
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Aivo Toots

Tool Support for Privacy-Enhanced
Business Process Model and Notation

Bachelor’s Thesis (9 ECTS)

Supervisor: Pille Pullonen, MSc

Supervisor: Luciano García-Bañuelos, PhD

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tool Support for Privacy-Enhanced Business Process Model and No-
tation

Abstract:
This paper presents an implementation tool for a Privacy-Enhanced Business Process
Model And Notation language (PE-BPMN) that extends Business Process Modal And
Notation (BPMN) by adding constructs to specify privacy enhancing technologies to
be used in process models. PE-BPMN language allows to visualize the movement
and disclosure of private information between participants of business processes. The
language is used as a basis for detecting privacy leakages in business processes.
The result of this work, the PE-BPMN editor provides a modelling tool for PE-BPMN.
In addition, the tool supports the user by providing analyzers to check the syntactical
correctness of these extended models. Syntactical correctness is a prerequisite of further
analysis on PE-BPMN models. Currently, there are two analysis implemented. Combined
results of these analysis give an overview of whether some information used in the
business process is at risk of being leaked. Also, these results give an insight how to
improve already existing processes or how to plan more secure new processes.

Keywords:
BPM, BPMN, PETs, PE-BPMN, PLEAK

CERCS: P175 Informatics, systems theory

Tugitööriist äriprotsessimudeli ja -notatsiooni privaatsuslaiendusele
Lühikokkuvõte:
Käesolev töö käsitleb tugitööriista äriprotsessimudeli ja -notatsiooni privaatsuslaien-
dusele, mis täiendab äriprotsesside modelleerimiskeelt võimalustega lisada äriprotsessi
mudelitele privaatsustehnoloogiate kirjeldusi. Äriprotsessimudeli ja -notatsiooni privaat-
suslaiendus võimaldab visualiseerida privaatse informatsiooni liikumist ja avalikustamist
äriprotsessides erinevate osapoolte vahel.
Töö tulemusena valminud tööriist nimega PE-BPMN editor võimaldab luua privaat-
suslaiendusega äriprotsessimudeli ja -notatsiooni mudeleid. Sealjuures pakub tööriist
võimalust kontrollida nende mudelite süntaktilist korrektsust, mis on aluseks nende mu-
delite edasisteks analüüsideks. Praeguseks on võimalik kasutada kahte analüüsimeetodit,
mille kombineeritud tulemus annab ülevaate äriprotsessis kasutatavast privaatsest infor-
matsioonist, millel on oht lekkida. Saadud tulemus võimaldab täiustada olemasolevaid ja
planeerida uusi turvalisemaid äriprotsesse.

Võtmesõnad:
BPM, BPMN, PETs, PE-BPMN, PLEAK

CERCS: P175 Informaatika, süsteemiteooria

2

Contents
1 Introduction 5

1.1 Problem statement and objectives . 6
1.2 Structure of the document . 7

2 Background 8
2.1 Business Process Model and Notation 8
2.2 Privacy Enhancing Technologies . 10
2.3 Privacy-Enhanced Business Process Model And Notation 11

2.3.1 Categories of PETs in PE-BPMN 11
2.3.2 Examples of supported PETs 12
2.3.3 Stereotype details . 14
2.3.4 Example of PE-BPMN model 16

2.4 Privacy LEAKage Analysis Tools . 17
2.5 Discussion . 18

3 PE-BPMN editor 20
3.1 Implementation . 20

3.1.1 Technologies used . 20
3.1.2 XML-representation of stereotypes 21

3.2 User interface . 22
3.2.1 Stereotypes in menus . 22
3.2.2 Stereotype settings . 24

3.3 Discussion . 28

4 Validation process of PE-BPMN models 30
4.1 Implementation . 30

4.1.1 Layers of validation . 30
4.1.2 Types of correctness checks in validation process 31

4.2 User interface . 48
4.2.1 Validating models . 48
4.2.2 Validation report . 48
4.2.3 Analysis on a validated model 48

4.3 Discussion . 50

5 Conclusions and future work 52
5.1 Future work . 52

References 55

3

Appendix 56
I. Tables of stereotype restrictions and requirements 56
II. Restrictions and requirements of each stereotype 60
III. Licence . 95

4

1 Introduction
Every day, as the number of people grows, the number of parties wishing to obtain private
information about people, companies, countries etc. also grows. For a long time, to
obtain someone’s private information, it was required to have a physical contact with
the information – by means of stealing papers containing classified information, secretly
taking photos of somebody or something, using devices to listen to secret conversations
etc. Currently, globalization has allowed people to decrease the distance between people
and has allowed to create channels to connect to others all around the world. One of
the channels with increasingly growing importance and usage is the Internet. As the
number of parties using it and the amount of (private) information moved through it is
growing, the risk of privacy leakages is also growing. This means that the need to protect
privacy is becoming more important every day. As all privacy related problems cannot
be addressed in one thesis, a more narrow approach has been taken. This thesis seeks to
provide means to prevent and detect privacy leakages in terms of business processes that
have been modelled in Business Process Model And Notation (BPMN) language.

In practice, preventing privacy leakage of sensitive data along information flows
is done by using privacy enhancing technologies (PETs). PETs also contribute to the
analysis of movements of private information. Currently, as privacy was not a focus
point in the development process of BPMN, there are no widely used means to visualize
and analyze movements of private information as it is disclosed to participants of these
processes. In order to provide these means to BPMN as well, Privacy-Enhanced Busi-
ness Process Model And Notation (PE-BPMN) language has been proposed [PMB17].
Providing a tool support for Privacy-Enhanced Business Process Model and Notation by
developing a tool entitled PE-BPMN editor is the main objective of this thesis.

The PE-BPMN editor is developed by the author of this thesis as an extension tool
for Privacy LEAKage Analysis Tools (PLEAK)1. PLEAK is the NAPLES (Novel tools
for Analyzing Privacy LEakageS)2 project tool for modelling and analyzing business
processes with regard to privacy. PLEAK is currently under development by Cybernetica
AS and University of Tartu under the DARPA3 Brandeis privacy technology development
program. The author of this thesis works as a programmer at Cybernetica AS on the
NAPLES project. Additionally, as a part of the work on this thesis, wiki4 to document

1https://pleak.io/
2https://cyber.ee/en/research/research-projects/naples/
3This research was funded by the Air Force Research laboratory (AFRL) and Defense Advanced

Research Projects Agency (DARPA) under contract FA8750-16-C-0011. The views expressed are those of
the author(s) and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.

4https://pleak.io/wiki/

5

https://pleak.io/
https://cyber.ee/en/research/research-projects/naples/
https://pleak.io/wiki/

PLEAK and its components, including PE-BPMN editor, is set up. Full development of
the PE-BPMN editor and setup of the wiki has been done by the author of this thesis.

1.1 Problem statement and objectives
Currently, business process modelling provides standardized ways to express stakeholder
collaboration and process support by technical solutions. But in order to visualize and
analyze movements of private information, as it is disclosed to participants of these
processes, extra means are required.

In this context, this thesis takes PE-BPMN language as a starting point. PE-BPMN
language is an extension to BPMN notation with constructs to specify privacy enhancing
technologies to be used in process models. Consequently, the main objective of this
work is to implement prototypes that include a modelling tool for PE-BPMN and also
analyzers to check the syntactical correctness of PE-BPMN models.

In more detail, the main objective of this thesis, creating the PE-BPMN editor, covers
two sub-objectives. The first objective of this thesis is to provide a tool that would allow
to extend BPMN models with PETs by using the PE-BPMN language. Using PE-BPMN
allows to express the usage of privacy enhancing technologies and through that, to visual-
ize the movement and disclosure of private information between participants of business
processes.

The second objective is to provide support for the user of the tool while creating
PE-BPMN models by equipping the tool with a validation process. The validation
process helps to guarantee that related technologies are used correctly – syntactically
and semantically – in order to give them a sensible meaning. The process covers each
technology with specific correctness checks in two ways. The information concerning
the requirements and restrictions of each technology is presented to the user firstly when
the stereotype is added to the model, secondly, when the user has created a PE-BPMN
model with stereotypes and runs the validation process on it. In terms of PE-BPMN
and PE-BPMN editor, stereotype is a representation of privacy enhancing technology on
BPMN model elements including the necessary technology-specific information required
to use the technology. Additionally, a wiki to document PLEAK and all of its compo-
nents, including PE-BPMN, has been set up in order to extend the support. Chapter
of PE-BPMN editor covers a quick guide on how to set up and use the editor, also, it
provides information about all the implemented stereotypes.

The result of combining these two objectives, the PE-BPMN editor, a user-facing
frontend application that implements support for BPMN extension – PE-BPMN, is cre-

6

ated by the author of this thesis. The editor allows to extend BPMN models by adding
various PE-BPMN stereotypes to their elements and run analysis based on these extended
models. Currently, these two objectives have been fulfilled and two different analysis
can be run on PE-BPMN models.

1.2 Structure of the document
This section describes the structure of the rest of the thesis. Section 2 covers the
background of the thesis. As the PE-BPMN editor is based on PE-BPMN and BPMN
and is related to PETs and PLEAK, these are covered in the Background section. Next,
Section 3 is about the PE-BPMN editor and PET stereotypes from the perspective of
providing an implementation to PE-BPMN – providing a tool to create PE-BPMN models.
It covers both principles and technological solutions used to create the implementation of
PE-BPMN. Furthermore, Section 4 is about the validation process of PE-BPMN models.
This section covers the principles and methodologies used to check the syntactical
correctness of PE-BPMN models, which is the basis for a further privacy-leakages
related analysis on these models. Finally, Section 5 covers the conclusion of this thesis,
which also includes known issues of PE-BPMN editor and plans for future work.

7

2 Background
The goal of this section is to provide a brief introduction into the concepts, standards
and technologies, using which the main goal of this thesis, creating the PE-BPMN
editor, is achieved. Following section covers BPMN and PE-BPMN languages and
PET technologies – these form the basis of the PE-BPMN editor. Additionally, as the
PE-BPMN editor is one of the multiple extension tools for PLEAK, the concept and
components of the PLEAK are briefly introduced.

2.1 Business Process Model and Notation
Business Process Management (BPM) is a discipline that seeks to deliver improvements
in organizational performance, regulatory compliance and service quality [RLP16]. One
popular approach to address this goal is to model organization’s processes using Business
Process Model And Notation (BPMN), a standard developed by the Object Management
Group (OMG). The primary goal of BPMN is to provide a notation that is readily under-
standable by all business users, from the business analysts that create the initial drafts of
the processes, to the technical developers responsible for implementing the technology
that will perform those processes, and finally, to the business people who will manage and
monitor those processes [OMG10, OMG11]. Modelling helps to understand processes
and to share the understanding of the process with the people who are involved with the
process on a daily basis. It also helps to identify and prevent issues. The prerequisite
to conduct process analysis, redesign or automation is a profound understanding of the
process [RLP16], BPMN modelling is a way to achieve it.

BPMN notation is rich in different elements and symbols, but in terms of this thesis,
only the main elements that are mentioned in this work are described. The main elements
of BPMN notation are visualized in Figure 1 and explained as follows.

Flow Objects are used to describe parts of a process where decisions are made. Flow
objects can be divided into three groups – events, activities and gateways.

Events indicate occurrences taking place in a process. In this thesis, three types of
event elements are considered – start event, message catch event and end event.

Start event (see Figure 2a) represents the beginning of the process.

Message catch event (see Figure 2b) expresses a step or a breakpoint where the process
needs to wait for a message (a trigger) to continue.

8

Figure 1. Core set of BPMN elements.
[Modified version of the image from

http://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm]

(a) Start Event (b) Message Catch Event (c) End Event (d) Exclusive Gateway

Figure 2. Some concrete BPMN elements.

End event (see Figure 2c) represents the ending of the process.

Activities describe the work being done in a process.

Tasks represent granular activities that cannot be divided into smaller units.

Gateways combine and separate flows in a process. There are many more gateway
elements, but in this thesis only exclusive gateway is considered.

Exclusive gateways (see Figure 2d) evaluate the state of the process (based on a condition)
and divide the process flow into one or more paths – these paths are mutually exclusive,
which means that only one path can be chosen.

Swimlanes represent different actors (participants) and their roles in a process.

9

http://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm

Pools represent participants of the process.

Lanes within pools help to express that certain roles are responsible for performing
specific parts of a process.

Connecting Objects combine flow elements into a sequence.

Sequence flows connect events, tasks, gateways, etc. to each other. Direction of the
sequence flows determines the order of the activities performed in the process.

Message flows express message sharing from one participant to another.

Data associations express the flow of information and their direction between activities.

Artifacts represent information relevant to an overall model.

Data objects represent the information used in the process by activities.

2.2 Privacy Enhancing Technologies
The Enterprise Privacy Group (EPG) [EPG08] states that:

There is no commonly accepted definition of Privacy Enhancing Technolo-
gies (PETs), although all of the definitions seem to embody certain common
characteristics. Specifically, a PET is something that:

• reduces or eliminates the risk of contravening privacy principles and
legislation;

• minimises the amount of data held about individuals;

• empowers individuals to retain control of information about themselves
at all times.

The definition given by the European Commission [PET07] also includes the concept
of using PETs at the design stage of new systems:

The use of PETs can help to design information and communication systems
and services in a way that minimises the collection and use of personal data
and facilitates compliance with data protection rules. The use of PETs should
result in making breaches of certain data protection rules more difficult and /
or helping to detect them.

10

Table 1. Classification of Privacy Enhancing Technologies [PMB17, PTMT18].

Goal Target Examples of technology
Communication Secure Client-Server encryption, TLS, IPSec, End-to-End encryption,

PGP, OTR
Protection Anonymous Proxies and VPN, onion routing, mix-networks, broadcast
Data Protection Integrity Message authentication codes, signatures

Confidentiality Encryption, secret sharing
Entity Identity based Username and password
Authentication Attribute based Credential used only once
Privacy Aware Confidential inputs Homomorphic encryption, secure multiparty computation
Computation Privacy adding Differential privacy, k-anonymity, anonymization
Human-Data Transparency of data usage Information flow detection, logging
Interaction Intervenability Information granularity adjustment, access control

These two definitions of PETs combined cover the principles of the PE-BPMN editor.
The idea is that system builders should be able to use the tool to make decisions on the
privacy solutions at the early stages of the development of a system and that the tool
should enable auditors to analyse already existing systems from the perspective of private
information movement and leakages in processes.

PETs considered in terms of this work are based on the PET classification from
a report [DDFMH+15], which is also the starting point for selecting privacy enhanc-
ing tools to develop Privacy-Enhanced Business Process Model And Notation (PE-
BPMN) [PMB17, PTMT18] language. For privacy analysis, viewpoint based on the
examples of PETs described in Table 1 is considered more useful than the one described
in the survey. Privacy enhancing technologies important for this thesis are described in
Section 2.3.

