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Issue Resolution Time Prediction Using Deep Learning Techniques 

Abstract: 

Issue resolution time prediction has a large importance in software projects since  planning 
of these projects are typically hard. Especially in the agile practices, such as sprint plan-
ning, to be able to predict correctly how long it would take to resolve an issue, holds the 
power to plan correctly.  

This thesis focuses on the state of the art approaches to this problem and study their per-
formances. On top of that we discuss how can one structure and implement a deep learn-
ing algorithm to solve issue resolution time prediction problem. Afterwards, we compare 
and discuss the results of the applied deep learning technique with the current state of the 
art. 

The data used for this study contains around 700,000 issues. This data is gathered collec-
tively from the previous studies in this field. By using the already existing data, we plan to 
validate the existing results and build on top of the current baseline. 

Keywords: 

Issue resolution, defect resolution time, issue time prediction, machine learning, deep 
learning, neural networks, resolution time, software issue, prediction, GitHub, data analy-
sis,  

CERCS: P170 Computer science, numerical analysis, systems, control  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Probleemi lahendamise ajakulu prognoosimine süvaõppe abil 

Lühikokkuvõte: 

Probleemi lahendamise ajakulu prognoosimine on tarkvaraprojektide korral suure täht-
susega, kuna selliste projektide planeerimine on raske. Probleemi lahendamisele kuluva 
aja täpne hindamine on eriti vajalik agiilses tarkvaraarenduses, nt sprindi planeerimises, 
sest see võimaldab planeerida täpselt. Käesolev magistritöö keskendub antud probleemi 
kaasaegsetele lähenemisviisidele ja nende efektiivsuse uurimisele. Töös arutletakse selle 
üle, kuidas on võimalik struktureerida ja rakendada süvaõppe algoritme probleemi lahen-
damisele kuluva aja prognoosimiseks. Süvaõppe meetodite abil saadud tulemusi võrrel-
dakse teiste kaasaegsete tulemustega. Andmed, mida antud lõputöös kasutatakse, sisal-
davad umbes 700 000 probleemi. Andmed on kogutud kollektiivselt samas valdkonnas 
varem läbiviidud uurimustest. Kasutades olemasolevaid andmeid, on töös plaanis 
valideerida olemasolevaid tulemusi ja neid täiendada.    

Võtmesõnad:  

Probleemi lahendamine, veaparanduse aeg, probleemi lahendamise ajakulu prog-
noosimine, masinõpe, süvaõpe, tehisnärvivõrgud, lahendusaeg, tarkvara probleem, prog-
noosimine, GitHub, andmeanalüüs  

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria) 
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1. Introduction 
Companies use planning to structure their course of action in order to achieve their goals 
in a long or short run. During planning, one must value the importance and/or value of an 
achievement and the effort it would take to actually accomplish it. Every business decision 
is made by comparing the effort and value of taking or not taking that specific action. With 
our very fast modern day, companies make business decision on a daily, even hourly basis. 
Due to its nature of dealing with future events, planning has a very close relation to predic-
tion. During planning, one always predicts the time it would take to achieve a goal, and the 
result of that accomplishment. If the predictions made during the planning phase was not 
structured well, then the result of the plan is highly unlikely to turn as predicted. 

Nowadays, the size of the software projects has grown so much that it is nearly impossible 
to build a software without a plan. Since it would also be really hard to plan building and 
maintaining the whole software directly, developers and product managers tend to break 
big chunks of features, or software descriptions into smaller tasks and subtasks. The rea-
soning behind this is to minimise the risk factor induced by the size of the ticket and being 
able to correctly estimate how long a ticket would take to implement. 

Especially after the introduction of the agile manifesto, planning in software engineering 
started to focus on smaller tasks rather than large chunks of issues. Sprint planning became 
a vital part of software development. And since these sprints are generally of fixed length, 
people needed to know how many issues that they could fit in a sprint. However, just look-
ing at issues and predicting how long it would take to solve them is a really hard task, 
since there could be many factors affecting the outcome, such as environmental factors or 
recently discovered bugs that have more importance. Being able to predict how long it 
would take to resolve an issue, based on some selected features would give both the de-
velopers, product managers and company owners huge advantages in planning their future 
decisions. They could measure the importance of an issue based on the predicted time it 
would take to resolve it, meaning even if the resolution of the issue would bring a big 
business value to the company, possible time spent on the issue might cancel the afore-
mentioned business value. 

A typical way how companies handle this problem is to use the concept of story points in 
their development cycle. Which is almost always non unanimous and biased based on each 
developers own experience. The only purpose of the story points is to give programmers 
and product managers a vague idea about how large the issue is, rather than actually pre-
dicting how long it would take to resolve the issue. 

Now that we are entering the age of data, it is only logical to make use of generated data 
and make predictions about our future. In this study, a neural network is going to be 
trained to predict the resolution time of any given issue, based on the dataset we gathered 
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from an existing study1. However, the results of this study would be applicable to other 
applications and datasets, given nature of the neural networks. 

1.1 Problem Statement 
The aim of this study is to apply a deep learning technique on a given set of issues and 
compare the results with already existing studies. 

Since the data used in this study differs from the ones used in previous studies, a need for 
replicating the already existing work has surfaced. This replication is crucial for us to 
make any comparison between two approaches. 

Therefore, the main questions that drives the purpose of this thesis are: 

1. How can one select and implement a deep learning algorithm to predict issue reso-
lution time? 

2. How does a deep neural network perform against other conventional classification 
algorithms (i.e. Decision Trees and Random Forest)? 

1.2 Study Outline 
The structure for the remaining of this thesis is given below: 

- Section 2 provides a general overview of the state of the art in terms of issue reso-
lution time prediction, while explicitly stating the search strategy. In addition, we 
quickly introduce the selected baseline study for our comparison purposes. 

- Section 3 describes our dataset, baseline selection and deep learning implementa-
tion details 

- Section 4 shows sand explain the results from the experiments on the datasets from 
Section 3. 

- Section 5 discusses the results and show a comparison between the two approach-
es. 

- Section 6 introduces a prediction tool which can be used in enterprise systems to 
predict an issues lifetime, upon its creation. 

- Section 7 concludes the thesis.  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2. Related Work 
Given the importance of software in our daily and business needs, the IRT prediction prob-
lem has been gaining a lot of attention from researchers. For the purpose of researching 
the existing studies, We accessed Google Scholar, IEEE and ACM digital libraries, since 
they are considered to be trustworthy resources.  

As a starting point, we used publications from Pfahl et al. from year 2015 and 2016, which 
were related to issues in version control systems. In addition to this, we conducted queries 
on these digital libraries using the keywords “issue resolution, issue resolution time pre-
diction, defect resolution, issue lifetime, issue resolution using deep learning”. 

