, OpenGL, Android

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

(automaatjuhtimisteooria)

3

Table of Contents

1 Introduction ... 6

2 Alternatives ... 9

2.1 Ninja Star! .. 9

2.2 Shuriken .. 10

3 Technologies Used .. 13

3.1 Android Java ... 13

3.2 OpenGL ES .. 13

3.3 VAO and VBO ... 14

3.4 GLSL Shaders .. 14

3.5 Alternative Routes .. 15

3.5.1 Unity .. 15

3.5.2 Unreal Engine 4 ... 16

4 Game Mechanics ... 17

4.1 The Shuriken .. 17

4.2 Platforms ... 18

4.2.1 The Housing Mechanic ... 19

4.2.2 Collision Detection .. 20

4.2.3 The Simple Platform ... 21

4.2.4 The Relativity Platform ... 24

4.2.5 The Simple Wall ... 26

4.2.6 The Active Wall .. 29

4.3 Enemies .. 30

4.3.1 The Katana .. 30

4.4 Collectables .. 32

4.4.1 The Coin .. 33

4

4.5 Miscellaneous ... 33

4.5.1 The Accelerator ... 34

5 Level Design ... 35

5.1 The Short Level .. 35

5.2 The Long Level .. 37

5.2.1 Puzzle A .. 38

5.2.2 Puzzle B .. 40

5.2.3 Puzzle C .. 41

5.2.4 Puzzle D .. 43

6 Testing ... 45

6.1 Compatibility .. 45

6.1.1 The Results .. 46

6.1.2 Implemented Improvements .. 48

6.1.3 Future Improvements .. 48

6.2 Alternatives ... 49

6.2.1 GAPID ... 49

6.2.2 The Results .. 49

6.3 Playtests .. 50

6.3.1 The Results .. 51

6.3.2 Implemented Improvements .. 55

6.3.3 Future Improvements .. 57

7 Conclusion ... 59

8 References ... 60

Appendices .. 62

I. Glossary .. 62

II. Installation Guide ... 63

5

III. Game Guide .. 64

IV. Accompanying Files ... 66

V. Graphics of Ninja Star! ... 67

VI. Unity vs Other Approaches .. 70

VII. Final Compatibility Tests ... 72

VIII. Applications for Graphics Performance Measurement ... 73

IX. Full Results of the Performance Comparison ... 74

X. The Questionnaire For Playtests ... 76

XI. License .. 79

6

1 Introduction

There are a lot of mobile games on the Android (see Appendix I for definition) application

distribution platform called Google Play1 but not all of them are original ideas brought to

life. Many of them are just “clones” of previously existing popular games. [1] Present thesis

describes the development and testing of an Android video game Shuriken Way. The aim

was to develop Shuriken Way as a game that provides a unique player experience instead of

trying to mimic the experience one could already get from existing games. In addition,

Shuriken Way needed to perform well and have great entertainment value. Shuriken Way is

a physics-based puzzle game, where the goal of the player is to complete all the levels while

getting as high of a score as possible in each of them. The player is given control of a

shuriken (see Appendix I for definition) and the goal of every level is to collect all the coins

in it. This is usually done by hitting the coins with the shuriken. Very often reaching a coin

requires the player to plan out their actions and use certain mechanics of the surrounding

objects. Throughout the levels there are also objects that are explicitly there to try to stop

the player from reaching some coins. The score for a level is based on how quickly the

player was able to complete it.

There are other publicly available games for Android that are similar to Shuriken Way but

there is a number of aspects that make Shuriken Way comparatively unique. Chapter 2 of

the thesis gives an overview of similar games available on Google Play to date and compares

them to Shuriken Way.

The game was developed with Android Java and OpenGL ES (Open Graphics Library for

Embedded Systems) without using game engines. Chapter 3 of the thesis explains the choice

regarding those and other technologies that were used to develop the game and lists some

alternative routes the development could have taken. Advantages and disadvantages of each

route are analyzed.

Chapter 4 of the thesis describes the implemented game mechanics for each game object

and how each object’s mechanics are or can be used in puzzles. Chapter 5 describes how

prominent game levels were designed. The chapter explains the main aspects of them that

make the levels “puzzling” and how different game objects and mechanics were used to

achieve the result.

1 https://play.google.com/store

https://play.google.com/store

7

The game was tested on multiple devices to discover performance, visual or any other

compatibility problems. The game was then further developed to improve or fix any device

compatibility issues found during the testing. In addition, Shuriken Way was tested

alongside other similar games found on the Google Play to see how it compares to the

alternatives in terms of graphics performance.

Finally, Shuriken Way was playtested by new players to uncover any confusion or problems

that players can face when playing the game. This includes level imbalance, game breaking

bugs, unintuitive controls and bad game mechanics. Improvements were made or planned

for the future development. The whole testing stage is detailed in the chapter 6 of the thesis.

Some terms used in the present thesis are defined in the Glossary (Appendix I). An

installation guide for the game is available in Appendix II. A brief game guide is available

in Appendix III. The game installation package (shuriken-way.apk), a short video

demonstration of the gameplay (demo.mp4) and the source code files (/Source) are available

in the Accompanying Files (Appendix IV). The following Illustrations 1, 2, 3 and 4 are

screenshots of Shuriken Way taken at the end of the work for the present thesis.

Illustration 1. Level select

menu of Shuriken Way.

Illustration 2. Screenshot

taken during the level 12 of

Shuriken Way.

8

Illustration 4. Screenshot

taken during the level 8.

Illustration 3. Screenshot

taken during the level 5.

9

2 Alternatives

As mentioned in the Introduction, Shuriken Way was developed during the work for the

present thesis as a game that provides a unique player experience. However, this fact does

not prohibit or negate the existence of some visual similarities or similar mechanics between

Shuriken Way and existing games. As long as the actions that the player has to take in order

to see the visuals or trigger a mechanic are different, it is possible to create a unique

experience. Like J. Schell [7:143] has written: “The actions a player can take are so crucial

to defining a game’s mechanics that changing a single action can give you a completely

different game.“ Two Android games have been found that are similar to Shuriken Way

enough to make a comparison: Ninja Star! and Shuriken. Subchapters 2.1–2.2 go in more

detail on the two games.

2.1 Ninja Star!

Ninja Star! (Illustration 5) is a video game by Piggyback Games2 developed for Android

and iOS operating systems. It was released in the spring of 2015. The game has 1000–5000

downloads on Google Play to date3.

The most notable similarities between Ninja Star! and Shuriken Way are in the overall theme

and genre. Ninja Star! is also a multi-level physics-based puzzle game involving a shuriken.

2 http://www.piggybackgames.com/

3 https://play.google.com/store/apps/details?id=com.piggyback.ninjagolf

Illustration 5. Screenshots of the game Ninja Star!

http://www.piggybackgames.com/
https://play.google.com/store/apps/details?id=com.piggyback.ninjagolf

10

The games also share a number of mechanics that can be considered identical but these

similarities in mechanics come mostly from simulating real world physics, for example

bouncing and collision. Despite the similarities, there are a lot of differences between the

two games which make Shuriken Way stand out and make it unique.

The most “visible” difference is exactly the visual aspect: Shuriken Way uses 3D (or

sometimes called 2.5D) graphics with minimal texture use, whereas Ninja Star! chose a

heavily texture-based 2D approach (see Appendix V). Just as an important of a difference

is the performance which, despite of Ninja Star! using 2D graphics, is arguably worse in

Ninja Star! than Shuriken Way. The differences in performance of Shuriken Way and the

alternatives are documented in detail in subchapter 6.2 of the present thesis.

Lastly, there are a lot of differences in game mechanics. Ninja Star! uses a fixed camera (i.e.

view) and the size of the level is limited to the area visible by the camera, whereas Shuriken

Way uses a camera that is locked onto the controlled shuriken and the size of the level is

only limited by the finiteness of the Android Java variable types and the mobile device

capabilities. In Ninja Star! the player chooses where to throw the shuriken by touching the

screen in the wanted direction, which requires touch precision. In Shuriken Way, the

direction in which the shuriken is being thrown is determined by the rotation of the object

that the shuriken is stuck in. This emphasizes precise timing from the player, thus creating

a reaction-based challenge. In addition, Shuriken Way contains game objects with

mechanics that are not present in Ninja Star!, for example rotating platforms that cause the

camera and the direction of the gravity to rotate alongside the platforms when the shuriken

is stuck in them and rotating landable walls. These objects are described in more detail in

the chapter 4 of the present thesis.

2.2 Shuriken

Shuriken is a video game for Android which was last updated in June of 2016. The exact

release date of the game is unknown. It was uploaded to Google Play by the user DnL. The

game has 500–1000 downloads on Google Play to date4. Just like Ninja Star!, Shuriken

shares a similar theme with Shuriken Way but the genre is different (Illustration 6 and 7).

4 https://play.google.com/store/apps/details?id=com.DnL.Shuriken

https://play.google.com/store/apps/details?id=com.DnL.Shuriken

11

Shuriken is visually very similar to Flappy Bird, a mobile game that got very popular in

2014 and shares similar mechanics.

Flappy Bird is a game where the player is given control of a bird. The aim is to keep the

bird in the air and avoid the incoming pipes by tapping the screen to fly up when necessary

(Illustration 8). It is very similar to how the player avoids logs in Shuriken.

Apart from the theme, there are not any noteworthy similarities between Shuriken and

Shuriken Way. The games differ in graphics, goal, engine etc. Shuriken uses texture-based

2D graphics, compared to the 3D low texture graphics of Shuriken Way. Shuriken does not

consist of multiple levels and instead uses an infinite level approach similar to Flappy Bird.

Illustration 6. Screenshot of Shuriken.

Illustration 8. Screenshot of the game Flappy Bird.

Illustration 7. Screenshot of Shuriken.

12

Shuriken was developed using the Unity game engine compared to the Android Java and

OpenGL ES approach of Shuriken Way. The choice of not using game engines like Unity

for the development of Shuriken Way is explained in the next chapter of the thesis.

13

3 Technologies Used

As mentioned in the previous chapter, Shuriken Way is developed using the Android Java

programming language and the built-in OpenGL ES 2.0 API (Application Programming

Interface). The IDE (Integrated Development Environment) used for the development is the

Android Studio 3.0.15. Rendering is handled using VAO/VBO (Vertex Array Object /

Vertex Buffer Object) and GLSL (OpenGL Shading Language) shaders technology directly.

That makes the development different from using game engines, which provide an

abstraction layer between the game content and the underlying hardware [3].

Such approach was chosen over using game engines like Unity6 and Unreal Engine7 for

many reasons, including educational, and is further explained in subchapter 3.5. The

following subchapters 3.1–3.4 provide a brief overview of the technologies used in the

development of Shuriken Way.

