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Analyzing Predictive Features of Epileptic Seizures in Human Intracranial EEG 

Recordings 

Abstract 

Epilepsy seizure prediction is a challenge that scientists have tried to overcome throughout 

many decades, using different state-of-the-art features and machine learning methods. If a 

forecasting system could predict and warn epilepsy patients of impeding seizures in real time, 

it would greatly improve their quality of life. Seizure prediction consists of two stages: feature 

extraction from the data and sample classification to interictal (non-seizure) or preictal (pre-

seizure) state. EEG data is commonly used, as it is inexpensive, portable and it most clearly 

reflects the changes in the brain’s dynamics. While most studies focus on extracting novel 

features or using new classifiers, this Thesis focuses on ascertaining the most significant 

features among some that are commonly used in seizure prediction. Knowing which features 

influence the prediction results the most, helps to understand the inner workings of both the 

classifiers and the brain activity and to reduce the feature set in future research, making the 

classification process more effective. Intracranial EEG data of two patients was used in this 

Thesis with three classifiers from the scikit-learn library, which were combined with methods 

for evaluating feature importance. Moderately good to excellent prediction accuracies were 

achieved with these methods, which allowed to reliably analyze the feature importance results 

of the different classifiers.  
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Inimeste intrakraniaalsete EEG salvestiste põhjal epileptiliste hoogude 

ennustamiseks sobivate tunnuste analüüs 

Lühikokkuvõte  

Epilepsiahooge on üritatud ennustada mitmeid aastakümneid, kasutades tipptasemel tunnuseid 

ja masinõppemeetodeid. Kui õnnestuks välja töötada süsteem, mis reaalajas hoiatab patsiente 

eelseisvate hoogude eest, parandaks see oluliselt patsientide elukvaliteeti. Epilepsiahoogude 

ennustamine koosneb kahest etapist: tunnuste ekstraheerimine ning näidiste klassifitseerimine 

hoogudevaheliseks (tavaline ajaperiood) või hooeelseks. Enamasti kasutatakse EEG andmeid, 

sest EEG on odav, transporditav ning väljendab muutusi ajudünaamikas kõige täpsemini. Kui 

enamik uuringuid keskendub uudsete tunnuste ekstraheerimisele või uute 

klassifitseerimisalgoritmide rakendamisele, siis antud bakalaureusetöö eesmärk oli välja 

selgitada, missugused kasutatavad tunnused on kõige olulisemad. Kui on teada, missugused 

tunnused kõige rohkem mõjutavad ennustamistulemusi, aitab see paremini aru saada nii 

klassifitseerimisalgoritmide tööprotsessist kui ka ajudünaamikast ning vähendada tunnuste 

hulka, mida masinõppes kasutada, muutes seega klassifitseerimisprotsessi efektiivsemaks. 

Bakalaureusetöös kasutati kahe patsiendi intrakraniaalseid EEG andmeid ning kolme algoritmi 

scikit-learn teegist, mida kombineeriti meetoditega, mis hindavad tunnuste mõju. Saadud 

ennustustäpsused olid mõõdukalt head kuni suurepärased ning võimaldasid seega analüüsida 

tunnuste mõju usaldusväärselt iga klassifitseerimisalgoritmi kohta.  

Võtmesõnad 

Epilepsia, EEG, hoogude ennustamine, tunnuste mõju, masinõpe 

CERCS 

P170, P176, B110 
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1. Introduction 

Epilepsy is the fourth most common neurological disease with only migraine, stroke, and 

Alzheimer’s disease occurring more frequently [1]. It is characterized by recurrent seizures, 

which can be prevented by taking antiepileptic drugs, although patients respond to treatment 

only about 70% of the time. In many cases, seizures continue to occur even after the surgical 

removal of epilepsy-causing brain tissue [2] [3]. 

For epilepsy patients to live more normal lives, seizure forecasting systems are necessary. If 

EEG-based computational algorithms identify prior-seizure brain states early enough, a 

sufficient dose of medication could be administered or responsive electric stimulation applied 

to the brain in order to prevent seizures [3] [4].  

EEG (electroencephalogram) signals, which are recorded from several electrodes placed inside 

the brain, are used to predict seizures. There are four distinguishable states in the epileptic brain: 

interictal (the normal state between seizures), preictal (prior to seizure), ictal (seizure) and post-

ictal (after seizure). The main goal of seizure forecasting is to differentiate between the interictal 

and preictal states [3].  

Seizure prediction consists of two stages: feature extraction from EEG data and sample 

classification. Feature extraction involves calculating the values of various statistical and 

analytical measures for every given EEG data sample to obtain information that is effective in 

differentiating interictal and preictal states. Much of previous research has focused on 

developing the best methods for the second stage, using state of the art features for predicting. 

This Thesis aims to analyze some of the more common features used for seizure prediction with 

EEG data and ascertain, which features have the most significant impact on the results.  

Analyzing and understanding the significance of the features is important to ease biological 

interpretations of the computational solutions. If the influence of the features contributing to 

predicting is not understood, then having high accuracy in a machine learning pipeline is like a 

black-box with no insight to the reasons behind the feature set’s success. 

To analyze these features, the following stages were completed in this Thesis: 

1. measure selection, 

2. machine learning classifier selection, 

3. feature extraction, 

4. running the machine learning pipelines, and 
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5. feature importance analysis. 

 

The American Epilepsy Society’s intracranial EEG data sets of two human patients were used 

in this Thesis. Eighteen measures were selected based on their prevalence and performance in 

cutting-edge seizure prediction and their potential to differentiate between preictal and interictal 

recordings. By calculating these measures, features were extracted from the data using a moving 

window analysis and the resulting data was used in seizure prediction with three classifiers from 

the scikit-learn library: Gaussian Naïve Bayes Classifier, Random Forest Classifier, and the 

Logistic Regression Classifier. Feature importance was evaluated for every classifier using a 

separate, suitable technique and the results were compared and analyzed. In addition, the t-SNE 

algorithm was used to visualize the data. 

The Thesis is organized as follows. Chapter 2 gives background information on epilepsy and 

seizure prediction. The data, measures and machine learning methods are described in Chapter 

3. Results and data visualizations are presented in Chapter 4, limitations and possible future 

work are discussed in Chapter 5. Chapter 6 concludes the Thesis.  
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2. Background 

This chapter gives an overview of the basic concepts of brain activity, epilepsy, EEG as a 

monitoring method, and machine learning and describes some of the previous works in seizure 

prediction.  

The human brain consists of nerve cells i.e. neurons. The network, in which neurons transmit 

and gather electrochemical signals, contains millions of nerve fibers called dendrites and axons. 

This makes an overwhelmingly complex system, which is not easy to interpret [5].  

Epilepsy is a disease, which involves recurrent seizures that are caused by abnormal excessive 

or synchronous neuronal activity within large groups of neurons. Epileptic seizures occur 

arbitrarily and can last for seconds or minutes [6]. Many causes of epilepsy exist, which vary 

by the age of the person, but unfortunately, the reason for the disease is unknown for about half 

of the cases [7].  

There are multiple techniques for recording brain activity [8] of which EEG 

(electroencephalography) is the most commonly used with epilepsy patients. EEG uses 

electrodes, which are placed on the scalp or inside the brain, to detect the sum of electrical 

potentials of nearby neurons. The recorded brain activity (i.e. EEG signals) comprises of several 

distinct waves with different amplitudes and frequencies, which prevalence change in different 

states and processes such as during sleep, rest, wakefulness, and various pathologies. Some 

patterns are known to express a normal brain state, while deviations from this standard refer to 

an abnormal time period [6]. For instance, prominent beta brainwaves (about 12-30 Hz, cycles 

per second) indicate that the person is currently alert and engaged in a focused mental activity 

e.g. decision making [9].  

