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Extraction and Classification of App Features from App Reviews

Abstract:

The number of tools for bioinformatics is constantly increasing. To organize the

available information and to facilitate the search, different ontologies are used. Today

annotation of new descriptions is done manually, which is time-consuming and not

always correct. We proposed a new annotation method, which, based on the descrip-

tion of the tool, offers one or more annotation labels in accordance with the ontology.

In our method, we applied modern methods of natural language processing, such as

latent Dirichlet allocation and word2vec. We compared the manual annotation labels

with the labels obtained by using our algorithm and the first results look auspicious.
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natural language processing, text analysis, topic modeling, bioinformatics

CERCS:
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Rakendusi klassifitseerivate tunnuste eraldamine nende kirjeldustest

Lühikokkuvõte:

Aasta aastalt on kasvanud bioinformaatikas kasutatavate rakenduste arv. Selle

tulemusena on konkreetse ülesande lahendamiseks sobiliku rakenduse leidmine muu-

tunud keerukaks ülesandeks. Rakenduste kirjelduste paremaks süstematiseerimiseks

ja otsitavaks muutmiseks on kasutusele võetud erinevaid märksõnade ontoloogiaid.

Hetkel annoteeritakse kirjeldusi käsitsi, mis on ajamahukas ning ei anna alati õigeid

tulemusi. Antud töös kirjeldame uut annoteerimismeetodit, mis pakub automaatselt

välja ühe või mitu märksõna kasutades selleks vaid tööriista vabatekstilist kirjeldust.

Selleks kasutab meie meetod uusimaid loomuliku keele töötlemise meetodeid nagu

Dirichlet’ peitlahutus (latent Dirichlet allocation) ja sõnade vektoresitust (word2vec).

Esmane võrdlus meie poolt välja pakutud algoritmi ja käsitsi saadud märgendusega

näitab, et tulemused on paljulubavad.

Märksõnad:

loomuliku keele töötlus, tekstianalüüs, teemade modelleerimine, bioinformaatika

CERCS:

P170 (Arvutiteadus, arvanalüüs, süsteemid, juhtimine),

B110 (Bioinformaatika, meditsiiniinformaatika, biomatemaatika, biomeetrika)
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1 Introduction

In recent years the number of web pages, documents, articles, reviews located on

Internet has increased dramatically. For example, the number of articles in Wikipedia

has increased from 1.5 M to 5.3 M for the last ten years [1]. One of the main issues

faced by Internet users is how to find a needed resource. So, it would be useful if all

information were analyzed and systematized automatically.

A number of unsupervised techniques has been proposed for the solving this

problem. For example, it is possible to cluster documents in a hierarchical or flat

(i.e., by using K-Means clustering) structures. The simplest way to characterize a

document with a short description is to use document vectors with term frequency

– inverse document frequency (tf-idf) scoring [2]. Later, a latent semantic analysis

(LSA) was proposed [3]. This technique uses singular value decomposition (SVD) of

term-document matrix. From LSA probabilistic latent semantic analysis (pLSA) [4]

was evolved and a little bit later Latent Dirichlet allocation (LDA) [5] was developed.

LDA and pLSA methods use a probabilistic method instead of using term-document

matrices.

Speaking of a text classification, it is necessary to mention neuron networks. For

example, character-level convolutional networks [6] have a great advantage compared

with other techniques: they allow to work with languages where tokenization into

words is not possible.

1.1 The aim of the thesis

At this moment there are tremendous number of bioinformatics tools. So sometimes

researchers cannot find the required tool as fast as they want. For this reason it is

a good idea to have a brief systematized description of all tools in one place. Today

there are several such online database, for example, bio.tools [7] and omictools [8].

However, tools in these databases are annotated manually. Firstly, it is a time-

consuming process. Secondly, people who annotated these tools may make mistakes

for different reasons, for example, due to insufficient knowledge of the classifier. For
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these reasons, it would be better if the manual annotation process was replaced by

an automatically classifier.

Last year a master student Erik Jaaniso under supervision Hedi Peterson devel-

oped a program [9] that automatically annotates bioinformatics tools according to

EDAM ontology [10] based on free description texts. They proposed an annotation

method that is based on calculating inverse document frequency weights of words

from description texts and ontology terms and computing matching between them.

Also, the presented method gives different weights to words coming from a short de-

scription of the bioinformatic tool, keywords, a detailed description, etc. As a result,

they have got promising results.

The purpose of this work is to apply other methods that could improve the

quality of automatic annotation. As the basis of our approach we have chosen Latent

Dirichlet Allocation as one of the popular topic modelling techniques now.

1.2 Related works

Latent Dirichlet Allocation is applied to retrieve information from the texts. This

method allows to discover hidden topics in documents and can be successfully used in

sentimental analysis, clustering and classification tasks. Since in this work we want

to classify the bioinformatics tools rather than get their sentiment score, then in the

future we will only discuss the classification and clustering problems and describe

below a few works that use LDA to solve these tasks.

So, in the article [11] the authors showed that the LDA-based algorithm for soft-

ware categorization gave results comparable to the current categorization algorithm.

After parsing software systems and applying LDA to them, they combined similar

topics into the same categories. To do that, they calculated cosine similarity be-

tween each pair of topics, and if it is greater than 0.8, topics were grouped into one

category. After that, authors assigned software systems to the obtained categories

by using topics probability computed by applying LDA.

Researchers [12] proposed a method similar to our approach. They used not only

topic information features derived from LDA, but also added term frequency features
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to them. After combined two types of features they used received vectors as features

for the support vector machine. Due to this procedure they have got more precise

results than using only term frequency features or topic information features.

In the article [13] authors applied LDA to set of legal judgments. After that

they calculated cosine similarity between each document and the obtained topics.