3.1 Android Java

The Android Java (i.e. Java for Android) is a programming language that is almost identical

to the regular Java language. The Android Java largely uses Java’s adoption of the object-

oriented programming model and is designed to work with respect to the regular Java’s

concepts. There are differences though, one of which is the compilation process. Regular

Java code is compiled to its bytecode form and then run on a Java Virtual Machine8 instance.

The Android Java code is also compiled to its bytecode form but, starting from Android

version 4.4, it is also converted to device-based machine code when installing the compiled

application to a device. This means that the application does not run on a virtual machine.

[5] The Android Java was used in the development of Shuriken Way to program game

mechanics and to access OpenGL ES for rendering graphics.

3.2 OpenGL ES

Android uses OpenGL ES as an API to graphics hardware. OpenGL ES consists of a set of

commands and functions that let the programmer specify programs, objects and operations

5 https://developer.android.com/studio/index.html

6 https://unity3d.com

7 https://www.unrealengine.com

8 https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-1.html#jvms-1.2

https://developer.android.com/studio/index.html
https://unity3d.com/
https://www.unrealengine.com/
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-1.html#jvms-1.2

14

involved in rendering high-quality graphics, specifically colour images of 3D objects.

Typical programs that use OpenGL ES open a window into a framebuffer, allocate an

OpenGL ES context and associate it with the window. Next, commands to define shaders,

textures, geometry can be made as well as commands to draw the defined geometry. [8] In

the case of Shuriken Way, OpenGL ES version 2.0 is used. The version 2.0 has been chosen

over versions 1.0, 1.1, 3.0 and 3.1. Both 2.0 and 3.* provide faster graphics performance

than the older versions but newer features of the versions 3.* were not needed for the

development of Shuriken Way. OpenGL ES 3.0 and 3.1 have better support for texture

compression than version 2.0 but it is not necessary in the case of Shuriken Way because its

graphics use very few textures, mainly for text rendering.9 OpenGL ES 2.0 is also supported

by a wider variety of devices than the newer versions, which is why it was currently

preferred10. The geometry in Shuriken Way is defined by the use of VAO and VBO

technology built into the OpenGL ES API.

3.3 VAO and VBO

VAO or vertex array objects represent a collection of vertex attribute sets. For the definition

of vertex, see the Glossary (Appendix I). These attribute sets are stored in the buffer object

data store. [8] If a buffer object contains vertex data, for example spatial coordinates, normal

vectors etc, it is commonly called a vertex buffer object or VBO for short11. In the case of

Shuriken Way, the technology is used as intended, to predefine and store vertex data of the

game object models on the graphics hardware so that shader programs can access it during

rendering.

3.4 GLSL Shaders

Shaders are pieces of code that can be compiled for and executed on the GPU. The shaders

in OpenGL are written in The OpenGL Shading Language (GLSL). Different GLSL shaders

can be written for each of the programmable steps in the OpenGL processing pipeline:

vertex, tessellation control, tessellation evaluation, geometry, fragment, and compute. A

collection of compiled shaders written for different steps is called a shader program. [9] In

the case of Shuriken Way, the required shaders for vertex and fragment steps have been

9 https://developer.android.com/guide/topics/graphics/opengl.html#choosing-version

10 https://developer.android.com/guide/topics/graphics/opengl.html#version-check

11 https://www.khronos.org/opengl/wiki/Vertex_Specification#Vertex_Buffer_Object

https://developer.android.com/guide/topics/graphics/opengl.html#choosing-version
https://developer.android.com/guide/topics/graphics/opengl.html#version-check
https://www.khronos.org/opengl/wiki/Vertex_Specification#Vertex_Buffer_Object

15

written. Writing other types of shaders is optional and only useful when it is needed to

customize other stages of the processing pipeline. Default operations in those stages are

performed otherwise12. The vertex step operates on the vertices and the data associated with

them [9]. The fragment step, on the other hand, is responsible for operations on fragments

and the data associated with them, for example depth values [9]. For the definition of

fragment, see the Glossary (Appendix I). At the end of the pipeline, an image representing

the current state of the game can be seen on the screen and the player can respond to it

accordingly. The next subchapter examines some alternative routes the development of

Shuriken Way could have taken and explains the choice of discarding them.

3.5 Alternative Routes

Shuriken Way was developed without the help of game engines for a number of reasons.

The main reason why the chosen approach to the game development was preferred is for the

purpose of gaining more experience in using low level techniques for rendering computer

graphics. The use of the two most popular games engines13 was still considered and it is

analyzed in the following subchapters 3.5.1 and 3.5.2.

3.5.1 Unity

The biggest advantage of Unity (Illustration 9)

is the ability to efficiently support a wide

variety of mobile devices. This includes

optimized cross-platform shaders. [2] With

Unity the number of compatibility issues with

different types of devices can be drastically

lowered. Unity was not chosen for the devel-

opment of Shuriken Way for the following reasons. Using Unity the game developers have

less control over the lower levels of the engine which means that there may be bugs in the

game engine which cannot be fixed until the developers of Unity fix the issue and release

an update. Another disadvantage of using Unity in the context of the present thesis is

author’s lack of experience with Unity, which would have slowed down the development of

Shuriken Way. The most important disadvantage of Unity is the high consumption of CPU,

12 https://www.khronos.org/opengl/wiki/Vertex_Processing

13 https://www.gamedesigning.org/career/video-game-engines/

Illustration 9. Logo of the Unity engine.

https://www.khronos.org/opengl/wiki/Vertex_Processing
https://www.gamedesigning.org/career/video-game-engines/

16

GPU, energy and memory resources [3]. Prior experience of the author of the present thesis

is that Android games developed with Unity have very often underperformed Android

games developed using alternative methods. This is supported by the small preliminary

study conducted for the present thesis. The description of the study and the results are shown

in the Appendix VI.

3.5.2 Unreal Engine 4

Just like Unity, Unreal Engine 4 (Illustration 10)

efficiently supports a wide variety of mobile and

static devices [4]. However, as mentioned before,

game engines consume a lot of device CPU, GPU,

energy and memory resources [3]. This is once

again one of the reasons why Unreal Engine 4 was

not chosen in this thesis. Shuriken Way was not

planned as a very voluminous game and most of

the Unreal Engine features were not required as

they are there to speed up the development of massive graphically intensive games. The aim

was for Shuriken Way to have very good performance to compete with similar games on the

market. Taking performance into consideration, minimal experience with the engine would

slow down the development of Shuriken Way compared to the Android Java and OpenGL

ES approach that the author is more used to. All of these factors played roles in the decision

to discard Unreal Engine 4. The next chapter provides an overview of the main game

mechanics of Shuriken Way and details the way they have been implemented.

Illustration 10. Logo of Unreal Engine.

17

4 Game Mechanics

Game mechanics are the rules and operations of a game. They also describe the goal of the

game and help the player to or hinder them from achieving the goal. Mechanics define the

game [7]. Shuriken Way can be described as a game where the shuriken is interacting with

other objects encountered in the levels. Several game objects with various mechanics have

been designed and implemented for the present thesis. The following subchapters 4.1–4.5

go into detail about the implemented objects and the mechanics associated with them.

4.1 The Shuriken

The present subchapter does not provide a historical or technical overview of the Japanese

throwing weapons known as shuriken. This is purely about the shuriken as the main game

object of Shuriken Way. However, the shuriken object is inspired by the mentioned Japanese

weapon and its visual appearance in the game mimics that of the real life object. The model

was made with modeling tools in the free 3D computer graphics software called Blender14

(Illustration 11).

The shuriken is the object that the player is given the control of. This is the most important

mechanic of Shuriken Way. The shuriken takes part in most of the mechanics related to other

14 https://www.blender.org/

Illustration 11. The 3D model of the shuriken created using Blender.

https://www.blender.org/

18

object types, for example the housing mechanic of the platforms and the collection mechanic

of the coin. The shuriken object’s own main mechanics are the gravity mechanic that pulls

the shuriken in a certain direction and the jumping or throwing mechanic which lets the

player move the shuriken in the level. The direction that the gravity mechanic pulls the

shuriken in will be called the direction of gravity further in the thesis. There is also another

mechanic, which is that the level will end in a loss if the shuriken has moved above a level-

specific threshold value in the direction of gravity (Illustration 12).

This mechanic will be sometimes called “falling into the void” further in the thesis. The

following subchapter 4.2 describes the different types of platforms that the shuriken object

can interact with.

4.2 Platforms

Platforms are the core of Shuriken Way. Jumping from one platform to another is the main

method used by the players to move around the current level. The platforms can rotate

around their own axis perpendicular to the level. That rotation is what the player uses to aim

their next jump. The platforms can be scaled according to the needs of a particular level or

puzzle. Four types of platforms have been implemented in Shuriken Way during the work

Illustration 12. Threshold value for the fall in the direction of

gravity (g) visualised with the line t. Line p represents zero on

the gravity axis. By moving from point a to point b the shuriken

would cross the threshold.

19

for the present thesis. Subchapters 4.2.3–4.2.6 detail the platform type-specific mechanics.

The following subchapters 4.2.1–4.2.2 describe the housing and collision detection

mechanics that all types of platforms have in common.

4.2.1 The Housing Mechanic

In Shuriken Way, being stuck to an object is called being housed by the object. All platforms

can house the game’s main object – the shuriken. This means that any transformation applied

to the housing platform will also apply transformation to the shuriken so that it looks

relatively natural to the player. Transformations consist of moving and rotating the platform.

In other words, the following happens when the shuriken collides with a platform:

1. The rotation and position (relative to the platform) of the shuriken are saved.

2. The rotation of the platform is saved.

3. The shuriken is marked as housed by the platform.

And while being marked as housed, the following is true for the shuriken:

1. The shuriken is moved relatively to the housing platform. The relative position is the

one saved on collision but rotated according to the platform’s rotation since the collision

(Illustration 13).

2. The shuriken’s rotation is changed according to the platform’s rotation since the

collision.

Illustration 13. The relative position of the shuriken rotating with the housing

platform. Vector poscollision is the relative position of the shuriken on collision.

Vector posnew is the relative position of the shuriken while being housed. Vector

posnew is poscollision rotated by α, which is the platform’s rotation since collision.

Vectors x and y represent the horizontal (x-)axis and the vertical (y-)axis.

20

The player can detach the shuriken from the housing platform by tapping the screen.

Collision detection, used for housing, and the mechanic of detaching the shuriken are partly

or fully specific to the type of the platform. The following subchapter 4.2.2 describes the

collision detection elements common to all types of platforms.

4.2.2 Collision Detection

Collision detection is calculating whether a game object intersects with another game object

[10]. It is used by the platforms in Shuriken Way to determine when a platform needs to start

housing the shuriken. Collision detection is done by performing operations on several points

that have been virtually placed on the shuriken (Illustration 14). These points will be called

collision points further in the text.