Unlike the standard scalp EEG, intracranial EEG (iEEG) uses electrodes that are placed inside 

the brain. iEEG is invasive and thus, more risky for the patient, but it is closer to the seizure 

origin brain tissue and achieves better signal-to-noise qualities [10]. The electrodes’ placement 

in the brain is decided based on clinical grounds. A single measurement from an electrode 

represents the total electrical potential produced by the neurons nearby the electrode. The 

number of measurements per second depends on the sampling frequency, which is usually 512 

Hz or larger (i.e. 512 or more measurements per second) [6] [11].  

Most of iEEG recordings unfortunately have an imprecise resolution concerning the source of 

the activity as parts of the brain far from the electrode can have a significant impact on the 
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recording. Nevertheless, iEEG provides invaluable information about the anatomical origin of 

the seizure’s onset [11].  

EEG is an important monitoring method for diagnosing epilepsy because it detects epileptic 

seizures as rhythmic signals that frequently coincide with or even precede the slightest changes 

in behavior. Therefore, EEG provides a possibility to avoid an impending seizure or to 

differentiate epileptic seizures from other diseases with convulsion-like symptoms [6].  

Although seizures have an unpredictable nature, which makes seizure prediction a complicated 

task, there is strong evidence that seizures are processes that develop minutes to hours before 

the clinical onset [12]. There are four distinguishable states in an epileptic brain’s dynamics 

[3]:  

1. preictal (pre-seizure), 

2. ictal (seizure), 

3. postictal (after seizure), and 

4. interictal (none of the above, normal brain state). 

Seizure forecasting focuses on differentiating between preictal and interictal states. If a time 

period preceding a seizure can be correctly identified in real time via a device connected to the 

brain, it would give valuable time for patients to take appropriate action. Dangerous activities 

such as driving could be avoided, medications administered only when necessary to reduce side 

effects or electrical stimulation applied to reset brain dynamics [3] [13]. 

Seizure prediction can generally be divided into two steps. The first is extracting features from 

EEG records by calculating the values of different statistical and analytical measures. Feature 

extraction from EEG data is necessary as the raw dataset is too large to obtain prediction results 

in a reasonable time. In addition, signal processing extracts patterns that are effective in seizure 

detection, while the raw, noisy and seemingly random data would not yield any useful logic for 

the computer to successfully interpret [6].  

The second step is classifying the samples with pre-calculated features into preictal or interictal 

states using statistical methods or machine learning algorithms [13].  

Studies on seizure prediction using EEG recordings started in the 1960s [12]. Previous 

researches on seizure prediction have focused more on testing, developing or comparing 

different prediction algorithms or experimenting with new features; many of these notable 

researches are listed in [6]. This Thesis aims to compare the performance of eighteen univariate 
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measures, which are calculated using a moving window analysis on every electrode’s recording. 

If a measure or feature is used to characterize a single electrode channel, then it is called 

univariate.  

To illustrate some recent results in seizure prediction, a few additional studies are described 

below. 

The Kaggle 2014 seizure prediction challenge’s [14] winning team used a weighted average of 

three different models, including Random Forest Classifier [15]. In addition to the two patients’ 

datasets used in this Thesis for feature extraction, they also included iEEG data of five dogs. A 

72% percent accuracy was achieved on the test data with the Random Forest model, for which 

80 trees and 8 second time windows with overlap were chosen as parameters. A description of 

the Random Forest classifier model can be found in chapter 3.4.2 and the time window analysis 

is further explained in the Feature Extraction chapter.  

A recent research that only used the data of the two patients, was conducted by Kumar et al. in 

2015 [4]. The 10 minute data segments were split into overlapping 10 second windows using 

moving window analysis and over 10 measures were used in feature extraction, including mean 

spectral power from several frequency bands and kurtosis, also used in this Thesis. Among the 

four classifiers, Random Forest outperformed all of them, including the much more commonly 

used Support Vector Machines. They concluded that windowing long data segments improves 

the classification performance. 

The data, extracted features and machine learning methods used in this Thesis are described in 

the following chapter on methodology.  

The code for this Thesis can be found here: https://github.com/mariliisvelner/epilepsy-seizure-

analysis.  

  

https://github.com/mariliisvelner/epilepsy-seizure-analysis
https://github.com/mariliisvelner/epilepsy-seizure-analysis
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3. Methodology 

The following subchapters present detailed descriptions of the iEEG datasets used in this Thesis, 

the feature extraction process, and the different measures that were calculated as features. In 

addition, the three classification algorithms, feature importance analysis methods and the t-SNE 

algorithm are also described in these subchapters. 

3.1 Datasets 

iEEG datasets of Patient 1 and Patient 2 from the 2014 Kaggle American Epilepsy Society 

Seizure Prediction Challenge are used in this Thesis for feature extraction. Both datasets consist 

of 10 minute iEEG data clips (segments) of a human patient with epilepsy. These data segments 

are labelled as “interictal” for non-seizure data segments and “preictal” for pre-seizure data 

segments. The datasets also contain unlabeled “test” segments, which were not used in this 

Thesis [14].  

Each data segment is stored in a .mat file (a MATLAB format) that contains a matrix of iEEG 

recorded values arranged with rows as electrodes and columns as time points. In other words, 

every row is a recording from a single electrode. The iEEG data for Patient 1 was recorded 

using 15 electrodes and for Patient 2 using 24 electrodes. The sampling rate for both datasets 

was 5000 Hz (5000 data measurements per second) [14]. 

For Patient 1, there were 50 interictal segments and 18 preictal segments in the original dataset, 

which makes 500 minutes of interictal data and 180 minutes of preictal data. The dataset of 

Patient 2 consisted of 42 interictal segments (420 minutes) and 18 preictal segments (180 

minutes). Thus, there is a total of 680 minutes of iEEG data for Patient 1 and 600 minutes of 

data for Patient 2.  

Both preictal and interictal data segments in these datasets form one hour sequences. Preictal 

data segments have at least a five minute seizure horizon (i.e. from 1:05 to 0:05 before seizure 

onset) to prevent seizure signals from appearing in the segments. The interictal segments are 

separated from seizures by at least four hours to avoid contamination with preictal or postictal 

signals [14].  

Below are figures to illustrate the data used in this Thesis. Every line corresponds to a single 

electrode’s recording, the first being from electrode number 1 and the lowest from the 15th 

electrode. Figure 1 shows a 5 minute section of interictal iEEG data from Patient 1 and Figure 

2 illustrates 5 minutes of preictal data. For a more detailed view, the first second of the interictal 
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data depicted in Figure 1 is shown in Figure 3 and the first second of preictal data in Figure 2 

is presented in Figure 4.  

These figures were obtained using the code in the file eeg_visualization.py.  

 

Figure 1. Five minutes of interictal data from Patient 1. 

 

 

Figure 2. Five minutes of preictal data from Patient 1. 
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Figure 3. One second of interictal data from Patient 1. This is the first second of the interictal 

data shown in Figure 1. 

 

Figure 4. One second of preictal data from Patient 1. This is the first second of the preictal 

data illustrated in Figure 2. 
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As seen from these figures, it is not trivial to detect whether the current time period is preictal 

or not. Abnormal signals might occasionally appear in the interictal state (for instance, the last 

minute of interictal data in Figure 1), indicating some kind of physical or mental activity. Some 

electrode channel might also show different behavior than the others (e.g. electrode number 7 

in Figure 1), but not the preictal kind. Thus, it is important to find the most effective measures 

to describe the differences between interictal and preictal iEEG data.  

3.2 Feature Extraction 

The process of feature extraction consisted of three main steps: 

1. dividing electrode recordings into smaller time windows; 

2. calculating features for every time window; 

3. concatenating features of concurrent time windows to one sample. 

These steps are described in detail below. 

Two datasets were calculated for both patients using a non-overlapping window technique. 

Specifically, for each data segment, every 10 minute data row (corresponding to a single 

electrode) in the matrix was divided into smaller time windows. This means that for every 10 

minute data segment, each electrode yielded 10 ∗
60

𝑤
 time windows, where 𝑤 is the length of 

the time window in seconds. Thus, the entire dataset produced a total number of 𝑠 ∗ 𝑥 ∗ 10 ∗
60

𝑤
 

time windows, where 𝑠 is the number of data segments and 𝑥 is the number of electrodes. 