2.3 Privacy-Enhanced Business Process Model And Notation
Currently, business process modelling provides standardized ways to express stakeholder
collaboration and process support by technical solutions, but in order to visualize and
analyze movements of private information as it is disclosed to participants of these
processes, extra means are required [PTMT18]. Privacy-Enhanced Business Process
Model And Notation (PE-BPMN) is a proposed extension language to BPMN notation
to visualize and analyze the movements of private information. PE-BPMN provides
constructs to specify privacy enhancing technologies to be used on process models.

2.3.1 Categories of PETs in PE-BPMN

As described in [PMB17, PTMT18], there are five categories of PET technologies (see
Table 1 for technology examples) chosen for PE-BPMN according to their application

11

goals:

• Communication protection covers protection of the contents of the communication
and also of the identities of the participants in the communication. Secure commu-
nication means that confidentiality and integrity are ensured in data transmissions.
Anonymous communication protects the identity of participants;

• Data protection ensures integrity and confidentiality of the data. Confidentiality is
guaranteed by protection mechanisms that allow only authorized parties to see the
protected data. Integrity is achieved by using technologies that allow to verify if the
data has been stored or transmitted in a way the creator of the data has expected;

• Entity Authentication proves that the user has the identity and / or the attributes
that it claims to have. Identity authentication is a form of authentication that is
used to prevent the user from pretending to be someone else. However, attribute
based methods do not identify the user, but verify if the user has some required
properties, such as the right age group;

• Privacy-Aware Computations focus on the usage of private data. Computations on
confidential input data allow to securely process various operations (run functions
on the private data) without removing protection mechanisms. Privacy adding
computations usually add a layer of privacy to their outputs, for example by
refusing to answer queries that reveal too much about the inputs or by adding nose
to numeric outputs;

• Human-Data Interaction combines technical means and user actions. It means that
technical means might require some user interaction to work. Basically, user has a
chance to regulate how these means process some information.

Current implementation of PE-BPMN covers four of these categories, the category
of Human-Data Interaction has not been addressed yet.

2.3.2 Examples of supported PETs

Extension of the BPMN concrete syntax to add PETs is done using stereotypes, which
are the representatives of privacy enhancing technology groups described in Table 1 and
Section 2.3.1. The stereotype characterizes the changed type of the BPMN construct
and it includes the representative name of PET and all technology-specific information
(such as parameters). See Section 2.3.3 about the main technology-related details of
stereotypes.

In the current implementation of PE-BPMN, the categories described in Section 2.3.1
are entitled slightly differently. Here are described some technologies from the current

12

implementation.

Communication protection

One example of communication protection is a SecureChannel, which is a message
flow stereotype in Communication protection category. SecureChannel represents the
secure communication where information is sent to another participant in the process
without any interference. The information is sent by an activity (a task) to an actor (a task
of another participant) that receives it through a message catch event. SecureChannel
can also transfer multiple data objects. It is assumed that the data objects that were
received are always the same that were sent [PTMT18]. Note that SecureChannel is
more of a generic name for the principle rather than being an exact technology.

Public key encryption

One common data protection technology is a public key encryption [Men97]. Public
key encryption is represented by two task stereotypes in the Confidentiality Protection
category (a sub-category of Data Protection): PKEncrypt and PKDecrypt. PKEncrypt
takes two inputs – a data object as data to be encrypted and a public key – and produces
a ciphertext. PKDecrypt reverses encryption by taking a secret key and a ciphertext as
inputs and producing the initial data object as a result. Encryption schemes may also be
homomorphic and allow computations on encrypted data. It means that computations can
be run on encrypted ciphertexts, generating an encrypted result. If this result is decrypted,
the result is the same as it would be when those computations were run on plain (not
encrypted) text. In current implementation, computations that operate on public and
encrypted data and produce ciphertexts as outputs, are represented by a PKComputation
stereotype. PKComputation is a task stereotype in Privacy Preserving (stereotypes)
category (a sub-category of Data Processing).

Intel Software Guard Extensions

Intel Software Guard Extensions5 (SGX) technology [AGJS13] offers a secure hard-
ware platform to protect data and code during computations. In current implementation,
secure communication with SGX is denoted SGXComputation stereotype and also
define a SGXProtect stereotype as a representative of confidentiality protection mecha-
nisms to provide inputs for SGXComputation stereotype.

A key component of SGX is its remote attestation process [JSR+16] that enables
the processor to prove that it runs the right code in a secure SGX environment. This is

5https://software.intel.com/en-us/sgx

13

https://software.intel.com/en-us/sgx

considered as an entity authentication type of technology, which is represented by two
task stereotypes: SGXAttestationEnclave and SGXAttestationChallenge. To define
which computations belong to the same enclave, stereotype groups are used. This allows
the group to use protected inputs and outputs of each other.

Secure multiparty computation

Privacy-Aware Computations category is entitled in the current implementation as
Data Processing and it is divided into two categories – Privacy preserving and Privacy
adding.

An example of Privacy Preserving category would be a secure multiparty computa-
tion (MPC) [Yao82, GMW87], where multiple parties compute functions on their inputs
while keeping these inputs private and not revealing them to other parties. In the current
implementation of PE-BPMN, there is a general multiparty computation stereotype
(MPC), but also stereotypes representing more specific technologies. For example secure
computation can be achieved with homomorphic secret sharing [Sha79, Bla79]. Secret
sharing technologies split secret data into multiple shares and define distributed proto-
cols to compute on these shares while preserving the privacy of the inputs. The main
tasks of secret sharing are producing the shares (SSSharing) and restoring the encoded
data from the shares (SSReconstruction). In current implementation, the distributed
computations, performed on the shares, that produce shared outputs are represented by
SSComputation stereotype. MPC and SSComputation are task stereotypes in the
Privacy Preserving category (a sub-category of Data Processing), while task stereotypes
SSSharing and SSReconstruction are actually in Confidentiality Protection category
(a sub-category of Data Protection).

All implemented stereotypes

In addition to previously described examples, there are many more stereotypes
implemented – 32 task, 2 message flow and 2 data object stereotypes altogether. Full list
of implemented stereotypes and their positioning in terms of the categories mentioned in
this section, can be found in Section 3.2.1.

2.3.3 Stereotype details

Stereotypes are representatives of privacy enhancing technologies, which of each have
technology-specific restrictions and requirements. These requirements are mainly related
to numbers and types of inputs and outputs, values of parameters, and members of groups.
There are also some restrictions concerning combining different stereotypes.

14

Numbers of inputs and outputs

Each technology has its specific requirement for the number of its inputs and outputs.
For example, encryption process requires a key and data to be encrypted as inputs and
provides encrypted data as an output. In this case, it is practical to expect that there are
only two inputs – key and data to be processed. There is no need for extra inputs. If there
were less inputs, the encryption process could not be initiated. PKEncrypt requires two
inputs – a key and an input data and one output as a ciphertext.

Types of inputs and outputs

There are technologies that require their input to be of specific type. Almost every
technology has certain expectations for the type of their inputs. Common examples
would be decryption and computation technologies. For example, concerning decryption,
the input data to be decrypted should be first encrypted, otherwise the process would have
no meaningful output and also, to decrypt something, correct key is required. In terms
of particular decryption technology, the key should be of appropriate type. PKDecrypt
requires that the key is of PKPrivate type and from the same pair with the key (of type
PKPublic) that the information to be decrypted was encrypted with.

Parameter values

Some technologies require additional parameters in addition to input and output data,
for example computation script. To use technology, it might require that its parameters
must have a value or / and this value must be in a fixed range to adjust the behaviour
of the technology and to have a meaning. For example, secret sharing splits private
values among participants so that some predefined groups of parties can collaboratively
restore the secret. In case a (t, n)-threshold secret sharing scheme is used, the data is
shared among n participants (e.g. number of shares) and any subset of t ≤ n or more
participants is able to restore it. SSSharing uses (t, n)-threshold secret sharing scheme
and has requirements concerning parameters – threshold (t) and number of computation
parties (c) - 1 < t ≤ n and t ≤ c ≤ n, (n is the number of outputs from the task).
These requirements secure that one share or any set of shares, less than specified by the
assumption, do not leak information about the shared secret and that only the threshold
or qualified sets of parties can restore the secret.

Groups

There is an important part of privacy-enhancing technologies that require to run com-
putations in parallel or in multiple parts. Groups denote computations that in some sense

15

belong together. For example, in terms of multiparty computation, some technologies
require that computations are run in parallel. On a model, this is expressed by dividing
one computation into multiple computation tasks (sub-tasks of a joint task). Running
computations in parallel means that computation tasks that multiple parties have, must
be executed jointly (in parallel). These sub-tasks represent members of the stereotype
group. MPC requires that there are at least two members in the group and they must run
in parallel.

Specifying computations

There are computation technologies that can use the output of another stereotype
(of different type of technology) as an input to run operations on. The operations of the
computation stereotypes can be specified by computation scripts. In addition to compu-
tations, which take in the script as a simple parameter value, we also need to consider
a layered approach where some computation protocol may actually compute another
privacy enhancing technology. To this end, it is possible to also specify stereotype details
with using another stereotype. For example, SGXComputation with PKEncrypt as a
computation specification means that the computations are carried out using Intel SGX
technology, but the operation that is computed is an encryption and the output of the
computation is a ciphertext.

There are also some restrictions that are specific to only one stereotype. All stereotype-
specific restrictions are covered under paragraphs of each related stereotype (see Ap-
pendix II).

2.3.4 Example of PE-BPMN model

Figure 3 describes a process with public-key encryption. There are also computations on
the encrypted information and eventually, decryption of the encrypted information. For
the visualizations of the main BPMN elements, see Figure 1.

The process begins with a start event and ends with an end event.

Participant 1 and Participant 2 (Pool elements) represent different stakeholders. Mes-
sage exchange between pools correspond to information sharing and, hence, potential
leakages. However, the use of privacy enhancing technology (for example, public-key
encryption – PKEncrypt) allows to reduce the risk of leakages.

Encrypt input data (with PKEncrypt stereotype) and Send data are examples of
different activities (tasks) related to processes. Stereotypes (indicated by names in blue)
mark that a certain task represents the activity using the privacy enhancing technology.

16

Figure 3. Representation of a process that uses encryption. Stereotypes attached to
elements are expressed with names in blue text.

Elements entitled Public key and Data 1 are representatives of information carriers or
stores (for example, a database table). In context of this model, PKPrivate and PKPublic
stereotypes mark that the elements they are attached to are keys of certain type used
by PKEncrypt and PKDecrypt stereotypes. The encryption key used by PKEncrypt
is of PKPublic type and the decryption key used by PKDecrypt is of PKPrivate type.
The decryption key is also from the same pair as the encryption key used to encrypt the
information being decrypted.

2.4 Privacy LEAKage Analysis Tools
The Privacy Leak Analyzer (PLEAK) is the NAPLES (Novel tools for Analyzing Privacy
LEakageS) project tool for modelling and analyzing business processes with regard to
privacy and experimenting with how different privacy technologies reduce the leakage
of private data. The PLEAK tool is designed to support the analysis of private data

17

flows in enterprise business processes (BP) and programs. PLEAK can be used by BP
analysts, developers and maintainers in order to understand the privacy implications of
the business processes used or planned by their organizations or customers. PLEAK
provides them with a tool that they can use to describe their system by its private data
elements, stakeholders, business processes and, optionally, data analysis algorithms.
Once this is done, PLEAK will show how private data flows through a system, who does
it leak to and to what extent does it leak.

Currently, PLEAK consists of backend, frontend and analyzers. Backend component
provides file and user management platform and database. Frontend component provides
a user interface to access, create, edit, share, publish, export BPMN models and separate
them into folders. Frontend includes also a modeller component to create BPMN models.

In addition to main PLEAK platform, there are multiple analysis tools, such as SQL
global sensitivity analyzer, SQL derivative sensitivity analyzer and leaks-when analyzer.
All these analyzers are command-line applications that have an user-interface (an editor)
built on top of them. BPMN models that are created in or imported into the modeller, can
be used in all of these editors, where it is possible to attach analysis-related information
to model elements, for example, SQL-scripts and -schemas in context of SQL global
sensitivity analyzer.

The result of this thesis, the PE-BPMN editor, is another extension tool for PLEAK
analysis tools. There are currently two analysis methods implemented into the editor –
simple disclosure and data dependencies analysis. These analysis are beyond the scope
of this thesis, but are described in [PTMT18].

2.5 Discussion
BPMN standard has been one of the most used notation to express business processes and
information flows. It was chosen for PLEAK analysis tools for modelling and analyzing
business processes with regard to privacy and privacy leakages. As currently the BPMN
notation does not offer simple solutions to visualize and analyze movements of private
information as it is disclosed to participants of business processes, PE-BPMN language
was proposed to address the situation. PE-BPMN adds a new layer to the notation by
extending it with ways to express the usage of privacy enhancing technologies. As there
has been no implementation to use the PE-BPMN language yet and PE-BPMN based
models are necessary for PLEAK analysis tools to express information flows of private
data and detect privacy leakages in analysis based on these information flows, the result
of this thesis is a tool that provides that implementation for PLEAK tools. However,
the BPMN notation is rich of elements and symbols and the current implementation

18

of PE-BPMN does not yet support full BPMN notation, so only the main elements of
BPMN are described in this work.

19

3 PE-BPMN editor
PE-BPMN editor is a user-facing frontend application that implements support for
BPMN extension (PE-BPMN). It allows to extend BPMN models by adding various
PE-BPMN stereotypes to their elements and run analysis based on these extended models.
Important part before running analysis is to validate whether the model to be analyzed is
syntactically and semantically correct. The general idea of this section is to describe the
implementation of PE-BPMN editor and its stereotypes that build up the basis for the
validation of PE-BPMN models and further analysis on these models.

3.1 Implementation
PLEAK web-based tool with PE-BPMN editor is accessible at https://pleak.
io. Full source code for the PLEAK tool is available at https://github.com/
pleak-tools and for PE-BPMN editor at https://github.com/pleak-tools/
pleak-pe-bpmn-editor. Installation instructions can be found in README files
of these repositories.

3.1.1 Technologies used

PE-BPMN editor is an Angular6 web-application built on a standard @angular/cli (ver-
sion 1.6.7)7 project. Graphical user-interface is based on HTML8 and JavaScript9, using
Bootstrap (version 3.3.7)10 and JQuery (version 3.3.1)11 in addition. Bpmn-js (version
1.3.0)12, an open-source BPMN 2.0 rendering toolkit and web modeller provided by
Camunda Services GmbH13, provides a toolkit to create and modify BPMN models.

Bpmn-js provides a visualization of XML14-format BPMN models, so that the editor:

• displays BPMN models and lets users to attach stereotypes to models (to add PETs
using BPMN standard elements);

• saves the models using standard serialization format, which uses XML as a foun-
dation.