If one of the collision points fits the platform type-specific criteria for a collision, the

collision is considered detected. The more collision points there are the more realistic the

collision detection is. A total of 4 collision points are used in the version of Shuriken Way

developed during the work for the present thesis. Every platform and the shuriken have

bounding circles. The bounding circle determines how close a collision point needs to be to

the object’s center for the collision to be possible. There are no vertices of the object outside

its bounding circle. If the platform’s bounding circle does not intersect with the shuriken’s

bounding circle, then it is safe to say that there is no collision without performing the

operations on the collision points (Illustration 15). The bounding circles of two objects

intersect when the distance between their center points is less than the sum of the radiuses

of the bounding circles.

Illustration 14. A total of 4 collision points

placed on the left shuriken in the illustration and

12 collision points on the right one.

21

4.2.3 The Simple Platform

The simple platform is the most common type of an object in Shuriken Way. It is in the shape

of a right regular prism15 and the bases of the prism can be regular polygons16 with 4–8

sides.

Mechanic-wise the simple platform is considered here just a regular polygon. The height of

the prism does not play a role in the platform’s mechanics (Illustration 16). It is there purely

for a visual effect.

15 http://www.mathwords.com/r/right_regular_prism.htm

16 http://www.mathwords.com/r/regular_polygon.htm

Illustration 15. The bounding circles of the shuriken and

a platform intersecting on the left and not intersecting on

the right of the illustration.

Illustration 16. The 3D model of a simple 6-sided platform

housing the shuriken. Vectors x and y represent the horizontal

(x-)axis and the vertical (y-)axis. Line segment h is the height

of the right regular prism model.

http://www.mathwords.com/r/right_regular_prism.htm
http://www.mathwords.com/r/regular_polygon.htm

22

4.2.3.1 Collision

Collision detection between the simple platform and a collision point is based on the angle

at which the point is relative to the platform’s center point, 0 degrees being the positive

direction of the horizontal axis (x, right), 90 degrees being the positive direction of the

vertical axis (y, up). For simplicity, this angle will further be called a collision point’s angle.

Knowing the angles of all platform side normals, the normal (angle) closest to the collision

point’s angle can be found. The absolute value of the difference between the collision point’s

angle and the closest normal angle is the angular distance to the closest normal. Based on

the angular distance, the maximum linear distance at which the collision point is still inside

the platform can be calculated using trigonometry. If the collision point is at least as close

as the calculated maximum distance, then the collision criteria is met. Illustration 17 shows

an example of collision detection for a simple platform with 6 sides.

In the illustration, F and B are 2 examples of collision points, where F does not meet the

criteria for collision and B does. CD and GC are equal line segments with a known length.

Red vectors represent the normals of the platform sides. Angles α and β are angular distances

Illustration 17. Collision detection for a simple platform with 6

sides. Vector x represents the horizontal (x-)axis.

23

to the closest normals for collision points F and B respectively. Lengths of EC and AC are

the maximum distances for collision that can be calculated using trigonometry.

To implement the described principle, a function for finding the angular distance to the

closest normal has been written. There is no need to compare the collision point’s angle to

every platform side normal to find the closest normal. This is due to the platform’s landable

sides forming a regular polygon mechanic-wise. Moreover, every platform has a point that

is directly to the right (direction of x-axis) of the platform’s center.

A collision point’s angle and the corresponding closest normal’s angle difference is always

in the range of [−𝑏, 𝑏) degrees, where 𝑏 is equal to 180 divided by the number of sides that

the platform has (Illustration 18).

The function for finding the angular distance to the closest normal can be presented as the

following mathematical formula:

𝑓(𝑎, 2𝑏) − 𝑏 (1)

Notation 𝑎 in the formula (1) represents the collision point’s angle. Function 𝑓 in the

formula is defined as the following:

 𝑓(𝑥, 𝑦) = {
𝑥 % 𝑦, 𝑥 > 0

𝑥 % 𝑦 + 𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2)

Illustration 18. Visual definition of the

value 𝑏 for a simple platform with 6 sides.

In this example, 𝑏 is 30.

24

The symbol % in formula (2) stands for the division remainder operation. The function call

𝑓(𝑎, 2𝑏) returns a value in the range [0, 2𝑏). Subtracting 𝑏 in the formula (1) gives us the

range [−𝑏, 𝑏). For a non-rotated platform, a collision point at 0 degrees and a collision point

at 2𝑏 degrees will both have the angular distance to the closest normal of | − 𝑏| = 𝑏

degrees. A collision point at 𝑏 degrees will have the angular distance to the closest normal

of 0. To account for the platform’s rotation, the platform’s clockwise rotation is added to

the collision point’s angle (counterclockwise) before calculating the angular distance.

4.2.3.2 Detaching

Detaching from the simple platform sends the shuriken flying away from the platform’s

center. When the player taps the screen, acceleration in the needed direction is applied to

the shuriken and it is unmarked from being housed by the platform.

4.2.3.3 Usage in Puzzles

Although the simple platform is the most common object type in the game, the puzzle aspect

of it is not very significant. However, there are multiple ways that the player can land on a

platform. Where and when the player succeeds to land affects the speed at which the player

is able to move across the level. It is often crucial when going for the best score in the level.

4.2.4 The Relativity Platform

The relativity platform is very similar to the simple platform. Visually it is the same as the

simple platform with the exception of being coloured differently. It has the same collision

detection and detaching mechanics as the simple platform. However, the housing mechanic

is significantly different. While housing the shuriken, the relativity platform applies the

same transformations to the shuriken as every other platform but it also applies transfor-

mations to the level itself. While the platform is housing the shuriken, the rotation of the

platform is also applied to the camera’s angle around the z-axis and the angle of the gravity

vector. The z-axis is the same axis that the platform is rotating around, which is perpen-

dicular to the plane that the shuriken is moving on. This creates an effect of everything in

the level rotating with both the platform and the shuriken staying in place (Illustration 19).

25

Even after the shuriken has detached from the platform, the transformations applied to the

level remain.

4.2.4.1 Usage in Puzzles

The puzzle aspect of the relativity platform is essential in Shuriken Way. The relativity

platform makes it possible to create levels that are not bound to a single direction of gravity.

The least obvious use for the relativity platform is placing it in a level as a decoy. Landing

on the decoy platform and continuing with the level might not lead to a successful

completion of the level. In such cases, the player needs to think of a way to avoid landing

on the platform, which is sometimes not easy to do. More frequently, the player needs to

instead use the mechanics of the relativity platform to progress further in the level. One of

the reasons might be that some other important game objects, for example coins or

platforms, may be more difficult or impossible to reach with the shuriken without changing

the direction of gravity.

Illustration 19. The relativity platform applying transformations to the level.

Illustration 20. A coin represented by a circle is not reachable from the

rectangular wall because the gravity direction g is downwards. The green

arrow represents the trajectory of the shuriken.

26

For example, there might be a simple wall in the level which is perpendicular to the direction

of gravity and the shuriken has landed on the side of the wall opposite to the direction of

gravity. The shuriken needs to collect a coin which is not reachable from the wall by jumping

directly against the gravity (Illustration 20).

However, as a result of the relativity platform mechanics, the wall can change its rotation

relative to the direction of gravity. This will affect the trajectory that the shuriken would

follow after detaching from the wall. The previously unreachable coin can become reachable

(Illustration 21).

The mechanics of the simple wall related to this are described in the following subchapter.

4.2.5 The Simple Wall

The simple wall is the second most common object type in Shuriken Way. Illustration 22

shows the simple wall it is seen in the game.

Illustration 21. A coin represented by a circle is reachable from

the rectangular wall because the gravity direction g is to the left.

The green line represents the trajectory of the shuriken.

Illustration 22. A simple wall object housing the

shuriken.

27

Visually, the simple wall is in the shape of a rectangular parallelepiped17. Mechanic-wise,

the simple wall can be and is considered a rectangle.

4.2.5.1 Collision

To detect collision between the simple wall and a collision point, both the collision point’s

position relative to the wall’s center and the wall itself are rotated clockwise by the

counterclockwise rotation of the wall. This aligns the wall’s width and height with the

horizontal (x-) and vertical (y-)axises. Doing calculations is only required for rotating the

relative position of the collision point. Illustration 23 shows an example of 4 collision points

being rotated.

The bounds of the wall after the rotation are simply its width and height, which are known

values. Simple comparisons determine whether the rotated collision point is inside the wall’s

bounds. Because both the collision point and the wall are rotated equally around the same

point, the collision detection also works for the state before the rotation.

4.2.5.2 Detaching

Detaching from the simple wall works slightly different from the simple and the relativity

platforms. Instead of sending the shuriken flying from the center point of the platform, the

17 http://www.mathwords.com/r/rectangular_parallelepiped.htm

Illustration 23. The blue bordered rectangle represents a simple

wall. Collision points A, B, C, D are rotated clockwise by the

angle α, which counters the rotation of the wall. A’, B’, C’ and

D’ are the collision points after the rotation.

http://www.mathwords.com/r/rectangular_parallelepiped.htm

28

shuriken is sent flying in the direction of the normal of the wall side that the shuriken is

stuck to. The side that the shuriken is on is determined by a simple algorithm. Terms

“above”, “below” and “left of” will be further used to describe the property of having a

higher y coordinate, a lower y coordinate and a lower x coordinate than something else

respectively. The coordinates of the shuriken’s center relative to the wall’s center and the

wall itself are rotated the same way it is done for collision detection (Illustration 23). If in

this state the shuriken’s center is above or below the wall bounds, then the landed side is

determined as the top or the bottom respectively. Otherwise it is checked whether the

shuriken’s center is to the left of the wall bounds. If it is, then the landed side is determined

as left and determined as right otherwise. In a non-rotated state the normal vectors (x, y) of

the right, top, left and bottom wall sides are (1, 0), (0, 1), (-1, 0) and (0, -1) respectively.

The normal coordinates of the determined wall side are rotated by the wall rotation and used

as the direction for the jump.

4.2.5.3 Usage in Puzzles

The simple wall is usually used as a barrier to the shuriken. It gives the player no other

choice but to find and follow another path around the wall. However, the simple wall can

also sometimes be used by the player to speed up the level completion. For example, instead

of waiting for a rotating platform to fully rotate in the wanted direction, the player can jump

to the side of a wall that is facing the wanted direction and then jump off the wall (Illustration

24).

This ability should be and was taken into consideration when designing the puzzles.

Illustration 24. The player is using a wall to speed up the completion of the level. The

simple platform that the shuriken is initially housed by is rotating counterclockwise.

29

4.2.6 The Active Wall

The active wall is visually almost identical to the simple wall, the colour being the only

difference (Illustration 25).

The active wall’s mechanics are built on top of the mechanics of the simple wall. However,

while any other platform type can passively rotate, the active wall can only rotate while

housing the shuriken. The rotation is activated by landing on the active wall and deactivated

by detaching from it.