Using the methods mentioned above, we were able to collect 6 papers as starting points. 
One of those papers focused on improving expert prediction of the IRT. These experts 
could be a developer or a software architect or a any other stakeholder with enough expe-
rience and knowledge, therefore we left it our of the scope of this study. One masters the-
sis from a student in University of Tartu did a study on IRT prediction on the issues col-
lected from an Estonian company, whose data was private. This resulted in us disregarding 
the paper, since it would be impossible to validate the results of the paper, without access 
to the data. After reading the abstract of the remaining four, we realised one of them was 
focused on issue dynamics, studying how often the issues are generated, average lifetime 
and so on, rather than the IRT problem. This left us with three papers. Reading these pa-
pers and traversing through their references resulted in two more studies on this topic. 

Adding specific algorithm names to our previous search query, such as “decision trees, 
neural networks, random forest and deep learning”  lead us to another paper that we 
haven’t encountered before, which studied prediction of issue resolution time using a deci-
sion tree model using issues from different projects. This paper is also added to the list of 
selected literature, since its closely related to this topic. 

Overall, the selected papers for the literature survey are the following: 

- Panjer L. D. (2007) 
- Bhattacharya, P., & Neamtiu, I. (2011) 
- Assar, S., Borg, M., & Pfahl, D. (2016) 
- Kikas, R., Dumas, M., & Pfahl, D. (2016) 
- Rees-Jones, M., Martin, M., & Menzies, T. (2017). 

One of the first approaches to the IRT problem is from Panjer L. D.2 which was released in 
2007. He studied the data from the Eclipses Bugzilla project. Using around 120,000 issues, 
he compares the results of different approaches, namely 0-R, 1-R, C.45 Decision Tree, 
Naive Bayes and lastly Logistic Regression. He uses 15 features in this study, such as 
severity, dependencies, version, assigned developer and so on. 
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Looking at his results, the algorithms perform around 30% accuracy on the average, calcu-
lated by using cross-validation. Logistic Regression performs the best with 0.349 accura-
cy, whereas 0-R performs the worst with 0.291 accuracy. He also states that the most in-
fluential features were the comment activity, severity of the bug and the project that the 
bug was assigned to. 

In 2011 a paper titled Bug-fix Time Prediction Models: Can We Do Better?3 from Pamela 
Bhattacharya and Iulian Neamtiu, the authors are also only focused on bug type of issues, 
disregarding the other types such as features, stories, epics and so on. They provide a sta-
tistical approach to test whether the bug report features, which were being used by the 
state of the art approaches of the time, were related to the bug-fix time or not. Therefore 
the scope of the aforementioned paper is a bit limited compared to ours. However, the re-
sults they provided in their paper affected the led the next researchers in a correct way. 
They collect data from four different projects, namely Firefox, Seamonkey, Eclipse and 
Thunderbird, resulting in over 500,000 bug reports. Then test with the existing approaches 
to find a correlation between the bug report fields and the dependent variable, bug-fix 
time. 

Their regression analysis show that the approaches which use features such as severity of 
the bug, number of attachments on the bug, number of developers working on the bug 
have zero to none correlation with the resulting bug-fix time. They also studied whether 
reputation of the bug opener, which is basically the number of issues this particular devel-
oper closed, divided by the number of issues they are assigned, has a very low correlation 
for the result, contrary to the findings of Guo et al.4 and Hooimeijer et al. 5. 

In their 2016 paper, Said Assar, Markus Borg, and Dietmar Pfahl explore a text-based clus-
tering algorithm to predict the issue resolution time. Their work is an extension of the 
2013 paper from Uzma Raja6, where they replicate their work on a different data and set-
ting. Then they continue to provide their algorithm and compare the results of the two. 

Kikas et al. use a different approach in their paper from 2016. They use both static and dy-
namic features in prediction of the issue lifetime. Static features are the ones which are 
available upon the issues creation, such as body of the issue, number of issues created by 
the author at that time, severity of the issue, project the issue is related to and so on. Dy-
namic features are added after the issue is created, namely number of comments, added 
text to the issue body and so on. 
The data used in this study is collected from GHTorrent7, a third party software that tracks 
and collect public data from the popular VCS website, GitHub. They collected around al-
most a million issues, which are created between years 2012 and 2014, from more than 

!8



4,000 projects. 30 % of the issues collected are labeled as sticky, meaning that they are not 
closed in the observation period they selected. For those issues, They consider the end of 
their lifetime as 1st of January, 2015, which is the end date for their issue collection ap-
proach. 

They then train multiple Random Forest8 classifiers to do the prediction. The way the pre-
diction made in their paper is the following, they choose 7 observation points (0, 1, 7, 14, 
30, 90, and 180 days), and 7 prediction horizons (1, 7, 14, 30, 90, 180 and 365 days). They 
follow it by training the models, which would predict whether an issue, on a given obser-
vation point, would be closed in the given prediction horizon. And since it is meaningless 
to create a model which would have a prediction horizon smaller than its observation 
point, they end up with 28 models. They display their results in terms of AUC and F1 
scores. Their best performing models are when they predict the closing time of a recently 
opened issue, meaning observation point 0. The results are especially better for cases with 
long lifetimes, such as 90, 180 and 365 days. The model that predicts whether a newborn 
issue will be closed more or less than 365 days has the best AUC and F1 scores, with 
0,707 and 0,898 respectively. Their overall results show a correlation with the number of 
issues from the given timeclass used to train model. Meaning the model performance is 
closely related to the number of positive issues fed to the model upon training. 

Menzies et al. used simple decision tree models in their 2017 paper9. Their paper takes 
Kikas et al.'s work as a baseline, and compare their results with Kikas et al.'s approach. 
They argue that simple models, with less amount of features would perform better in this 
topic. On that topic, they choose to use only static features from Kikas et al.'s paper, since 
they make their prediction on issue lifetime, rather than predicting based on an observa-
tion point and prediction horizon. Therefore, they prune the 21 features listed in the 2016 
paper to 8, as 7 input features and 1 output feature. Then they created N-binary models for 
5 buckets  (1, 7, 14, 30 and 90 days). Each of these models predicts whether given issue 
would be closed in N days or not. 

Menzies et al. choose to use CFS10 in order to select the best features from the selected 
eight before training the model. They state that using CFS yields in better predictors. After 
this step, they train their models using the C4.5 algorithm. Their results are evaluated with 
two different approaches: 

- Using cross-validation on locally-trained trees, where a 10-fold cross-validation is 
applied on each project on its own data. 

- Round robin approach on cross-project trees, where for each selected project, train-
ing with the remaining data from all other projects and predicting with the current 
project. 
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They state results for both approaches, and in general, cross-project training seems to out-
perform the local training by a margin of 10-15%. 

3. Methodology 

3.1. Structure 
This section explains the overall structure of this study.  

Firstly, we justify the reasoning behind why we chose our dataset. Then explain how we 
derived multiple datasets and how they were made suitable for the experiment we had in 
mind. Then we explain the distribution of the time class in these multiple datasets. 

Next section articulates the overall case experiment setup of this study. We go over the 
baseline algorithm, how and why we selected it and how the results from that study were 
derived. Following that section, we introduce our deep learning implementation to tackle 
the IRT problem. This part shows what are the options are there for the deep learning algo-
rithm, state in which fields which algorithm is best and overall justify the selection of our 
deep learning algorithm. 

After stating the experiment setup and implementation details, next section displays the 
results from all the experiments in this study. We discuss the results of each experiment in 
their own sections. 