6https://angular.io/
7https://cli.angular.io/
8https://www.w3.org/html/
9https://www.javascript.com/

10https://getbootstrap.com/docs/3.3/
11http://jquery.com/
12http://bpmn.io/toolkit/bpmn-js/
13https://camunda.com/
14https://www.w3.org/XML/

20

https://pleak.io
https://pleak.io
https://github.com/pleak-tools
https://github.com/pleak-tools
https://github.com/pleak-tools/pleak-pe-bpmn-editor
https://github.com/pleak-tools/pleak-pe-bpmn-editor
https://angular.io/
https://cli.angular.io/
https://www.w3.org/html/
https://www.javascript.com/
https://getbootstrap.com/docs/3.3/
http://jquery.com/
http://bpmn.io/toolkit/bpmn-js/
https://camunda.com/
https://www.w3.org/XML/

PE-BPMN editor extends BPMN models by attaching specific (named after stereo-
types) labels into the XML code of the model file. This is explained more thoroughly in
Section 3.1.2. Model contents are preserved as files, but meta-data of these files is stored
in MySQL15 database that is a part of PLEAK structure.

PE-BPMN editor is an extension tool to PLEAK, so its backend is provided by
PLEAK. The backend provides REST16ful API service for user authentication, accessing
model’s meta-data and saving model’s information.

3.1.2 XML-representation of stereotypes

BPMN models can be created and edited in PLEAK modeller. Created models are
XML-format files with .bpmn extension. PLEAK uses Bpmn-js modeller tool to convert
model elements as an input from graphical user interface into XML-format files. Thanks
to Bpmn-js tool, there is no need for an extra code to create and parse XML code and to
check whether model files are correctly formatted.

Each stereotype has a unique name and a specific set of details concerning the technol-
ogy. For example, to use a stereotype that represents an encryption technology (such as
PKEncrypt stereotype), information about its input data objects – key and data to be pro-
cessed – must be somehow stored. Serving that purpose, stereotype details are packaged
into a JavaScript object. This object is stringified (using JavaScript’s JSON.stringify()
method). As Bpmn-js parses XML-format BPMN model into a JavaScript object where
information attached to a XML-tag can be accessed as a value of a property. The stereo-
type’s information string can be set as a value to the property with the name of that
stereotype, which means that model object’s properties can be easily manipulated when
required.

PE-BPMN editor uses Bpmn-js to translate .bpmn model files into graphical models.
As Bpmn-js removes unknown XML-tags from the model during parsing process, spe-
cific XML-tag is defined for each stereotype and the list of these stereotypes is provided
to Bpmn-js as a whitelist to be accepted. This approach allows to attach necessary
information to all model elements.

In Figure 4 is an example of the PKEncrypt stereotype in a visual form. In the the
Figure 5 is the same stereotype presented in XML format. Stereotype’s information
is saved into JSON string (of a JavaScript object) that is between <pleak:PKEncrypt>

15https://www.mysql.com/
16https://www.service-architecture.com/articles/web-services/

representational_state_transfer_rest.html

21

https://www.mysql.com/
https://www.service-architecture.com/articles/web-services/representational_state_transfer_rest.html
https://www.service-architecture.com/articles/web-services/representational_state_transfer_rest.html

and </pleak:PKEncrypt> tags. The JSON string contains IDs of a key and an input data
objects (accordingly, Public Key and Data 1 in Figure 4). Properties key and inputData
fix the roles of input data objects. The string is in a CDATA block, which means that the
contents of that block could be interpreted as XML markup, but should not be. Otherwise,
it would be possible to inject something into XML code as not just a string, but as a XML
tag.

Figure 4. PKEncrypt stereotype attached to a task with two inputs and one output.

< p l e a k : P K E n c r y p t >
< ! [CDATA[

{
" key " : " D a t a O b j e c t R e f e r e n c e _ 0 s 3 y w 9 a " ,
" i n p u t D a t a " : " D a t a O b j e c t R e f e r e n c e _ 1 0 n 5 2 f p "

}
]] >

< / p l e a k : P K E n c r y p t >

Figure 5. XML representation of the PKEncrypt stereotype in Figure 4.

3.2 User interface
3.2.1 Stereotypes in menus

Stereotypes can be added to model elements by selecting them from the menu that
appears next to the clicked element after clicking on a task, a data object or a message
flow on a model.

22

There are two message flow stereotypes: CommunicationProtection and Se-
cureChannel. For data objects, there are also two stereotypes: PKPublic and PKPri-
vate.

The rest of the stereotypes are task stereotypes and they are grouped based on the
taxonomy. The goals that the task can have are data protection, data processing and entity
authentication. Data protection has two possible targets: integrity and confidentiality
protection. In data processing the targets are either privacy preserving or privacy adding
computations. At the moment there are no stereotypes of the human-data interaction
category implemented yet. After choosing the goal it is possible to choose the concrete
stereotype. Each stereotype opens a stereotype settings menu (see Section 3.2.2) to
specify the necessary parameters and roles of the inputs and outputs.

There are three categories of task stereotypes (see Figure 6) and thirty-two task
stereotypes divided into these categories. These stereotypes are positioned in the menu
based on the categorization of task stereotypes in Table 2. Note that some stereotypes
are in multiple categories.

Table 2. Categorization of task stereotypes.

Category Sub-category Stereotypes
Data Protection Integrity Protection SGXQuoting, SGXQuoteVerification

Confidentiality Protection PKEncrypt, SKEncrypt, SSSharing, AddSSSharing, Fun-
SSSharing, SGXProtect, ProtectConfidentiality, PKDe-
crypt, SKDecrypt, SSReconstruction, AddSSReconstruc-
tion, FunSSReconstruction, OpenConfidentiality

Data Processing Privacy Preserving PETComputation, MPC, SSComputation, AddSSCom-
putation, FunSSComputation, GCEvaluate, GCGar-
ble, GCComputation, SGXComputation, PKComputation,
SKComputation, OTSend, OTReceive

Privacy Adding DimensionalityReduction, DifferentialPrivacy, PETCom-
putation

Entity Authentication SGXAttestationChallenge, SGXAttestationEnclave

See Figure 7 for an example of a sub-category in the main stereotypes menu. It shows
that the Integrity Protection category (sub-category of Data Protection) is also divided
into two more smaller sub-categories. This multi-level classification applies to other
categories as well.

Some of the related technologies are described in Section 2.3.2, restrictions and
requirements of each stereotype are covered in Appendix II.

23

Figure 6. The main menu of task stereotypes.

Figure 7. A menu of task stereotypes – category Data Protection, sub-category Integrity
Protection.

3.2.2 Stereotype settings

Stereotype settings panel can be accessed in two ways. Firstly, if there are no stereotypes
added to an element yet, the panel can be opened by clicking on an element and selecting
the stereotype from stereotypes menu. Secondly, if there is already at least one stereotype
attached to an element, the settings panel can be accessed by clicking on the element on
the model. In both cases, the stereotype settings panel opens in a sidebar. Note that to
really add the stereotype to an element, the Save button in the settings panel must be
clicked. Otherwise, it will be not added as the adding processed is cancelled and the
panel is closed after clicking outside of the sidebar or the element that the stereotype is
supposed to be attached to. Stereotypes can be removed from an element by clicking the
Remove button in the settings panel.

In case user has attached a stereotype to an element and clicks on the element, in
addition to the settings panel appearing in the sidebar, input and output elements of the
clicked element are highlighted. Input objects of a task are highlighted in green colour,
output objects in pink. If a task with a stereotype belongs to a group, all group members

24

Figure 8. MPC stereotype group tasks and their inputs and outputs are highlighted after
clicking on the Compute something together task of Participant 2.

are highlighted in blue and all group members’ inputs and outputs are highlighted fol-
lowing the same logic as inputs and outputs of the clicked element. However, inputs and
outputs of the clicked task are highlighted in slightly different tones of colours than the
other tasks of the group. See Figure 8 for an example. Also, in case data objects have
stereotypes attached to them, the objects are highlighted in blue.

Setting panel allows the user to choose different stereotype-specific options and set
values to various parameters. One of the main parameters is the group of the computations.
Some tasks form natural groups and are not meaningful on their own. For example, MPC
stereotype has a meaning, if there are at least two members (tasks) in the stereotype group
and they are all executed by different stakeholders. To create a new group in stereotype
settings, the user should insert the group name into Add new group text input and click
the Add button under it. After adding a new group, the name of it appears into Group

25

ID menu. In case there are already some existing groups, the user can choose the group
from Group ID dropdown menu by clicking on the group name that is visible under the
label Group ID. Changing the group of the task also changes the highlighting of the
group members of the task accordingly – members of the selected group are highlighted
together with the selected task. See Figure 9 for an example of stereotype settings panel
of MPC stereotype that has already one group, entitled "g1", added and selected.

Figure 9. Stereotype settings of the task with MPC stereotype that belongs to a group g1.
This is the settings panel that opens after clicking the task highlighted in Figure 8.

Another important parameter is a role for input and output data objects of a task. For
example, for PKEncrypt stereotype it is necessary to specify which input acts as the key

26

and which as the plaintext. See Figure 10 for an example.

Figure 10. Stereotype settings of the PKEncrypt stereotype where the key and input data
roles must be selected for both input objects.

One more common parameter is an input script. Some task stereotypes have it as
a task specific script (for example PKComputation), some have it as a script shared
and accessed between a group of tasks in a stereotype group (for example MPC). In
both cases, input script can be inserted into Input script text input of stereotype settings
panel (see Figure 9). Currently there are no restrictions for input script implemented in
PE-BPMN editor yet.

There are also few parameters that are specific for only one stereotype. These param-
eters have mostly values of plaintext or numbers.

Note that not all stereotypes can be added to all elements, for example for tasks there
has to be suitable number of inputs and outputs. For some stereotypes, it can be that there
are special roles that the inputs or outputs have. For example, an encryption operation
has two distinct inputs – the key and the plain text – that can be identified on the model.
If an element conflicts one or more of stereotype restrictions, an error message is shown
in stereotype settings panel and the stereotype cannot be attached to the element. Error
message lists the number of expected inputs and outputs and also information about the
requirements concerning parameters (see Figure 11 for an example).

Also, note that the user interface only allows to add a stereotype to an element that
meets the requirements at the time of adding the stereotype. Later changes to the element

27

or the model in general can make these requirements unmet. In case an element has a
stereotype attached to it, but requirements of the stereotype are not anymore met, the
validation report (see Section 4.2.2) is created (as a result of the validation process). The
report is a list of errors and warnings that cover discrepancies between a model and these
requirements.

Figure 11. PKEncrypt stereotype cannot be attached to a task because the number of the
inputs does not meet the requirements of the stereotype. An error message is shown in
the settings panel of the stereotype.

3.3 Discussion
Previous sections have explained the choices made to implement a tool, entitled PE-
BPMN editor, for using PE-BPMN language in practice. The implementation part of
the PE-BPMN consists of two layers. Firstly, the technical solutions to implement the
concept of the PE-BPMN, and secondly, the user interface. The main question behind
these two layers has been how to represent the privacy enhancing technologies on BPMN
models. As BPMN models are stored as XML files, extending XML files with extra
labels was the approach that was chosen. The tool provides the user an interface to visu-
ally extend BPMN models with privacy enhancing technology representations (called
stereotypes), as a result, PE-BPMN models are created. Under this user interface is a
process of manipulating XML files.

28

Described approach was chosen, because PLEAK uses a tool (Bpmn-js) that allows
easily to manipulate BPMN models through changing models’ XML files, without the
need to develop algorithms for the PE-BPMN editor to do it itself. With this approach,
more focus can be put on expressing different privacy enhancing technologies, rather
than finding ways how to store information related to these technologies. Described
solutions are useful for the user of the tool because more technologies are more easily
supported and also, creating PE-BPMN models in described way does not break syntax
rules of BPMN, so these files can be also used in other BPMN tools, without needing to
remove stereotypes from the model.

29

4 Validation process of PE-BPMN models
PE-BPMN stereotypes define various rules that need to be obeyed when adding stereo-
types to the model in order for the model to have a reasonable semantics. Some rules
are stereotype specific, e.g. the number of inputs and outputs a stereotyped task needs.
This number is defined under each stereotype and it can be easily verified when adding
the stereotype to the model. Additionally, there are some stereotype parameters that can
be assigned through stereotype settings that must be consistent with the model. The
interface does not let the user to insert incorrect values, but it is still necessary to verify
these requirements in case the model has been tampered with by assigning these param-
eters through editing the model’s file directly. There are also requirements that apply
to several stereotypes at once and therefore require the general context of the process
model to verify important properties. The validation process of PE-BPMN editor covers
all of these and many other restriction and requirements checks related to stereotypes.
The general idea of this section is to describe the implementation of PE-BPMN editor’s
validation process and the meaning of the validation of PE-BPMN models.

4.1 Implementation
4.1.1 Layers of validation

Validation process covers restriction and correctness checks of all tasks, data objects
and message flows that have stereotypes attached to them. In general, validation process
assumes that in terms of BPMN a model is syntactically correct, but it might have a struc-
ture that does not meet the requirements of specific technologies described on a model.
These requirements and restrictions of privacy enhancing technology stereotypes are
described in general in Section 4.1.2. Technology-specific requirements and restrictions
are described under paragraphs of each each related stereotype (see Appendix II).

Before the real validation could start, preliminary information gathering is required.
It is done in parallel with loading a model into the PE-BPMN editor. The process of
information gathering, required to run validation process (correctness checks), covers:

• gathering information about all tasks, data objects and message flows and creating
JavaScript objects to represent these elements – gathered information includes
details about the element in terms of a BPMN model (element ID, name, etc.) and
details about stereotypes attached to it in terms of PE-BPMN (stereotype name,
parameters, etc.);

• gathering information about lanes and pools – this is necessary for correctness
checks concerning parallelism (see Section 4.1.2.8).

30

It is necessary that this information gathering has finished before showing any results
of the validation, otherwise, due to the limitations of the PE-BPMN editor, it might
happen that user gets inconsistent validation results. As models could be large, contain-
ing hundreds of elements, this information gathering may take some more time than
user would expect and to prevent further frustration because of long delay before seeing
validation results, it is hidden into the loading process. It means visually that user cannot
press Validate button before preliminary information gathering and model loading have
finished. After these processes have finished, Validation button is turned active and user
can start the main validation process.

The main validation process of a PE-BPMN model is divided into three sub-processes:
validation of tasks, data objects and message flows. These sub-processes cover all
task, data object and message flow stereotypes with correctness checks – first, all task
stereotypes, after that, all data object stereotypes, and at last, all message flow stereotypes
are checked. The validation process is not finished until all three parts have finished. To
avoid running continuous checks whether all sub-processes have finished, they are run
sequentially. When tasks with stereotypes are covered or there are no task stereotypes on
the model, validation of data objects begins. Validation process of tasks, data objects
and message flows follows the same logic. When the complete validation process has
finished, the validation report (Section 4.2.2) is created.