4.2.6.1 Usage in Puzzles

The puzzle aspect of the active wall is almost opposite of that of the simple wall. The active

wall does not create a barrier that the shuriken is unable to pass because, as a soon as the

shuriken lands on the active wall, it rotates and moves the shuriken with it. This allows the

shuriken to get to the area which was initially on the other side of the wall. The active wall

can be used as a transportation method, which can move the shuriken in a big circle. A

similar effect can be achieved via a very big simple platform, which, in fact, has been done

in Shuriken Way. Nonetheless, the two approaches differ in a number of aspects. Firstly, the

detaching mechanics of the active wall and the simple platform are different. The simple

platform always sends the shuriken flying away from the platform’s center. The active wall,

on the other hand, bases the detachment direction on the normal of its side that the shuriken

is on. Secondly, the simple platform would constantly rotate compared to the activation-

Illustration 25. A screenshot showing an

active wall object housing the shuriken.

30

based rotation of the active wall. Thirdly, the player is able to more freely choose the radius

to be rotated at by choosing to land closer or farther from the active wall’s center. In contrast,

the rotation radius after landing on the simple platform will always be approximately the

same because of the platform’s shape (Illustration 26).

This concludes the overview of the platform category of object types in Shuriken Way.

Nevertheless, there are object types that the player can encounter which cannot house the

shuriken. Instead they may try to destroy it. The following subchapter 4.3 describes the

enemy objects.

4.3 Enemies

Some game objects seen in the levels of Shuriken Way can end the current level in a loss by

destroying the shuriken. They are called the enemy objects or simply the enemies. The

player is supposed to learn the mechanics of the enemy objects and figure out a way to avoid

them. Only 1 type of the enemy objects was implemented for the present thesis, which is the

katana.

4.3.1 The Katana

The katana object in Shuriken Way is inspired by the Japanese swords known under the

same name. Real katanas come in different sizes. The game object is modeled after a short

Illustration 26. Circles a and b represent the minimum

and maximum rotation radiuses when housed by a wall

object. Circles c and d represent minimum and maximum

radiuses when housed by a simple platform object. For

simplicity, the size of the shuriken is not taken into

account here.

31

katana sword. The katana model was created using Blender (Illustration 27). Just like the

platforms, the katana uses collision detection for its mechanics.

4.3.1.1 Cutting

The main mechanic of the katana is cutting the shuriken. It repeatedly swings back and forth

through the air waiting for the moment when the shuriken is in the collision area of the

katana’s blade. The pace at which it swings can be different for each katana. The blade’s 2D

collision area is only dangerous to the shuriken when the blade itself is in the area. The blade

enters and then leaves the area exactly in the middle of the swing (Illustration 28).

Illustration 28. A side-view example of a katana object’s swing. The katana is

only dangerous in the middle of the swing, which is marked with red in the

illustration. The vectors y and z represent the y- and z-axis respectively.

Illustration 27. The 3D model of the katana created

using Blender.

32

The collision area itself does not move when the sword swings. If the blade of the sword

and the shuriken collide, the shuriken is cut into 2 pieces and the level is failed. The collision

area of the blade is rectangular and the collision is detected the same way as it is done for

the wall type platforms but only using a single collision point placed in the shuriken’s center.

4.3.1.2 Bouncing

Collision detection is also used in another mechanic of the katana, which is the bouncing

mechanic. If the shuriken enters the bounding area of the katana’s handle, the shuriken

bounces off. In other words, the velocity of the shuriken is redirected similarly to how

bouncing works in the real world. The bounding area of the handle is circular and the

collision detection is simply based on the distance between the shuriken’s center and the

bounding area’s center.

4.3.1.3 Usage in Puzzles

The main purpose of using the katana in the levels of Shuriken Way is to make them slightly

more difficult. It is not that hard to avoid getting hit by a katana but every once in a while

the timing is right and the shuriken gets slashed. The katana adds an additional timing-based

challenge to the level. Sometimes, when designing a level, a katana object is purposely timed

so that one of its swings would happen when the shuriken is expected to be in the collision

area. In such situations the player should stay and wait a bit instead of rushing through the

collision area of the katana. However, the player is always encouraged to be in a hurry

because of the scoring system implemented in Shuriken Way. The final score in the level

depends on how quickly the player was able to reach all the obligatory collectables. The

following subchapter 4.4 provides an overview of the collectable objects in Shuriken Way.

4.4 Collectables

Some game objects in Shuriken Way are supposed to be collected by the player. These

objects are called collectables. Collectable object types can be of 2 varieties: obligatory and

optional. The player is required to collect all collectables of the obligatory variety in the

level to complete it. However, the player can leave all collectables of the optional variety

and still finish the level. Only one type of a collectable object has been implemented during

the work of the present thesis, which is the coin.

33

4.4.1 The Coin

The coin is an obligatory collectable, which means that the player is required to collect all

coins in the level in order to complete it. The coin model for Shuriken Way was made using

Blender (Illustration 29).

Although collecting all coins is required to complete the level, the scoring of how well the

player did in the level is still based on the coins collected. This is possible because the value

of the coin goes down with time. There are 3 variants of the coin, which are gold, silver and

copper, worth 3, 2 and 1 full score points respectively. The time that it takes for the coin to

go down in value is level-specific.

4.4.1.1 Usage in Puzzles

The coin object is used in puzzles as a way to visualize one of the destinations that the player

needs to reach in the level. Multiple coins can create a path that the player is supposed to

follow. Following the coin path the shuriken can encounter objects that are neither platforms

or enemies. The next subchapter 4.5 describes this category of objects in more detail.

4.5 Miscellaneous

There are game object types in Shuriken Way other than the shuriken that do not belong in

the three previously mentioned categories. These can be anything that fits with the rest of

the content of a puzzle or the whole game. They can add variety to the levels, which might

help increase the time that the player will enjoy Shuriken Way before getting bored of it.

Only 1 type of an object implemented during the work for the present thesis fits this

description, which is the accelerator.

Illustration 29. The 3D model of the coin created using Blender.

34

4.5.1 The Accelerator

The accelerator looks similar to an arrow. The model for it was partially created in Blender

and a part of it is generated with Android Java programmatically (sphere). Illustration 30

shows what the accelerator looks like in the game.

When the shuriken collides with the spherical part of the model, which has a circular

bounding area, the shuriken is accelerated in the direction that the rest of the accelerator

model (arrow) is pointing to. The collision detection is the same as for the katana bouncing

mechanic.

4.5.1.1 Usage in Puzzles

The accelerator object makes it possible for the shuriken to change its direction in mid-air.

Although it is perfectly possible to just let the player change the shuriken’s direction after

landing on a simple platform, it is not exactly the same behaviour. The accelerator does not

let the player decide which direction to accelerate to. Another common use of the accelerator

in the puzzles is increasing the speed of the shuriken in the air. This often means that with

the aid of an accelerator object the shuriken can reach areas or objects in the level which are

not possible to reach with just a regular jump.

Multiple game objects arranged in a certain way can form a puzzle. A level in Shuriken Way

can consist of a single or multiple puzzles. The following chapter 5 briefly describes how

the prominent levels of Shuriken Way were designed. It also specifies the aspects of them

that made them “puzzling” or challenging, as well as how different game objects and

mechanics were used to achieve the result.

Illustration 30. Full model of the accelerator.

35

5 Level Design

Level design is almost synonymous to game design. It is about taking the mechanics and

objects implemented in the game and placing them in the level in a pattern which is fun and

entertaining to play with. The designer’s responsibility is to make sure that there is a good

balance between the amount of challenge, the amount of choice and the amount of reward

for overcoming the challenge. Getting this right is not an easy task. [7] This will be called

level balance further in the present thesis. When designing the levels it is important to

understand that challenges which are simple to an experienced player can sometimes be

close to impossible for a completely new player. The aim when designing the levels for

Shuriken Way was to reward the player for overcoming simple challenges (to an experienced

player) in the early levels as much as rewarding the player for overcoming difficult

challenges later in the game. A total of 9 levels were implemented during the work for the

present thesis. These are the levels 1 to 8 and an additional level 12. The following

subchapters 5.1 and 5.2 describe the design of a simple short level (5) and a more difficult

longer level (12) respectively. The two levels were chosen because they seemed to be more

interesting to detail compared to other levels implemented in Shuriken Way.

5.1 The Short Level

The chosen short level is the level 5. Orthogonal projection of the level is shown in the

Illustration 31.

Illustration 31. Orthogonal projection of the level 5 of Shuriken Way.

36

Any terms used further in this subchapter which describe a position or describe an object by

its position are referring to the position in the Illustration 31 unless stated otherwise. Any

objects mentioned in the subchapter are visible in the illustration.

This level consists of a single puzzle. The first challenge when playing this level is that the

player encounters the wall object for the very first time. Collecting the coins without the

help of the wall mechanics is likely difficult for a player who has only played the 4 previous

levels. This means that the player will most likely have to learn the new mechanics. The

obvious first action can be jumping at the accelerator and get accelerated either into the

right-most wall or the top-most simple platform. The accelerator put in the level was

purposely adjusted so that the next jump after getting accelerated into the right-most wall

would most likely put the shuriken in the top-most simple platform. Then it is time for the

player to either make use of the wall mechanics or do a precise jump aimed upwards and

collect both coins on the way down (Illustration 32 A).

Of course, the first option is much easier and all the player is required to do is aim from the

simple platform at the left-most wall and land under the bottom-most coin. Another jump

up collects both coins and the level is completed (Illustration 32 B). However, this is not

going to be quick enough to collect both coins while they are still gold. This is where the

optional second challenge of the level comes in. The right-most wall can actually be used to

speed up the completion of the level. The lower the shuriken hits the accelerator the lower

it is going to stick in the right-most wall. If the player manages to hit a certain area of the

wall, it will become possible for the shuriken to skip the simple platform on the next jump

and land under the bottom-most coin (Illustration 33).

Illustration 32. Intended slow solutions for the level.

37

If the player is quick enough, then the level will be completed with 2 gold coins collected.

5.2 The Long Level

The chosen long level is the level 12. Orthogonal projection of the level is shown in the

Illustration 34. The level consists of 4 puzzles and it is divided according to the Illustration

35.

Illustration 34. Orthogonal projection of the level 12 of Shuriken Way.

Illustration 33. The fastest intended solution for the

level.

38

The design of this level makes heavy use of the mechanics of the relativity platform. In

comparison to the level 5 described in the previous subchapter, it is now assumed that the

player has learned how to use the mechanics of the simple platform and the wall to their

advantage. The player has also encountered the active wall and the relativity platform in the

previous levels.

Although there is not a definite way to complete the level, an “intended” way that was kept

in mind when designing the puzzle does exist. The following subchapters 5.2.1–5.2.4

describe the design of each of the 4 puzzles in the level separately and reveal the “intended”

way to complete the level. The term “intended” will be used without quotation marks in

these subchapters.