Based on the calculated similarity, they put each document to a cluster. Authors

got reasonable clusters, however there is a need to mention that they knew the ”ideal”

number of clusters.

1.3 The structure of the thesis

This thesis has the following structure:

• the second chapter provides a brief description of the main methods which we

use to build our model;

• the third chapter introduces a pipeline of the proposed model, describes data

that we use for solving of our task and gives a whole description of the experi-

ments steps;

• the fourth chapter provides the obtained results and possible improvements of

the proposed model.
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2 Theoretical background

2.1 Term frequency – inverse document frequency

Term frequency – inverse document frequency (tf-idf) is a statistical measure used to

figure out the importance of word inside a document. Intuitively, if a word appears in

a text frequently, it might be substantial. However, if the same word appears in many

documents, it does not give useful information about a document. For example, if we

have corpus of texts about different animals, a word “cat” which appears many times

only in one document will be important, but if all texts about cats, a word “cat”

will be in almost all documents and will not provide some valuable information.

So, computing of tf-idf consists of three parts, which are described below.

1. Computing term frequency (tf):

tf(t) =
nt∑
k nk

,

where nt is number of times term t appears in a document and∑
k nk is total number of terms in the document.

2. Computing inverse document frequency (idf):

idf(t,D) = log

(
|D|

|{d ∈ D : t ∈ d}|

)
,

where |D| is total number of documents in the corpus and

|{d ∈ D : t ∈ d}| is number of documents with term t in it.

3. Computing tf-idf:

tf -idf(t) = tf(t) · idf(t,D).

Term frequency – inverse document frequency weighting is commonly used in

information retrieval tasks as a basis for more complicated algorithms [14, 15, 16].
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2.2 Probabilistic Topic Modeling

One of the ways to automatically organize and understand massive document collec-

tions is a probabilistic topic modeling. The main idea of probabilistic topic modeling

is automatically to detect topics in documents. Topic modelling algorithms are set

of statistical methods that analyze the words of the given texts and discover topics

hidden in these texts. Any prior annotations or labelling of the texts are not required

for topic modelling algorithms [17].

The most two common techniques of a probabilistic topic modeling are Latent

Dirichlet Allocation (LDA) [5] and probabilistic Latent Semantic Analysis (pLSA)

[4]. The both methods treat topics as word distributions and documents repre-

sents a mixture of corpus-wide topics. The main difference between them is that

pLSA method does not make any assumptions about a prior topic distribution over

documents and a prior word distribution over topics whereas in LDA the topic dis-

tribution has a Dirichlet prior on the per document topic and on the per topic word

distributions.

2.2.1 The model of Latent Dirichlet Allocation

The LDA model that was proposed by David Blei, Andrew Ng and Michael I. Jordan

[5] has three assumptions:

• the order of the words in a document does is irrelevant (“bag of words”),

• the order of the documents is irrelevant,

• the number of topics is known and permanent.

With these assumptions, we can define LDA model with the following notation.

The number of all topics is K and φi is a word distribution in the topic i and

i ∈ {1, ..., K}. The number of all documents is M and Θj is a topic distribution in

document j and j ∈ {1, ...,M}. The number of words in a document is N and the

topic assignment for the j -th document is Zj, then Zj,t is the topic assignment for
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the t-th word in the document j, where t ∈ {1, ..., N}. Finally, Wj,t is the t-th word

in the j -th document.

According to this notation, the total probability of the model is:

P (W,Z,Θ,φ) =
K∏
i=1

P (φi)
M∏
j=1

P (Θj)
N∏
t=1

P (Zj,t|Θj)P (Wj,t|φ, Zj,t), (1)

Θ ∼ Dir(α), (2)

φ ∼ Dir(β), (3)

where α and β are hyperparameters of the Dirichlet distribution.

Hyperparameters of the Dirichlet distribution α and β in the equations (2) and (3)

are less than one, as we assume that each document has a small subset of important

topics and each topic has few keywords. If we set α and β to more than one, we

would get that all topics and all keywords have almost the same probability.

Figure 1: Graphical smoothed LDA model representation [18]. The grey circle rep-
resents observed nodes and the white circles represents the hidden nodes.

The visual scheme given above is a good interpretation of the equation (1). The

first product in the formula (1) corresponds a topic plate, the third one corresponds

a word plate and the second and the third products correspond to a document plate.
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2.2.2 The algorithm of Latent Dirichlet Allocation

Latent Dirichlet allocation model can works with various learning algorithms, such as

maximum a posteriori estimation, collapsed Gibbs sampling and Bayesian variational

inference. According to the article [19], Bayesian variational inference is the best

choice in terms of speed and efficiency.

Below we describe how to find latent topics in a corpus of documents less formally

[20].

1. Define a number of topics (K ). To find an optimal number of topics is a not

simple issue. It is possible to find an optimal number of topics by using prior

knowledge or trial-and-error method. Also, some estimation metrics exist, for

example, perplexity. However, they do not always give human interpretable

results [21].

2. Go through each document the algorithm assigns every word to one of the K

topics according to a Dirichlet distribution. Due to a Dirichlet distribution

if a word occurs several times it may be assigned to different topics. Topic

assignments are temporary and will be improved in the next step.

3. Go through each word in each document the algorithm updates topic assign-

ments computing two things:

• how widespread is that word over all topics in all documents?

• how many words in this document are assigned to the topic t?

In this step, the algorithm assumes that all topic assignments but the current

word are appropriate.

After repeating this step multiple times, the stable state is reached.

Assume, we have two documents A and B and we want to discover topics that

these documents contain.

A: Dinosaurs are a group of reptiles. It is unlikely to meet dinosaur today.

12



B: Walt Disney is an animation studio. It produced an adventure film “Dinosaur”.