4.1.2 Types of correctness checks in validation process

In general, most stereotype-specific restrictions and requirements cover two cases. Firstly,
the case when the user is going to attach a stereotype to an element and it needs to be
checked whether the element meets all the requirements. Secondly, the case when an
element has already a stereotype attached to it, but the model has been changed or the
model’s file has been manipulated. In more detail, these two types of restrictions and
requirements can be divided into eight main types of correctness checks.

4.1.2.1 Type I: Number of inputs and outputs

Semantics:

Intuitively, each technology has its specific requirement for the number of its inputs
and outputs. For example, encryption process requires a key and data to be encrypted as
inputs and provides encrypted data as an output. In this case, it is practical to expect that
there are only two inputs – key and data to be processed (see Figure 12). If there were less
inputs, the editor would need a different approach to find the key or data to be processed
and if there were more input objects, there would be just more information to extract the
necessary part from. Same logic follows output objects. Almost all stereotypes require a

31

Figure 12. PKEncrypt encryption with a missing input data.

specific number of inputs and outputs.

Technical solutions:

Between each task and data object connected to it, there is a specific connecting ele-
ment (Data Association) that exists only in case both sides of the connection exist. These
associations have a direction – from the perspective of task, incoming and/or outgoing.
To get the number of input and output elements (data objects) these connections are
counted and separated by their direction. These connections can be also bidirectional,
which means that a data object can be for a task as an input and an output at the same
time. That kind of elements are considered in both numbers of inputs and outputs.

Possible error messages and reasons behind them:

• error and reason: task must have exactly / at least / at most x inputs and exactly /
at least / at most y outputs.

Restrictions related to numbers of inputs and outputs and parameters are covered in
Table 3 and under paragraphs of each related stereotype (see Appendix II).

4.1.2.2 Type II: Existence and roles of inputs and outputs

32

Figure 13. PKEncrypt encryption, where the user is trying to use the Public key object
as a key and input data (to be encrypted) at the same time.

Semantics:

In the description of the semantics of stereotype restriction Type I (Section 4.1.2.1)
it is stated that encryption requires two input objects – a key and data to be processed.
Logically, in order to use the information about these objects, these objects must exist
and there needs to be a way to locate and distinguish them from other elements. In
context of encryption, one of the inputs objects is supposed to contain information about
the data to be processed, so the object must definitely exist (see error 2 in Figure 12). As
the key and data to be processed are supposed to be different, they must be two different
objects (see Figure 13, where user is stopped from using the Public Key object in two
roles at the same time).

To be more precise about difference between objects, in terms of BPMN, different
objects means that they have different names. There are cases when multiple elements
on the model have the same name. Regarding the semantics of the model, these elements
are understood to be the same. For example, the same encryption key (multiple objects
with the same name) could be used multiple times in same processes. Key and data to be
processed in the other hand can possibly have the same name but must have different
IDs. In the context of currently described restrictions, difference between objects is
considered in two possible meanings:

1. the requirement of having two elements that could have the same name, but must

33

have different IDs to be considered different;

2. the requirement of having two elements that have different IDs, but must have also
different names to be considered different.

These restrictions extend to all stereotypes that need some specific information at-
tached to them – for example, encryption and computation stereotypes, also stereotypes
that form groups.

Technical solutions:

Firstly, in case the stereotype requires saving specific information (for example, ID
of an input data object selected as a key for an encryption stereotype) into its JavaScript
object / JSON string, there is a check to make sure that this stereotype object has all re-
quired properties. The check examines if all properties are defined and their values are set
– in some cases, properties can have values as empty strings, but they cannot be undefined.

Secondly, in case there is information saved into stereotype object about model
elements (their IDs or names), there is a check to make sure that elements with these IDs
or names that are marked as inputs and outputs of a task in this object are also present
on the model and have Data Association connections with the task. Bpmn-js provides a
method to access all information related to an element by its ID. This method of Bpmn-js
returns a value based on the input ID – if something is returned, the element with this ID
exists. The check finds all input elements (that have Data Association connection with
the task) and checks whether the supposed input element by its ID (the ID saved into
stereotype object) is included in this returned list of input elements.

Also, in case the stereotype requires that input and output objects have specific fixed
roles, there is a check to make sure that each object has its own role and the same role is
not selected for multiple objects – whether the IDs or names of elements related to roles
are different.

Possible error messages and reasons behind them:

• error: x is undefined / undefined (it can be empty, but cannot be undefined);
reason: x property must exist under stereotype details object and must not have
been deleted from model’s file;

• error: x object is missing;
reason: x object fixed (by its ID) in x property must exist also on model;

34

• error: x and y must be different objects;
reason: x and y objects must be different data objects – they must have different
IDs / names;

• error: x must be the same (with the same name) for all inputs;
reason: all x input objects of input data objects that origin from y or z tasks must
be with the same name.

Restrictions related to the existence and roles of inputs and outputs and parameters
are covered in Table 3 and under paragraphs of each related stereotype (see Appendix II).

4.1.2.3 Type III: Types of inputs and outputs

Figure 14. PKDecrypt decryption with wrong type of key (missing PKPrivate stereo-
type).

Semantics:

There are technologies that require their input to be of specific type. Naturally, it
is logical to assume that almost every technology has certain expectations for the type
of their inputs. Common examples would be decryption and computation technologies.
For example, concerning decryption, the input data to be decrypted should be first en-
crypted, otherwise the process would have no meaningful output. In addition, to decrypt
something, correct key is required. In terms of particular decryption technology, the

35

key should meet specific requirements – it should be of appropriate type. PKDecrypt
requires that the input information to be decrypted has been encrypted using PKEncrypt
technology (see Figure 14). The key should be of PKPrivate type and from the same pair
with the key (of type PKPublic) that the information to be decrypted was encrypted with.
These restrictions extend (in various sets) to all decryption and computation stereotypes.

Technical solutions:

Firstly, in case the stereotype requires that an input must have a certain type of
stereotype attached to it, there is a check that uses a method (provided by Bpmn-js) to
access all information related to an element by its ID. It checks whether the JavaScript
object returned by this method has property named after the required stereotype. For
example, PKDecrypt requires that the input key is of PKPrivate type – it means that
they key object must have a PKPrivate stereotype attached to it.

Secondly, in case the stereotype requires that an input must be encrypted or encrypted
with a certain encryption method, there is a check that checks if there exists a correct key
(of specific type) for that input – it means that it searches through the incoming path to
find out if there exists a task that uses acceptable technology (has specific stereotype) and
has an input element with the same name that the input that is required to be encrypted.
For example, PKDecrypt considers tasks in the incoming path to be acceptable if they
have PKEncrypt or PKComputation stereotype attached.

Thirdly, in case the stereotype requires that at least one input must be selected as
encrypted / private / SGXPrivate, there is a check that checks if user has selected in
stereotype settings at least one input element to be encrypted / private / SGXPrivate.

Also, in case the stereotype requires that all inputs marked as encrypted / private /
SGXPrivate are really encrypted / private / SGXPrivate, there is a check that checks if
there exists a correct key for each of these inputs or if the input element is an output of
a task that uses accepted technology (has specific stereotype). The task with accepted
stereotype must have an output (with the same name as the input required to be encrypted)
and it must be marked as encrypted under the stereotype settings of the task that this
element is output of. More technically, it means that the check searches through the
incoming path to find out if there exists a task that uses acceptable technology and has
an input element with the same name as the input that is required to be encrypted or if
there exists a task that uses acceptable technology and has the output with the same name
as the input required to be encrypted marked in stereotype’s JSON string as encrypted.
In context of restrictions, incoming path is considered as a list of all elements that are
sequentially connected to each other with directed Data Associations or other similar

36

connections and from the perspective of an element the direction of all these connections
is incoming. Same logic applies to outgoing path, but with opposite direction of connec-
tions.

Possible error messages and reasons behind them:

• error and reason: x data object must have y stereotype;

• error: x is encrypted with wrong encryption method or is not encrypted;
reason: there must exist a correct key corresponding to the x – input data object
selected as x must be an input object x from z task or one of the input objects from
w task selected as encrypted / private / SGXPrivate – it must have the same name
as input object x from z task or as one of the input objects of w task selected as
encrypted / private / SGXPrivate;

• error: at least 1 input must be selected as encrypted;
reason: at least one input data object must have type selected as encrypted / private
/ SGXPrivate;

• error: all inputs marked as encrypted are not encrypted;
reason: all input data objects that have type selected as encrypted / private must
be encrypted data objects from x or y tasks – there must exist a key (with the same
name) for all inputs that are selected as encrypted / private.

Restrictions related to types of inputs and outputs are covered in Table 4 and under
paragraphs of each related stereotype (see Appendix II).

4.1.2.4 Type IV: Requirements of parameters

Semantics:

Intuitively, to use a technology, it might require that its parameters must have a value
or / and this value must be in a fixed range to adjust the behaviour of the technology
and to have a meaning. For example, if a technology requires an input parameter to
be an integer that matches the number of inputs, then it is logical that the value of this
parameter should be not negative. For more detailed example, SSSharing stereotype
has restrictions that include requirements for parameters – threshold (t) and number
of computation parties (c) – 1 < t ≤ n and t ≤ c ≤ n, (n is the number of outputs).
See Figure 15 for an example (the correct value for the threshold would be two). Re-
quirements for parameters are stereotype–specific and not generalizable for too many
stereotypes.

37

Figure 15. SSSharing with wrong threshold parameter value.

Technical solutions:

There is a check to make sure that a parameter value matches with the real model –
it means that if the parameter value represents a number of inputs and / or outputs then
the check verifies that the number of input and / or output object elements on the model
matches this parameter value.

In general, these checks examine if user has inserted a (numeric) value to a parameter
input and / or if the (numeric) value that user has inserted is in the required range or fits a
certain criteria.

Possible error messages and reasons behind them:

• error: number of input and output pairs does not match with the number of x
saved (some inputs or outputs might have been removed after adding stereotype);
reason: number of inputs or outputs defined (by ID) in the parameter must match
with the number of inputs and outputs that are actually present on a model;

• error and reason: x must be an integer greater than / equal to y and less than /
equal to z (y ≤ x ≤ z);

• error and reason: x values cannot be empty.

38

Restrictions related to parameters are covered under paragraphs of each related
stereotype (see Appendix II).

4.1.2.5 Type V: Group members

Figure 16. SGXAttestationEnclave task missing the other required group member with
SGXAttestationChallenge stereotype.

Semantics:

There are privacy-enhancing technologies that require to run computations in parallel
or in multiple parts. These (parallel) computation parts are represented by a group of
tasks. For example, MPC tasks are grouped together. Another example would be an Intel
SGX technology, that has different grouping semantics where group tasks are all carried
out in a single enclave. In particular, tasks with SGXAttestationChallenge stereotype
must come in pairs with a task with SGXAttestationEnclave stereotype (see example
in Figure 16), while this SGXAttestationEnclave stereotype task can also be in a group
with multiple SGXComputation and SGXProtect tasks. These requirements for the
stereotypes of group members extend to all tasks that form groups.

Technical solutions:

Firstly, in case the stereotype requires that there is a certain number of members in
the same stereotype group, there is check that looks through JavaScript objects of all task
/ data object elements on the model (these JavaScript objects are created when model is

39

loaded into the editor) and takes into account all tasks / data objects that have property
with the name of the stereotype. All these tasks / data objects are divided into groups
based on the value of group ID property of element’s JavaScript object and counted. The
number of members in the same group of the stereotype is compared to the requirements.

Additionally, in case the stereotype requires that there are members with certain
stereotypes represented, there is a check that looks through JavaScript objects of all task
elements on the model and takes into account all tasks that have property with the name
of the required group stereotype. All these tasks are divided into groups based on the
value of group ID property of task’s JavaScripts object and if there exists a task with
matching group ID. For example, in case of SGXAttestationChallenge stereotype task,
there is a check to look for a task with SGXAttestationEnclave stereotype – these two
stereotypes must be always used in pairs.

Possible error messages and reasons behind them:

• error: group must have at least / exactly x members;
reason: there must be at least / exactly x tasks in the same stereotype group;

• error: element with x stereotype is missing from the group;
reason: there must be at least / exactly one x and one y task in a stereotype group.

Restrictions related to numbers and types of group members are covered in Table 5
and under paragraphs of each related stereotype (see Appendix II).

4.1.2.6 Type VI: Number of input and output objects per group

Semantics:
In terms of multi-party computation technology stereotypes that form groups, it is rel-
evant to expect that numbers of inputs and outputs are fixed. Firstly, it is obvious that
to compute something, there must be an input for at least one task from the stereotype
group. Consequently, if there is an input that is the basis of computations, it should
produce a result that is an output of the stereotype group. Also, if there are for example
three computation parties, it should be possible to fix how many shares of these parties
can get as inputs and in which form (in how many parts) is the result produced. In current
implementation, groups of MPC stereotype tasks are expected to have at least one input
and one output object per group (see Figure 17). In general, these restrictions are typical
for multi-party computation stereotypes (that form groups).

Technical solutions:

40

Figure 17. MPC with missing group output.

Stereotypes that require that there is a certain number of inputs and outputs per
stereotype group are covered by checks that use the same approach as checks described
in Section 4.1.2.5 to gather information about other members of the same stereotype
group. To get the number of inputs and outputs of stereotype group members, logic
described in Section 4.1.2.1 is used. Numbers of inputs and outputs for each group
member are summed and compared to the requirements.

Possible error messages and reasons behind them:

• error and reason: group must have at least / exactly x input and at least / exactly
y output objects;

• error and reason: each group task must have the same number of inputs and
outputs.

Restrictions related to numbers of inputs and outputs per group are covered in Table 5
and under paragraphs of each related stereotype (see Appendix II).

4.1.2.7 Type VII: Relations between inputs and outputs of group members

41

Figure 18. SSComputation with function shares from different SSSharing tasks.

Semantics:

Considering stereotypes that form groups, for example computation stereotypes, in
addition to the requirements for numbers of inputs and outputs, it is also important that
the input data is produced or composed by acceptable technology. Supposing there is
a specific technology used to produce shares from a secret. As shares produced by a
specific technology have explicit characteristics, it is clear that a random reconstruction
technology cannot be used to restore the share. For example, in case SSSharing is used
to split the secret into shares, FunSSReconstruction or AddSSReconstruction tech-
nologies cannot be used, but SSReconstruction is required to restore the secret. Also,
to run computations on these shares, applicable computation technology is required (in
this example, SSComputation). In addition to the requirement of acceptable technology,
it is also essential that all these input shares are produced by the same stereotype task or
group of tasks, as it is logical that shares produced by one task or group of tasks should be
reconnectable. On the contrary, for mixed shares that are produced by multiple tasks or
task groups, it should not be possible to reconstruct any secrets from them (see Figure 18,
where SSComputation shares corresponding to one input originate from two different
SSSharing tasks). These restrictions are typical for reconstruction and computations
stereotypes that are used in groups.