5.2.1 Puzzle A

This subchapter is referring to the Illustration 36 similarly to how the short level was

described. Subchapters about the other 3 puzzles are also written the same way, each

describing their respective illustration.

Illustration 35. Division of the level 12 into 4 puzzles where blue (A), yellow (B), red

(C) and purple (D) rectangles each encompass areas relevant to a puzzle.

39

The main challenge of this puzzle is collecting the 2 top-most coins and then being able to

continue with the next puzzle. The most obvious action is to try to hit both coins from the

simple platform. This will end with the shuriken getting stuck in the horizontal wall

(Illustration 37).

There is nowhere to go from there. Instead, the player is supposed to make use of the

relativity platform. The player should wait for the simple platform to rotate by about 180

degrees and try to throw the shuriken in the direction of the center of the relativity platform.

The distance on the horizontal (x-)axis between the center of the shuriken and the center of

Illustration 37. An incorrect solution of the puzzle.

Illustration 36. Area of the level relevant to

the puzzle A with the initial direction of

gravity for the puzzle marked as g.

40

the relativity platform should be close to 0 for the following trick to work. If the jump

(throw) was precise enough, the shuriken should be able to do at least 2 jumps from the

relativity platform that will bring it right back to the same relativity platform. This is because

the relativity platform rotates both the shuriken and the gravity around the same axis and at

the same speed. This means that the direction of the jumps will be approximately opposite

to the direction of gravity. Collecting all 3 coins in the puzzle and continuing with the puzzle

B is not difficult from there (Illustration 38).

 After the bottom-most coin is collected the player moves on to the puzzle B.

5.2.2 Puzzle B

The area of the level relevant to the puzzle B is in the Illustration 39. The partially visible

coin at the top of the illustration is intended to be collected during the puzzle A so it can be

ignored.

Illustration 38. The intended solution for the puzzle A.

Illustration 39. Area of the level relevant to the puzzle B with the initial

direction of gravity for the puzzle marked as g.

41

After completing the puzzle A using the intended solution, the gravity vector should point

approximately upwards in the illustration. The shuriken should be housed by the left-most

simple platform. Otherwise it is still possible to complete the puzzle B but it might not be

as intuitive as the intended solution described further. The only obligatory challenge for the

player to overcome in this puzzle is avoiding the katana objects, which look diamond-shaped

in the illustration. The partly transparent red areas that intersect with the katanas represent

the collision areas of their blades. The shuriken can get hit by the katanas when collecting

the right-most coin. Other than that, completing this puzzle is assumed to not be difficult

because it is very similar to what the player encountered in the previous levels of Shuriken

Way. There are many different ways for the player to complete the puzzle. The left-most

simple platform was purposely put rotating counterclockwise. The most obvious action from

the player is to wait for the platform to fully rotate and throw the shuriken in the direction

of the left-most coin (fully visible in the illustration) to collect it. An optional challenge for

the player would be to save some time. Instead of waiting for the platform to fully rotate,

the shuriken can jump at a specific part of the vertical wall, jump off the wall, hit the coin

and land above the simple platform second from left (Illustration 40).

Slightly adjusting the direction of gravity in the first puzzle might even help land directly

on the simple platform after collecting the coin. To complete the puzzle the shuriken should

get past the katanas while collecting the right-most coin. To continue with the puzzle C the

player should move the shuriken to the bottom-most simple platform.

5.2.3 Puzzle C

The area of the level relevant to the puzzle C is in the Illustration 41. The puzzle C starts

where the puzzle B ends. In the current illustration it is the top-most simple platform that

the shuriken is housed by.

Illustration 40. The fastest intended solution for the puzzle B.

42

The 2 katana objects visible on the illustration are from the previous puzzle and can be

ignored. If the intended way to complete the level was followed until this point, then the

direction of gravity should still be approximately upwards in the current illustration. In this

puzzle the player encounters another relativity platform. The challenge here is similar to that

of the puzzle A. How the shuriken will land on the relativity platform is going to affect the

difficulty of collecting the right-most coin. The intended solution here starts with landing as

directly on top of the relativity platform as possible. The relativity platform is rotating

clockwise. After the shuriken lands on the relativity platform the gravity, which is currently

upwards, will start rotating clockwise. The direction of gravity when jumping to collect the

right-most coin will be approximately to the right in the illustration. This means that the

shuriken will jump approximately in the direction of gravity. The accelerator to the right of

the relativity platform is supposed to get the shuriken back onto the relativity platform. The

player should then wait for the direction of gravity to rotate until it is directed approximately

to the left in the illustration and collect the rest of the coins in the level. The full intended

path is shown in the Illustration 42.

Jumping from the left-most simple platform to the one to the left of it, which is not visible

in the current illustration, will complete the puzzle and move to the final puzzle D.

Illustration 42. The intended solution for the puzzle C.

Illustration 41. Area of the level relevant to the puzzle C with the initial direction

of gravity for the puzzle marked as g.

43

5.2.4 Puzzle D

The area of the level relevant to the puzzle D is in the Illustration 43. If the intended solution

was followed until this point, then the direction of gravity should be approximately to the

left in the illustration. The shuriken should be housed by the simple platform.

The challenge here is to understand that the reachability of the active wall from the relativity

platform depends on the direction of gravity during the jump. Jumping in the opposite

direction to gravity will not get the shuriken very far in the wanted direction. This is because

the shuriken will be pulled in the direction opposite to the jump. For the reason of this being

the end of a long level, the jump in the opposite direction to gravity can still successfully

reach some of the active wall. Otherwise the level would become more difficult than

intended. This solution is shown in the A section of Illustration 44.

However, the recommended solution here would be landing the jump from the simple

platform to the relativity platform slightly lower than the center of the relativity platform.

Another jump should be made when the direction of gravity points approximately

downwards in the illustration. The shuriken should then reach the active wall. The player

has encountered the active wall objects in the previous levels and is assumed to have no

trouble collecting the last coin in the level. The intended solution for the level was tested to

Illustration 43. Area of the level relevant to the puzzle D with

the initial direction of gravity for the puzzle marked as g.

44

be quick enough to collect all coins while they are gold. The path of the solution is shown

in the B section of the Illustration 44.

Level design is a very important aspect of the game but it can lose all meaning if the player

is not able to fully experience it because of performance or compatibility issues or bugs. The

player might also dislike or not understand the design. This is why it was important to test

Shuriken Way before concluding the work for the present thesis. The following chapter 6

focuses on the testing stage of the work.

Illustration 44. The intended solutions of the puzzle D.

45

6 Testing

As with developing any type of software, assuring high quality of the developed video game

is very important. This requires testing both the performance and the functionality

throughout the development. Moreover, when developing a video game, it is very easy for

the developers to leave very important issues completely unnoticed or ignored when giving

too much attention to improving other aspects of the game. Although they may seem very

important to the developers and might be more interesting to solve, the future players of the

game are the ones to judge what is important and what is not. The developers can imagine

that the player experience will be great but it is very important to test if the fantasy actually

represents reality. Very often it does not and testing the game helps the developers target

critical issues present in the game. [7] Three types of tests have been conducted during the

work for the present thesis. These were compatibility tests, performance comparison with

alternatives and lastly playtests with new players. The following subchapters 6.1–6.3

provide the description of the tests, the results and the analysis of the results. Some of the

mentioned subchapters also list the improvements implemented or to be implemented based

on the results of the conducted tests.

6.1 Compatibility

During the development of Shuriken Way the game was frequently tested on an emulator of

LG Nexus 5X (2015) with Android 7.0 installed and an actual LG Nexus 5 (2013) with

Android 6.0.1 installed. The definition of the term emulator is in the Glossary (Appendix I).

In addition, the game was compatibility-tested on more devices when the game was in a

playable state, meaning that the following was true:

• Several levels could be started, played and completed.

• Mechanics of the game objects in the levels were implemented.

• The 3D models of the game objects were being rendered.

• The game was performing well on the LG Nexus 5 used throughout the development.

Another set of compatibility tests was conducted after implementing fixes for some of the

issues found during the first set and playtesting. The following 6 devices were used for both

compatibility test sets:

1. Huawei MediaPad T3 10 (2017) with Android 7.0

2. Xiaomi Redmi Note 4 (2017) with Android 7.1.2

46

3. Samsung Galaxy Grand Prime (2014) with Android 5.0.2

4. OnePlus 3 (2016) with Android 8.0.0

5. OnePlus 5T (2017) with Android 8.0.0

6. LG G4c (2015) with Android 6.0

To measure the performance on these devices a modified version of the game was used,

which collected data for the first 5 minutes of playing the game and then output it on the

screen (Illustration 45).

A normal version of the game was also tested on these devices to discover issues that were

not related to performance.

6.1.1 The Results

The initial set of conducted compatibility tests uncovered 1 critical bug and no performance

or visual issues. The found critical bug was that it was not possible to start the game from

landscape mode on the Huawei MediaPad T3 10 because doing so caused the game to exit.

With the LG Nexus devices used throughout the development, starting the game while in

landscape was not something that was encountered. Unlike Huawei MediaPad T3 10, these

devices do not allow switching the app launcher (see Appendix I for definition) to landscape

mode. However, switching to landscape mode in Chrome web-browser application and then

starting Shuriken Way from the multitasking menu showed that the issue is also present on

Illustration 45. A screenshot from the

modified version of the game taken on

the OnePlus 3.

47

the LG Nexus 5. As for performance of the game on these devices, the results of the

performance tests are in the following Table 1.

Table 1. The results of the performance tests on different devices.

Device Screen

resolution

Average

frametime

(ms)

Average

update time

(ms)

Noticeable

visual

stuttering

LG Nexus 5 1080 × 1920 3.9 0.08 No

Huawei MediaPad T3 10 800 × 1280 3.5 0.11 No

Xiaomi Redmi Note 4 1080 × 1920 15.1 0.1 No

Samsung Galaxy Grand Prime 540 × 960 3.4 0.07 No

OnePlus 3 1080 × 1920 13.9 0.27 No

OnePlus 5T 1080 × 2160 14.3 0.16 No

LG G4c 720 × 1280 6.7 0.55 No

Frametime is the time it takes for the game to calculate a frame. Update time is the time it

takes the game to update the game state. Shuriken Way, like most Android games, caps FPS

(frames per second) at 60, which requires frametime less or equal to 1000 / 60 ≈ 16.67

milliseconds. Average frametime measurements in the third column of the table show that

all devices on average successfully run the game at 60 FPS. The game state is updated 40

times per second and the average update times in the fourth column of the table show that

on average all tested devices successfully kept up with that. What is very interesting about

the results is that OnePlus 5T, which has the best performing GPU (Adreno 54018) according

to online benchmarks19, had one of the highest average frametimes. This might be because

newer devices or versions of the Android operating system might be better at saving

resources when working at full power is unnecessary. However, average frametime is not

everything that the performance of a video game can be judged by. There can be short

periods during which the game is performing bad. These are called visual stuttering in the

18 https://www.gsmarena.com/oneplus_5t-8912.php

19 https://www.notebookcheck.net/Smartphone-Graphics-Cards-Benchmark-List.149363.0.html

https://www.gsmarena.com/oneplus_5t-8912.php
https://www.notebookcheck.net/Smartphone-Graphics-Cards-Benchmark-List.149363.0.html

48

present thesis. It can be argued that visual stuttering is even a bigger issue than low FPS to

the player. None of the tested devices had noticeable issues with visual stuttering, which

was determined by playtesting the game and the observation results can be seen in the last

column of the Table 1. The second set of compatibility tests conducted after implementing

the fixes for some of the issues found during the first set and playtesting with new players

confirmed that Shuriken Way was still very compatible with all 6 testing devices (Appendix

VII).