For each time window, 18 features were calculated to represent the 18 measures. Then, the 

features of the time windows occurring at the same time were concatenated to form a single 

sample, a data row in the new dataset. Therefore, each sample in the final dataset represented a 

certain time period and had a total number of 18 ∗ 𝑥  features, where 𝑥  is the number of 

electrodes. Every feature name was denoted with a number, which marked the electrode’s 

number where the window originated from. For instance, if the measure 𝑝 was calculated from 

a time window that belonged to a recording from electrode number 1, then the feature was 

named "𝑝1". Every sample also had a class: 1 for interictal or 2 for preictal, which were the 

target values in predicting.  

This procedure yielded a new dataset with 18 ∗ 𝑥  columns (in addition to the class) and  

𝑠 ∗  10 ∗
60

𝑤
 rows, where 𝑥 is the number of electrodes and 𝑠 is the number of data segments. 

Each row in this dataset represents a time window. Following this procedure, datasets with 10 
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second windows and 60 second windows were calculated for both patients, making four datasets 

in total.  

Using moving window analysis, where linear measures are calculated from a window of EEG 

data with a certain length, is a common practice in seizure prediction. The duration of the time 

window, usually from 10 to 40 seconds, is important, as smaller windows hold too much detail 

and larger windows are too abstract [4] [12].  

The process for a single segment is illustrated by Figure 5. 

 

Figure 5. Feature extraction process for a single data segment s. 18 measures are calculated 

for every time window of every electrode (1 … x) and the features of concurrent windows are 

concatenated to form new samples. 

Table 1 describes the new datasets that were calculated from the Kaggle datasets. 

Table 1. Details of the new datasets. 

Dataset Patient Window length (s)  Electrodes Features Windows 

1 1 10 15 18 × 15 = 270 680 × 6 = 4080 

2 1 60 15 18 × 15 = 270 680 × 1 = 680 

3 2 10 24 18 × 24 = 432 600 × 6 = 3600 

4 2 60 24 18 × 24 = 432 600 × 1 = 600 

 

The number of features in the new dataset is calculated by multiplying the number of measures 

with the number of electrodes in the original dataset. In order to get the number of windows 
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(rows), the original dataset’s length in minutes must be multiplied with either 1 for the minute-

window datasets or with 6 in case of 10 second window datasets.  

The new datasets with 60 second windows and 10 second windows are hereinafter referred to 

as 60 second dataset and 10 second dataset respectively. 

The 18 measures extracted from the raw data are the following: 

 Hjorth activity, mobility, and complexity, 

 Higuchi fractal dimension, 

 skewness, 

 kurtosis, 

 spectral power for delta, theta, alpha, beta, low gamma and high gamma frequency 

bands, and 

 spectral power in each of the previously mentioned frequency bands normalized by total 

power in all of the frequency bands. 

These measures are further described in the following subchapters. 

To understand the essence of these features, some concepts are explained as follows. When a 

signal is said to be in the time domain, it means that each value in the signal is an amplitude, 

which corresponds to a point in time. Time domain parameters are parameters that are 

calculated from data (in this case, iEEG signals) in the time domain.  

The Fourier Transform (FT) is a technique that takes a signal in the time domain and converts 

it to the frequency domain. This representation of the signal is called the power spectrum. 

Power spectrum essentially measures how much of a sinusoid with a certain frequency does the 

signal contain. FT decomposes a signal into frequencies that it consists of and finds the 

amplitudes, weights of these oscillations. The power spectrum is therefore a representation of 

the signal, where the x-axis represents frequencies of different sinusoids and the y-axis the 

weights of those frequencies. A large weight indicates that the sinusoid with the corresponding 

frequency is one of the main components of this signal [16]. These weights are also referred to 

as spectral power.  

The code for feature extraction can be found in the file make_data.py. 
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3.2.1 Hjorth Parameters 

Hjorth parameters – activity, mobility, and complexity – are time domain measures that are 

very useful in analyzing EEG data [17] and are commonly used in seizure prediction [12]. The 

parameter activity represents the variance of the signal’s amplitude, that is, it measures how far 

the amplitude deviates from the mean amplitude: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑓(𝑡)) 

where 𝑓(𝑡) represents the signal and 𝑣𝑎𝑟 the variance function [18]. The variance of the signal 

has previously exhibited a decrease during preictal time [19].  

Mobility is the square root of the variance of the signal’s first derivative divided by the activity 

of the signal [18]:  

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  
√

𝑣𝑎𝑟 (
𝑑𝑓(𝑡)

𝑑𝑡
)

𝑣𝑎𝑟(𝑓(𝑡))
 

Complexity represents the ratio of the mobility of the signal’s first derivative divided by the 

mobility of the signal [18]:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (

𝑑𝑓(𝑡)
𝑑𝑡

)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑓(𝑡))
 

According to Kaboli et al. [20] these parameters can be described in the frequency domain, 

despite the fact that they are defined in the time domain. Specifically, activity represents the 

total power of the signal, mobility is an estimate of the mean frequency and complexity 

describes how similar is the shape of the signal to a pure sine wave.  

The Hjorth parameters were calculated using the pyEEG library for Python [21].  

3.2.2 Higuchi Fractal Dimension 

Fractal dimension is a time domain measure which describes the complexity of a time series. 

That is, if the fractal dimension increases, so does the degree of complexity [18]. This feature 

has been used to detect specific states of physiologic function in EEG analysis [22]. Higuchi’s 

algorithm is one of the various algorithms that have been developed to calculate the fractal 

dimension and is one of the more accurate estimations of a signal’s fractal dimension. The 

construction of the algorithm is analyzed in [22].  
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The Higuchi fractal dimension feature was calculated using the pyEEG library for Python [21].  

3.2.3 Skewness and Kurtosis 

Skewness and kurtosis are statistical measures of a time series. 

Skewness is positive, if the mode is less than the median, which means that small values 

dominate over the large values in the time series. In case of a positive skewness, it is said that 

the distribution graph is skewed to the right [23]. 

Skewness is negative if the mean value is less than the median, which indicates that the number 

of large values in the time series is bigger than that of small values. In this case, the distribution 

graph is skewed to the left [23]. 

In a time series, where the distribution of values is even, the skewness value is zero. 

Figure 6 illustrates the shape of the distribution graph with different skewness values.  

 

Figure 6. Skewness in different frequency distribution graphs [24]. 

Kurtosis is low when most of the values in the time series are clustered around the mean. If 

intermittent extreme values dominate, then the time series has a high kurtosis value [25]. 

Kurtosis has been shown to increase during preictal time in several studies [26]. 

The skewness and kurtosis features for the time windows were calculated using the SciPy 

library’s statistical functions skew and kurtosis respectively.  

3.2.4 Spectral Band Power and Band Power Ratio 

Brainwaves are a product of synchronous electrical pulses from masses of neurons that 

communicate with each other. They are measured in Hertz (cycles per second) and are divided 

into bandwidths or bands in order to categorize them by their functions [9].  
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The main frequency bands in brain activity are the delta, theta, alpha, beta and gamma 

bandwidths. These bandwidths have a biological significance in human brain activity [9] and 

are often used in seizure prediction. The specific division of these bands may vary by some 

hertz or certain bands (e.g. gamma) may be divided into several bands (low and high gamma) 

but the general concept and essence of these measures remains the same. 

Spectral power features have been often and successfully used in seizure prediction [12] [26]. 

In this Thesis, spectral band power is calculated for the frequency bands delta (0-4 Hz), theta 

(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low gamma (30-70 Hz) and high gamma (70-180 

Hz). In other words, for each band, the spectral power feature is calculated by summing up the 

spectral powers of the frequencies in these bands, thus yielding six features for an electrode in 

a single time window.  

The spectral power ratio feature of each band is calculated by dividing the band’s spectral power 

with the total power in all of the frequency bandwidths.  

Both of these features were calculated using the pyEEG module for Python [21].  

3.2.5 Notation 

This subchapter presents the notation used for the measures and features in the text.  