42

Technical solutions:

Firstly, in case the stereotype requires that all input objects are of the same origin –
outputs of the same task or tasks group – there is a check, that looks through JavaScript
objects of tasks from incoming path. Only tasks with JavaScript objects that have a
property with applicable stereotype names are considered. In case an acceptable task is
found, the list of its output elements is compared to the list of inputs of the task that has
a stereotype with currently considered restriction. In case an acceptable task is found,
but the stereotype attached to it forms groups, instead of task’s outputs, all outputs of
the stereotype group are considered. To find output elements of a stereotype group, an
approach described in Section 4.1.2.6 is used. For both cases, all inputs must be included
in the list of these outputs.

Secondly, in case the stereotype requires that all input objects corresponding to the
same input are of the same origin – outputs of the same task or tasks group – there
is a check, that uses a similar approach that is used in previously described check. In
previous case, all group input elements were considered as a group of elements, but in
this case, there is an extra layer to it – all input elements of group members are combined
into sub-groups. For example, if there are six inputs per group, these inputs could be
separated into two or three sub-groups, instead of using one group. Previously described
check is used on each of these sub-groups, not on all inputs together.

Finally, cases where stereotype requires that all shares or inputs corresponding to the
same input must be different or same, follow the same logic as requirements concerning
the difference and similarity of objects described in Section 4.1.2.2.

Possible error messages and reasons behind them:

• error: both / all input function shares must originate from the same task with x
stereotype or from the same group of tasks with y stereotypes;
reason: all input data objects must be outputs of x task or y task group and they
must be all from the same stereotype group;

• error: all shares corresponding to the same input must originate from the same
task with x stereotype or from the same group of tasks with y stereotypes;
reason: all input data objects corresponding to the same input must be outputs of
x tasks or y task groups and they must be all from the same stereotype group;

• error: all shares corresponding to the same input must be different;
reason: all names of input data objects corresponding to the same input must be
different;

43

• error: x objects must be same for both group members;
reason: both stereotype group tasks must have the same x data object – x data
object must be with the same name for both tasks.

Restrictions concerning relations between inputs and outputs of group members are
covered in Table 4 and under paragraphs of each related stereotype (see Appendix II).

4.1.2.8 Type VIII: Parallelism of group members

Figure 19. MPC with group members in separate pools, but directly connected.

Semantics:

There are computation technologies, for example secure multi-party computation, that
require that their computation is run in parallel. In practice, some of these technologies
are designed to be run on CPUs with many cores or on GPUs to reduce the calculation
time. In terms of multi-party computation, running computations in parallel means that
computation tasks that multiple parties have, must be executed jointly (in parallel). On a
model, this is expressed by dividing one computation into multiple computation tasks
(sub-tasks of a joint task) onto separate parallel lanes or pools. These sub-tasks represent
members of the stereotype group. There is also a requirement that members of the group
have no connection between each other. By connection, it is meant that one task from
the stereotype group is not in the incoming or outgoing path of another task from the
same stereotype group. For example, MPC stereotype requires that all group members

44

are located onto separate lanes or pools and that there is no connection between them
(see Figure 19).

Figure 20. MPC with group members possibly not reachable to each other.

Also, if there are Exclusive Gateway elements used on the model, a process flow
is split into multiple paths and exactly one path in the flow must be taken. When one
of the stereotype group members is located in one of these paths, it might happen that
based on the context of the model, the path is never chosen and the group member is not
reachable for other members of the same stereotype group. In PE-BPMN editor, there is
no implementation to set conditions for these gateways yet. It is currently not possible to
tell which path from the gateway is actually chosen so all outgoing paths are covered. In
these situations, the PE-BPMN editor does not give an error, but instead warns the user
that there is a possibility that one of the members of the stereotype group could be not
accessible to other members of the same stereotype group (see an example in Figure 20).

Additionally, if there are multiple computations used on a model and multiple stereo-
type groups are positioned on same lanes or pools, ordering of these groups’ representa-
tives on each lane or pool is also important, otherwise some stereotype group tasks might
be possibly not accessible to the rest of the group. These restrictions are typical for most
of the computation stereotypes that form groups.

In contrast, some technologies require that there is no parallelism between group
members and all group members are on the same lane, for example SGXComputation.

45

It is also possible, that group members must be located onto separate lanes, but there must
be a connection between them, so the order of their location can be determined – element
with GCGarble stereotype in a group must be before the element with GCEvaluate
stereotype.

Technical solutions:

Firstly, in case the stereotype requires that all members (tasks) of the same stereotype
group are on the same or separate lane, there is a check, that finds an ID of each task’s
lane and compares them. As described in Section 4.1.2.2, Bpmn-js provides a method to
get information about model elements by their IDs. This information includes also the
information about element’s parent elements (task is on a lane, so the lane is a parent
element of the task), in this case, it allows to find lane or pool ID for each task just by
running the method for each group member.

Secondly, in case the stereotype requires that one of the stereotype group members
must be before another group member (in terms of sequence flow) or there is no connec-
tion between group members at all (they are parallel), there are checks that check for
each group member (task) of the stereotype group if it is in incoming or outgoing path of
another group member. In case one group task is in the incoming path of another group
task, but not in the outgoing path of it, the one task is located before the other task. In
case one group task is not in the incoming or outgoing path of another group task and
that for all group members, all group members are parallel.

Also, in case members of the stereotype group are considered to be parallel based on
previous checks, there are checks to ensure that these group tasks are also accessible to
each other.

In case the stereotype requires that all group members (tasks) are parallel and Exclu-
sive Gateway elements are used on the model, there is a check that checks if all tasks
of the stereotype group are accessible to the rest of the group. The check finds a Start
Event element from the incoming path of a task and finds all possible outgoing paths
starting from that start event. All these paths are compared to each other. If there is
the same Exclusive Gateway element (by ID) in both compared paths, the path is split
from the exclusive gateway. The task must be in both of these paths starting from the
exclusive gateway. This check is run on all group members and if it does not fail, it can
be assumed that no matter which paths from exclusive gateways are chosen, all group
tasks are accessible to all other group members. In case the check fails, a warning is
returned.

46

In order to run the previously described check, there is a check to see if there is a
Start Event element in the incoming path of the stereotype task. This check returns also
a warning.

In addition, there is a check to make sure that if there are multiple stereotypes used
that require their computations to be run in parallel, all tasks from these different stereo-
type groups are in the same order on each lane. The check gathers group IDs of these
stereotype groups and creates lists of these IDs for each lane or pool, later, all lists are
compared. As there could be possibly situations where orders of group IDs in these lists
differ, but stereotype group could still run in parallel, the check does not return an error,
but warning instead.

Possible error messages and reasons behind them:

• error: both / all group tasks must be on the same / separate lane;
reason: both / all group tasks from the same stereotype group must be on the same
/ different lanes;

• error: element with x stereotype in this group must be before element with y
stereotype;
reason: task from the stereotype group must be in the incoming path, but not in
the outgoing path of y task from the same stereotype group;

• error: both / all group tasks must be parallel;
reason: any task from the stereotype group must not be in the incoming or outgoing
path of another task from the same stereotype group;

• warning: Start Event element is missing;
reason: there must be at least one Start Event element (in the incoming path of
the task with related stereotype) on the model;

• warning: group task is possibly not accessible to the rest of the group;
reason: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks that have the same exclusive gateway
in their paths) must exist in all paths that start from these common exclusive
gateways;

• warning: all group tasks are possibly not parallel;
reason: all tasks from different stereotype groups must be in the same order on
each lane – ordered lists of stereotype groups must match for each lane.

Restrictions related to parallelism of group members are covered in Table 5 and under
paragraphs of each related stereotype (see Appendix II).

47

There are also some restrictions that are specific to only one stereotype. All stereotype-
specific restrictions are covered under paragraphs of each related stereotype (see Ap-
pendix II).

4.2 User interface
4.2.1 Validating models

In addition to one of the PE-BPMN editor’s main functionalities of adding stereotypes to
model elements, there is an important operation of validating syntactical correctness of
these models with stereotypes. In order to start the validation of a model, the Validate
button (see Figure 21) on top of the PE-BPMN editor’s page should be pressed.

Figure 21. Validate button is located next to the Save button in PE-BPMN editor. Save
button is inactive, because there are no new unsaved changes on the model.

Pressing the Validate button starts the validation process described in Section 4.1.1
and if the process has finished, the validation report (Section 4.2.2) is created.

In general, validation can be run at any time as wished – whether there are any new
changes on the model or not.

4.2.2 Validation report

Validation report consists of the list of errors and warnings, accordingly coloured red and
yellow. In case there are any errors or warnings, list (entitled Errors in model) appears.
Clicking on one of the errors in the list highlights concerned model elements – tasks are
coloured red and data objects orange. See Figures 12, 13, 14, 15, 16, 17, 18, 19 and 20 for
examples. All possible error and warning messages are covered under paragraphs of each
stereotype. If there are no errors, message Passed validation! appears (see Figure 22).
To run analysis on PE-BPMN model, no stereotype errors is a requirement. Warnings
(see Figure 20) do not stop running analysis, but could mean that analysis results are not
fully correct or are influenced by the reason behind these warnings.

4.2.3 Analysis on a validated model

Currently, there are two analysis implemented in PE-BPMN editor – simple disclosure
analysis and data dependencies analysis. These analysis can be run on validated models

48

Figure 22. There are no errors found on the model so the Validation passed! message is
shown and analysis can be run.

that have no errors (warnings are allowed). Buttons to run the analysis appear under the
Passed validation! message (see Figure 22).

As the development of these analysis is not part of this thesis, they are described
only briefly. The analysis have been described in the [PTMT18] paper as follows in this
section.

Figure 23. The result of the simple disclosure analysis on the model in Figure 3.

Simple disclosure analysis gives an overview of which data objects are seen by
which participants in the process. It describes for each data object if contents of the data
object are available to the data holder (marked as visible (V)) or they are protected with
some PET (marked as hidden (H)). In addition, it lists which data objects are sent over
the network and whether they are sent over a public channel (marked as a message flow
(MF)) or a secure network channel (marked as S). See Figure 23 for an example of the
result of the analysis.

49

Figure 24. The result of the data dependencies analysis on the model in Figure 3.

Data dependencies analysis summarizes the data dependency graph in a matrix
form (see Figure 24). Letter D in the cell means that the data object in the column
depends on the data object in the row directly. Letter I means that data objects in the
cell and row are connected indirectly. For example, in the Figure 24 Data 1 is directly
connected to the Encrypted data 1, but to the Encrypted Result, Data 1 is connected
indirectly. Also, Data 1 is not connected to the Secret Key – this is marked with symbol −.

The combination of these matrices gives us an overview of whether any data objects
are at risk of being leaked.

4.3 Discussion
Previous section described the concept and solutions of the ways how this work achieves
the goal of providing support to the user of the PE-BPMN editor tool. The concept is
described through the semantics of different components and layers of validation process.
Solutions are explained by describing the logic behind the user interface and by providing
guidance how to use it. In general, the validation process is necessary to explain to the
user the requirements of different privacy enhancing technologies, also, it helps to detect
syntactical errors in the model.

Validation process covers two main cases of restrictions and requirements checks.
Firstly, each technology has its own requirements to use it, so the tool lets the user know
if any of the requirements are not met while adding the representation of the technology
(stereotype) on the model. Secondly, if privacy enhancing technologies are already

50

used on the model, but the model has been changed and all the requirements of these
technologies are not anymore met, the tool lets the user know what needs to be changed
to make the model correct again.

In addition to being a supportive measure for the user, validation process is also
required to achieve the essential goal of running analysis on PE-BPMN models. To run
analysis and detect privacy leakages in a PE-BPMN model, the model needs to be correct
from the perspective of the used technologies. The correct usage of all implemented
technologies (stereotypes) can be verified with correctness checks, so the prerequisites
for further analysis are covered.

There are two analysis implemented in the PE-BPMN editor. Current analysis can
already provide some information about the movement of private information between
different participants, so it gives the users of the tool already some insight how to improve
the processes that they have modelled. Analysis could help to improve already existing
processes or help to plan more secure new processes. These analysis have been also
briefly described in the previous section.

51

5 Conclusions and future work
The main goal of this thesis was to implement a prototype that includes a modelling
tool for PE-BPMN and also validators to check the syntactical correctness of PE-BPMN
models. As a result of this thesis, the author of this work has implemented the PE-BPMN
editor tool that supports thirty-six different stereotypes. All these stereotypes are covered
with validators to find and to help the user to fix syntactical mistakes in PE-BPMN
models. Additionally, the wiki to describe PLEAK tools, including PE-BPMN has been
set up. Finally, one of the goals was and is to run different analysis on PE-BPMN models.
Currently, two analysis have been implemented, which means, at least in terms of these
analysis and currently implemented stereotypes, that the goal of providing support to find
and correct syntactical errors in PE-BPMN models, has been achieved. The PE-BPMN
editor has been connected to PLEAK and is live and running in https://pleak.io.
Concerning the usage and users of the PE-BPMN editor, there are already analysts who
use it to model real-life processes in order to reduce the risk of privacy leakages in
these processes. Registration to PLEAK is currently available for invited users only,
but as the project is open-sourced, the code of PE-BPMN is available for download at
https://github.com/pleak-tools/pleak-pe-bpmn-editor.

The development of PE-BPM editor is an on-going process, which means that more
stereotypes will be added in order to support PE-BPMN notation more precisely. Also,
better support of BPMN syntax is a future goal. Details concerning known limitations
and future work are described in the next section.

5.1 Future work
In the current implementation of PE-BPMN editor, there are four main known limitations.

Firstly, in PE-BPMN, it is expected that the whole process is described in one dia-
gram. The stereotypes only consider a process that starts from public data objects and are
then protected or computed upon as necessary. Hence, the editor is currently unable to
consider fragments of processes that already start from some protected data. It is future
work to consider intermediate models where the inputs may already be protected. This
requires introducing data stereotypes that correspond to the current protection type task
stereotypes.

Secondly, syntactic verification supports only limited combinations of stereotypes.
Mainly, it is expected that each protection stereotype takes unprotected data as an input,
which means that it is not possible to correctly treat cases where, for example, a ciphertext
is given as an input to secret sharing and then later restored and decrypted. Currently
the secret sharing reconstruction would be verified, but verification of decryption would

52

https://pleak.io
https://github.com/pleak-tools/pleak-pe-bpmn-editor

fail. Additionally, there are also not considered cases where only part of the data object
is encrypted, for example an encrypted column in an otherwise unprotected database.

Thirdly, there is a limitation in support for BPMN syntax. One of the unsupported
BPMN elements is a Subprocess, that is necessary to consider more practical models
than the ones currently supported. In general, adding each new BPMN element requires
an individual approach, in terms of subprocesses, a link to connect data objects inside
and outside of the process is required.