6.1.2 Implemented Improvements

The critical bug of not being able to start the game from landscape device orientation was

fixed. The issue was caused by the the fact that the Android operating system initially tries

to start the application in the orientation that the system is in, in this case it is landscape.

The application can then force a specific orientation. When switching to the forced

orientation the method onDestroy specified by the application is called. The method

onDestroy is also called by the default functionality of the back button, which is why it was

overridden in Shuriken Way. The onDestroy method specified by Shuriken Way was forcing

the application to completely exit, which was necessary because of the following reason:

The data stored on the GPU was deleted by the default functionality of the back button and

not restored on the next start of the application. However, the application itself was started

in the same state the method onDestroy was called in. This meant that the application still

assumed that all the data stored on the GPU was available. Forcing the application to fully

exit in the onDestroy method meant that the application would start next time without

restoring its previous state and reload everything like it is supposed to. But since it turned

out that the method onDestroy is also called when switching to the correct orientation, the

application was also forced to exit when it was started from landscape. To fix this the

application would no longer be forced to exit in the method onDestroy. Instead, it would be

done directly in the overridden functionality of the back button.

6.1.3 Future Improvements

The compatibility issue found during the tests was fixed so there is not anything specific

planned to be improved in the future beyond the scope of the work for the present thesis.

However, the game is very likely going to be tested on more devices as the development

progresses and the new issues discovered are going to be fixed.

49

6.2 Alternatives

Comparing the performance of Shuriken Way against other similar Android games was

different from measuring performance of the game on different devices. Modifying the

source code to measure performance of Shuriken Way for compatibility tests was not

difficult. However, doing the same for the similar games was not a reasonable choice. At

the time of the testing there were Android applications for measuring the framerate of games

but all found applications were either not doing what they claimed to do, not suited for

collecting data or not free (see Appendix VIII). A free alternative method was found instead.

With the use of GAPID (Graphics API Debugger)20 the performance of all 3 games,

including Shuriken Way, was measured and the results were compared.

6.2.1 GAPID

Like the name suggests, Graphics API Debugger is a collection of tools that can be used for

debugging an application’s use of the graphics API. GAPID can debug any application that

is configured in its manifest as debuggable. GAPID was not made specifically for measuring

graphics performance of applications but rather for tracing their work. However, GAPID

allows setting the number of frames to render after which it should stop tracing. When the

tracing is finished, it outputs the time it took to trace the set number of frames. The

approximate average frametime for the trace can be calculated from that info by dividing

the time it took to render and trace the frames with the frame amount. GAPID slows the

graphics down quite a bit so it does not measure the real performance of the graphics. This

is why using this method is definitely not a perfect solution. Comparing different games

using this method was still possible though. The only requirement was setting the

“debuggable” option to “true” in the application manifests of the games. The manifests of

the alternative applications were modified with the help of the Apktool21.

6.2.2 The Results

A total of 27 GAPID tests have been conducted – 9 for each game. The tests were run on

the LG Nexus 5. The summary of the results is presented in the Table 2. The full table of

results is available in the Appendix IX.

20 https://github.com/google/gapid

21 https://ibotpeaches.github.io/Apktool/

https://github.com/google/gapid
https://ibotpeaches.github.io/Apktool/

50

Table 2. Summary of the results of the conducted performance comparison tests.

of tests # of frames Average time (s) for

Shuriken Way Ninja Star! Shuriken

3 5000 116.00 117.11 107.96

6 10000 252.81 239.61 258.75

Total average frametime (ms): 24.87 23.85 25.02

The average frametimes in the last row of the table show that Shuriken Way is on average a

better graphical performer than Shuriken but a worse performer compared to Ninja Star!.

Both Shuriken and Ninja Star! are simple 2D games, so good frametime is expected from

them compared to a game with 3D graphics like Shuriken Way. However, a game with a lot

of visual stuttering can still have a very good average frametime. The graphical performance

might still be excellent between the periods of stuttering. These can be caused by anything

in the program, not just graphics. This means that GAPID does not necessarily make the

stuttering longer but does slow down the graphics, so the effect of the visual stuttering on

the average frametime might become imperceptible. Playtesting all 3 games without GAPID

showed that Ninja Star! had frequent and noticeable visual stuttering while Shuriken Way

and Shuriken did not. Taking everything mentioned into account, Shuriken Way did not lose

to the alternatives in terms of performance.

6.3 Playtests

The most important type of testing to game designers when developing a video game is

letting people playtest the game. New players see the game with “fresh eyes” and can point

out issues in the game that the designers and the developers have gotten used to while

working on the game. It is also important to let the players test the game multiple times to

make sure that it can be enjoyed more than once. In some cases it gives the players time to

reach the later stages of the game and provide useful feedback. Otherwise a game with

strong initial appeal can still be created but the appeal might have a short lifespan if the

game has not been properly tested. [7]

During the work for the present thesis the testers were allowed to play Shuriken Way for as

long as they found was necessary for them to provide feedback. A total of 6 players have

51

tested Shuriken Way. All of the testers had previously played mobile games. The testers

were asked via a questionnaire (Appendix X) to give feedback on the overall gameplay,

performance, level balance, controls, mechanics and bugs. The testers were also asked in

the same questionnaire for any kind of suggestions for the further development of Shuriken

Way. The following subchapter 6.3.1 details the results of the conducted playtests. The

further subchapters 6.3.2 and 6.3.3 describe the improvements made or to be made based on

the results.

6.3.1 The Results

The conducted playtests proved very useful. A lot of issues were reported and many

suggestions were made. Overall the players seemed to feel positive towards Shuriken Way.

The testers were expecting issues in the game because they knew the game was still in

development. However, real players will expect a game with little to no issues, so all

feedback collected during the playtests, positive or negative, should be considered and used

for future improvement. The following subchapters list the results of the conducted

playtests. Raw response data from the questionnaire (questionnaire_data.csv) is available

in the Accompanying Files (Appendix IV).

6.3.1.1 Overall Gameplay

In terms of the overall gameplay not much was criticized that was not expected. The players

did not like that restarting the level required using the navigational back button. Adding a

separate restart button on the screen was already planned for the future development.

However, using the back button on the LG Nexus 5 used throughout the development was

not too bothersome. This is because the LG Nexus 5 has an on-screen back button instead

of a physical one. Physical buttons are more awkward to press for most Android users

according to a poll run by Android Authority in 2017 [11]. The playtests helped understand

how much more important than initially thought the separate restart button really is. The

same goes for the separate menu button. The players rated the overall gameplay on a scale

of 1 to 5, where 1 and 5 represent “awful” and “perfect” respectively. The results of the

rating are plotted in the Illustration 46.

52

This makes the average rating about 4.3 out of 5, which means that there is definitely room

for improvement.

6.3.1.2 Performance

Most players were happy with how Shuriken Way performed. No specific performance

issues were pointed out. The players rated the performance on a scale of 1 to 5, where 1 and

5 represent “awful” and “perfect” respectively. The results of the rating are plotted in the

Illustration 47.

This makes the average rating about 4.7 out of 5. Only one tester gave a rating for the

performance which is not 5. The tester did not specify any reason for doing so.

1 2 3 4 5
0

1

2

3

4

N
u

m
b

er
 o

f
A

n
sw

er
s

Rating

1 2 3 4 5
0

1

2

3

4

5

6

N
u

m
b

er
 o

f
A

n
sw

er
s

Rating

Illustration 47. The results of the performance rating on a scale of 1 to 5.

Illustration 46. The results of the overall gameplay rating on a scale of 1 to 5.

53

6.3.1.3 Controls

Most of the testers said that the controls were confusing at start. However, the confusion

cleared up after trying to approach the game in different ways. This can still make the game

less appealing to new players and the issue should be addressed.

6.3.1.4 Confusion

There were also the following aspects of Shuriken Way that the players found confusing:

• It was not obvious what was needed to be done to finish a level.

• The lengths of the levels were unclear.

• The direction of the jump of the shuriken was not intuitive enough for the testers to

fully figure it out on their own.

Other than that everything seemed to be understandable for the testers. This built a clearer

picture of what the game should be helping the new players with.

6.3.1.5 Level Balance

Most of the testers thought that the level balance needed improvement. They rated the level

balance on a scale of 1 to 5, where 1 and 5 represent “awful” and “perfect” respectively

(Illustration 48).

This makes the average rating about 4.2 out of 5. The following suggestions for improving

the level balance were made by the testers:

1 2 3 4 5
0

1

2

3

4

N
u

m
b

er
 o

f
A

n
sw

er
s

Rating

Illustration 48. The results of the level balance rating on a scale of 1 to 5.

54

• The levels should be shorter in the beginning and new mechanics should have their

own dedicated levels that introduce them.

• A new game object type should not appear at the end of a long level.

• There should be tips in the levels where the player encounters new mechanics for

the first time.

All of the suggestions were taken into strong consideration.

6.3.1.6 Game Mechanics

Most of the testers liked most of the game mechanics but half of the testers disliked at least

one of the mechanics. The mechanic that the testers seemed to dislike the most was the

gravity and camera rotation caused by the relativity platform. The mechanic might be too

confusing to a new player. The only level implemented for the present thesis that contained

the relativity platform was level 12. It was added in order to demonstrate how a difficult

level later in the game might look like. The levels 9, 10 and 11, which were not implemented

for the present thesis, would give the players a better introduction to the relativity platform.

The camera rotation made one of the testers feel nauseous. It is reasonable to assume that it

can happen to more players in the future. Another mechanic that one of the testers pointed

out was the collision detection of the accelerator. It was unclear that in order to get

accelerated the shuriken needs to intersect with the spherical part of the accelerator and the

rest of the model is only there to show the direction of the acceleration. This made enjoying

the game object difficult for the tester.

6.3.1.7 Bugs

The following bugs were reported by the testers:

• The buttons in the menu screen did not always register the touches.

• Going through walls was possible under some conditions.