Discussion of the results is made in the next section. There we articulate why the results 
turned out the way they are, what could be the implications and how does the structure of 
the data affect the results. 

Figure 1 shows a flow chart that represents the overall methodology of this study.  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3.2 Datasets 
The dataset for this study was chosen to be the same data from Kikas et al.'s study. They 
collected  around 900.000 issues from over 6000 repositories. We selected this dataset for 
this study because it was available, it contained a lot of issues for training a deep learning 
model and it contained the same features used in the study that we wanted to compare our 
results with. 

After gathering the data, we needed to transform it to make it applicable for Menzies et 
al.’s algorithm. Similar to the Menzies et al.'s approach, we also did not consider how long 
the given issue was open for, therefore we decided to disregard the dynamic features from 
our dataset. Since in their paper, Menzies et al. choose to ignore sticky issues, we had to 
filter them out from the dataset as well. Also, the issues in our dataset were not separated 
with regards to the projects they belonged to, but rather they were together in one place. 
After also separating them into different files for the projects they belonged, we were 
ready to train the algorithm with this data. 

A small problem we encountered before running any experiments and doing any compari-
son was that our dataset contained issues from more than 4,000 different repositories, 
whereas  Menzies et al.'s data contained issues  from only 10 repositories. And since train-
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ing more than 20,000 models and studying the results would not be feasible, we selected 
two sets of 10 projects from our dataset.  

We repeated our experiments for the cases where we selected 10 projects with most issues, 
called Top 10 repositories. Then we selected 10 random projects, named Random 10 
Repositories. All repositories under each group are listed below: 

 10 top repositories  
- appium 
- Font-Awesome 
- framework 
- hd 
- Ionic 
- ppsspp 
- RedisDesktopManager 
- SCII-External-Maphack 
- steam-for-linux 
- wet-boew  

10 randomly selected repositories 
- Cataclysm-DDA 
- custard  
- docs 
- fuzzy-octo-tribble 
- openDCIM 
- partake 
- PushSharp 
- pythondotorg 
- rbb 
- slycat 

On top of these data subsets, we also wanted to test how Menzies et al.'s approach per-
forms against a large dataset. At the end, we compared the results between four combined 
datasets:  

● combinedAll: Contains all the data in our dataset 
● combinedMenzies: Contains combined data from Menzies et al.'s paper 
● combinedRandom10: Contains combined data from randomly selected dataset 
● combinedTop10: Contains combined data from 10 repositories with the most is-

sues 

Among these datasets, as expected, combinedAll has the largest number of issues with 
657622 issues in total. Since the second largest dataset, that is combinedMenzies, has 
41174 issues, we chose not to include the former dataset in the comparison plot. com-
binedTop10 dataset has 26149 issues in total, whereas the smallest set, combinedRan-
dom10 has 2478 issues in total. Table 1 displays the information regarding the number of 
issues and their classes for each dataset. 
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Figure 2 shows the distribution of the timeOpen feature over the combined datasets. com-
binedMenzies has a very skewed distribution towards the class 90, as in issues that are 
closed after 90 days. The graph for combinedTop10 repositories seems a bit evenly dis-
tributed compared the combinedMenzies, however, classes 1 and 90 still dominate the oth-
ers. In case of the combinedRandom10, the distribution seems a bit flatter, compared to the 
others, however the total number of issues is quite low. combinedAll dataset seems to have 
the same structure as the other datasets which were derived from it, namely combined-
Top10 and combinedRandom10.  

Total number of issues

combinedAll combinedMenzies combinedTop10 combinedRandom10

< 1 275168 7279 12269 1088

1 - 7 113973 4894 4420 423

7 - 14 53263 1747 1829 181

14 - 30 58265 2212 2304 201

30 - 90 74002 5219 2816 229

> 90 82951 19823 2511 356

TOTAL 657622 41174 26149 2478

Table 1: Total number of issues and their distribution in each datasets.
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3.3 Baseline 
By the time of the preparation of this study, the two main and most successful approaches 
to IRT problem were from Kikas et al. and Menzies et al., namely random forests and de-
cision trees. Menzies et al. compared the results from their decision trees implementation 
to Kikas et al.'s random forest implementation. They claimed and showed that simple clas-
sifiers such as decision trees performed better than complex classifiers like random forests. 

However, since Menzies et al. used a different dataset in their studies, we first wanted to 
validate that decision trees in fact outperformed the random forest implementation. As 
mentioned before, Kikas et al.'s random forest implementation considers how long an is-
sue has been alive, and makes a prediction based on that. Therefore in their paper, Kikas  
et al. listed results for all possible combination. However, for the sake of being able to 
make a comparison between this study and Menzies et al.'s study, we chose to only con-
sider the case where the issues have been open for 0 days, meaning that they were just 
opened. After collecting Kikas et al.'s results, we executed Menzies et al.'s decision trees 
algorithm on Kikas et al.'s data to see whether decision trees did outperform the random 
forest algorithm.  

Table 2 shows the performances of the two algorithms. In four out of five cases Decision 
Tree (DT) algorithm performs better than the Random Forest (RF) algorithm. Therefore, 
we selected Menzies et al.'s decision tree algorithm as our baseline and ran our experi-
ments on this algorithm.  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Table 2: F1 scores of both algorithms ran on the combinedAll dataset

F1 Values for Decision Trees F1 Values for Random Forest

1 0,302 0,437

7 0,758 0,604

14 0,816 0,659

30 0,876 0,715

90 0,947 0,781



The paper articulates how they executed two different types of experiments, using the 
same algorithm. First, they used a 10-fold cross-validation on each projects data, training 
and predicting with issues from the same project. On top of this, they also trained models 
for each project, using data from the remaining projects for training, and tested the model 
with the issues from the current project, which they called a round robin experiment. 

After collecting the publicly available data and code, we needed to validate that we could 
reproduce the same results from the aforementioned paper. 

Since our plan was to compare the results of both the cross validation and round robin ex-
periments, we ran both of their experiments on the same data from the paper. Since the 
code and the data were the same with the paper, we expected to get very similar results 
from both of the experiments. For the cross validation experiment, we were able to repro-
duce the similar results without encountering any problems. The results from the original 
paper and our replication can be seen from Table 3. Since the context of the experiment is 
different than the one in the paper, we expected to see some minor differences. Looking at 
the results, we accepted that the results were similar, and the further results from this algo-
rithm would be reliable. 

For the case of the round robin experiment however, the results were not similar. We de-
bugged the given code to get rid of any trivial bugs, however we fail to find any. We con-
tacted the developers of the algorithm, but sadly we were not able to get a response.  

Since the results from the round robin experiment were not reliable, we decided to leave 
the round robin experiment from the scope of this study. Therefore, in our experiments, we 
only used the cross validation method to display and compare the performances of the al-
gorithms. 