For example, we decided that our documents A and B have two topics and after

the second step each word has a topic assignment, and we would like to update a

topic assignment for a word “dinosaur” in the document A:

Document A Topic assignment

dinosaur ???

group topic 1

reptile topic 1

unlikely topic 2

meet topic 2

dinosaur topic 1

today topic 2

Document B Topic assignment

Walt Disney topic 2

animation topic 2

studio topic 2

produce topic 1

adventure topic 2

film topic 2

dinosaur topic 1

According to the third step, there is a need to answer to two questions.

• How widespread is that word over all topics in all documents: a word “di-

nosaur” appears in both document and is assigned only to topic 1. Thus, it is

more likely that the word “dinosaur” belongs to topic 1.

Document A Topic assignment

dinosaur ???

group topic 1

reptile topic 1

unlikely topic 2

meet topic 2

dinosaur topic 1

today topic 2

Document B Topic assignment

Walt Disney topic 2

animation topic 2

studio topic 2

produce topic 1

adventure topic 2

film topic 2

dinosaur topic 1

• How many words in this document are assigned to the topic t: half of words in

the document A is assigned to the first topic and the half to the second topic.

The word “dinosaur” may be assigned equally likely to either topic.

13



Document A Topic assignment

dinosaur ???

group topic 1

reptile topic 1

unlikely topic 2

meet topic 2

dinosaur topic 1

today topic 2

Document B Topic assignment

Walt Disney topic 2

animation topic 2

studio topic 2

produce topic 1

adventure topic 2

film topic 2

dinosaur topic 1

According to the results of this two criteria, the word “dinosaur” is reassigned

to the first topic.

As a result, we have got the following distribution topics in the documents:

Document A Topic assignment
dinosaur topic 1

group topic 1
reptile topic 1

unlikely topic 2
meet topic 2

dinosaur topic 1
today topic 2

Document B Topic assignment
Walt Disney topic 2
animation topic 2

studio topic 2
produce topic 1

adventure topic 2
film topic 2

dinosaur topic 1

We can write it in another way:

A: 57% the first topic and 43% the second topic

B: 29% the first topic and 71% the second topic

So, we can suppose that the document A might be about biology and the docu-

ment B about films.

14



2.3 Word2vec

Words in any text are related semantically, so if we represent them as separate

elements, for example, a word “ pterosaurs” may be depicted as “001” and “pely-

cosaurs” as “100”, then we will get a little information about the text. One way to

overcome it is to use vector representation of words. Vector space models treat words

in a continuous vector space, where semantically similar words are located close to

each other. All vector space models can be divided into two groups: context-count

and context-predictive.

Context-count algorithms (e.g. tf-idf, LSA, LDA) compute how often a word

appears with other words and map the obtained statistics to a vector. Context-

predictive models (e.g. neural probabilistic language models like GloVe [22], Col-

lobert and Weston model [23], word2vec [24]) try to predict a word from its sur-

rounding words in terms of embedding vectors [25].

Word2vec is a set of neural network’s algorithms that one of the most popular of

the context-predictive models today. The main idea of word2vec is to maximize the

cosine similarity between the vectors of words which appear in the similar context

and minimize the cosine similarity of the vectors for words that do not appear close

together. Word2vec takes as its inputs a corpus of text (for better results there is

a need an enormous amount of documents) and produces a matrix of word-vectors,

where each row is a unique word and a vector corresponding to this word [26, 27].

There are two models: CBOW (continuous bag of words) and skip-gram. The

architectures of both models are shown in Figure 2.

CBOW takes as input [wt−n...wt−1, wt+1...wt+n] and produces a target word wt.

Thus, it predicts the target word given the context. The value of n depends on

the chosen window size. Skip-gram model works in the inverse way: it predicts the

context [wt−n...wt−1, wt+1...wt+n] given the word wt [24]. For example, we have a

sentence “my cats and dogs are friends”, a CBOW model predicts a word “dogs”

from context words [“my”, “cats”, “and”, “are”, “friends”] while a skip-gram predicts

surroundings words [“my”, “cats”, “and”, “are”, “friends”] for a word “dogs”.

15



w(t-2)

w(t+1)

w(t-1)
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w(t+2)

                   CBOW                                                   Skip-gram

Figure 2: Model architectures: CBOW and skip-gram [24]

16



3 Experiment

Figure 3 depicts the data processing pipeline of the experiment. The blue square

boxes illustrate steps along the pipeline and the yellow ellipses represent the essential

intermediate outputs. In this section we will provide the detailed explanation of the

experiment steps.

fetch

data from

bio.tools

preprocessing

steps

tf-idfLDA

X:keywords

multilabel

binarizer

Y:labels

fetch data

from NCBI

preprocessing

steps

word2vec

multilabel

classifier

Figure 3: Pipeline of the experiment

17

https://bio.tools/
https://www.ncbi.nlm.nih.gov/


3.1 Getting data and data set description

The first step in our work is getting the data. According to the pipeline of our exper-

iment, we need data for training LDA model, word2vec model and then multilabel

classification. Before describing the data, we will explain what EDAM ontology is.

3.1.1 EDAM ontology

EDAM ontology is a simply ontology of bioinformatics concepts [28]. It includes four

main categories and one sub-category as defined in [10].

Topic:

“A category denoting a rather broad domain or field of interest, of study,

application, work, data, or technology. Topics have no clearly defined borders

between each other”

Operation:

“A function that processes a set of inputs and results in a set of outputs, or

associates arguments (inputs) with values (outputs)”

Data:

“Information, represented in an information artifact (data record) that is ‘un-

derstandable’ by dedicated computational tools that can use the data as input

or produce it as output”

Format:

“A defined way or layout of representing and structuring data in a computer

file, blob, string, message, or elsewhere”

Data ⇒ Identifier:

“A text token, number or something else which identifies an entity, but which

may not be persistent (stable) or unique (the same identifier may identify

multiple things)”

18



Figure 4 shows the classification mentioned above and also presents examples

from each category. For instance, the category Topic may be phylogenetics and/or

transcriptomics.