The notation of the measures is presented in Table 2.  

Table 2. Notation of measures. 

Measure Notation 

Hjorth activity activity 

Hjorth mobility mobility 

Hjorth complexity complexity 

Higuchi fractal dimension hfd 

Skewness skewness 

Kurtosis kurtosis 

Spectral power of the delta band ps_delta 

Spectral power of the theta band ps_theta 

Spectral power of the alpha band ps_alpha 

Spectral power of the beta band ps_beta 

Spectral power of the low gamma band ps_lowgamma 

Spectral power of the high gamma band ps_highgamma 
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Spectral power ratio of the delta band psr_delta 

Spectral power ratio of the theta band psr_theta 

Spectral power ratio of the alpha band psr_alpha 

Spectral power ratio of the beta band psr_beta 

Spectral power ratio of the low gamma band psr_lowgamma 

Spectral power ratio of the high gamma band psr_highgamma 

 

The feature notation is as follows. A number, which denotes the electrode, from which the 

feature value originates, is added to the corresponding measure’s name. For example, 

“skewness08” refers to the skewness of the iEEG data window recorded by the 8th electrode. 

To avoid confusion, the individual attributes, features without the electrode numbers will be 

hereafter referred to as measures. For instance, hfd08 is a feature – it is used in the classification 

processes, while hfd is a measure, which represents the Higuchi fractal dimension. 

3.3 Visualization by t-SNE 

t-distributed stochastic neighbor embedding (t-SNE) is an algorithm for visualizing high-

dimensional data (i.e. data with many features). It gives each sample a location in a two- or 

three-dimensional map, in which clustered points represent similar data samples, while large 

distances between points reflect the large differences between the corresponding samples.  

t-SNE is able to capture a lot of the local structure of the high-dimensional data excellently and 

also reveal larger structures like clusters at several scales [27]. 

Data visualization is important as it reveals the structure of the complex dataset in a way that 

the seemingly arbitrary feature values do not. This might allow to make some parallels with the 

prediction results, as data which does not yield any concrete structure or has data points of 

different classes intermingled is harder to categorize.  

The TSNE algorithm of the scikit-learn toolkit was used in this Thesis to visualize the data in 

combination with the TruncatedSVD method. The default values for the parameters were used 

and the data was reduced to two dimensions.  

The visualizations are presented in chapter 4.1.  

3.4 Machine Learning Methods 

The code for this Thesis was written in Python and the following three classifiers of the scikit-

learn library were used for machine learning: Random Forest Classifier, Logistic Regression 
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Classifier and Gaussian Naïve Bayes Classifier. Other algorithms (Support Vector Machines, 

Stochastic Gradient Descent, and Multi-layer Perceptron) were also tested but were found unfit 

for this Thesis based on their low accuracy or slow performance, which would have hindered 

the work process too much. In addition to successful seizure prediction, high accuracy is 

necessary for obtaining reliable results in analyzing feature importance.  

The scikit-learn library was chosen for this Thesis for the following reasons [28]: 

 the author was already familiar with it, 

 it implements all of the three machine learning algorithms used in this Thesis,  

 it is widely used in scientific computing, 

 it is open-source, 

 it is easy to use, 

 it has few dependencies, and 

 has proper documentation.  

The following subchapters will describe each of the three machine learning methods.  

3.4.1 Gaussian Naïve Bayes Classifier 

In case of real-valued, continuous data, it is typically assumed that the continuous values 

associated with the classes follow a normal (Gaussian) distribution [29]. The data used in this 

Thesis has real-valued features.  

The Gaussian Naïve Bayes classifier (GNB) implements the Gaussian Naïve Bayes algorithm, 

which assumes the probability of the features to be Gaussian [30]: 

𝑃(𝑥𝑖  | 𝑦) =
1

√2𝜋𝜎𝑦
2

exp (−
(𝑥𝑖 −  𝜇𝑦)

2

2𝜎𝑦
2

) 

The following parameters and variables are used in this equation: 

 xi  (the feature x with the value i), 

 y (a class), 

 σy
2 (variance of the feature x’s values in class y; measures, how far values are spread out 

from their mean), 

 μy (the mean of the attribute x’s values in class y). 
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In other words, the algorithm computes the probability of xi being of class y by inserting the 

value xi to a Gaussian distribution (a.k.a. Normal distribution) equation along with the 

parameters σy
2 and μy.  

This classifier is used for the purpose of being the base, naïve method to evaluate the other more 

complex methods’ performances by comparing their prediction results to GNB’s results.  

The class GaussianNB of the scikit-learn library is used in this Thesis as the Gaussian Naïve 

Bayes classifier. All of the parameters were kept to their default values and are further described 

in [31]. 

3.4.2 Random Forest Classifier 

Random forest classifier (RFC) or random decision forest uses a set of decision trees to classify 

a sample.  

A decision tree is basically a series of if-then statements and when a sample in the dataset is 

applied to it, the sample is classified. Therefore, if all the samples in the dataset are run through 

the decision tree classifier, each individual sample is classified [32].  

Figure 7 is an example of a simple decision tree, which is applied to a dataset, where each 

sample represents a day and has the attributes “outlook”, “humidity” and “wind”. Using this 

tree, every record in the dataset is classified as being of one class or not (e.g. is it an adequate 

day to play golf or not) [33]. 

 

Figure 7. Decision tree example [33]. To classify a sample from the dataset, the decision 

making process is started from the root of the tree and moved to the bottom, choosing the 

branches according to the values of the attributes. If a leaf node is reached, then the sample is 

classified [32]. For instance, if a sample with the outlook of “sunny”, “normal” humidity and 

wind with the value “strong” is applied to the decision tree in Figure 7, the classification 

process starts from the root node and selects the correct branch corresponding to the outlook 

value. In this case, the leftmost branch is selected, after which the process moves to the next 

node, which compares the humidity value. As the sample’s humidity is “normal”, then the right 
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branch is selected, which directs to a leaf node. The leaf node’s value is “Yes” and thus, the 

sample is classified as being a good day to play golf.  

Decision trees have high execution speed but fail to grow in complexity while still maintaining 

high generalization accuracy. This limitation means suboptimal accuracy on training data, and 

RFC attempts to mitigate this flaw by constructing several trees whose efficiency can be 

arbitrarily increased with increasing accuracy for both training and new data [34]. 

RFC randomly selects a number of different subsets from the features and builds a decision tree 

in each of those using the entire training set. This way, the decision trees generalize their 

classification in different ways and avoid extensive overfitting on the training set. The trees in 

different subspaces of features are all used to classify a sample. The output class of the forest 

is calculated by using a discriminant function on the classifications of the decision trees or by 

choosing the mode from the trees’ classifications [34].  

The class RandomForestClassifier of the scikit-learn library is used in this Thesis as the random 

decision forest algorithm. The number of trees in the forest was left to its default value of 10. 

The number of features to consider when making subsets of the feature space was set to the 

total number of features, to obtain results, which encompass all of the features. The mode of 

applying weights to the classes was set to “balanced” in order to take into account the 

frequencies of the two classes. All of the other parameter values were left to their default values 

to avoid overfitting and can be found in [35].  

RFC was used in this Thesis because it is an extremely fast classifier that even with a large 

feature set is very efficient in its classification process. Furthermore, the method has been used 

in seizure prediction on the same dataset with successful results by Tieng et al. [15] in Kaggle’s 

American Epilepsy Society Seizure Prediction Challenge and Kumar et al. [4]. RFC can also 

automatically model the interactions between features, which makes it easier to analyze the 

features’ influence on the result [36].  

3.4.3 Logistic Regression Classifier 

Logistic regression classifier (LRC) is an algorithm that assigns one of two classes to a data 

record by calculating the probability of the sample belonging to one of the classes. LRC uses a 

logistic function, which maps a real-valued number into a value between 0 and 1 to classify 

samples [36].  

LRC works by extracting a set of weighted features from the sample, combining them linearly 

and applying the logistic function to this combination. The result of the equation is a value 
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between 0 and 1 and the class is determined by whether this value is less than 0.5 or not [36] 

[37].  