Menzies et al.'s Results Our Replication Results
precision recall pf precision recall pf

camel

1 65 40 4 65 42 4

7 74 70 7 74 69 7

14 73 78 10 73 80 10

30 82 80 9 83 80 9

90 89 70 5 89 71 5

cloudstack

1 66 60 24 66 52 22

7 76 93 77 77 93 76

14 81 96 83 81 97 85

30 85 100 100 85 100 100

90 94 100 100 94 100 100
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cocoon

1 0 0 0 0 0 0

7 0 0 0 0 0 0

14 0 0 0 0 0 1

30 53 96 14 53 96 12

90 67 95 11 67 95 11

deeplearning

1 78 77 41 76 77 41

7 88 100 100 88 100 100

14 86 100 100 86 100 100

30 91 100 100 91 100 100

90 96 100 100 96 100 100

hadoop

1 0 0 0 0 0 0

7 0 0 0 0 0 0

14 0 0 0 0 0 0

30 0 0 0 0 0 0

90 32 2 0 34 4 1

hive

1 0 0 0 0 0 0

7 0 0 0 0 0 0

14 52 35 1 52 35 1

30 0 0 0 0 0 0

90 62 53 9 62 63 8

kafka

1 63 48 17 62 49 18

7 78 83 43 77 83 45

14 81 90 56 81 89 55

30 83 97 76 83 98 76

90 91 98 71 91 98 71

node

1 56 31 16 56 31 16

7 69 95 89 69 95 89

14 76 100 100 76 100 100

30 84 100 100 84 100 100

90 93 100 100 93 100 100

ofbiz

1 0 0 0 0 0 0

7 54 43 27 56 45 27

14 56 70 57 56 69 56

30 62 87 77 62 87 77

90 67 100 100 68 98 100

qpid

1 0 0 0 0 0 0

7 0 0 0 0 0 0

14 0 0 0 0 0 0

30 0 0 0 0 0 0

90 53 19 5 56 24 6

Table 3: Cross validation results from the original paper and our replication
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3.4 Deep Learning 
This section articulates the details of our deep learning implementation. Firstly, we justify 
the reasons behind our algorithm selection. Then the details of our model are given.  

3.4.1 Algorithm selection 

We used a feed forward neural network for our deep neural network implementation. Be-
fore settling on the this decision, we tried out multiple types of other neural networks, such 
as Convolutional Neural Networks, Recurrent Neural Networks and Long Short Term 
Memory Neural Networks. Next section explains why the decision of FFNN was made. 

Firstly, we implemented a CNN model to fit our data with. CNNs are quite powerful in 
areas where the input layer contains many features. Image processing is a prime example 
for this. Since an image is represented as a matrix of pixels, the input layer of the model 
results in NxM nodes, where N and M show the resolution of the image. And most of the 
time, the nodes that are close to each other are semantically connected. In case of an im-
age, adjacent pixels do not differ from each other that much. And when they do, it means 
the shape that is displayed on the image ends in that pixel. CNNs are especially great at 
recognising  these patterns using a method called convolution, which makes use of the 
large number of input layers. CNNs take the input layers and apply filters on the nodes. 
These filters are small matrixes that iterate over the input layer and generate the next lay-
ers by doing matrix multiplication. 

Our data was not applicable to these type of networks since it only had 7 nodes in the in-
put layer. Designing a filter that would iterate over a 7 x 1 matrix was not the best idea. 
Even if it was, the nodes in our input layer were not related to each other by any means. 
Therefore a CNN would not be able to recognise a pattern between the nodes. Due to 
aforementioned reasons. implementing a CNN was not applicable to our dataset. 

Apart from CNNs, we tried to create an LSTM Neural Network model for our prediction 
purposes. LSTMs are a kind of RNNs which looks at the historical data when doing back 
propagation. LSTMs are extremely powerful for time series datasets. These types of net-
works have an inner historical state, that affects the outcome of the prediction of the mod-
el. In turn, this prediction updates the historical state of the LSTM network. Due to this 
property, they have a representation of a memory, hence the name long short term memory 
neural networks. 

Another area where LSTMs excel is in Natural Language Processing. Machine translation 
or prediction of the next word in a given sentence are among the areas where LSTMs or 
RNNs in general are widely used. However, our dataset was again not really applicable to 
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this approach. The dataset was not really a time series data, and there was no repeating 
pattern. For example, in a text data, it would be really common to see the token ‘am’ after 
the token ‘I’, and while predicting the next word, the model would make use of this fact. 
Or, if we were to do stock price prediction, looking back at the last N entries would allow 
us to make a better prediction, since tomorrows stock price would be heavily dependant on 
todays stock price. 

One might think that our dataset could be represented as time series, however, the time the 
issues are created or closed are not dependant on each other. An argument could be that if 
there is already some number of issues were open during the time this new particular issue 
was alive, it might affect the lifespan of this new issue. However, there is very little infor-
mation on how the actual development power was spent on these set of issues. We simply 
can’t know if the whole team stopped working on a feature request since there was an ur-
gent bug, or only one person worked on a bug, even though the issue has only one con-
cerned stakeholder. On top of this, an issue generally does not go through its development 
lifecycle upon creation. That means, when an issue is created, it does not automatically 
affect the other issues in the repository immediately.  

3.4.2 Model Implementation 

In order to implement the selected deep learning approach, we chose to use a Python li-
brary called Keras11. It is a simple yet very powerful python library that provides human 
readable APIs, and has a very well written documentation. Since its quite popular, the 
community feedback is also available. Rather than implementing some boilerplate code, or 
complex structures, Keras has already built-in functions that are very useful to developers 
and researchers. On top of this, it also utilises other popular deep learning languages and 
libraries such as TensorFlow12 and Theano13. 

Our neural network has seven input layers, one for each feature that we have. For the hid-
den layers, we found out that a dense layer of 16 nodes, with an Rectified Linear Unit 
(ReLU) activation, repeated twice gave the best results. The output layer was using Sig-
moid activation and had only one node. When predicting, we assumed any value more 
than 0.5 belonged to the class 1, and anything lower belong to the class 0.  

Our optimiser was chosen to be Adam14, with a learning rate of 0.001, which seemed to 
perform really well with numeric inputs in prediction tasks. And for our loss function, we 
used binary cross-entropy, since we were basically doing an N-binary classification prob-
lem, for different target classes. 
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4. Results 
In the tables shown in this section, whenever a cell is filled with red background means 
that the data is bad, meaning false alarms(pf) are over 33% and recall and precision values 
are below 33%. This convention follows the one introduced in Menzies et al.'s paper. The 
first column shows the results for the dataset and the second columns displays how many 
issues belonged to which class. Since we are using N-binary classifiers, we can use posi-
tive or negative classes. For every experiment, positive means that the issue was closed 
before the target class, whereas negative means that the issue was closed after than the 
target class. For example, if the target class is 7, an issue would belong to class positive if 
it was closed in less than 7 days. With the same logic, if it was closed in more than 7 days, 
it would be in the negative class. 

The definitions of the precision, recall and pf are given next. However, before explaining 
those, one should understand the underlying concepts, such as: 

● True positives (TP): Issue was closed in less than N days, classifier said it will be 
closed in less than N days. 

● False positives (FP): Issue was closed after N days, classifier said it will be closed 
in less than N days. 

● True negatives (TN): Issue was closed after N days, classifier said it will be 
closed after N days. 