Figure 4: EDAM concepts [10]

Mostly, the Data, Format, and Operation categories consist of concepts strictly

in the field of bioinformatics and computational biology whereas concepts purely

concerning computer science, biology, etc., are not included. The Topic category

contains wide-ranging interdisciplinary concepts from the biological and medical do-

mains [10].

3.1.2 Data for LDA model and multilabel prediction

The web service bio.tools [7] is one of the main databases of bioinformatics tools. It

provides the information about authors and versions, a small description, links to

the essential publications (which, as a rule, give a complete description of the tool)

and classification topics that are corresponds to EDAM classification system.

For example, a tool Kaiju has a following EDAM concepts:

19
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topic operation inputs outputs

Metagenomics Taxonomic

classification

Nucleic acid

sequence (raw)

(FASTQ, FASTA)

Taxonomy

(TSV)

For our goal there is a need to extract a text of publications and corresponding

classification topics. We used classification topics as reference values (labels) of

multilabel classification and text of publications to train LDA model.

During analysis of classification topics we faced the following problem. Registered

users can add their tool to bio.tools and describe their functionally based on EDAM

ontology. Since ontology is a hierarchical system, some users select the upper level,

the other users — the deepest sub-level, while others select the entire chain of levels

from the top to the lowest.

For example, as shown in Figure 5 “visualisation” is a high level in Operation

category and it has many sub-levels, one of them is “sequence visualisation” and it

in turn consists of three sub-sub-levels. So, some users chose only “visualisation” as

an operation topic, other decided to pick “sequence visualisation” and someone else

selected “dotplot plotting” and “sequence visualisation”.

Operation

Visualisation

Sequence cluster visualisation

Sequence visualisation

Dotplot plotting

Genome visualisation

Sequence assembly visualisation

...

...

Figure 5: Example of EDAM structure
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To remove this non-uniformity we decided to keep only the top and the first sub-

level of topics. For the example mentioned above, we kept only “visualisation” (the

top level), “sequence cluster visualisation” and “sequence visualisation” (in Figure 5

the remained topics are placed in boxes).

To test the performance of our method we kept only Operation category. After

our modification of EDAM structure we got 20 different topics.

To extract texts of publications we used an edam-mapper script1. We gathered

only these descriptions which have open access.

We collected 3269 descriptions. As can be seen in Figure 6 some of descriptions

are very short. Since Latent Dirichlet Allocation has proven to be successful when

applied to long texts and has given incoherent topics when applied to short texts

[29], we decided to keep only relatively long texts. After extensive experiments, we

discovered that a text length should be 500 or more words after preprocessing. As a

result, we got 2368 descriptions.

Figure 6: Distribution of words over texts before preprocessing steps

1https://github.com/edamontology/edammap
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3.1.3 Data for word2vec model

To get stable results for word2vec there is a need a huge amount of data. After

gathering information from bio.tools we have a database with size about 127 Mb (the

number of uniqie words is 400,128.) Since this is not enough for learning the word2vec

model, we need to get more data. Our data obtained from bio.tools is related to

bioinformatics. So, we need to get more data related to bioinformatics. One of

ways to solve this issue is to use databases of the National Center for Biotechnology

Information (NCBI).

The National Center for Biotechnology Information (NCBI) is part of the United

States National Library of Medicine. It contains a series of databases relate to

biotechnology and biomedicine. All these databases are available through the Entrez

search engine [30].

To train our word2vec model we used data from PubMed2 and PubMed Central3

databases. PubMed database is the MEDLINE database of abstracts on biomedi-

cal, bioinformatics and life science topics. Pubmed Central (PMC) is a free digital

repository that contains archives of publicly accessible full-text articles of biomedical

and life sciences journals. To get data we used the Entrez search engine looking for

keywords “bioinformatics”, “taxonomy” and “genome”.

As a result, we obtained 418,190 abstracts and 79,955 articles. The size of the

obtained dataset is about 3.7 Gb. After removing stop words, like the, and, but, we

received 758,690 unique words.

3.2 Preprocessing

Before applying any model to the collection of documents, there is a need to make

preprocessing steps. Below we will describe the steps that we consider necessary for

our corpus of texts.

Useless parts of text removal

We removed all words before a word “abstract” and after words “references”, “ac-

2https://www.ncbi.nlm.nih.gov/pubmed/
3https://www.ncbi.nlm.nih.gov/pmc/
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knowledgement”, “competing interests”, “authors contributions”, “contribute sup-

port” as they do not contain useful information about a described tool.

Select sentences carried “useful” information

To select sentences which have useful “payload”, firstly we split texts into sentences

by using nltk.tokenize.punkt [31] and then applied two approaches.

The first approach is simple: we extracted only those sentences which contain words

related to biology, software and/or experiment.

For example, words such as “gene”, “dna”, “intron”, “exon” related to biology,

“algorithm”, “software”, “platform” to software and “sensitivity”, “specificity”, “ac-

curacy” to experiment.

To create these lists of words, we took the words which we associated with biology,

experiment and software. We also applied K-means [32] clustering to the whole

corpus of texts (by using the tf-idf matrix and cosine similarity) and took top 25

words that are nearest to the cluster centroid and are related to biology, experiment

and software.

The second approach is a little bit sophisticated: we calculated tf-idf weights for each

word and then chose only those sentences whose normalized tf-idf score (normalized

tf-idf score is sum of tf-idf score of each word in a sentence divided by number of

words in the sentence) is more than 0.8.