Fourthly, the PE-BPMN editor has some challenges in checking parallelism of
grouped stereotypes. There are two problematic situations. Firstly, in some cases there
is an extra condition (exclusive gateway) in the process flow to determine whether a
task from the stereotype group is going to be executed or not. There is currently no
implementation for checking these semantic conditions, so it is not possible to be sure
whether the task is accessible and can be run in parallel at all. Secondly, in some cases
multiple parallel tasks are combined sequentially, but their running order may differ.
For instance, in some cases the previous task has to be finished while in other cases
the following task can already start while the first one is still running. As there are no
real running processes under these stereotypes yet, it is currently not possible to be sure
whether required computations have been completed and these tasks can run in parallel
when necessary. The first situation could be addressed by implementing setting and
checking conditions of gateway elements so it would be know for correctness checks of
which paths would be chosen based on gateway conditions. The second issue could be
solved by translating a model into a Petri net and then using the tools of Petri net analysis
in order to identify problems, such as race conditions.

53

References
[AGJS13] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innova-

tive Technology for CPU Based Attestation and Sealing. In Proceedings
of the 2nd international workshop on hardware and architectural support
for security and privacy, volume 13. ACM New York, NY, USA, 2013.

[Bla79] George Robert Blakley. Safeguarding Cryptographic Keys. In Proceed-
ings of the 1979 AFIPS National Computer Conference, pages 313-317.
AFIPS Press, 1979.

[DDFMH+15] G. Danezis, J. Domingo-Ferrer, J.-H. Hoepman M. Hansen, D. L.
Metayer, R. Tirtea, and S. Schiffner. Privacy and Data Protection by
Design-from Policy to Engineering. Technical report, European Union
Agency for Network and Information Security, 2015.

[EPG08] EPG. Privacy by Design - An Overview of Privacy En-
hancing Technologies, prepared by Enterprise Privacy Group
on behalf of the UK Information Commissionerś Office.
URL: http://www.dsp.utoronto.ca/projects/
surveillance/docs/pbd_pets_paper.pdf, November
2008.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game. In Proceedings of the nineteenth annual ACM symposium
on Theory of computing, pages 218–229. ACM, 1987.

[JSR+16] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank
Mckeen. Intel R© Software Guard Extensions: EPID Provisioning and
Attestation Services. White Paper, 1:1–10, 2016.

[Men97] Alfred J Menezes. Handbook of Applied Cryptography / Alfred J.
Menezes, Paul C. van Oorschot, Scott A. Vanstone, 1997. chapter
8.

[OMG10] OMG. BPMN 2.0 by Example: non-normative OMG document with
BPMN 2.0 examples. URL: https://www.omg.org/cgi-bin/
doc?dtc/10-06-02.pdf, June 2010.

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0. URL:
https://www.omg.org/spec/BPMN/2.0/, January 2011.

[PET07] European Union. Press release: Privacy Enhancing Technologies
(PETs). URL: http://europa.eu/rapid/press-release_
MEMO-07-159_en.htm, May 2007.

54

http://www.dsp.utoronto.ca/projects/surveillance/docs/pbd_pets_paper.pdf
http://www.dsp.utoronto.ca/projects/surveillance/docs/pbd_pets_paper.pdf
https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf
https://www.omg.org/cgi-bin/doc?dtc/10-06-02.pdf
https://www.omg.org/spec/BPMN/2.0/
http://europa.eu/rapid/press-release_MEMO-07-159_en.htm
http://europa.eu/rapid/press-release_MEMO-07-159_en.htm

[PMB17] Pille Pullonen, Raimundas Matulevičius, and Dan Bogdanov. PE-BPMN:
Privacy-Enhanced Business Process Model and Notation. In In Proceed-
ings of the 15th International Conference on Business Process Manage-
ment (BPM), pages 40–56. Springer, 2017.

[PTMT18] Pille Pullonen, Jake Tom, Raimundas Matulevičius, and Aivo Toots.
Privacy-Enhanced BPMN: A Multi-Level Approach to Information Dis-
closure Analysis, 2018. submitted for publication.

[RLP16] Marcello La Rosa, Peter Loos, and Oscar Pastor. Business Process
Management. Springer, 2016.

[Sha79] Adi Shamir. How to Share a Secret. Communications of the ACM,
22(11):612-613, November 1979.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations
of Computer Science, 1982. SFCS’08. 23rd Annual Symposium, pages
160–164. IEEE, 1982.

55

Appendix

I. Tables of stereotype restrictions and requirements

Table 3. Restrictions and parameters of the implemented Task stereotypes.

Stereotype Inputs Outputs Other parameters
ProtectConfidentiality 1: data 1: protected data
SGXProtect 1: data 1: enclave data group with SGX-

Computation
PKEncrypt 2: public key, data 1: ciphertext
SKEncrypt 2: secret key, data 1: ciphertext
SSSharing 1: data 2− . . .: shares number of shares,

threshold; (t ≤ c
≤ n); (1 < t ≤ n)

AddSSSharing 1: data 2 − . . .: additive
shares

FunSSSharing 1: function 2: function shares
OpenConfidentiality 1: protected data 1: data
PKDecrypt 2: private key, ci-

phertext
1: data

SKDecrypt 2: secret key, ci-
phertext

1: data

SSReconstruction 2− . . .: shares 1: secret data
AddSSReconstruction 2 − . . .: additive

shares
1: secret data

FunSSReconstruction 2: function shares 1: secret function
PETComputation 1− . . .: protected

data, data
1: protected data
or data

script

SGXComputation 1 − . . . : enclave
data, data

1 − . . . : enclave
data or data

script, group with
SGXCompu-
tation, group
with SGXPro-
tect, group with
SGXAttestatio-
nEnclave

PKComputation 1 − . . . : cipher-
texts, data

1 : ciphertext script

56

SKComputation 1 − . . . : cipher-
texts, data

1 : ciphertexts script

MPC 0− . . . : data 0− 1: data script, group
SSComputation 1 − . . . : shares,

data
1: share script, group

FunSSComputation 2: function share,
evaluation point

1: additive share group

AddSSComputation 1 − . . . : additive
shares, data

1: additive share script, group

GCGarble 0: 2: garbled circuit,
input encodings

script, grouped
with GCEvalu-
ate

GCEvaluate 2: garbled circuit,
input encodings

1: computation
output

grouped with GC-
Garble

OTSend 1: input data 0: grouped with
OTReceive

OTReceive 1: query 1: input grouped with OT-
Send

DimensionalityReduction 2: projection ma-
trix, data

1: feature vector

DifferentialPrivacy 1− . . . : data 1 : data script or (ε, δ) for
each input-output
pair; ε values can-
not be empty

SGXAttestationEnclave 0-...: enclave mea-
surement

0: group with
SGXAttesta-
tionChallenge,
group with SGX-
Computation

SGXAttestationChallenge 0-...: challenge 1: attestation out-
come

group with
SGXAttestatio-
nEnclave

SGXQuoting 2: challenge, mea-
surement

1: quote

SGXQuoteVerification 3: quote, certifi-
cate, revocation
list

1: verification out-
come

57

Table 4. Conditions for allowed opening and computation stereotypes

Stereotype Success conditions
OpenConfidentiality input comes from ProtectConfidentiality or PETCompu-

tation
PKDecrypt ciphertext input comes from PKEncrypt or PKComputa-

tion, uses the PKPrivate corresponding to the PKPublic
used by the input

SKDecrypt ciphertext input comes from PKEncrypt or PKComputa-
tion, uses the same secret key as the input

SSReconstruction all input shares correspond to the same secret shared value
(outputs of one SSSharing or one group of SSComputa-
tion), at least threshold shares available

AddSSReconstruction all input shares correspond to the same secret shared value
(outputs of one AddSSSharing or one group of AddSS-
Computation or FunSSComputation), all shares available

FunSSReconstruction all input shares correspond to the same secret shared value
(outputs of one FunSSSharing), both shares available

SGXComputation enclave data comes from SGXProtect or as enclave data
from SGXComputation in the same group

PKComputation ciphertext inputs come from PKEncrypt or PKComputa-
tion, all ciphertext inputs correspond to the same PKPublic
public key, the output corresponds to the same key

SKComputation ciphertext inputs come from SKEncrypt or SKComputa-
tion, all ciphertext inputs correspond to the same secret key,
the output corresponds to the same key

SSComputation share inputs come from SSSharing or SSComputation
tasks, all shared inputs have the same threshold, the output
has the same threshold as the shared inputs

FunSSComputation function share input from FunSSSharing, output is two
party additive secret shared value

AddSSComputation additive share inputs from AddSSSharing or AddSSCom-
putation tasks, all additive share inputs have the same num-
ber of shares, output is additive secret sharing for the same
number of shares as the inputs

58

Table 5. Restrictions for stereotype groups

Stereotype # tasks Restrictions
MPC 2− . . . Parallel tasks, at least one input per group, at

least one output per group
SSComputation 2− . . . Parallel tasks, at least one shared input, all tasks

have the same number of inputs and outputs, the
number of tasks is the number of shares in each
shared input values, the same data inputs for all
tasks, each task has one distinct share input for
each shared input

FunSSComputation 2 Parallel tasks, one shared input, the same evalu-
ation point input for both tasks

AddSSComputation 2− . . . Parallel tasks, at least one shared input, all tasks
have the same number of inputs and outputs, the
number of tasks is the number of shares in each
shared input values, the same data inputs for all
tasks, each task has one distinct share input for
each shared input

SGXComputation, SGX-
Protect, SGXAttestatio-
nEnclave

1− . . . All group tasks are on the same lane (same CPU
executes them)

SGXAttestationChallenge,
SGXAttestationEnclave

2 Parallel tasks, both exist

OTSend, OTReceive 2 Parallel tasks, both exist, may have a message
flow from OTSend to OTReceive

GCComputation 2 Parallel tasks, at least one input per group, at
least one output per group

GCGarble, GCEvaluate 2 Both exist, on separate lanes, GCGarble garbled
circuit output is the garbled circuit input to GCE-
valuate, GCGarble input encodings output is
used to derive encoded input for GCEvaluate

59

II. Restrictions and requirements of each stereotype
This section contains the documentation of stereotype restrictions and requirements at
the time of submitting the thesis, the most recent documentation can be found from the
wiki.

AddSSComputation
Required input objects
1...n data objects (additive shares) from AddSSSharing tasks / AddSSComputation or
FunSSComputation task groups

Required input parameters
group (with AddSSComputation tasks)

Optional input parameters
input script

Required output objects
1 data object (data)

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

3. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

4. Restriction: "inputs" property must exist under stereotype details object – "inputs"
information must not have been deleted from model’s file
Error: inputs are undefined

5. Restriction: all names of input data objects must be different
Error: all input function shares must be different

60

6. Restriction: all names of input data objects corresponding to the same input must
be different
Error: all shares corresponding to the same input must be different

Group specific restrictions
1. Restriction: all input data objects fixed (by their IDs) in "inputs" property (for all

group tasks) must exist also on model
Error: one or more shares (data objects) corresponding to the same input of the
group are missing

2. Restriction: all input data objects corresponding to the same input must be out-
puts of AddSSSharing task / AddSSComputation or FunSSComputation task
groups and they must be all from the same stereotype group
Error: all shares corresponding to the same input must originate from the same
task with AddSSSharing stereotype or from the same group of tasks with AddSS-
Computation or FunSSComputation stereotypes

3. Restriction: there must be at least two tasks in the same stereotype group
Error: group must have at least 2 members

4. Restriction: all group tasks from the same stereotype group must be on different
lanes
Error: each group task must be on separate lane

5. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: all group tasks must be parallel

6. Restriction: all tasks from the stereotype group must have the same number of
input and output data objects
Error: each group task must have the same number of inputs and outputs

7. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

8. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

9. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

61

AddSSReconstruction
Required input objects
2...n data objects (additive shares) from AddSSSharing task / AddSSComputation or
FunSSComputation task groups

Required output objects
1 data object (secret data)

Restrictions

1. Restriction: task must have at least two input and exactly one output data objects
Error: at least 2 inputs and exactly 1 output are required

2. Restriction: all input data objects must be outputs of AddSSSharing task /
AddSSComputation or FunSSComputation task groups and they must be all
from the same stereotype group
Error: all input function shares must originate from the same task with AddSSShar-
ing stereotype or from the same group of tasks with AddSSComputation or
FunSSComputation stereotypes

3. Restriction: all names of input data objects must be different
Error: all input function shares must be different

AddSSSharing
Required input objects
1 data object (data)

Required output objects
2...n data objects (additive shares)

Restrictions

1. Restriction: task must have exactly one input and at least two output data objects
Error: exactly 1 input and at least 2 outputs are required

2. Restriction: all names of output data objects must be different
Error: output objects must have different names

62

CommunicationProtection
Required input objects
1...n data object

Required output objects
1...n data objects

Restrictions

1. Restriction: message flow must have at least one input-output data objects pair
Error: at least 1 incoming-outgoing pair of data objects is required

2. Restriction: message flow must have the same number of input and output data
objects
Error: number of incoming-outgoing pair of data objects does not match

3. Restriction: the list of names of input data objects must match the list of names
of output data objects
Error: names of incoming and outgoing data objects must match

DifferentialPrivacy
Required input objects
1...n data objects (data)

Optional input parameters
computation script or (ε, δ) for each input-output pair

Required output objects
1 data object (data)

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

2. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined (it can be empty, but cannot be undefined)

63

3. Restriction: "delta" property must exist under stereotype details object – "delta"
can be empty, but must not have been deleted from model’s file
Error: delta is undefined (it can be empty, but cannot be undefined)

4. Restriction: "epsilons" property must exist under stereotype details object – "ep-
silons" can be zeros, but must not have been deleted from model’s file
Error: epsilons are undefined

5. Restriction: number of inputs or outputs defined (by ID) in the parameter must
match with the number of inputs and outputs that are actually present on a model
Error: number of input and output pairs does not match with the number of
epsilons saved (some inputs or outputs might have been removed after adding
stereotype)

6. Restriction: epsilon values must not be empty
Error: epsilon values cannot be empty

DimensionalityReduction
Required input objects
2 data objects (data, projection matrix)

Required output objects
1 data object (feature vector)

Restrictions

1. Restriction: task must have exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "data" property must exist under stereotype details object – "data"
must have been selected and saved and "data" information must not have been
deleted from model’s file
Error: data is undefined

3. Restriction: "projectionMatrix" property must exist under stereotype details object
– "projectionMatrix" must have been selected and saved and "projectionMatrix"
information must not have been deleted from model’s file
Error: projectionMatrix is undefined

4. Restriction: input data object fixed (by its ID) in "data" property must exist also
on model
Error: data object is missing