● False negatives (FN): Issue was closed in less than N days, classifier said it will 
be closed in after N days. 

Where N is the target class. Knowing those, the definitions of precision, recall and pf are 
the following: 
● !  
● !  
● !  

4.1 Decision Trees Implementation Results 
In this section, we display the results from each of our experiments using the decision 
trees algorithm, on the datasets described in Section 3.2. We execute the DT algorithm on 
each of the Top 10 repositories, then on each of the Random 10 repositories. Lastly, we run 
the algorithm on each of the combined datasets. 

4.1.1 Experiment 1: Cross Validation on Top10 Dataset 
The results of this experiment can be seen in Table 4. We see a general increase in preci-
sion and recall as time class goes larger for most of the repositories, except for some edge 

precision  =  TP / (TP  +  FP)
recall  =  TP / (TP  +  FN )
pf  =  FP / (TN  +  FP)
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cases in repositories like ionic and ppspp. This result is expected as the ratio of positive to 
negative issue count increases with each time class. 

Cross Validation Issue Counts

appium

precision recall pf Positive Negative

1 57 14 8 923 1180

7 59 99 96 1236 867

14 65 99 95 1379 724

30 76 99 94 1585 518

90 91 100 100 1899 204

Font-Awesome

1 83 95 45 1743 783

7 88 94 40 1860 666

14 89 92 39 1938 588

30 91 93 39 2020 506

90 93 96 53 2215 311

framework

1 65 79 57 1692 1209

7 74 96 87 2102 799

14 79 98 87 2246 655

30 85 98 84 2418 483

90 96 97 69 2734 167

hd

1 68 69 26 1563 2001

7 84 93 38 2436 1128

14 93 94 24 2736 828

30 96 97 25 3090 474

90 98 100 100 3470 94

ionic

1 73 1 0 786 1137

7 60 100 100 1166 757

14 68 100 100 1330 593

30 81 100 100 1556 367

90 95 100 100 1826 97

ppsspp

1 66 32 14 1197 1327

7 59 85 79 1475 1049

14 62 99 98 1588 936

30 67 100 100 1732 792

90 80 100 100 2048 476

RedisDesktopManager

1 75 62 6 604 2100

7 87 88 13 1313 1391

14 90 96 22 1818 886

30 94 98 43 2368 336

90 97 100 90 2696 8
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Figure 3 shows the averages of precision, recall and pf for each of the repositories. The 
distribution and the results for this dataset shows that the decision trees algorithm per-
forms really well when the data is balanced.  

The issue time class distribution per repository can be found in Figure 4. RedisDesktop-
Manager repository has good precision and recall while having a small pf value. And it 
has a fairly even distribution in terms of time classes. On top of this, having almost no is-
sues that are closed in more than 90 days seems to help as well. Another well performer is 

SCII-External-Maphack

1 81 86 25 1901 1394

7 91 99 33 2565 730

14 94 100 27 2691 604

30 94 88 59 2943 352

90 99 100 100 3269 26

steam-for-linux

1 60 63 34 817 888

7 74 88 53 1103 602

14 79 87 53 1215 490

30 80 96 87 1359 346

90 87 100 100 1501 204

wet-boew

1 56 9 5 1043 1291

7 63 87 82 1433 901

14 68 100 100 1577 757

30 74 100 100 1751 583

90 85 100 100 1980 354

Table 4: Cross validation results for decision trees on Top10 repositories.
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Figure 3: Averages for pf, precision and recall for all time classes on Top 10 repositories



SCII-External-Maphack, which also has zero to none issues that were closed after 90 days. 
While this increases the precision and percentage, it also leads to a fairly biased classifier, 
therefore increasing the value of pf. 

4.1.2 Experiment 2: Cross Validation on Random10 Dataset 
The results of this experiment can be seen in Table 5. Similarly to the previous experi-
ment, we see correlation between time class and precision, with a couple of exceptions. 
Especially in partake repository, which has very little issues overall, and no issues that 
were closed between the period of 14 to 30 days, which is reflected in the precision and 
recall values for those time classes. 

Cross Validation Issue Counts
precision recall pf Positive Negative

Cataclysm-DDA

1 76 65 14 78 109

7 85 78 31 131 56

14 78 97 93 147 40

30 87 97 97 165 22

90 99 100 80 186 1

custard

1 0 0 0 89 293

7 65 17 6 152 230

14 58 75 53 195 187

30 76 56 31 238 144

90 78 92 70 271 111

docs

1 48 60 44 147 195

7 57 81 65 186 156

14 71 78 54 218 124

30 79 92 83 268 74

90 88 100 100 302 40
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Figure 4: Time class distribution of the issues of each Top 10 repository



Just like in the previous dataset, the repositories that have somewhat even distribution re-
sulted in smaller pf values. For instance, if we compare Cataclysm-DDA and rbb reposito-
ries, even though they have similar amount of issues, and similar amounts of precision and 
recall, the pf values differ because the classifier for rbb has seen at least some issues that 

fuzzy-octo-tribble

1 75 95 65 191 80

7 93 97 88 247 24

14 94 98 92 251 20

30 97 98 96 258 13

90 100 100 100 271 0

openDCIM

1 54 87 85 201 160

7 67 100 100 249 112

14 77 94 96 280 81

30 85 100 100 306 55

90 94 100 100 335 26

partake

1 100 71 0 5 24

7 47 46 26 10 19

14 0 0 25 11 18

30 0 0 25 11 18

90 61 100 100 17 12

PushSharp

1 0 0 0 81 121

7 60 97 98 125 77

14 63 92 98 138 64

30 74 98 100 153 49

90 91 100 100 183 19

pythondotorg

1 53 100 100 124 112

7 67 100 100 155 81

14 69 100 100 161 75

30 74 97 98 179 57

90 84 98 100 196 40

rbb

1 61 66 34 72 96

7 85 92 44 115 53

14 90 89 42 130 38

30 93 91 37 136 32

90 93 97 74 149 19

slycat

1 47 66 51 100 128

7 59 99 97 141 87

14 70 99 98 161 67

30 77 99 100 179 49

90 95 100 100 212 16

Table 5: Cross validation results for random forest on Random10 repositories.
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were closed in more than 90 days. Figure 5 shows the averages for pf, precision and recall 
for each time class in Random 10 dataset. 

Here we also see how the amount of data fed to the classifier affects the prediction. Espe-
cially for the pf value, we see these repositories do not produce results that are as good as 
the ones from the top 10 repositories. Figure 6 shows the distribution of time class of 
repositories in Random 10 dataset. 
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Figure 6: Time class distribution of the issues of each Random 10 repository

Figure 5: Averages for pf, precision and recall for all time classes on Random 10 
repositories



4.1.3 Experiment 3: Cross Validation on combinedMenzies, combined-
Random10, combinedTop10 and combinedAll Datasets 

Table 6 holds the results from this experiment. CombinedTop10 has the best precision 
overall, excluding the time class 1 case. However, it still has large pf values, compared to 
combinedMenzies dataset, which has very low pf values and fairly good precision values. 