After initial computations the second approach showed the better performance than

the first one. So we decided to use the second approach in the future.

Punctuation and web links removal

Before removing of punctuation we replaced all words with hyphens by the same

words without hyphens, for example, a word “inc- reasing” is replaced by “increas-

ing” or “k-mer” was replaced by “kmer”. In some cases, like “Z-score”, it works

incorrect (a word “Zscore” will be created); however, we assumed that these cases

are uncommon compared to justifiable cases.

After that, we removed all punctuation. As with the removal of the hyphen, deleting
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the entire punctuation can lead to the wrong result. For example, the “superfamily/-

family concept” will be replaced by a “superfamilyfamily concept”, however, these

situations are rare.

We also cleared away web links and e-mail addresses as they do not provide infor-

mation about a bioinformatics tool.

Tokenization to words

We replaced the input text by list of words (tokens) by using nltk.tokenize [33]. We

kept the words which contain at least two letters. For example, a word “r” and a

word “r45” are removed because they include only one letter whereas a word “bi” is

held. Also, we saved only letters from words, for instance, a word “clark31” is saved

as “clark”.

Deleting numbers can again lead to incorrect situations, for example, instead of

strains “JS614” and “JS666” we obtained one word “JS”. However, we assumed

that keeping the digits in words will not lead to an improvement in the LDA model’s

performance, while deleting the numbers will reduce the number of keywords de-

scribing the topic.

Stopwords removal

We removed words that are very frequent in English, like “the”, “and”, “are” and so

on. We used the standard set of words from the library stop words [34].

We also added to this set some common words appeared in texts and not given useful

information: “doi”, “figure”, “et”, “ii”, “iii”, “fig”, “none”.

Lemmatization

There are two main approaches to reduce inflectional forms of words: stemming

and lemmatization. Stemming reduces words to stems while lemmatization reduces

them to lemma. For example, a word “sequencing” has a stem “sequenc” and two

lemmas “sequencing” and “sequence” depending on the morphological analysis of

the word [35]. We decided to use lemmatization to keep morphological differences as

we consider that it is important for our method.
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We applied nltk.stem.wordnet [36] to find the different inflectional forms of a word

and to get the lemma for a word. For example, the verb “to know” may appear as

“know”, “knows”, “knew”, “known” and its base form or lemma is “know”.

Thereby, using this technique we can reduce the number of possible keywords de-

scribing a topic.

Search of collocations

To find collocations like “gene expression”, “amino acid”, “protein protein interac-

tion” we used the NLTK packages BigramCollocationFinder and TrigramColloca-

tionFinder [37].

We kept collocations which appear at least twice in one document and at least nine

times in all documents. After that we replaced discovered collocations by one term,

for example, a collocation “gene expression” was transformed to “gene expression”.

Removal all words except nouns, verbs and adjectives

The keeping or removal of certain parts of speech is a disputable issue. On the one

hand, we reduce the number of possible words describing the topic, on the other

hand, we can lose important information.

We used a NLTK module nltk.tag.stanford [38] for communicating with the Stanford

taggers [39] to determine the parts of speech. For our corpus of texts, we decided to

keep nouns, verbs and adjectives and remove adverbs, conjunction prepositions and

other parts of speech, since they usually do not provide essential information about

a bioinformatic tool.

3.3 Getting keywords using Latent Dirichlet Allocation

We applied Latent Dirichlet Allocation implementation developed by sklearn [40] to

our data. We used default values of prior of document topic distribution and prior of

word topic distribution. Both are equalled 1
n
, where n is number of topics. Varying

values of prior of document topic distribution and prior of word topic distribution

and inspecting the behavior of findings with different values is left as future work.

We varied a parameter “number of topics” between 8 and 50.
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We applied our LDA model to the whole data set. As an example, the obtained

ten keywords for each topic (“number of topics” is 11) is presented in Table 1.

Table 1: Extracted topics with keywords and interpretation of topics

Topic Keywords Topic interpretation

1
model, data, value, method, sample, number,

distribution, cluster, result, test
analysis, clustering

2
gene, pathway, network, interaction, set,

disease, analysis, list, expression, cancer
disease pathways

3

database, data, information, search, provide,

annotation, provide, include, query, link, re-

source

data and query

4
sequence, alignment, match, score, algorithm,

tree, align, search, program, multiple
sequence alignment

5
gene, genome, sequence, species, cluster,

annotation, transcript, genomic, human, exon

genome and sequence

annotation

6
sequence, rna, target, structure, dna, muta-

tion, nucleotide, design, position, secondary

sequence structure

alignment

7
motif, site, region, sequence, promoter,

regulatory, binding, pattern, identify, element

promoters, transcription

factor binding sites

8
structure, protein, residue, pdb, structural,

model, atom, molecule, ligand, interaction
protein interaction

9

protein, prediction, peptide, predict, domain,

method, sequence, amino acid, score,

performance

prediction

10
user, data, tool, analysis, file, provide, format,

software, feature, result
software

11
read, sequencing, genome, snp, assembly,

sequence, variant, data, number, coverage
sequencing

Table 1 shows a possible interpretation of topics keywords. Some of topics in-
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terpretations describe a broad area, for example, “data and query”, while others

represent rather narrow area like “transcription factor binding sites”.

The obtained keywords and their corresponding mapping to EDAM topics are

shown in Table 2. As can be seen, the same set of keywords is matched by different

terms from the ontology. To resolve this problem, we could take more than one the

assigned topic. However, for a vast collection of documents and corresponding sets

of reference values, it is likely that the same problem will be appeared again. The

reason of the described issue might be that LDA allows to find topics that described

global features of objects rather than local ones [41]. Another possible reason may

be that LDA forms different topics than EDAM ontology. One more possible reason

is the incorrect classification of tools on bio.tools.