The feature coefficients are learned from the training data by using maximum-likelihood 

estimation, which essentially chooses the weights that make the classes of the training samples 

more probable [36].  

The class LogisticRegressionCV of the scikit-learn library is used in this Thesis to perform 

logistic regression classification on the data. The “liblinear” algorithm was used as the solver 

parameter for this method [38]. This algorithm is used as the optimizing function for maximum-

likelihood estimation of the LogisticRegressionCV. The value “l1”, which means L1 

regularization, for the parameter penalty was found to be the most efficient. A penalization or 

regularization algorithm is used to avoid overfitting. If a feature helps to predict the outcome 

perfectly only because it occurs in one single class, it will be given a very high weight and thus, 

some weights will try to strictly fit the patterns of the training data and therefore will fail to 

generalize on new data. L1 regularization is the sum of the absolute values of the weights. This 

penalty with its own weight is subtracted from all of the coefficients to reduce overfitting [36]. 

All of the other parameter values were left to their default values to avoid overfitting and can 

be found in [38]. 

LRC was used in this Thesis due to its ability to work well on large datasets and reduce 

overfitting by using penalties [36].  

3.5 Feature Analysis 

In parallel with running the machine learning pipelines, feature importance analysis was also 

performed using different methods for each of the three classifiers. These methods are described 

in the following subchapters.  

3.5.1 SelectKBest for Naïve Bayes  

The class SelectKBest from scikit-learn was chosen to ascertain, which features most influence 

the prediction result. This method selects features according to the k highest scores that are 

calculated with the f_classif function. This function computes the one-way ANOVA (analysis 

of variance) F-values for every sample. One-way analysis of variance essentially tests if a 

numeric variable (values of some feature) differs according to a categorical variable’s values 

(values of the class) [39].  
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3.5.2 Feature Importance for Random Forest 

The feature importances for RFC were acquired from the scikit-learn RandomForestClassifier 

model’s attribute feature_importances_, which (after training the model) returns the feature 

importances from the fitted model [35]. These importances are implemented using mean 

decrease impurity (MDI), which is calculated as follows. As known, a random forest consists 

of several decision trees, where each non-leaf node is a condition based on a single feature. This 

condition splits the dataset into several subsets and the feature based on which the decision is 

made, is called impurity. When training a tree, the number of times a feature is chosen as the 

impurity can be counted and divided with the number of samples it splits. This ratio is the MDI 

[40].  

3.5.3 Coefficients for Logistic Regression 

In case of LRC, feature importance was computed as the absolute value of the feature’s 

coefficient. This expresses how much impact the feature has on the prediction result.  
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4. Results 

This chapter presents the results in three subchapters. Firstly, data visualizations using the  

t-SNE algorithm are given in Chapter 4.1. Chapter 4.2 describes the results of the classification 

processes and feature importance evaluation for every classifier. The final subchapter 

summarizes the previously described results.  

4.1 t-SNE Visualization 

This chapter presents the t-SNE visualizations of the data. Visualization is important to get an 

insight to the general structure of the data: which clusters appear, how many clusters there are, 

do samples of different classes appear in separate groups or are mixed up and thus, hard to 

categorize etc. 

Data was visualized using a combination of the TruncatedSVD and TSNE methods of the scikit-

learn library.  

Figure 8 depicts the t-SNE visualizations of all of the four datasets. The upper plots are 

visualizations of the Patient 1 datasets: the left panel represents the 60 second dataset and the 

right panel illustrates the 10 second dataset. The lower plots depict the second patient’s datasets: 

the 60 second dataset is presented on the left and the 10 second dataset on the right.  

Interictal windows are represented by the lighter, pink data points, while the preictal windows 

are depicted as the green data points.  

The coordinates of these data points do not represent their values and are just for the purpose 

of structuring the data. The data point’s location in relation to other data points is important as 

it gives a perspective of the distance, difference between the samples they represent. 

In Figure 8 we can observe that the windows of different classes are quite intermingled and do 

not form groups that are easily distinguishable. This is more of a case for the 60 second datasets, 

where very few clusters of a single class appear. For the Patient 1 60 second dataset, about four 

clusters of interictal data points can be distinguished (two on the bottom of the plot, one on the 

right and one on the upper left). A single cluster of preictal data points appears on the bottom 

left corner. However, for Patient 2 no such clusters consisting of data points of a single class 

can be distinguished. This implies that the second patient’s preictal and interictal data is more 

difficult to differentiate and thus, less accurate prediction results might be expected. 
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Figure 8. The t-SNE visualization of the four datasets. The upper left plot represents the Patient 

1 60 second dataset, the upper right plot the first patient’s 10 second dataset. Lower plots depict 

the second patient’s 60 second and 10 second datasets on the left and right respectively. The 

pink data points represent interictal windows of the dataset, while the green data points 

represent preictal windows.  

As there are six times more windows in the 10 second datasets, a lot more clusters are likely to 

appear. This assumption is confirmed by the two plots in Figure 8. There are a significant 

amount of preictal and interictal clusters for both 10 second datasets and overall less large 

clusters appear, in which data points of different classes are distributed evenly. 

The code for generating these plots can be found in the file tsne.py. 
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4.2 Machine Learning Results  

This chapter presents the results acquired in the classification processes. The first subchapter 

describes data partitioning to the test and training set, and the following three subchapters 

present the prediction accuracies and analyze the feature importances for each classifier. 

4.2.1 Data Partitioning 

To create better conditions, ease the interpretation of the results and to mitigate the shortage of 

preictal data, the training and test data contained the same number of preictal and interictal 

windows. These windows were selected randomly from the whole data in two ways:  

1. Window-based partitioning (W). In this case, preictal data was randomly split in 

half between the training and test set, and then the same number of randomly 

selected interictal windows were added to both sets. 

2. Segment-based partitioning (S). For this case, preictal segment numbers were 

divided randomly in half between test and training set. Then, windows with those 

segment numbers were added to the corresponding sets. The same procedure was 

repeated with interictal segment numbers and windows, selecting the same number 

of segments (windows) as preictal segments (windows). 

Specifically, for the second partitioning, half of the preictal segment numbers were randomly 

chosen and the windows of those segments were included in the training set, while the other 

half was added to the test set. An equal number of segments (as there were preictal segments) 

was randomly chosen from the interictal segment numbers and then randomly divided in half 

between the training and test set. This ensured that the training and test set did not contain 

windows of the same segments and thus, the data was more likely less correlated.  

These different splitting methods will be hereinafter referred to as partition (partitioning) W 

and partition (partitioning) S respectively.  

Classification processes for every dataset and every method were executed with both of these 

partitions. This was done to observe, how much the correlation of partition W affects the 

prediction results compared to the less correlated partition S.  

Table 3 illustrates the training and test sets for both of the two partitions above. 
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Table 3. Training and test sets by segment numbers. 

Patient 

Preictal 

segments 

Interictal 

segments 

Preictal 

segments in 

training set 

Preictal 

segments 

in test set 

Interictal 

segments in 

training set 

Interictal 

segments 

in test set 

1 18 50 9 9 9 9 

2 18 42 9 9 9 9 

  

This equal selection of interictal and preictal windows was chosen due to the large imbalance 

between the number of interictal and preictal segments in the original dataset, which resulted 

in a very low prediction accuracy that does not allow to make reliable comparisons between 

feature importances. In addition, splitting the data in the described way shortened the execution 

time of the program, which in turn helped to avoid hindrances in the work process.  

To compare the results of three classifiers, cross-validation was performed with each of them, 

using 5 folds and splitting the data between the training and test set using partitions W and S. 

The feature importance scores presented in the following chapters are the average scores over 

all of the folds.  

The following chapters will present the results of predictions and feature importances by 

comparing an algorithm’s performance on all of the datasets. As a reminder, the notation 

described in chapter 3.2.5 will be used to denote measures and features.  

4.2.2 Gaussian Naïve Bayes Classifier 

This chapter will present the classification accuracies and feature importance analysis for the 

Gaussian Naïve Bayes classifier. 