64

5. Restriction: input projectionMatrix object fixed (by its ID) in "projectionMatrix"
property must exist also on model
Error: projectionMatrix object is missing

6. Restriction: data and projectionMatrix objects must be different data objects –
they must have different IDs
Error: data and projectionMatrix must be different objects

FunSSComputation
Required input objects
2 data objects (evaluation point, function share), share from FunSSSharing task

Required input parameters
group (with FunSSComputation tasks)

Required output objects
1 data object (additive share)

Restrictions

1. Restriction: task must have exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

3. Restriction: "evaluationPoint" property must exist under stereotype details object
– "evaluationPoint" must have been selected and saved and "challenge" information
must not have been deleted from model’s file
Error: evaluationPoint is undefined

4. Restriction: "shareOfFunction" property must exist under stereotype details object
– "shareOfFunction" must have been selected and saved and "shareOfFunction"
information must not have been deleted from model’s file
Error: shareOfFunction is undefined

5. Restriction: input data object fixed (by its ID) in "evaluationPoint" property must
exist also on model
Error: evaluationPoint object is missing

65

6. Restriction: input data object fixed (by its ID) in "shareOfFunction" property
must exist also on model
Error: shareOfFunction object is missing

7. Restriction: evaluation point and function share objects must be different data
objects – they must have different IDs
Error: evaluation point and function share must be different objects

Group specific restrictions

1. Restriction: there must be exactly two tasks in the same stereotype group
Error: group must have exactly 2 members

2. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

3. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: group tasks must be parallel

4. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

5. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

6. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

7. Restriction: both input data objects must be outputs of the same FunSSSharing
task
Error: both group input function shares must originate from the same task with
FunSSSharing stereotype

8. Restriction: both input function shares of the stereotype group must be different –
they must have different names
Error: both group members must have different input function shares

66

9. Restriction: both stereotype group tasks must have the same input evaluation
point data object – evaluation point data object must be with the same name for
both tasks
Error: evaluation point must be the same (with same name) for both group
members

FunSSReconstruction
Required input objects
2 data objects (function shares) from FunSSSharing task

Required output objects
1 data object (secret function)

Restrictions

1. Restriction: task must have at exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: both input data objects (function shares) must be outputs of the same
FunSSSharing task
Error: both input function shares must originate from the same task with Fun-
SSSharing stereotype

3. Restriction: names of input data objects must be different
Error: input function shares must be different

FunSSSharing
Required input objects
1 data object (function)

Required output objects
2 data objects (function shares)

Restrictions

1. Restriction: task must have at exactly one input and two output data objects
Error: exactly 1 input and 2 outputs are required

2. Restriction: names of output data objects must be different
Error: output objects must be different

67

GCComputation
Required input parameters
group (with GCComputation tasks)

Optional input parameters
input script

Restrictions

1. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

2. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

Group specific restrictions

1. Restriction: stereotype group must have at least one input and one output data
object
Error: group must have at least 1 input and 1 output object

2. Restriction: there must be exactly two tasks in the same stereotype group
Error: group must have exactly 2 members

3. Restriction: all group tasks from the same stereotype group must be on different
lanes
Error: each group task must be on separate lane

4. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: all group tasks must be parallel

5. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

6. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

68

7. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

GCEvaluate
Required input objects
2 data objects (garbled circuit, input encodings), circuit from GCGarble task

Required input parameters
group (with GCGarble task)

Required output objects
1 data object (computation output)

Restrictions

1. Restriction: task must have exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

3. Restriction: "inputScript" property must exist under stereotype details object and
must not have been deleted from model’s file
Error: inputScript is undefined

4. Restriction: "garbledCircuit" property must exist under stereotype details object –
"garbledCircuit" must have been selected and saved and "garbledCircuit" informa-
tion must not have been deleted from model’s file
Error: garbledCircuit is undefined

5. Restriction: "inputEncoding" property must exist under stereotype details object –
"inputEncoding" must have been selected and saved and "inputEncoding" informa-
tion must not have been deleted from model’s file
Error: inputEncoding is undefined

6. Restriction: input data object fixed (by its ID) in "garbledCircuit" property must
exist also on model
Error: garbledCircuit object is missing

69

7. Restriction: input data object fixed (by its ID) in "inputEncoding" property must
exist also on model
Error: inputEncoding object is missing

8. Restriction: garbled circuit and input encoding objects must be different data
objects – they must have different IDs
Error: garbledCircuit and inputEncoding must be different objects

Group specific restrictions

1. Restriction: there must be exactly one GCEvaluate and one GCGarble task in a
stereotype group
Error: element with GCGarble stereotype is missing from the group

2. Restriction: both stereotype group tasks must have the same garbled circuit data
object – garbled circuit data object must be with the same name for both tasks
Error: garbledCircuit objects must be same for both group members

3. Restriction: input data object fixed (by its ID) in "garbledCircuit" property must
be an output element of a GCGarble task from the same stereotype group
Error: garbledCircuit object must originate from the element with GCEvaluate
stereotype of this group

4. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

5. Restriction: GCGarble task from the stereotype group must be in incoming path,
but not in outgoing path of GCEvaluate task from the same stereotype group
Error: element with GCGarble stereotype in this group must be before element
with GCEvaluate stereotype

GCGarble
Required input objects
2 data objects (garbled circuit, input encodings)

Required input parameters
group (with GCEvaluate task)

Optional input parameters
input script

70

Required output objects
0 data objects

Restrictions

1. Restriction: task must have exactly two input and zero output data objects
Error: exactly 2 outputs and no inputs are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

3. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

4. Restriction: "garbledCircuit" property must exist under stereotype details object –
"garbledCircuit" must have been selected and saved and "garbledCircuit" informa-
tion must not have been deleted from model’s file
Error: garbledCircuit is undefined

5. Restriction: "inputEncoding" property must exist under stereotype details object –
"inputEncoding" must have been selected and saved and "inputEncoding" informa-
tion must not have been deleted from model’s file
Error: inputEncoding is undefined

6. Restriction: input data object fixed (by its ID) in "garbledCircuit" property must
exist also on model
Error: garbledCircuit object is missing

7. Restriction: input data object fixed (by its ID) in "inputEncoding" property must
exist also on model
Error: inputEncoding object is missing

8. Restriction: garbled circuit and input encoding objects must be different data
objects – they must have different IDs
Error: garbledCircuit and inputEncoding must be different objects

Group specific restrictions

1. Restriction: there must be exactly one GCEvaluate and one GCGarble task in a
stereotype group
Error: element with GCEvaluate stereotype is missing from the group

71

2. Restriction: both stereotype group tasks must have the same garbled circuit data
object – garbled circuit data object must be with the same name for both tasks
Error: garbledCircuit objects must be same for both group members

3. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

4. Restriction: GCGarble task from the stereotype group must be in incoming path,
but not in outgoing path of GCEvaluate task from the same stereotype group
Error: element with GCGarble stereotype in this group must be before element
with GCEvaluate stereotype

MPC
Required input parameters
group (with MPC tasks)

Optional input parameters
input script

Restrictions

1. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

2. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

Group specific restrictions

1. Restriction: stereotype group must have at least one input and one output data
object
Error: group must have at least 1 input and 1 output object

2. Restriction: there must be at least two tasks in the same stereotype group
Error: group must have at least 2 members

72

3. Restriction: all group tasks from the same stereotype group must be on different
lanes
Error: each group task must be on separate lane

4. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: all group tasks must be parallel

5. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

6. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

7. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

OpenConfidentiality
Required input objects
1 data object (protected data) from ProtectConfidentiality or PETComputation task

Required output objects
1 data object (data)

Restrictions

1. Restriction: task must have exactly one input and one output data objects
Error: exactly 1 input and 1 output are required

2. Restriction: input and output objects must be different data objects – they must
have different IDs
Error: input and output objects must be different data objects

3. Restriction: input data object must be output of ProtectConfidentiality or PET-
Computation task and if it is an output of PETComputation task then the output
data object must be selected as "Private" under PETComputation stereotype
settings of the output object’s task
Error: input object is not private

73

OTReceive
Required input objects
1 data object (query)

Required input parameters
group (with OTSend task)

Required output objects
1 data object (input)

Restrictions

1. Restriction: task must have exactly one input and one output data objects
Error: exactly 1 input and 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

Group specific restrictions

1. Restriction: there must be exactly one OTReceive and one OTSend task in a
stereotype group
Error: element with OTSend stereotype is missing from the group

2. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

3. Restriction: tasks of stereotype group must be parallel or OTReceive task of
the stereotype group must be directly connected (through message flow) to the
OTSend task of the same group
Error: element with OTReceive stereotype in this group must be directly con-
nected (through message flow) to the element with OTSend stereotype and there
must be no other connections between them

4. Restriction: OTSend task from the stereotype group must be in incoming path,
but not in outgoing path of OTReceive task from the same stereotype group
Error: element with OTSend stereotype in this group must be before element
with OTReceive stereotype

74

5. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

6. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

7. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

OTSend
Required input objects
1 data object (input data)

Required input parameters
group (with OTReceive task)

Required output objects
0 data objects

Restrictions

1. Restriction: task must have exactly one input and zero output data objects
Error: exactly 1 input and no outputs are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

Group specific restrictions

1. Restriction: there must be exactly one OTReceive and one OTSend task in a
stereotype group
Error: element with OTReceive stereotype is missing from the group

2. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

75

3. Restriction: tasks of stereotype group must be parallel or OTReceive task of
the stereotype group must be directly connected (through message flow) to the
OTSend task of the same group
Error: element with OTReceive stereotype in this group must be directly con-
nected (through message flow) to the element with OTSend stereotype and there
must be no other connections between them

4. Restriction: OTSend task from the stereotype group must be in incoming path,
but not in outgoing path of OTReceive task from the same stereotype group
Error: element with OTSend stereotype in this group must be before element
with OTReceive stereotype

5. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

6. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

7. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

PETComputation
Required input objects
1...n data objects (protected data and/or data) from ProtectConfidentiality or PETCom-
putation task

Optional input parameters
input script

Required output objects
1 data object (protected data or data)

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

76

2. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s .bpmn
file
Error: inputScript is undefined (inputScript is undefined

3. Restriction: "inputTypes" property must exist under stereotype details object –
input types must have been selected and saved and "inputTypes" information must
not have been deleted from model’s .bpmn file
Error: input types are undefined

4. Restriction: "outputTypes" property must exist under stereotype details object
– output type must have been selected and saved and "outputTypes" information
must not have been deleted from model’s .bpmn file
Error: output type is undefined

5. Restriction: each input data object must be output of ProtectConfidentiality
or PETComputation task and if it is output of another PETComputation task
then the output data object must be selected as "Private" under PETComputation
stereotype settings of the output object’s task
Error: all inputs marked as private are not private

PKComputation
Required input objects
1...n data objects (ciphertexts, data) from PKEncrypt or PKComputationtask

Optional input parameters
input script

Required output objects
1 data object (ciphertext)

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

2. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

77

3. Restriction: "inputTypes" property must exist under stereotype details object –
input types must have been selected and saved and "inputTypes" information must
not have been deleted from model’s file
Error: input types are undefined

4. Restriction: at least one input data object must have type selected as "Ecrypted"
Error: at least 1 input must be selected as encrypted

5. Restriction: all key input objects of input data objects that origin from PKEncrypt
or PKComputation tasks must be with the same name
Error: key must be the same (with the same name) for all inputs

6. Restriction: all input data objects that have type selected as "Encrypted" must be
encrypted data objects from PKEncrypt or PKComputation tasks – there must
exist a key (with the same name) for all inputs that are selected as "Encrypted"
Error: all inputs marked as encrypted are not encrypted

PKDecrypt
Required input objects
2 data objects (private key, ciphertext) from PKEncrypt or PKComputationtask

Required output objects
1 data object (data)

Restrictions

1. Restriction: task must have at exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "ciphertext" property must exist under stereotype details object –
"ciphertext" must have been selected and saved and "ciphertext" information must
not have been deleted from model’s file
Error: ciphertext is undefined

3. Restriction: "key" property must exist under stereotype details object – "key"
must have been selected and saved and "key" information must not have been
deleted from model’s file
Error: key is undefined

4. Restriction: input data object fixed (by its ID) in "ciphertext" property must exist
also on model
Error: ciphertext object is missing

78

5. Restriction: input data object fixed (by its ID) in "key" property must exist also
on model
Error: key object is missing

6. Restriction: ciphertext and key objects must be different data objects – they must
have different IDs
Error: ciphertext and key must be different objects

7. Restriction: key data object must have PKPrivate stereotype
Error: key object must have PKPrivate stereotype

8. Restriction: there must exist a correct key corresponding to the ciphertext – input
data object selected as key must be an input object "key" from PKEncrypt task or
one of the input objects from PKComputation task selected as "Encrypted" – it
must have the same name as input object "key" from PKEncrypt task or as one of
the input objects of PKComputation task selected as "Encrypted"
Error: ciphertext is encrypted with wrong encryption method or is not encrypted

9. Restriction: input data object selected as key must be from the same PKPublic-
PKPrivate pair (group) as all other input "encryption key" objects from PKEn-
crypt tasks
Error: all keys must be from the same PKPublic-PKPrivate key pair

PKEncrypt
Required input objects
2 data objects (public key, data)

Required output objects
1 data object (ciphertext)

Restrictions

1. Restriction: task must have at exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "inputData" property must exist under stereotype details object –
"inputData" must have been selected and saved and "inputData" information must
not have been deleted from model’s file
Error: inputData is undefined

3. Restriction: "key" property must exist under stereotype details object – "key"
must have been selected and saved and "key" information must not have been

79

deleted from model’s file
Error: key is undefined

4. Restriction: input data object fixed (by its ID) in "inputData" property must exist
also on model
Error: input data object is missing

5. Restriction: input data object fixed (by its ID) in "key" property must exist also
on model
Error: key object is missing

6. Restriction: input data and key objects must be different data objects – they must
have different IDs
Error: input data and key must be different objects

7. Restriction: key data object must have PKPublic stereotype
Error: key object must have PKPublic stereotype

PKPrivate
Required input parameters
pair (with PKPublic and PKPrivate tasks)

Restrictions

1. Restriction: "groupId" property must exist under stereotype details object – pair
ID ("groupId") must have been selected and saved and "groupId" information must
not have been deleted from model’s file
Error: groupId is undefined

Group specific restrictions

1. Restriction: there must be at least one PKPublic and one PKPrivate data object
in a pair
Error: PKPublic key is missing from the pair

2. Restriction: all PKPrivate data objects in the same pair (with same groupId) must
have the same name
Error: all PKPrivate keys of the pair must have the same name

PKPublic
Required input parameters
pair (with PKPublic and PKPrivate tasks)

80

Restrictions

1. Restriction: "groupId" property must exist under stereotype details object – pair
ID ("groupId") must have been selected and saved and "groupId" information must
not have been deleted from model’s file
Error: groupId is undefined