On top of the cross validation experiment, we also gathered the results from experiment #1 
and experiment #2, calculates insight values such as mean, standard deviation and mini-
mum and maximum values, for each columns. These values can be seen from Table 7. This 

Cross Validation Issue Counts

precision recall pf Positive Negative

1 51 15 3 7279 40234

7 66 63 11 12173 35340

combinedMenzies 14 71 64 11 13920 33593

30 75 75 13 16132 31381

90 79 72 15 21351 26162

1 64 52 27 12269 13310

7 71 91 70 16689 8890

combinedTop10 14 75 99 87 18518 7061

30 84 97 81 20822 4757

90 92 100 100 23638 1941

1 68 11 4 1088 1318

7 65 90 84 1511 895

combinedRandom10 14 71 100 100 1692 714

30 80 100 100 1893 513

90 89 100 100 2122 284

1 54 21 14 275168 366357

7 63 95 87 389141 252384

combinedAll 14 71 96 88 442404 199121

30 78 100 100 500669 140856

90 90 100 100 574671 66854

Table 6: Cross validation results for decision trees on combined repositories.
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allowed us to see whether if the combined datasets perform better or worse than the aver-
age.  

These average values are calculated from the previous experiments. The purpose of this is 
to check whether combining the data before the execution yields to better results than 
training several models for each dataset and taking their average values. Of course, getting 
the averages for the combinedAll case was not possible, since it contained more than 4.000 
repositories and it would be impossible to train modes for each of them.    

Average Cross Validation

precision recall pf

mean stdev min..
max mean stdev min..

max
mea

n stdev min..
max

1 32.8 34.9 0..78 25.6 29.5 0..77 10.2 14.1 0..41

7 43.1 37.7 0..80 48.4 44.6 0..100 25.3 33.6 0..89

combinedMenzies 14 50.5 36.4 0..86 56.9 43.6 0..100 22.7 30.6 0..83

30 54 38.9 0..91 66 45.9 0..100 20.4 29.9 0..77

90 74.4 21.6 32..96 73.7 37.1 2..100 14.1 20.3 0..71

1 68.4 9.4 56..83 51 34.2 1..95 22 18.9 0..57

7 73.9 12.9 59..91 92.9 55.8 85..100 62.1 30.3 13..100

combinedTop10 14 78.7 12.3 62..94 96.5 4.3 87..100 64.5 34.5 22..100

30 83.8 9.8 67..96 98 2.2 93..100 72.2 29.4 25..100

90 92.4 6.6 80..100 99.3 1.4 96..100 91.2 16.6 53..100

combinedRandom10

1 51.4 31.5 0..100 61 34.9 0..100 39.3 36.4 0..100

7 62 14.2 47..93 80.7 27.9 17..100 65.5 36 6..100

14 68.5 26 0..94 82.2 30.1 0..100 75.1 28.3 25..100

30 74.2 27.2 0..97 82.8 31.8 0..100 76.7 32 25..100

90 88.3 11.6 61..100 98.7 2.5 92..100 82.4 31.4 0..100

Table 7: Average values for precision, recall and pf from the experiments on individual 
repositories.
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Figure 7 shows a comparison of precision values between combined and average results. 
We see a fluctuating result between the combined precision values and average precision 
values of 10 repositories. In Menzies dataset, combined precision is almost twice the aver-
age precision, which can be explained by the different structures of the repositories. Some 
of the repositories within this dataset results in 0 precision due to their skewed time class 
distribution, which yields to very low average precision values. In the combined case 
however, the dataset contains some issues from time class 1, and the results are reflecting 
this change as well. 

For the case of random and top repositories, since the individual time class distribution is 
somewhat similar between the repositories, we see that the precision trend is also similar 
between the combined and average cases. For random repositories, the one time class re-
sults seem to differ, which can be explained by the structure of the partake repository, 
which has almost zero issues from the aforementioned time class, which in turn results in 
very low precision for that experiment. 

4.2 Deep Learning Implementation Results 
Like the previous section, this one displays the results of experiments ran on the different 
datasets from Section 3.2. However, this section also includes an experiment on reposito-
ries of Menzies dataset, which we skipped in the previous section, since it was just the 
replication of the baseline, which was shown in Section 3.3. 

!27

Figure 7: Comparison between the precisions from the combined datasets 
 and the average values for precisions of the individual repositories.



4.2.1 Experiment 1: Cross Validation on Top10 Dataset 
Table 8 shows the results of this experiment. First thing to notice here is that compared to 
the decision trees results, neural networks have larger pf values. In the decision trees re-
sults, we never saw the pf value exceed the value for recall and mostly they were below 
the precision as well. However, in the case of the deep learning algorithm, we often see 
that the false alarms (pf), are more often than the correct classifications. 

Cross Validation

precision recall pf

appium

1 43 100 100

7 57 86 88

14 66 97 95

30 0 0 0

90 90 99 100

Font-Awesome

1 69 100 100

7 76 24 23

14 76 41 40

30 83 49 22

90 87 100 100

framework

1 52 31 17

7 59 48 28

14 68 90 72

30 83 98 97

90 94 100 100

hd

1 42 58 61

7 68 98 32

14 76 98 23

30 86 98 90

90 97 100 70

ionic

1 35 34 29

7 46 33 0

14 69 99 100

30 81 93 92

90 94 100 100

ppsspp

1 50 71 70

7 58 100 100

14 63 89 88

30 70 81 76

90 81 93 83
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Having a small amount of issues from the negative class, or having a substantially large 
amount of issues from one issue type results in an almost 100% recall. The averages of the 
results from Table 8 can be seen on Figure 8.  

RedisDesktopManager

1 17 74 61

7 50 91 85

14 66 94 83

30 87 99 89

90 99 100 40

SCII-External-Maphack

1 57 88 88

7 77 100 80

14 81 100 80

30 89 100 60

90 99 100 40

steam-for-linux

1 43 38 13

7 64 100 100

14 70 47 48

30 82 56 50

90 88 100 100

wet-boew

1 19 4 4

7 61 98 98

14 67 96 97

30 75 100 100

90 78 88 98

Table 8: Cross validation results for deep learning on Top10 
repositories.
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In general, the neural network produces good results in terms of precision and percentage. 
However, the large numbers under the pf column makes these predictions unreliable. 

Table 9 shows the time class distribution on issues for this dataset. 