• Collision detection and detaching did not work properly on the corners and the

shorter sides of the walls.

• The level 12 did not always end in a loss when the shuriken fell into the void.

The low number of bugs found during the playtesting might mean that either the game does

not have that many bugs or that there was not enough testing done. No actual compatibility

issues were reported by the testers.

55

6.3.1.8 Suggestions

The following suggestions were made by the testers:

A. The levels should restart automatically in some cases.

B. Longer levels should have save points.

C. The rotating coins on the interface should be removed because they were apparently

useless or distracting.

D. There should be separate restart and menu buttons on the screen.

E. There should be a button to continue with the next level.

F. There should be tips or tutorials explaining new mechanics.

G. There should be helping elements rendered in the early levels showing how the

jumping directions work on different platforms.

H. There should be the title of the game rendered in the menu screen even if the

interfaces are far from finished.

I. Level 12 should be less intense.

J. There should be sounds in the game.

Although most of the suggestions were obvious and already planned for the future

development of Shuriken Way (D–H, J), some of them were very unexpected and were

definitely taken into consideration (A–C, I).

6.3.2 Implemented Improvements

All reported bugs have been fixed. The first bug that was fixed was the ability to go through

the walls under certain conditions. The second one was detaching from the shorter sides or

the corners of the walls not working the way it was intended. Both of these bugs were caused

by the same logic error. The part of collision detection which determines whether the

bounding circles of the shuriken and the wall intersect was not programmed correctly. The

bounding circle for the wall was just based on the longest of the wall sides. The bounding

circle of the shuriken was effectively of radius 0. This is why, when trying to land on a

shorter side, the shuriken only attached to the wall when the center of the shuriken was

already inside the wall. Being inside the wall is not expected from the shuriken and the

algorithm that determines the side of the wall that the shuriken is on is not suited for it. In

this case the algorithm always determines the side as right because it is the default output

(see subchapter 4.2.5.2). Obviously, the detaching mechanic was also affected by this.

56

Basing the bounding circle of the wall on both width and height of the wall and using the

correct bounding circle for the shuriken fixed both of the issues (Illustration 49).

The third bug that was fixed was that the level 12 did not always end when the shuriken fell

into the void. It was caused by the relative platform objects rotating the gravity vector. The

mechanic of falling into the void was developed before the relativity platform was designed.

The program was comparing the shuriken’s negative coordinates on the vertical (y-)axis to

the level-specific maximum. To fix the issue the coordinate of the shuriken in the direction

of gravity would be used instead. Finally, two more changes were made to fix the last bug

found during the playtests. The bug was that the buttons in the menu screen did not always

register the touches. Firstly, the distance that the player could drag a finger vertically on the

screen until it was considered scrolling was slightly increased. Secondly, horizontal

dragging would no longer cancel the touch at all.

Besides bugs, some other changes, which were comparatively simple, were also

implemented. The issue that the coin counters were distracting to one of the testers was

addressed. The size of the coin counters and the speed at which the coin models were

rotating were decreased, potentially making them less distracting. The title of the game was

added to the menu screen.

Illustration 49. The rectangle represents a wall object. Circle a is the bounding

circle that would be used for the wall before the fix. Circle b is the correct

bounding circle of the wall. Circle d is the bounding circle of the shuriken

with radius s. Circle c represents the maximum distance that the center of the

shuriken can be at for the bounding circles to intersect.

57

While fixing the collision detection for the wall, some additional optimisation was

implemented. A new bounding rectangle around the wall was added with width, height and

rotation being equal to those of the wall but with the diameter of the shuriken’s bounding

circle added to the width and the height (Illustration 50).

After passing the bounding circle intersection test, the shuriken’s center would then also be

checked for intersection with the bounding rectangle. The bounding circle of a wall is

usually quite big compared to the wall, which means that passing the bounding circle

intersection test while not actually intersecting with the wall is very common.

6.3.3 Future Improvements

Most of the other issues and suggestions collected during the playtesting with new players

will be fixed or implemented during the future development of Shuriken Way, which is

beyond the scope of the work for the present thesis. This includes but is not limited to the

following:

• better interfaces;

• separate restart, next level and menu buttons;

• reworking the accelerator object;

• adding game sounds;

• improving the level balance;

• adding tips and helping elements for new mechanics;

Illustration 50. The smaller rectangle represents a wall object with the bounding

circle b. The bigger rectangle represents the new bounding rectangle. Length s

is the radius of the bounding circle of the shuriken.

58

• showing the whole level before the game starts;

• designing more game objects;

• designing more levels;

• conducting more playtests with more players.

It is also certain that the relativity platform will be used a lot less than initially planned when

designing new levels in the future.

59

7 Conclusion

During the work for the present thesis a playable version of a video game for Android was

developed. The name of the game is Shuriken Way. The game was developed without the

use of game engines. Several game objects with associated game mechanics were designed

and implemented. The design of the objects allowed them to be combined into patterns to

form physics-based puzzles. The game objects were then used in the design of 9 game levels

which were implemented in Shuriken Way. Each implemented level contains a single or

multiple puzzles. Android games similar to Shuriken Way were found and compared to

Shuriken Way to make sure that the developed game could provide a unique player

experience.

Several types of tests were conducted to discover bugs, compatibility and performance

issues. This included comparing the performance of Shuriken Way to the found similar

games. Completely new players, who had previously played mobile games, were asked to

playtest the game and provide feedback via a questionnaire. The testers provided their

opinions about the gameplay, performance, game mechanics, controls, clarity and level

balance. Overall the testers seemed to like the game but some aspects of it were criticized.

The testers also reported bugs and gave suggestions for the future development of Shuriken

Way. All of the reported bugs were fixed. Some of the other types of issues that the testers

have pointed out were also fixed. Finally, another set of compatibility tests was conducted

to make sure that the changes made did not cause incompatibility with the devices that

Shuriken Way had previously been tested on. The other suggestions made by the testers and

unsolved issues were considered when planning the future development of Shuriken Way

beyond the scope of the work for the present thesis.

The choice of not using game engines was justified. The game is compatible with devices

of different kind (smartphones and tablets) and from different manufacturers. The

performance is close to perfect on all devices that the game was tested on.

Special thanks go to the testers for taking part in the testing stage of the work and to the

supervisor Raimond-Hendrik Tunnel for helping drastically improve the quality of the thesis

by providing useful suggestions and feedback. Thanks also go to the people behind

Computer Graphics (MTAT.03.015) course of the University of Tartu, who did a great job

teaching low-level techniques for rendering computer graphics. The knowledge acquired

during the course was extremely helpful when doing the work for the present thesis.

60

8 References

[1] Viennot N., Garcia E., Nieh J. A Measurement Study of Google Play. ACM

Digital Library. 2014, pages 8–10. https://doi.org/10.1145/2637364.2592003

(21.11.2017)

[2] Zioma R., Pranckevičius A. Unity: iOS and Android – Cross Platform

Challenges and Solutions. ACM Digital Library. 2012.

https://doi.org/10.1145/2341910.2341913 (01.01.2018)

[3] Messaoudi F., Ksentini A., Simon G., Bertin P. Performance Analysis of Game

Engines on Mobile and Fixed Devices. ACM Digital Library. 2017.

https://doi.org/10.1145/3115934 (01.01.2018)

[4] Michael H. Epic Games shows off the cross-platform Unreal Engine 4 with a

Flappy Bird clone. 2014. https://www.phonearena.com/news/Epic-Games-

shows-off-the-cross-platform-Unreal-Engine-4-with...-a-Flappy-Bird-

clone_id56401 (02.01.2018)

[5] Bayliss D. Java For Android. 2015.

https://www.raywenderlich.com/110452/java-for-android (02.01.2018)

[6] Rich, Francisco A. The Unique Weapons Of Ancient Japan As Used By

Samurai, Ninja, Warrior Monks, Ruffians And All-around Badasses. 2015.

https://www.tofugu.com/japan/ancient-japanese-weapons/ (17.01.2018)

[7] Schell J. The Art of Game Design – A Book of Lenses. United States of

America, Burlington: Morgan Kaufmann Publishers. 2008.

[8] Khronos Group. OpenGL ES Version 3.2. 2016.

https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf

(06.05.2018)

[9] Kessenich J., Baldwin D., Rost R. The OpenGL Shading Language. 2017.

https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf

(06.05.2018)

https://doi.org/10.1145/2637364.2592003
https://doi.org/10.1145/2341910.2341913
https://doi.org/10.1145/3115934
https://www.phonearena.com/news/Epic-Games-shows-off-the-cross-platform-Unreal-Engine-4-with...-a-Flappy-Bird-clone_id56401
https://www.phonearena.com/news/Epic-Games-shows-off-the-cross-platform-Unreal-Engine-4-with...-a-Flappy-Bird-clone_id56401
https://www.phonearena.com/news/Epic-Games-shows-off-the-cross-platform-Unreal-Engine-4-with...-a-Flappy-Bird-clone_id56401
https://www.raywenderlich.com/110452/java-for-android
https://www.tofugu.com/japan/ancient-japanese-weapons/
https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf

61

[10] Ericson C. Real-Time Collision Detection. United States of America, San

Francisco: Morgan Kaufmann Publishers. 2005.

[11] Westenberg J. Do you prefer physical or on-screen navigation buttons? 2017.

https://www.androidauthority.com/physical-on-screen-buttons-poll-761259/

(19.04.2018)

https://www.androidauthority.com/physical-on-screen-buttons-poll-761259/

62

Appendices

I. Glossary

Android An operating system mostly for mobile devices, for example smartphones

and tablets22.

Shuriken Commonly known under the names of throwing, ninja, or Chinese stars. Can

be translated from Japanese as "hand-hidden blade".

Although they can have many different shapes and sizes, the classic shuriken

has multiple points, spins in flight and therefore does not require as much

skill to throw as throwing knives of other shapes. [6]

Fragment In computer graphics, it is the data, which is required in the process of

generating a single pixel in the framebuffer23.

Vertex In computer graphics, it is a data structure containing attributes for a point

in 2D or 3D space, for example position and colour24.

Emulator Software or hardware which lets a computer system imitate the work of

another computer system25.

Launcher In the case of Android, it is an application which helps manage and launch

other applications26.

22 https://en.wikipedia.org/wiki/Android_(operating_system)

23 https://en.wikipedia.org/wiki/Fragment_(computer_graphics)

24 https://en.wikipedia.org/wiki/Vertex_(computer_graphics)

25 https://en.wikipedia.org/wiki/Emulator

26 https://www.androidcentral.com/best-android-launchers

https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Fragment_(computer_graphics)
https://en.wikipedia.org/wiki/Vertex_(computer_graphics)
https://en.wikipedia.org/wiki/Emulator
https://www.androidcentral.com/best-android-launchers

63

II. Installation Guide

Requirements for installing the game:

• Android version 4.0.3 or higher (confirmed to work on 4.1.2 or higher)

• ~12 MB of free storage

• ~30 MB of free RAM

Please follow the instructions listed below to install Shuriken Way onto an Android device:

I. Locate the installation package (shuriken-way.apk) from the Accompanying Files

(Appendix IV).