For Gaussian Naïve Bayes classifier (GNB) the classification was performed in two ways. 

Firstly, GNB was used in combination with the SelectKBest (SKB) method. SKB first selected 

the data of the ten best features from the entire dataset and the new dataset was then applied to 

the GNB.  

Secondly, to get an estimate of SKB’s impact on the prediction results, the whole data was fed 

to GNB without using SKB.  

The following two tables present GNB’s prediction accuracies and feature importance results, 

which were acquired using partitioning W in cross-validation.  
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Table 4 shows GNB’s prediction accuracies for partition W.  

Table 4. Partition W prediction accuracies for GNB. 

Patient 

Window 

length (s) 

Prediction accuracy without 

SKB (%) 

Prediction accuracy with 

SKB (%) 

1 60 65 80 

1 10 64 77 

2 60 55 78 

2 10 53 78 

 

In Table 4 we can see that using the SKB method improves the prediction result by 13-25%. 

While for Patient 1 GNB without SKB shows some capability of producing moderate results, 

the accuracies for Patient 2 are almost at 50%, making the classifier as ineffective as one that 

would predict every sample to be of one class. With SKB, the accuracy is moderately precise 

as would be expected of a statistical method on complex data.  

Table 5 shows the ten features selected by SKB. The values in the parentheses indicate the mean 

values of the scores assigned by SKB to the corresponding features in every fold. The last row 

represents the prediction accuracies also presented in Table 4.  

Table 5. The selected 10 features and prediction accuracies using SKB for partition W. 

 Patient 1 (60 s) Patient 1 (10 s) Patient 2 (60 s) Patient 2 (10 s) 

1. psr_alpha07 (229.8) psr_theta15 (1080.5) hfd08 (226.4) hfd08 (1239.9) 

2. psr_theta06 (211.9) psr_theta06 (1051.6) hfd06 (172.6) hfd06 (972.1) 

3. psr_theta15 (202.1) psr_theta14 (1005.1) hfd10 (163.5) hfd13 (949.9) 

4. psr_theta14 (200.3) psr_alpha07 (941.7) hfd13 (160.5) hfd05 (896.8) 

5. psr_theta13 (173.1) psr_theta13 (860.1) hfd16 (148.6) hfd16 (896.6) 

6. psr_theta05 (146.0) psr_theta07 (693.2) hfd24 (146.6) hfd24 (892.5) 

7. psr_theta07 (137.4) psr_theta05 (672.8) hfd05 (141.1) hfd10 (871.0) 

8. psr_alpha06 (128.5) psr_alpha06 (552.3) hfd17 (132.3) hfd17 (798.2) 

9. psr_theta12 (102.4) psr_theta12 (483.6) hfd15 (129.9) hfd15 (792.5) 

10. psr_alpha12 (97.9) psr_alpha12 (470.8) hfd07 (124.2) hfd23 (741.1) 

% 80 77 78 78 
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These results imply that the prediction process is very similar for datasets of the same patient 

as the selected ten features for Patient 1 are exactly the same for the 10 second and 60 second 

datasets, only with slightly different ranking. This applies also for Patient 2, which has only one 

feature per list that does not appear in the other one (hfd07 for the 60 second list and hfd23 for 

the 10 second list). While psr_theta, and therefore also the theta band are dominant among the 

measures of Patient 1, psr_alpha also appears several times. However, there is not a single 

electrode that can be stated to be the most important, as electrodes 7, 12 and 15 all appear twice 

for both 10 second and 60 second datasets.  

While the spectral features dominated the ranking for patient 1, fractal dimension is the only 

measure selected for both datasets of Patient 2. This does not allow to select any bandwidth as 

an influential attribute, but the fact that hfd08 is the best feature for both datasets implies an 

important correlation of the fractal dimension with the electrode number 8.  

The following two tables present GNB’s prediction accuracies and feature importance analysis 

for partition S. 

Table 6. Partition S prediction accuracies for GNB. 

Patient 

Window 

length (s) 

Prediction accuracy without 

SKB (%) 

Prediction accuracy with 

SKB (%) 

1 60 62 71 

1 10 60 63 

2 60 57 70 

2 10 53 63 

 

These results show a decline in accuracy compared to the partition W results. As windows from 

different segments are used in the training and test set, a lower accuracy was expected.  

Table 7 shows the ten features selected by SKB for partition S along with the prediction results 

presented in the previous table. 

Table 7. The selected 10 features and prediction accuracies using SKB for partition S. 

 Patient 1 (60 s) Patient 1 (10 s) Patient 2 (60 s) Patient 2 (10 s) 

1. psr_alpha07 (121.4) psr_theta06 (597.1) hfd13 (144.1) hfd08 (1033.1) 

2. psr_theta15 (107.0) psr_alpha07 (590.9) hfd08 (129.2) hfd13 (838.0) 
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3. psr_theta14 (100.1) psr_theta15 (567.5) hfd10 (114.2) hfd16 (836.9) 

4. psr_theta06 (99.8) psr_theta14 (535.9) hfd06 (109.8) hfd06 (780.9) 

5. psr_theta13 (88.6) psr_theta13 (503.4) hfd05 (97.9) hfd05 (755.3) 

6. psr_theta07 (83.3) psr_theta05 (444.2) hfd16 (93.8) hfd15 (720.6) 

7. psr_theta05 (75.5) psr_alpha06 (434.2) hfd24 (89.2) hfd24 (719.4) 

8. psr_alpha12 (60.4) psr_theta07 (398.7) hfd07 (87.0) hfd23 (629.2) 

9. psr_alpha06 (59.7) psr_alpha05 (371.1) hfd14 (84.2) hfd10 (597.8) 

10. psr_theta12 (49.4) psr_theta12 (350.1) hfd15 (81.7) hfd22 (561.5) 

% 71 63 70 63 

 

As with partition W, only prs_theta and psr_alpha appear in the ten selected features of Patient 

1. In addition, fractal dimension is the single measure contributing to the predictions of Patient 

2. The gradual decline of the scores indicates that a single significant electrode cannot be 

pointed out as the single main determinant of predictive power. Instead it might be that certain 

correlations of electrodes and measures appear significant. 

To summarize the performance of the classifier for different partitions, the previous results are 

presented in Table 8. The best measure is selected as the most frequent measure among the best 

features.  

Table 8. Patient 1 and 2 results for GNB. 

Patient 

Window 

length 

(s) Partition 

Prediction 

accuracy without 

SKB (%) 

Prediction 

accuracy with 

SKB (%) 

Best measure 

(using SKB) 

1 10 W 64 77 psr_theta 

1 10 S 60 63 psr_theta 

1 60 W 65 80 psr_theta 

1 60 S 62 71 psr_theta 

2 10 W 53 78 hfd 

2 10 S 53 63 hfd 

2 60 W 55 78 hfd 

2 60 S 57 70 hfd 
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Overall, GNB behaves quite similarly for datasets of a single patient. For Patient 1, the spectral 

power features are the most significant, with theta being the most influential bandwidth. The 

fractal dimension, which measures the complexity of a time series, has a significant impact on 

the results of the second patient as it is the only measure selected from the Patient 2 datasets. 

Remarkably, the 7th and 6th electrode show a correlation with the theta and alpha band for 

Patient 1, appearing with both in all of the 10 second and 60 second lists of the first patient.  

Also notable is the fact that the 60 second dataset’s results are generally better than those of the 

10 second dataset, despite the fact that the latter has more data for the classifier to work with. 

This implies that the 10 second windows might be too detailed and noisy for effective 

classification and the 60 second windows describe the data better.   

The results described in this chapter were obtained using the code in the file predict_GNB.py. 

4.2.3 Random Forest Classifier 

This chapter presents the classification results and feature importance analysis for the Random 

Forest classifier. 

The following is an analysis about the results of partition W. 

Table 9 shows Random Forest classifier’s (RFC) prediction results for partition W. The 

numbers in the parentheses following the feature names represent the mean decrease impurity 

values calculated by the RandomForestClassifier model and acquired from the model’s 

feature_importances_ attribute. The last row represents the prediction accuracies. 