Table 2: Document titles, keywords of the top topics assigned to documents and
reference values

Keywords of the top
topic assigned to

documents
EDAM topics

EDAM operation
topics

3DLigandSite: predicting ligand-binding sites using similar structures

structure, protein,
residue, pdb, structural,
model, atom, molecule,
ligand, interaction

structure prediction,
protein binding sites,
nucleic acid sites, fea-
tures and motifs, small
molecules, protein struc-
ture analysis

prediction and recog-
nition, structure pre-
diction, protein-ligand
docking, protein binding
site prediction, protein

structure prediction

3D-partner: a web server to infer interacting partners and binding models

structure, protein,
residue, pdb, structural,
model, atom, molecule,
ligand, interaction

database management,
proteins, protein binding
sites, structure analysis,
sequence composition,
complexity and repeats

database comparison,
protein comparison,
comparison, protein
model validation, molec-

ular docking
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3.4 Getting keywords using tf-idf

If the reason for having of the same data sets for different EDAM topics is that LDA

does not discover local features, then we can use tf-idf to find aspects (local features)

of the object [42].

We obtained terms with tf-idf weights by using TfidfVectorizer [43] from sklearn.

Almost all parameters were used by default except of ”ngram range”. We set it in

(1, 3) to find not only unigrams but also bigrams and trigrams.

We kept only those unigrams, bigrams and trigrams whose weight was above the

specified threshold (0.1).

Table 3: Document titles, keywords of the top topic obtained by LDA and key-
words obtained by tf-idf and reference values

Keywords of the top
topic assigned to

documents
EDAM topics

EDAM operation
topics

3DLigandSite: predicting ligand-binding sites using similar structures

structure, protein,
residue, pdb, structural,
model, atom, molecule,
ligand, interaction,
dligandsite, ligand,
prediction, residue,
conservation, use, cluster,
cite, bind site

structure prediction,
protein binding sites,
nucleic acid sites, fea-
tures and motifs, small
molecules, protein struc-
ture analysis

prediction and recog-
nition, structure pre-
diction, protein-ligand
docking, protein binding
site prediction, protein

structure prediction

3D-partner: a web server to infer interacting partners and binding models

structure, protein,
residue, pdb, structural,
model, atom, molecule,
ligand, interaction,
partner, interact, residue,
template, score function,
domain, synthase, score,
hydrogen bond, server,
query, impala, energy

database management,
proteins, protein binding
sites, structure analysis,
sequence composition,
complexity and repeats

database comparison,
protein comparison,
comparison, protein
model validation, molec-

ular docking
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We combined keywords obtained by applying TfidfVectorizer and keywords of the

top topic retrieved by using LDA. The example of a new set is shown in Table 3 (we

italicized tf-idf words).

As can be seen, now documents have different set of keywords. Thus, this solution

allows us to create unique sets of words for each document.

3.5 Vectorizers based on word2vec

We applied gensim [44] realization of word2vec. We set the following parameters:

model is CBOW, the maximum distance between the current and predicted word

within a sentence is ten, the dimensionality of the feature vectors is 300.

Our goal of using word2vec was to get vectors of terms that we will use to build

features. There are several ways to do it.

For example, we have a corpus of texts and one of the texts is “taxonomic classi-

fication’s program”. After applying word2vec we obtained the following dictionary:

term word2vec’s vector tf-idf
program [ ... 0.3 -0.05 0.2 ...] 1.5

taxonomic [ ... -0.2 1 -0.9 ...] 6
classification [ ... -0.4 -0.1 -0.3 ...] 2

The easiest way is to calculate the average feature vector for each text. For the

example above, it will be [... -0.1 0.28 -0.33 ...]. However, according the initial results

this way showed the worst performance, so we decided not to use it in the future.

The another way is to multiply word vectors with their tf-idf scores and then take

the average of them. The resulting vector for the example will be [... -0.5 1.9 -1.9

...].

The third way is to apply a vector quantization. By using clustering algorithms,

all obtained vectors are split into baskets (“clusters”) having roughly the equal num-

ber of vectors closest to them. The final vector is a vector with a number of features

equal to the number of clusters and a feature is how many terms of each text are

contained in each cluster. Thus, we use semantically related baskets instead of indi-

vidual terms. For example, we have five clusters and a term “program” corresponds
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to the first cluster, “taxonomic” is contained in the third cluster and “classification”

in the fourth cluster. The resulting vector will be [1 0 1 1 0].

To perform the third way we used K-Means [32] from sklearn library. We varied

the number of clusters from 5000 to 15,000 with step 2500 and according the initial

results we got the best performance with 10,000 number of clusters. We used this

number of clusters for further calculations.

3.6 Multilabel classification

As in our task one set of keywords may be associated with multiple EDAM terms,

we should use a multilabel classification. To build a multilabel classifier we used a

module multiclass [45] from a sklearn library. It is developed to solve multiclass and

multilabel problems. The most common approach is the binary relevance method:

a multilabel problem is split into multiple binary classification problems, so we have

one problem or classifier for each label, and each binary classifier is fitted to predict

the relevance of one of the labels [46, 47]. A module one-vs-the-rest [45] from a

sklearn library is developed to solved this issue.

To represent our multiple terms from EDAM as a vector we used MultilabelBina-

rizer [48]. For example, we have labels A, B, and C and samples with these labels

[[A, B], [B], [A, B, C]]. After transformation an array looks [[1, 1, 0], [0, 1, 0], [1, 1,

1]] and it represents that the first sample has the labels A and B, the second sample

has a label B and the third sample all of them.