4.2.2 Experiment 2: Cross Validation on Random10 Dataset 
The results are shown in Table 9. Like the decision trees algorithm, we see how the lack of 
data is affecting the performance of the classifier. 
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Figure 8: Averages for pf, precision and recall for all time classes on Top 10 repositories

Figure 9: Time class distribution of the issues of each Top 10 repository



Cross Validation

precision recall pf

Cataclysm-DDA

1 1 3 4

7 65 29 37

14 78 100 90

30 89 76 49

90 99 100 10

custard

1 7 6 7

7 36 77 71

14 50 91 92

30 62 94 94

90 70 100 90

docs

1 41 24 17

7 33 27 28

14 57 49 50

30 78 91 82

90 89 93 62

fuzzy-octo-tribble

1 70 78 79

7 90 96 70

14 92 100 50

30 95 97 20

90 100 100 0

openDCIM

1 59 70 71

7 69 78 77

14 75 86 92

30 84 100 100

90 92 99 90

partake

1 18 25 73

7 10 5 3

14 30 35 68

30 0 0 0

90 61 90 68

PushSharp

1 29 21 19

7 65 63 65

14 70 79 76

30 80 88 68

90 90 75 54
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Figure 10 displays the averages for all three metrics. Overall, prediction and recall are 
quite low for these repositories. Especially with the repository partake, the full effect 
shows. 

pythondotorg

1 47 33 40

7 65 86 84

14 70 68 61

30 76 92 88

90 82 95 98

rbb

1 42 82 80

7 68 80 65

14 79 86 56

30 81 100 70

90 89 91 57

slycat

1 45 30 26

7 61 32 35

14 72 66 58

30 79 77 77

90 93 85 36

Table 9: Cross validation results for deep learning on 
Random10 repositories.
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Figure 10: Averages for pf, precision and recall for all time classes on Random 10 
repositories



The repository has around 100 issues in total, and that yields to a precision of 24 on aver-
age. Figure 11 shows the distribution of issue classes of each repository in this dataset. 

4.2.3 Experiment 3: Cross Validation on Menzies Dataset 
Menzies dataset has the worst performance among all datasets. The results are shown in 
Table 10. Even the random repositories outperform Menzies dataset, even though their av-
erage size is almost 5 % of Menzies'. 

Cross Validation

precision recall pf

camel

1 32 43 0

7 36 49 0

14 37 84 21

30 68 96 9

90 73 98 14

cloudstack

1 0 0 0

7 71 85 85

14 78 90 92

30 85 99 100

90 93 100 100

cocoon

1 0 0 1

7 13 7 5

14 12 10 8

30 19 14 12

90 19 20 17
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Figure 11: Time class distribution of the issue issues of each Random 10 repository



deeplearning

1 0 0 0

7 79 95 97

14 85 100 100

30 90 99 100

90 94 99 100

hadoop

1 0 0 0

7 0 1 0

14 0 0 0

30 0 0 0

90 0 0 0

hive

1 0 0 0

7 0 0 0

14 0 0 0

30 0 0 0

90 26 7 8

kafka

1 38 44 44

7 64 90 90

14 72 93 92

30 80 99 99

90 89 100 100

node

1 0 0 0

7 68 100 100

14 76 98 99

30 83 99 100

90 88 98 100

ofbiz

1 4 1 1

7 36 17 16

14 50 42 43

30 58 84 85

90 68 99 99

qpid

1 0 0 0

7 0 0 0

14 0 0 0

30 25 0 0

90 21 3 3

Table 10: Cross validation results for deep learning on Menzies 
repositories.
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Figure 12 shows the averages for precision, recall and pf for each repository in this 
dataset. The reason why some of the repositories have bad results is the issue class distrib-
ution of these repositories. Other datasets have most of their issues closed under under 90 
days, but repositories in this one have mostly old issues. Therefore upon training the clas-
sifier, it fails to recognise any issues that were closed in less than 1 or 7 days, therefore the 
precision value turns out quite low. 

This concept is especially visible in the results of qpid, hive and hadoop repositories. The 
rest seems to be producing normal results since the issues time classes are more evenly 
distributed. This distribution of issue time classes are shown in Figure 13. If we compare 
the results between camel and hive repositories, they are quite different even though the 
repositories have similar amounts of issues in total. And on top of this, the number of is-
sues that are closed after 90 days is similar as well. However, camel has some amount of 
issues that were closed within a day or a week, where hive lacks these kinds of issues. This 
property yields into two completely different results for these two repositories.  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Figure 12: Averages for pf, precision and recall for all time classes on Menzies repositories



4.2.4 Experiment 4: Cross Validation on combinedMenzies, combined-
Random10, combinedTop10 and combinedAll Datasets 
Table 11 shows the results for this experiment. We see combinedMenzies has poor perfor-
mance compared to the rest of the datasets. CombinedRandom10 dataset has great results, 
compared to its small size. However, the large numbers under pf column shows that pre-
dictions coming from these classifiers are biased. 

Cross Validation

precision recall pf

combinedMenzies

1 22 3 4

7 26 18 16

14 29 25 23

30 34 25 24

90 45 33 32

combinedTop10

1 37 44 24

7 63 76 74

14 70 91 88

30 78 96 96

90 88 99 100

combinedRandom10

1 43 11 12

7 65 92 92

14 72 97 96

30 81 100 100

90 92 100 100
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Figure 13: Time class distribution of the issue issues of each Menzies repository



5. Discussion of the Results 

Menzies et al. argued that simple, human readable classifiers such as Decision Trees per-
formed better in the context of predicting an issues lifetime. In this paper we applied one 
of the most complicated classifiers of today to this problem. After running the aforemen-
tioned experiments, the results we received showed us that a complex classifier such as a 
deep neural network can perform well under right circumstances, however it is heavily 
reliant on the shape and the size of the data. 

The performance of both algorithms are quite different between Menzies dataset and the 
rest of the datasets. This can easily be explained by looking at each datasets class distribu-
tion. Menzies dataset has nearly half of its issues closed after the 90 days threshold, 
whereas the rest of the datasets have around 10% of their issues closed after 90 days peri-
od. When training, this leads to very biased training data. For instance, for the combined-
Top10 case, when training the 90 days classifier, %91.4 of the issues in the training data 
were closed before 90 days. This problem results in three things: high precision, high re-
call and high false alarms. 

While training, since the classifier is exposed to instances from one class most of the time, 
it predicts that class almost all the time. The effects of these can be seen in the 7, 30 and 
90 classifiers for combinedAll, combinedTop10 and combinedRandom10 datasets. The re-
call for these 9 classifiers averages 97.6 in the case of the DNN experiment, which shows 
how biased the neural network is. This also explains the 100 cases for the recall and pf 
values. When the classifier gets this biased and predicts everything will be the 0 case, that 
is, predicting every issue to be closed within the given days, it predicts all the cases where 
the issue was actually closed before given days correctly, and fails to predict the correct 
class of all of the remaining issues. 

For all datasets, the neural network approach yields in an almost one to one relationship 
between the percentage of issues that were closed before the time class and the precision 

combinedAll

1 58 43 19

7 60 88 88

14 68 96 96

30 78 100 100

90 92 100 100
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Table 11: Cross validation results for deep learning on combined repositories.



value of the results. Looking at the graphs, one can easily see the link between the two 
values for the combined datasets. 

For the case of decision trees however, we see some amount of differentiation between the 
two values. Especially for the Menzies dataset, the precision results seems to be much bet-
ter than the amount of issues used to train the model does not seem to affect the precision 
result that much.  