Table 9. Partition W RFC top 10 features and prediction accuracies. 

 Patient 1 (60 s) Patient 1 (10 s) Patient 2 (60 s) Patient 2 (10 s) 

1. ps_theta05 (0.173) psr_theta15 (0.326) hfd08 (0.426) hfd08 (0.525) 

2. ps_beta09 (0.120) mobility01 (0.255) hfd06 (0.102) ps_alpha13 (0.11) 

3. psr_alpha07 

(0.103) 

psr_beta15 (0.081) ps_theta01 

(0.082) 

ps_alpha14 (0.089) 

4. mobility01 (0.097) hfd03 (0.039) ps_beta05 (0.073) hfd04 (0.073) 

5. psr_theta15 (0.090) ps_delta07 (0.032) ps_highgamma04 

(0.065) 

ps_highgamma04 

(0.034) 

6. activity03 (0.079) psr_alpha07 (0.025) ps_lowgamma04 

(0.033) 

activity09 (0.012) 

7. psr_beta15 (0.057) hfd09 (0.022) hfd03 (0.032) hfd14 (0.010) 
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8. ps_theta15 (0.046) hfd01 (0.018) ps_highgamma02 

(0.021) 

8. ps_lowgamma05 

(0.0095) 

9. ps_delta07 (0.045) hfd08 (0.013) psr_lowgamma20 

(0.018) 

9. ps_delta09 

(0.0093) 

10. psr_highgamma01 

(0.018) 

ps_theta05 (0.013) ps_theta02 

(0.0074) 

10. ps_theta09 

(0.0090) 

% 95 97 94 97 

 

In Table 9 we observe that the prediction accuracies are extremely high for both patients (above 

94% in all cases).  

We can concur from these importances that the classification processes for both Patient 1 

datasets (10 seconds and 60 seconds) were quite similar as 6 features out of 10 are the same. 

This is especially remarkable due to the fact that there are 270 features for the Patient 1 datasets. 

We can deduct that the theta band is the most influential for Patient 1, as it occurs twice in the 

10 second dataset ranking and thrice in the 60 second list and is the bandwidth for the best 

feature in both cases. The most effective electrode is the 15th as it appears thrice among the 

minute dataset’s best features and twice in the 10 second list. The 7th electrode is almost as 

frequent. In addition, the spectral power and its ratio appear numerous times in both lists. 

For Patient 2, spectral power is the most numerous measure for both cases. Another effective 

measure appears to be hfd, particularly the feature hfd08, which ranks first in both feature lists. 

However, it is harder to distinguish the best frequency band and electrode, as the best features 

vary a lot for both of Patient 2 datasets. The gamma band (low gamma and high gamma) is the 

most frequent bandwidth in these lists but does not exhibit a large dominance.  

The analysis for RFC’s prediction accuracies and feature importance for partition S are 

presented along with Table 10.  

Table 10. Partition S RFC top 10 features and prediction accuracies. 

 Patient 1 (60 s) Patient 1 (10 s) Patient 2 (60 s) Patient 2 (10 s) 

1. ps_delta07 (0.156) mobility01 (0.177) hfd08 (0.318) hfd08 (0.44) 

2. ps_theta05 (0.099) ps_theta15 (0.132) hfd13 (0.134) hfd06 (0.13) 

3. psr_alpha07 

(0.071) 

ps_delta07 (0.072) hfd24 (0.067) ps_alpha13 (0.051) 
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4. psr_theta15 (0.070) psr_delta07 (0.067) hfd06 (0.052) hfd13 (0.047) 

5. ps_theta15 (0.049) hfd07 (0.055) ps_beta05 (0.048) hfd07 (0.043) 

6. ps_theta02 (0.044) activity01 (0.043) ps_alpha14 (0.027) hfd04 (0.022) 

7. mobility01 (0.038) hfd08 (0.041) ps_lowgamma24 

(0.025) 

hfd14 (0.021) 

8. psr_beta15 (0.032) mobility07 (0.039) activity24 (0.023) hfd23 (0.016) 

9. ps_lowgamma09 

(0.031) 

ps_alpha15 (0.027) activity08 (0.022) hfd19 (0.014) 

10. ps_alpha05 (0.018) activity06 (0.023) hfd03 (0.019) skewness09 (0.012) 

% 93 89 86 81 

 

From the results in Table 10 we can observe that the prediction accuracies have noticeably 

decreased for many cases but are still well above chance. 

The feature ranking of the second patient’s 10 second dataset is more uniform than the others. 

The measure hfd clearly dominates the list, with only two other measures appearing in the 

ranking. The fractal dimension is the most significant measure for the 60 second dataset as well, 

with the spectral power features and activity also showing noteworthy influence. 

Compared to the partition W results of Patient 1, there are notably less common significant 

features for the 60 second and 10 second datasets. The spectral power (ratio) features still 

exhibit a remarkable dominance among the features, while the Hjorth parameters activity and 

mobility appear more influential for the 10 second dataset. The delta band also has a larger 

impact for the 10 second dataset compared to the partition W, while the theta band’s influence 

on the 60 second dataset results remains similar. However, the 7th electrode emerges as an 

important influence beside the 15th.  

Table 11 presents the summary of the RFC results. The best measure is selected as the most 

frequent measure among the best features. 

Table 11. Patient 1 and 2 results for RFC. 

Patient Window length (s) Partition Prediction accuracy (%) Best measure 

1 10 W 97 hfd 

1 10 S 89 mobility 

1 60 W 95 ps_theta 
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1 60 S 93 ps_theta 

2 10 W 97 hfd 

2 10 S 81 hfd 

2 60 W 94 hfd 

2 60 S 86 hfd 

 

We can observe from Table 11 that the prediction results of Patient 1 were more accurate than 

those of Patient 2, but not by a large margin. As half of the test set samples were preictal 

windows, these results can be considered very accurate.  

The theta band had the most effect among all of the datasets, especially for Patient 1. While the 

alpha and the gamma bands exhibited some significance (for Patient 2 in particular), they were 

not as numerous. The feature mobility appeared at least once in all of the best feature lists of 

Patient 1, and ranked as the most frequent measure once for the 10 second dataset. The 

electrodes 7 and 15 are the most prominent for Patient 1, while Patient 2 does not show any 

affinity for a single electrode, with the 4th appearing only three times for partition W.  

The fractal dimension also appears to have a great significance, especially for Patient 2, as the 

measure appears in nearly all of the best feature lists and hfd08 takes the first rank four times.  

While hfd is the measure, which dominates the Patient 2 lists, the spectral power (ratio) features 

are more important for Patient 1. Mostly in combination with the theta, delta and alpha bands, 

these features are very frequent in the Patient 1 dataset rankings.  

It must be noted that these far more accurate prediction results compared to the winning solution 

of the Kaggle competition obtained by Tieng et al. were probably achieved due to the more 

balanced training and test sets used in this Thesis and a larger temporal proximity between the 

training and test set windows.  

The code, which was used to obtain the results described in this chapter, is in the 

predict_RFC.py file. 

4.2.4 Logistic Regression Classifier 

This chapter presents the prediction accuracies and feature importance analysis for the Logistic 

Regression classifier.  
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Table 12 shows the Logistic Regression classifier’s (LRC) prediction results for partition W. 

The numbers in the parentheses represent the mean coefficients that were obtained by summing 

up the absolute values of the coefficients of every fold and then dividing the sum with the 

number of folds.  

Table 12. Partition W LRC top 10 features and prediction accuracies. 