As a prediction algorithm we applied the widely used classifier SVM [49]. We used

K-fold cross-validation [50] from a sklearn library with K = 10 without shuffling to

train our model. After all preprocessing steps we have 2368 texts, thus about 2131

texts are used as training data and 237 texts are used as a test set. We obtained 10

results for each metric (we wil discuss metrics in Section 4.2) and took the average

of all results to get the final results.
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4 Results

4.1 Parameters of models

Before we started to work with a whole data (3269 texts), we conducted a series of

extensive experiments on a small corpus of texts (20% of the whole data) to find

the main parameters that may be important for obtaining good results and to get

a reasonable range of these parameters. After all the discussions and preliminary

studies, we decided to choose the following parameters.

Number of top assigned topics from LDA (we discussed LDA in Section

3.3)

We chose for further experiments the number of top assigned topics: one, two,

three, five and also only those topics which have weight more than 0.15 (further

we will denote it as a “threshold”).

During the preliminary calculations we took a larger number of topics, but the

increase in topics led to worse results. This can be explained by the fact that

usually each document has a small number of important topics, for example,

the most texts has only two or three topics with weight more than 0.1.

Number of keywords assigned to each topic (we discussed LDA in Section

3.3)

We took 10, 25 and 50 top keywords assigned to each topic. We experimented

with fewer words (five) and with more words (75) and better results were

obtained with a number of words between 10 and 50.

Keywords from tf-idf

As we wrote in Sections 3.3 and 3.4, we want to use tf-idf keywords to solve

the situation, when the same keywords obtained from LDA describe different

topics. Although initial experiments showed that our approach is reasonable

we decided to check it on the whole data.
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Vectorizer

To transform documents to feature vectors we decided to use one built-in vec-

torizer: CountVectorizer from sklearn [43] (“CountV”) and two custom vector-

izers: TfidfVectorizer (“TfidfV”) and ClusterVectorizer (“ClustV”) based on

word2vec (we defined both vectorizers in Section 3.5).

According to our preliminary calculations, a built-in Tfidf Vectorizer from

sklearn [43] and a custom vectorizer that calculates the average feature vec-

tor for each text (we defined this vectorizer in Section 3.5) showed the worst

performance.

4.2 Performance metrics

To evaluate our models defined in Section 4.1 we used accuracy, recall and precision

[51]. Firstly, we calculated the metrics of a document d in the multilabel setting:

Acc(d) =
|T ∩ U |
|T ∪ U |

,

Rec(d) =
|T ∩ U |
|T |

,

P rec(d) =
|T ∩ U |
|U |

,

where |T | is the true set of labels and |U | is the predicted set of labels.

After that, we computed accuracy for a test set:

Accuracy =
1

n

n∑
i=1

Acc(di),

Recall =
1

n

n∑
i=1

Rec(di),

P recision =
1

n

n∑
i=1

Prec(di),

where n is the number of documents in test set.
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4.3 Results

Table 4 shows accuracy for all models when a training set consists of keywords

obtained from LDA and tf-idf and when a training set consists of keywords obtained

only from LDA. In this table we provided only average accuracy obtained by using

10-fold cross-validation for all range of topics.

Table 4: Accuracy of models with different parameters: CountV, TfidfV and
ClustV are vectorizers, the first column corresponds to the number of assigned
topics, the second column corresponds to the number of assigned keywords

without tf-idf with tf-idf

CountV TfidfV ClustV CountV TfidfV ClustV

1

10 0.193 0.218 0.206 0.37 0.309 0.298

25 0.194 0.202 0.231 0.371 0.304 0.3

50 0.207 0.195 0.23 0.371 0.297 0.33

2

10 0.224 0.226 0.264 0.378 0.312 0.309

25 0.241 0.22 0.202 0.376 0.301 0.316

50 0.267 0.216 0.154 0.374 0.284 0.29

3

10 0.243 0.234 0.283 0.377 0.314 0.314

25 0.271 0.231 0.183 0.377 0.293 0.312

50 0.292 0.229 0.143 0.378 0.274 0.259

5

10 0.266 0.243 0.237 0.38 0.310 0.316

25 0.301 0.242 0.157 0.381 0.284 0.28

50 0.285 0.242 0.145 0.378 0.264 0.213

threshold

10 0.228 0.192 0.267 0.376 0.305 0.312

25 0.250 0.184 0.234 0.381 0.298 0.319

50 0.269 0.177 0.166 0.38 0.296 0.303

As can be seen from Table 4 we got the better results by using a combination of

LDA and tf-idf keywords. Also, a built-in CountVectorizer from sklearn shows the

excelling results compared with other vectorizers.

We can see from Table 4 that it is difficult to determine whether the number of
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topics or the number of words affects accuracy more. However, when we use only

topics with probability more than a certain threshold (a “threshold” row in the table)

we obtained the same or a little bit better results compared with the other number

of assigned topics. For this reason, it would be interesting to vary the threshold and

investigate how it affects to accuracy.

Table 5 shows recall and precision scores for models with keywords obtained from

LDA and tf-idf.

Table 5: Recall and precision of models with different parameters: CountV, TfidfV
and ClustV are vectorizers, the first column corresponds to the number of assigned
topics, the second column corresponds to the number of assigned keywords