Group specific restrictions

1. Restriction: there must be at least one PKPublic and one PKPrivate data object
in a pair
Error: PKPrivate key is missing from the pair

2. Restriction: all PKPublic data objects in the same pair (with same groupId) must
have the same name
Error: all PKPublic keys of the pair must have the same name

ProtectConfidentiality
Required input objects
1 data object (data)

Required output objects
1 data object (protected data)

Restrictions

1. Restriction: task must have exactly one input and one output data objects
Error: exactly 1 input and 1 output are required

2. Restriction: input and output objects must be different data objects – they must
have different IDs
Error: input and output objects must be different data objects

SecureChannel
Required input objects
1...n data object

Required output objects
1...n data objects

81

Restrictions

1. Restriction: there must be at least one input-output data objects pair going through
the message flow
Error: at least 1 incoming-outgoing pair of data objects is required

2. Restriction: numbers of incoming and outgoing data objects of the message flow
must match
Error: number of incoming-outgoing pair of data objects does not match

3. Restriction: the list of names of incoming data objects must match with the list of
names of outgoing data objects
Error: names of incoming and outgoing data objects must match

SGXAttestationChallenge
Required input objects
0...n data objects (challenge)

Required input parameters
group (with SGXAttestationEnclave task)

Required output objects
1 data object (attestation outcome)

Restrictions

1. Restriction: task must have exactly one output data objects
Error: exactly 1 output is required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

Group specific restrictions

1. Restriction: there must be exactly one SGXAttestationChallenge and one SGX-
AttestationEnclave task in a stereotype group
Error: element with SGXAttestationEnclave stereotype is missing from the
group

82

2. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

3. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: both group tasks must be parallel

4. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

5. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

6. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

SGXAttestationEnclave
Required input objects
0...n data objects (enclave measurement)

Required input parameters
group (with SGXAttestationChallenge or SGXComputation tasks)

Required output objects
0 data objects

Restrictions

1. Restriction: task must have no output data objects
Error: no outputs are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

83

.0.0.1 Group specific restrictions

1. Restriction: there must be exactly one SGXAttestationChallenge and one SGX-
AttestationEnclave task in a stereotype group
Error: element with SGXAttestationChallenge stereotype is missing from the
group

2. Restriction: both group tasks from the same stereotype group must be on different
lanes
Error: both group tasks must be on separate lane

3. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: both group tasks must be parallel

4. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

5. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

6. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

SGXComputation
Required input objects
1...n data objects (enclave data, data) from SGXComputation or SGXProtect tasks

Required input parameters
group (with SGXComputation, SGXProtect or SGXAttestationEnclave tasks)

Optional input parameters
input script (direct input or input as an output of another stereotype task)

Required output objects
1 data object (enclave data or data)

84

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

3. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

4. Restriction: in case input script is selected as an output of another stereotype task,
this task must have selected stereotype attached to it on model and in model’s file
Error: inputScript stereotype is missing

5. Restriction: "inputTypes" property must exist under stereotype details object –
input types must have been selected for each input and saved and "inputTypes"
information must not have been deleted from model’s file
Error: input types are undefined

6. Restriction: "outputTypes" property must exist under stereotype details object
– output type must have been selected and saved and "outputTypes" information
must not have been deleted from model’s file
Error: output type is undefined

7. Restriction: at least one input data object must have type selected as "SGXPrivate"
Error: at least 1 input must be selected as encrypted

8. Restriction: all input data objects that have type selected as "SGXPrivate" must
be data objects from SGXProtect tasks or data objects selected as SGXPrivate
from SGXComputation tasks
Error: all inputs marked as SGXPrivate are not SGXPrivate

Group specific restrictions

1. Restriction: all group tasks from the same stereotype group must be on the same
lane
Error: all group tasks must be on the same lane

85

SGXProtect
Required input objects
1 data object (data)

Required input parameters
group (with SGXProtect, SGXComputation or SGXAttestationEnclavetasks)

Required output objects
1 data object (protected data)

Restrictions

1. Restriction: task must have exactly one input and one output data objects
Error: exactly 1 input and 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

SGXQuoteVerification
Required input objects
3 data objects (quote, certificate, revocation list)

Required output objects
1 data object (verification outcome)

Restrictions

1. Restriction: task must have exactly three input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "quote" property must exist under stereotype details object – "quote"
must have been selected and saved and "quote" information must not have been
deleted from model’s file
Error: quote is undefined

3. Restriction: "certificate" property must exist under stereotype details object –
"certificate" must have been selected and saved and "certificate" information must
not have been deleted from model’s file
Error: certificate is undefined

86

4. Restriction: input data object fixed (by its ID) in "quote" property must exist also
on model
Error: quote object is missing

5. Restriction: input certificate object fixed (by its ID) in "certificate" property must
exist also on model
Error: certificate object is missing

6. Restriction: "revocationList" property must exist under stereotype details object –
"revocationList" must have been selected and saved and "revocationList" informa-
tion must not have been deleted from model’s file
Error: revocationList is undefined

7. Restriction: input certificate object fixed (by its ID) in "revocationList" property
must exist also on model
Error: revocationList object is missing

8. Restriction: quote, certificate and revocation list objects must be different data
objects – they must have different IDs
Error: quote, certificate and revocation list must be different objects

SGXQuoting
Required input objects
2 data objects (challenge, measurement)

Required output objects
1 data object (quote)

Restrictions

1. Restriction: task must have exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "challenge" property must exist under stereotype details object –
"challenge" must have been selected and saved and "challenge" information must
not have been deleted from model’s file
Error: challenge is undefined

3. Restriction: "measurement" property must exist under stereotype details object –
"measurement" must have been selected and saved and "measurement" information
must not have been deleted from model’s file
Error: measurement is undefined

87

4. Restriction: input data object fixed (by its ID) in "challenge" property must exist
also on model
Error: challenge object is missing

5. Restriction: input measurement object fixed (by its ID) in "measurement" property
must exist also on model
Error: measurement object is missing

6. Restriction: challenge and measurement objects must be different data objects –
they must have different IDs
Error: challenge and measurement must be different objects

SKComputation
Required input objects
1...n data objects (ciphertexts, data) from SKEncrypt or SKComputationtask

Optional input parameters
input script

Required output objects
1 data object (ciphertext)

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

2. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

3. Restriction: "inputTypes" property must exist under stereotype details object –
input types must have been selected and saved and "inputTypes" information must
not have been deleted from model’s file
Error: input types are undefined

4. Restriction: at least one input data object must have type selected as "Encrypted"
Error: at least 1 input must be selected as encrypted

5. Restriction: all key input objects of input data objects that origin from SKEncrypt
or SKComputation tasks must be with the same name
Error: key must be the same (with the same name) for all inputs

88

6. Restriction: all input data objects that have type selected as "Encrypted" must be
encrypted data objects from SKEncrypt or SKComputation tasks – there must
exist a key (with the same name) for all inputs that are selected as "Encrypted"
Error: all inputs marked as encrypted are not encrypted

SKDecrypt
Required input objects
2 data objects (secret key, ciphertext) from SKEncrypt or SKComputationtask

Required output objects
1 data object (data)

Restrictions

1. Restriction: task must have at exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "ciphertext" property must exist under stereotype details object –
"ciphertext" must have been selected and saved and "ciphertext" information must
not have been deleted from model’s file
Error: ciphertext is undefined

3. Restriction: "key" property must exist under stereotype details object – "key"
must have been selected and saved and "key" information must not have been
deleted from model’s file
Error: key is undefined

4. Restriction: input data object fixed (by its ID) in "ciphertext" property must exist
also on model
Error: ciphertext object is missing

5. Restriction: input data object fixed (by its ID) in "key" property must exist also
on model
Error: key object is missing

6. Restriction: ciphertext and key objects must be different data objects – they must
have different IDs
Error: ciphertext and key must be different objects

7. Restriction: input data object selected as key must be an input object "key"
from SKEncrypt task or one of the input objects selected as "Encrypted" from
SKComputation task – it must have the same name as input object "key" from

89

SKEncrypt task or as one of the input objects selected as "Encrypted" from
SKComputation task
Error: ciphertext is encrypted with wrong encryption method or is not encrypted

8. Restriction: input data object selected as key must be with the same name as
all input "encryption key" objects from SKEncrypt and SKComputation tasks –
there must be only one unique key name concerning particular input ciphertext
Error: decryption key must be the same (with the same name) as the encryption
key

SKEncrypt
Required input objects
2 data objects (secret key, data)

Required output objects
1 data object (ciphertext)

Restrictions

1. Restriction: task must have at exactly two input and one output data objects
Error: exactly 2 inputs and 1 output are required

2. Restriction: "inputData" property must exist under stereotype details object –
"inputData" must have been selected and saved and "inputData" information must
not have been deleted from model’s file
Error: inputData is undefined

3. Restriction: "key" property must exist under stereotype details object – "key"
must have been selected and saved and "key" information must not have been
deleted from model’s file
Error: key is undefined

4. Restriction: input data object fixed (by its ID) in "inputData" property must exist
also on model
Error: input data object is missing

5. Restriction: input data object fixed (by its ID) in "key" property must exist also
on model
Error: key object is missing

6. Restriction: input data and key objects must be different data objects – they must
have different IDs
Error: input data and key must be different objects

90

SSComputation
Required input objects
1...n data objects (shares, data), shares from SSSharing tasks or SSComputation task
groups

Required input parameters
group (with SSComputation tasks)

Optional input parameters
input script

Required output objects
1 data object (share)

Restrictions

1. Restriction: task must have at least one input and exactly one output data objects
Error: at least 1 input and exactly 1 output are required

2. Restriction: "groupId" property must exist under stereotype details object – group
must have been selected and saved and "groupId" information must not have been
deleted from model’s file
Error: groupId is undefined

3. Restriction: "inputScript" property must exist under stereotype details object –
"inputScript" can be empty, but must not have been deleted from model’s file
Error: inputScript is undefined

4. Restriction: "inputs" property must exist under stereotype details object – "inputs"
information must not have been deleted from model’s file
Error: inputs are undefined

5. Restriction: all names of input data objects must be different
Error: all input function shares must be different

Group specific restrictions

1. Restriction: all input data objects fixed (by their IDs) in "inputs" property (for all
group tasks) must exist also on model
Error: one or more shares (data objects) corresponding to the same input of the
group are missing

91

2. Restriction: all input data objects corresponding to the same input must be outputs
of SSSharing tasks or AddSSComputation task groups and they must be all
from the same stereotype group
Error: all shares corresponding to the same input must originate from the same
task with SSSharing stereotype or from the same group of tasks with SSCompu-
tation stereotypes

3. Restriction: all names of input data objects corresponding to the same input must
be different
Error: all shares corresponding to the same input must be different

4. Restriction: there must be at least two tasks in the same stereotype group
Error: group must have at least 2 members

5. Restriction: the number of members in stereotype group must be greater than or
equal to the number on computation parties of each SSSharing tasks
Error: the number of members in SSComputation group is not correct (it should
be equal to or greater than the number of computation parties of each task with
SSSharing stereotype)

6. Restriction: all group tasks from the same stereotype group must be on different
lanes
Error: each group task must be on separate lane

7. Restriction: any task from the stereotype group must not be in the incoming or
outgoing path of another task from the same stereotype group
Error: all group tasks must be parallel

8. Restriction: all tasks from the stereotype group must have the same number of
input and output data objects
Error: each group task must have the same number of inputs and outputs

9. Restriction: all tasks from different stereotype groups must be in the same order
on each lane – ordered lists of stereotype groups must match for each lane
Warning: all group tasks are possibly not parallel

10. Restriction: all tasks from the same stereotype group that have common Exclusive
Gateway elements in their paths (all tasks have the same exclusive gateway in their
paths) must exist in all paths that start from these common exclusive gateways
Warning: group task is possibly not accessible to the rest of the group

11. Restriction: there must be at least one Start Event element on the model (to run
parallelism checks)
Warning: Start Event element is missing

92

SSReconstruction
Required input objects
2...n data objects (shares) from SSSharing task / SSComputation task group

Required output objects
1 data object (secret data)

Restrictions

1. Restriction: task must have at least two input and exactly one output data objects
Error: at least 2 inputs and exactly 1 output are required

2. Restriction: all input data objects must be outputs of SSSharing task / SSCom-
putation task group and they must be all from the same stereotype group
Error: all input function shares must originate from the same task with SSShar-
ing stereotype or from the same group of tasks with SSComputation stereotypes

3. Restriction: all names of input data objects must be different
Error: all input function shares must be different

4. Restriction: the number of input data objects must be greater than or equal to the
number of threshold
Error: the number of input function shares from the task with SSSharing stereo-
type or from the group of tasks with SSComputation stereotypes must be greater
than or equal to the number of threshold

SSSharing
Required input objects
1 data object (data)

Required input parameters
threshold, number of computation parties

Required output objects
2...n data objects (shares)

Restrictions

1. Restriction: task must have exactly one input and at least two output data objects
Error: exactly 1 input and at least 2 outputs are required

93

2. Restriction: "threshold" property must exist under stereotype details object –
"threshold" must have been inserted and saved and "threshold" information must
not have been deleted from model’s file
Error: threshold is undefined

3. Restriction: "computationParties" property must exist under stereotype details
object – "computationParties" must have been inserted and saved and "computa-
tionParties" information must not have been deleted from model’s file
Error: computationParties is undefined

4. Restriction: threshold must be an integer greater than one and less than or equal
to the number of output objects
Error: threshold must be an integer greater than 1 and equal to or less than the
number of outputs (1 < threshold <= number of outputs)

5. Restriction: computation parties must be an integer greater than or equal to
threshold and less than or equal to the number of output objects
Error: computation parties must be an integer greater than or equal to threshold
and less than or equal to the number of outputs (threshold <= computation parties
<= number of outputs)

94

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Aivo Toots,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Tool Support for Privacy-Enhanced Business Process Model and Notation
supervised by Pille Pullonen and Luciano García-Bañuelos

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2018

95

	Introduction
	Problem statement and objectives
	Structure of the document

	Background
	Business Process Model and Notation
	Privacy Enhancing Technologies
	Privacy-Enhanced Business Process Model And Notation
	Categories of PETs in PE-BPMN
	Examples of supported PETs
	Stereotype details
	Example of PE-BPMN model

	Privacy LEAKage Analysis Tools
	Discussion

	PE-BPMN editor
	Implementation
	Technologies used
	XML-representation of stereotypes

	User interface
	Stereotypes in menus
	Stereotype settings

	Discussion

	Validation process of PE-BPMN models
	Implementation
	Layers of validation
	Types of correctness checks in validation process

	User interface
	Validating models
	Validation report
	Analysis on a validated model

	Discussion

	Conclusions and future work
	Future work

	References
	Appendix
	I. Tables of stereotype restrictions and requirements
	II. Restrictions and requirements of each stereotype
	III. Licence