Overall, the decision trees algorithm seems to outperform the neural network implementa-
tion in terms of precision. Neural network models tend to get really biased when the train-
ing data contains samples from one specific target class. 
In general, we see that neural networks are heavily reliant on the data and their distribu-
tion. Decision trees while relying on the dataset distribution, provides slightly better re-
sults. For instance, for Menzies dataset, decision tree classifier outperforms neural net-
works by a great margin. For the case of time class 1 classifier, the margin is more than 
100 %. Precision of the deep learning algorithm is 22 and precision of decision trees is 51. 
Getting a 0.51 precision where 17.68 % of the data belongs to the target class is a big suc-
cess. 
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Figure 14: Precision values for deep learning and decision trees  
compared to the percentage of issues for each time class.



The different distributions of the features could have also lead to the different results in 
Figure 14. If the values for a given feature is very diverse, it might lead to good predic-
tions. However, a feature with very small standard deviation would have very little effect 
on the prediction. Top10, Random10 and CombinedAll datasets all yield in similar results 
for both algorithms. However for Menzies dataset, which comes from a separate distribu-
tion, the results vary greatly. 

Neural networks also excel with the amount of features a dataset has15. Our dataset con-
tained only 7 features, where all of them were integer features. This shortage of features 
also explains the poor performance of our models. Simple classifiers such as decision trees 
however, excel with small amount of distinct features.  

Deep neural networks, or neural networks in general also perform much better when they 
are exposed to large datasets. However, in our experiments we found that this is not al-
ways the case. Looking at the performances of the Menzies and combinedRandom10 
datasets, we see that the size of the dataset did not have a big effect of the performance of 
the classifiers. On the contrary, combinedRandom10 datasets deep neural network perfor-
mance is much better than Menzies dataset’s, even though the latter dataset has roughly 20 
times more issues than the former. 

6. Prediction Tool 
During the time we were conducting the experiments with deep learning, we decided to 
implement a prototype tool which a user could easily use to predict how long it would take 
to close any given issue. Since version control systems are widely used in today’s software 
development, we think that the best implementation for this would be to have a plugin for 
any version controlling system, where upon creation of the issue, the plugin would ask the 
previously trained models to predict the lifetime of the issue. The models would return an 
interval, such as between 7 and 14 days, before 1 day or after 90 days.  

The plugin then would have to handle the preprocessing of the data, training the model 
and updating the model in the background. Updating the model would be a periodic task 
where in a given schedule, the plugin would retrain the model with the newly added data, 
to make the prediction models a bit more reliable by making them exposed to more data. 

As the first prototype, we implemented a web-based application, where users are able to 
select the dataset they want to experiment with. At the moment, the choices are limited to 
the combined datasets, namely combinedMenzies, combinedTop10, combinedRandom10 
and combinedAll. However, extending this to any given dataset is fairly simple, since the 
preprocessing tools provided by Menzies et al. are quite useful and reusable.  
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Figure 15 shows the homepage of our prediction tool. In this screen of the app, users are 
prompted with the dataset that they would like to use, and regarding their choice, the pre-
trained models of the selected dataset are loaded to the memory of the application. After 

selecting the dataset, the users are forwarded to the page where they can input the values 
for the features and get a prediction based on the input values instantly. 
In the second screen of the applications, the users are prompted to enter the values for the 
features for testing purposes. If we had access to the raw data, we could just make the user 
import an issue object in a specific format, such as json or csv. Then calculating the values 
for some features wouldn’t be a hard task, since we could use a simple database, or even a 
dictionary, to store the mapping between creator_id and how many issues they created in 
general, or just in the project and so on. The same can easily be done for issues. Some fea-
tures such as nCommitsInProject requires us to have access to whole dataset for us to be 
able to calculate them. Considering all these in mind, we went with the simple interface 
that can be seen in Figure 16. In this web page, users can enter any value for the features, 
and our application would convert it into the format the models would accept, then input 
the given features into the five different models, and return their results to the user. 
For the data in Figure 16, we see an issue of 550 characters is given as an input. The 
project has 520 commits, where 92 of those belongs to the person who created the issue. 
Before this issue was created, the project had 420 issues, 365 of them were closed. Out of 
this 420 issues, 72 belonged to our creator and 65 of those were closed. After giving these 
values to five different models, which basically predict if the given issue will be closed 
before 1 day, 1 week, 2 weeks, 1 month and 3 months, respectively, denoted by the table on 
the bottom of the page. 
  
The table gives us an interval, in which we predict the issue will be closed. Looking at the 
table, we can deduct that this issue will be closed somewhere between 7 and 14 days. 
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7. Conclusion 
Predicting the lifetime of an issue is not easy. A lot of researchers approached this problem 
with different algorithms for the last 20 years. In this paper, we examined a possibility of 
having a better classifier for the problem of predicting an issues lifetime. Existing studies 
tried several different approaches, and we selected to use a deep learning approach to IRT 
problem. 

We found that replication of an existing study under a different context is not always 
straightforward. We were not able to replicate some parts of the existing studies with the 
same code and same data. Often, the implementation does not match the results given in a 
study. One of our aim in this study was to make our implementation as readable and as 
reusable as possible for future researchers.  

The paper posed two research questions. 

1. How can one select and implement a deep learning algorithm to predict issue reso-
lution time? 

A simple feed-forward neural network was chosen to be our deep neural network algo-
rithm. Dataset limitations, such as limited amount of features, no textual features and 
overall structure of the data led us to this decision. Using a popular Python framework 
called Keras, we were able to create a three level neural network, which had 7 nodes in its 
input layer, a 16 node hidden layer repeated twice and lastly, a single node output layer. 
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The decision of the class was made by looking at the prediction value, and determining the 
class by comparing it to 0.5. 

2. How does a deep neural network perform against other conventional classification 
algorithms (i.e. Decision Trees and Random Forest)? 

We chose a recent study which implements a decision tree algorithm to tackle the IRT pre-
diction problem as the baseline. According to our experiments, the baseline algorithm has 
higher precision and recall, while having a lower value for the false alarms, pf. Looking at 
the combined datasets, our neural network implementation has an average precision of 
60.05, whereas the decision trees implementations average precision is 72.85. For the case 
of recall, DNN implementation’s average is 66.85 and the baseline average is 77.05. For 
the failed cases, DNN has an average of 64.2 and where decision trees’ average pf value is 
59.75. 

Overall, our deep learning implementation failed to meet the performance of the baseline 
algorithm in most aspects. We believe the lack of features and lack of diversity in them 
yielded in these results. 
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Appendix 

I. Code 
The code used in this study can be found at: https://github.com/atakanarikan/issue-

LifetimePrediction 

II. License 
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1. herewith grant the University of Tartu a free permit (non-exclusive licence) to 

reproduce, for the purpose of preservation, including for adding to the DSpace digital 
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supervised by Dietmar Pfahl. 

2.    I grant the University of Tartu a permit to make the work specified in p. 1 available to 
the public via the web environment of the University of Tartu, including via the 
DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0, 
which allows, by giving appropriate credit to the author, to reproduce, distribute the 
work and communicate it to the public, and prohibits the creation of derivative works 
and any commercial use of the work until the expiry of the term of copyright. 

3.  I am aware of the fact that the author retains the rights specified in p. 1 and 2. 

4.  I certify that granting the non-exclusive licence does not infringe other persons’ intel-
lectual property rights or rights arising from the personal data protection legislation.  

Atakan Arıkan 
14/02/2019 
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