Recall Precision

CountV TfidfV ClustV CountV TfidfV ClustV

1

10 0.422 0.549 0.451 0.465 0.324 0.364

25 0.422 0.572 0.445 0.463 0.327 0.374

50 0.421 0.589 0.424 0.467 0.327 0.388

2

10 0.43 0.567 0.453 0.472 0.325 0.377

25 0.429 0.597 0.427 0.472 0.33 0.386

50 0.429 0.636 0.388 0.472 0.332 0.356

3

10 0.431 0.579 0.455 0.469 0.325 0.384

25 0.429 0.626 0.432 0.474 0.335 0.403

50 0.435 0.67 0.354 0.474 0.334 0.351

5

10 0.430 0.602 0.441 0.472 0.329 0.394

25 0.429 0.664 0.404 0.471 0.338 0.363

50 0.431 0.71 0.34 0.469 0.332 0.303

threshold

10 0.425 0.541 0.448 0.472 0.32 0.365

25 0.427 0.564 0.439 0.471 0.32 0.367

50 0.425 0.593 0.411 0.468 0.324 0.379

As can be seen from Table 5, for a model with CountVectorizer (“CountV”) the

values of recall and precision do not depend much on the number of assigned topic
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and assigned words. With the increase in the number of assigned topics and words

the values of recall for model with custom Tfidf Vectorizer (“TfidfV”) grow, whereas

for model with Cluster Vectorizer (“ClustV”) the values of recall decrease. Also, we

got high recall and low precision for model with custom Tfidf Vectorizer (“TfidfV”)

that means that the model predicts many labels and the most of them are incorrect.

As we mentioned in the section 3.3 we varied the number of topics in LDA model

between eight and 50. Figure 7 shows that there are no strong oscillations in the

metric values as a function of the number of topics. However, the better results are

obtained for the number of topics from 20 to 40. It would be interesting to measure

how the ratio of the number of topics and the number of ontology topics affects the

values of metrics.

Figure 7: Accuracy, precision and recall over the number of LDA topics

4.4 Justification and visualization of results

To justify that obtained keywords are reasonable we visualized a part of one of the

texts highlighting words that have a higher weight in the SVM classifier.
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As an example, let us look at the abstract of an article “Next generation tran-

scriptomes for next generation genomes using est2assembly”. According to the cite

bio.tools, its “Operation” topic is “sequence assembly”. We got the same topic by

using our method. Table 6 shows keywords obtained from LDA and tf-idf and Ta-

ble 7 depicts top words that have a higher weight in the SVM classifier for a topic

“Sequence assembly”.

Table 6: Keywords obtained from LDA and tf-idf

Keywords

LDA (the

first topic)

read, assembly, sequencing, base, genome, annotate,

length, map, coverage, error

LDA (the

second topic)

data, database, provide, user, information, annotation,

tool, available, include, link

tf-idf assembly, est, mira, contig, assembler, platform

Table 7: The top eight words obtained from SVM classifier for topic “Sequence
assembly” and their weights

word weight

assembler 0.47

contig 0.43

assembly 0.43

annotate 0.34

genome 0.23

provide 0.21

sequencing 0.1

mira 0.07

sequence 0.05
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The decreasing costs of capillary-based Sanger

sequencing and next generation technologies,

such as 454 pyrosequencing, have prompted

an explosion of transcriptome projects in

non-model species, where even shallow se-

quencing of transcriptomes can now be used

to examine a range of research questions.

...(3 lines)

Here we present a semi-automated platform

’est2assembly’ that processes raw sequence

data from Sanger or 454 sequencing into a hy-

brid de-novo assembly, annotates it and pro-

duces GMOD compatible output, including a Se-

qFeature database suitable for GBrowse. Users

are able to parameterize assembler variables,

judge assembly quality and determine the op-

timal assembly for their specific needs. We

used est2assembly to process Drosophila and

Bicyclus public Sanger EST data and then com-

pared them to published 454 data as well as

eight new insect transcriptome collections.

... (9 lines)

est2assembly is an important tool to assist

manual curation for gene models, an impor-

tant resource in their own right but espe-

cially for species which are due to acquire a

genome project using Next Generation sequencing.

Figure 8: Abstract of an article “Next generation transcriptomes for next genera-
tion genomes using est2assembly” with only important sentences (we discussed it
in Section 3.2). Unimportant sentences are removed and replaced by the dots and
the number of removed lines.
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As can be seen from Figure 8, almost all words obtained from SVM classifier for

topic “Sequence assembly” appear in the abstract. A word “contig” does not appear

in the abstract but occurs in the rest part of the text.

It is worth noting that only the first top LDA topic and tf-idf keywords correspond

to the topic “Sequency assembly” while the second topic rather indicates that this

text describes some application.

4.5 Discussion and possible improvements

We achieved the best result in terms of accuracy by using built-in CountVectorizer

and when a data set contains not only LDA keywords but also tf-idf keywords. The

accuracy score is not high, most likely because the size of the test set is twice as

high as the number of some labels. Despite this, obtained results look promising.

Also, some of the labels marked with our method look reasonable. For this reason,

it would be interesting to discuss them with experienced curators.

In the introduction, we mentioned that a similar work was done last year. Since

we used other assumptions, for example, we simplified the ontology, then directly

comparing the results is not correct. The previous work could analyze short texts as

well as long whereas in our experiment we analyzed only relatively long descriptions of

bioinformatics tools. However, there is a modification of LDA that has been adapted

to work with short texts [52], so we can add an extra step to our algorithm where

we will work with short texts as well. The main advantage of our work compared to

the work done last year, is that we take into account the semantics of the text.

Beyond this work, there are several points that can improve the performance

of the model and which we would like to consider in the future. For example, in

LDA model, we are going to take only those keywords for each topic, the weight of

which is greater than a certain threshold, and then investigate how this modification

affects the accuracy of the prediction algorithm. Also, varying the values of prior of

document topic distribution and prior of word topic distribution may lead to better

results.

In addition to the modifications affecting the latent Dirichlet allocation part of
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our method, it would be interesting to use a classifier that takes into account the

hierarchical structure of the ontology.
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5 Conclusions

In this thesis, we described the weak points of the manual annotation and investigated

the method for the automatic annotation of bioinformatics tools. As a basis of our

method, we used latent Dirichlet allocation. We described the main parameters of

our method and examined which parameters lead to the best results. As a result, we

received promising results. Also, we discussed possible improvements to the proposed

method.
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