II. Install a file managing application from the Google Play store to the Android device.

For example ZArchiver27, which was used during the work for the present thesis.

III. Continue with step 4 to get the installation package onto the Android device using a

USB cable or skip to step 7 if you already have the installation package on the device.

IV. Connect the Android device to the computer that the installation package is on with

a USB cable compatible with the Android device.

V. Set up the device and the computer for file transfer28.

VI. Transfer the installation package (.apk) to a directory on the Android device.

VII. Locate the package on the Android device using the installed file managing

application and run the file. Make sure not to accidentally view the contents of the

file instead of running it.

VIII. Go to step 9 if the installation successfully begins. Otherwise, if installation from

unknown sources is blocked, select “SETTINGS” on the displayed notification,

which opens the needed page of the settings. Find and toggle the setting which allows

installation from unknown sources. It is most likely called “Unknown sources”. Go

back to step 7.

IX. Wait for the application to install.

X. Locate the installed application on the home screen or in the “all apps” menu and

run it.

27 https://play.google.com/store/apps/details?id=ru.zdevs.zarchiver

28 https://support.google.com/nexus/answer/2840804?hl=en

https://play.google.com/store/apps/details?id=ru.zdevs.zarchiver
https://support.google.com/nexus/answer/2840804?hl=en

64

III. Game Guide

To start playing Shuriken Way, the game should first be installed onto an Android device

(Appendix II). Once this is done and the game is started, there should be the menu screen

displayed with the game title at the top.

There should also be numbered buttons right below the game title. The numbers represent

the levels. You can always come back to this menu while playing a level by pressing the

back navigational button on the device. Start from the first level by pressing the button with

the number 1 on it (Illustration 1).

The first level consists of 3 simple platforms and 2 coins. The level is started with the

shuriken attached to a platform. Tap the screen to detach from the platform (Illustration 2).

The shuriken will jump in the direction which is away from the platform’s center.

Illustration 1. Starting the level.

65

The gravity will pull the shuriken down. Falling too far will end the level and it can be

restarted by pressing the button 1 again. This time wait for the center of the shuriken relative

to the platform’s center to point in the direction of the first coin and the next platform. If

you wait for too long, the coin will drop in value and become silver and then copper. The

level can still be successfully finished though. This will only affect the final score for the

level. After collecting the first coin and landing on the second platform repeat the same for

the second coin and the third platform. In most levels, the shuriken needs to land on a

platform after all coins have been collected to successfully complete the level. After the first

level is completed try completing the second level and then go to the third level. Some levels

in Shuriken Way might be very challenging.

During the third level you will encounter a new object type, which is the accelerator. Hitting

the spherical part of the accelerator will increase the speed of the shuriken in the direction

that the arrow of the accelerator is pointing to. Try playing level 4 to see what happens when

multiple accelerators are placed in a long chain. Levels 5 to 12 will introduce even more

new game objects, which are the wall, the active wall, the relativity platform and the katana.

Illustration 2. Moving around in the level.

66

IV. Accompanying Files

The archive file containing the accompanying files has the following structure:

• /Source – the folder containing the source code files of the game

• shuriken-way.apk – the installation package for the game

• questionnaire_data.csv – the file containing raw data from the responses to the

questionnaire

• demo.mp4 – a simple video demonstration of the gameplay

67

V. Graphics of Ninja Star!

With the help of Graphics API Debugger tool, it can easily be confirmed that Ninja Star! is,

in fact, rendering two-dimensional textured polygons to represent the arena and various

objects.

As can be seen in the screenshot above, GAPID can be used to view the textures which are

accessible by the OpenGL at a certain point in time (Illustration 1). Selecting a command

call from the command calls list defines the point in time as right after the command had

Illustration 1. Textures view in GAPID.

68

been executed. For example, the two screenshot below shows the glDrawElements

command being selected (Illustration 2). Examining the parameters used in the command

glDrawElements and preceding command calls tells us that 2 triangles are being drawn using

the texture with identifier 10. As can be seen in the Illustration 1, the texture with identifier

10 is the texture that contains the images of the arena and some game objects. After the

glDrawElements command had been executed, the previously empty framebuffer was filled

with the image of the arena (Illustration 3). Every other game objects is drawn in a similar

way.

Illustration 2. A call of command glDrawElements selected in the Commands view of

GAPID.

69

Illustration 3. Framebuffer view of GAPID showing the framebuffer

filled with the game background.

70

VI. Unity vs Other Approaches

A total of 5 random Android games developed with Unity and 5 random Android games

developed using alternative methods have been chosen and, with the help of Graphics API

Debugger tool, average frame times for both approaches have been calculated. The debug-

ging process slows the graphics down by a factor so the calculated frame times are often

higher than what they would be normally. The original LG Nexus 529 (2013) was used to

run 30 tests. The following table contains the results of the tests (Table 1).

Table 1. The results of the 30 tests run.

Game Unity? Test 1 (5000

frames) (s)

Test 2 (10000

frames) (s)

Test 3 (10000

frames) (s)

Average

frame time

(s)

Rubik Cube yes 158.961 495.712 443.713 0.0439

Doodle Bowling yes 94.285 189.458 209.475 0.0197

Punch Club: Fights yes 464.343 968.548 1031.26 0.0986

Viridi yes 297.856 805.874 878.734 0.0793

Fallout Shelter yes 505.393 1153.111 1161.478 0.1128

Average yes 304.1676 722.5406 744.932 0.0709

Hocus no 178.615 378.53 390.291 0.0379

Underhand no 133.029 215.333 215.365 0.0225

Infinitode no 132.841 223.569 299.618 0.0262

FortressTD no 410.242 1000.6 981.345 0.0957

Trench Assault no 340.929 743.511 771.671 0.0742

Average no 239.1312 512.3086 531.658 0.0513

29 https://www.gsmarena.com/lg_nexus_5-5705.php

https://www.gsmarena.com/lg_nexus_5-5705.php

71

The average frame time during the tests for games developed with Unity was 0.0709 seconds

compared to the average frame time of 0.0513 seconds for other games, as can be seen in

the last column of the Table 1. This means that Unity games were performing worse than

other games on average. The test results are not statistically sufficient to prove that games

developed with Unity are slower than other games. However, they illustrate the tendency of

it being true. The opposite (that Unity games are at least as fast) cannot be concluded from

the results, thus explaining why the author did not feel confident in choosing Unity as

performance was a priority for Shuriken Way.

72

VII. Final Compatibility Tests

The following table contains the results of the performance measurements from the second

set of compatibility tests (Table 1), which were conducted after implementing changes based

on the results of the different tests and playtests.

Table 1. The performance measurement results from the second set of compatibility tests.

Device Screen

resolution

Average

frametime

(ms)

Average

update time

(ms)

Noticeable

visual

stuttering

LG Nexus 5 1080 × 1920 3.1 0.07 No

Huawei MediaPad T3 10 800 × 1280 3.6 0.08 No

Xiaomi Redmi Note 4 1080 × 1920 15.1 0.11 No

Samsung Galaxy Grand Prime 540 × 960 2.7 0.03 No

OnePlus 3 1080 × 1920 13.7 0.2 No

OnePlus 5T 1080 × 2160 14.5 0.2 No

LG G4c 720 × 1280 6.6 0.57 No

No new compatibility issues were discovered during the second set of compatibility tests.

73

VIII. Applications for Graphics Performance Measurement

The following is a list of applications for Android that claim to measure graphics

performance of games which were found during the work for the thesis:

• FPS Meter30

• GameBench31

• Game Booster32

• GLTools33

FPS Meter worked as claimed but it was not suited for the needed task. This is because it

only displayed the current framerate on the screen without logging the displayed values.

GameBench only allowed 30 minutes of monthly testing time for free, which was not enough

for the needed task. Game Booster did not seem to display the correct framerate as it was

showing approximately 59 at all times, even during obvious stuttering. In contrast, FPS

Meter displayed a low framerate during stuttering. GLTools was not a free application.

30 https://play.google.com/store/apps/details?id=com.ftpie.fpsmeter

31 https://play.google.com/store/apps/details?id=com.gamebench.metricscollector

32 https://play.google.com/store/apps/details?id=com.burakgon.gamebooster3

33 https://play.google.com/store/apps/details?id=com.n0n3m4.gltools

https://play.google.com/store/apps/details?id=com.ftpie.fpsmeter
https://play.google.com/store/apps/details?id=com.gamebench.metricscollector
https://play.google.com/store/apps/details?id=com.burakgon.gamebooster3
https://play.google.com/store/apps/details?id=com.n0n3m4.gltools

74

IX. Full Results of the Performance Comparison

The following table contains the full table of results for the conducted performance

comparison tests described in the subchapter 6.2 of the present thesis (Table 1).

Table 1. The full table of results for the conducted performance comparison tests.

Test Number of

frames

Time (s) for

Shuriken Way

Time (s) for

Ninja Star!

Time (s) for

Shuriken

1 5000 114.123 122.168 119.608

2 5000 122.75 111.138 106.428

3 5000 111.132 118.018 97.855

Average for 5000 frames 116.002 117.108 107.964

Test Number of

frames

Time (s) for

Shuriken Way

Time (s) for

Ninja Star!

Time (s) for

Shuriken

4 10000 260.957 230.329 267.783

5 10000 253.594 209.88 257.12

6 10000 261.237 235.144 233.954

7 10000 250.303 255.738 261.815

8 10000 267.534 265.548 260.984

9 10000 223.245 241.007 270.873

Average for 10000 frames 252.812 239.608 258.755

 Number of

frames

Time (s) for

Shuriken Way

Time (s) for

Ninja Star!

Time (s) for

Shuriken

Total 75000 1864.875 1788.97 1876.42

Average frametime (ms) 24.87 23.85 25.02

75

The best performers on average in different categories are underlined in the table. Shuriken

performed the best on average in the tests with 5000 frames. Ninja Star! performed the best

on average in the tests with 10000 frames. Shuriken Way took the second place in both types

of tests and in total.

76

X. The Questionnaire For Playtests

The following images are the screenshots of the questionnaire used in the playtesting part

of the testing stage described in the subchapter 6.3 of the thesis (Illustration 1, 2 and 3).

Illustration 1. First screenshot of the questionnaire.

77

Illustration 2. Second screenshot of the questionnaire.

78

Illustration 3. Third screenshot of the questionnaire.

79

XI. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Anton Tšugunov,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Shuriken Way – An Android Puzzle Game,

(title of thesis)

supervised by Raimond-Hendrik Tunnel,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 13.05.2018