 Patient 1 (60 s) Patient 1 (10 s) Patient 2 (60 s) Patient 2 (10 s) 

1. psr_theta07 (19.6) psr_theta07 (65.7) psr_alpha14 (15.9) psr_alpha14 (99.3) 

2. psr_alpha07 

(17.0) 

hfd01 (63.5) psr_alpha06 (12.6) psr_alpha06 (93.8) 

3. psr_theta15 (8.9) hfd15 (53.0) psr_highgamma01 

(10.9) 

psr_alpha24 (84.8) 

4. psr_theta06 (8.9) psr_theta11 (46.6) psr_lowgamma11 

(10.6) 

psr_alpha13 (80.1) 

5. psr_alpha02 (8.2) psr_alpha07 (42.7) psr_alpha13 (10.6) psr_alpha01 (73.7) 

6. psr_theta11 (6.5) hfd08 (38.3) psr_alpha22 (9.9) psr_alpha17 (62.6) 

7. psr_theta14 (6.2) hfd07 (30.2) psr_alpha24 (8.9) psr_highgamma19 

(62.4) 

8. psr_theta13 (6.1) hfd05 (29.8) psr_alpha05 (8.3) psr_lowgamma19 

(62.1) 

9. psr_theta02 (6.1) psr_beta15 (28.5) psr_alpha21 (8.2) psr_beta02 (54.8) 

10. psr_highgamma0

8 (5.9) 

hfd10 (27.8) psr_beta11 (7.7) psr_alpha05 (53.9) 

% 96 97 96 96 

 

Table 12 shows extremely high prediction accuracies for LRC, with every result being at least 

96%.  

We can see in Table 12 that the spectral power (ratio) features are the most common among the 

dataset lists, with the theta and alpha bandwidths being the most prominent. The measure 

psr_alpha is very dominant in the second patient’s lists, while psr_theta is a very common 

measure in the Patient 1 rankings. Although the 7th electrode seems to be the most significant 

electrode for Patient 1, a generally influential electrode cannot be stated based on these results.  

Table 13 presents LRC’s prediction results and feature importance analysis for partition S. 
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Table 13. Partition S LRC top 10 features and prediction accuracies. 

 Patient 1 (60 s) Patient 1 (10 s) Patient 2 (60 s) Patient 2 (10 s) 

1. psr_theta06 (9.91) mobility03 (34.0) psr_alpha09 (7.25) hfd13 (13.10) 

2. psr_theta07 (8.72) mobility11 (32.2) psr_alpha14 (6.99) hfd24 (8.06) 

3. psr_theta15 (8.09) mobility08 (30.9) psr_alpha06 (6.70) hfd17 (7.81) 

4. hfd15 (4.82) mobility15 (28.9) psr_alpha13 (6.66) hfd21 (7.53) 

5. psr_alpha07 (4.17) mobility13 (28.4) psr_highgamma02 (6.35) hfd20 (7.27) 

6. psr_theta05 (4.13) mobility04 (28.4) psr_alpha05 (5.54) psr_alpha06 

(5.89) 

7. psr_alpha02 (4.07) mobility01 (27.6) psr_theta24 (5.26) hfd05 (5.21) 

8. psr_highgamma08 

(3.77) 

mobility07 (27.2) psr_lowgamma01 (5.04) hfd11 (5.09) 

9. psr_alpha03 (3.43) mobility09 (27.0) psr_alpha01 (4.94) hfd03 (4.57) 

10. psr_theta13 (2.94) mobility10 (26.9) psr_highgamma09 (4.58) hfd07 (4.44) 

% 87 92 78 79 

 

In Table 13 we can observe that the results of the Patient 1 datasets are significantly more 

accurate than the results of Patient 2, which have declined considerably compared to partition 

W.  

The feature importance results also show a noticeable change from those of partition W. While 

previously the significant features of the first patient’s 10 second dataset included various 

measures like hfd and spectral power ratio of several different bands, mobility is the only 

measure among the ten best in this case and gives the best prediction accuracy, 92%, among 

the four datasets. However, as mobility is a measure that can be interpreted in the frequency 

domain as an estimate of the mean frequency, this is not entirely surprising.  

The 60 second datasets show an affinity for the spectral power ratio measure, with the only 

other feature for Patient 1 being hfd15. Alpha is the most prominent bandwidth for Patient 2, 

while the theta band has a larger influence on the Patient 1 results, similarly to partition W. The 

fractal dimension again exhibits a significant influence for the Patient 2 10 second dataset.  

As with partition W, the 7th and 15th electrode appear numerous times in the Patient 1 best 

feature lists.  
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Table 14 summarizes the LRC results. 

Table 14. Patient 1 and 2 results for LRC. 

Patient Window length (s) Partition Prediction accuracy (%) Best measure 

1 10 W 97 hfd 

1 10 S 92  mobility 

1 60 W 96 psr_theta 

1 60 S 87 psr_theta 

2 10 W 96 psr_alpha 

2 10 S 79 hfd 

2 60 W 96 psr_alpha 

2 60 S 78 psr_alpha 

 

In Table 14 we can observe that when comparing the results of partition W and S with the same 

datasets, the accuracy declines far less with Patient 1 than with Patient 2.  

The most significant measures for Patient 1 vary greatly, as opposed to Patient 2, where almost 

all the best measures are psr_alpha.  

Although the 7th and 15th electrode showed an impact on the Patient 1 results, an overall 

significant electrode does not appear from these results. 

The results described in this chapter were acquired using the code in the file predict_LRC.py. 

4.3 Summary 

This chapter will summarize the results presented in the previous subchapters, first describing 

results for both patients separately and then presenting a comparison of the average scores over 

different attributes.  

4.3.1 Patient 1 

Table 15 is a summary of all the predictions for Patient 1 and the analyzation in the previous 

chapters. The best bandwidth, measure and electrodes are selected as the modes from all of the 

values in the corresponding results. 
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Table 15. Patient 1 results summary. 

Partition 

Window 

length 

(s) Algorithm 

Accuracy 

(%) 

Best 

measure 

Best 

bandwidth 

Best 

electrodes 

W 10 GNB  64 - - - 

W 10 GNB + SKB 77 psr_theta theta  6, 7, 12 

W 10 RFC 97 hfd theta 7, 15 

W 10 LRC 97 hfd theta 7 

W 60 GNB  65 - - - 

W 60 GNB + SKB 80 psr_theta theta 6, 7, 12 

W 60 RFC 95 ps_theta theta 15 

W 60 LRC 96 psr_theta theta 7 

S 10 GNB  60 - - - 

S 10 GNB + SKB 63 psr_theta theta 5, 6, 7 

S 10 RFC 89 mobility delta 7 

S 10 LRC 92 mobility - - 

S 60 GNB  62 - - - 

S 60 GNB + SKB 71 psr_theta theta 6, 7, 12 

S 60 RFC 93 ps_theta theta 7, 15 

S 60 LRC 87 psr_theta theta 7, 15 

 

From Table 15, we can observe that both RFC and LRC successfully produced results that are 

above the statistical base method GNB’s results. The average accuracy over all of the 

experiments is 80.5%.  

These results show that the most important band is undoubtedly theta, while the alpha and delta 

bands also provide some influence on the results.  

The most significant electrode is the 7th, with electrode number 6 also making a notable impact. 

Overall, the most important measures were the spectral powers within the most significant 

bandwidths, the fractal dimension and the Hjorth mobility.  
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4.3.2 Patient 2 

Table 16 is a summary of all the predictions for Patient 2 and the analyzation in the previous 

chapters. The best bandwidth, measure and electrodes are selected as the modes from all the 

values in the corresponding results. 

Table 16. Patient 2 results summary. 

Partition 

Window 

length (s) Algorithm 

Accuracy 

(%) 

Best 

measure 

Best 

bandwidths 

Best 

electrodes 

W 10 GNB  53 - - - 

W 10 GNB + SKB 78 hfd - - 

W 10 RFC 97 hfd alpha, 

gammas 

9 

W 10 LRC 96 psr_alpha alpha 19 

W 60 GNB  55 - - - 

W 60 GNB + SKB 78 hfd - - 

W 60 RFC 94 hfd theta, 

gammas 

2, 4 

W 60 LRC 96 psr_alpha alpha - 

S 10 GNB  53 - - - 

S 10 GNB + SKB 63 hfd - - 

S 10 RFC 81 hfd - 13 

S 10 LRC 79 hfd - - 

S 60 GNB  57 - - - 

S 60 GNB + SKB 70 hfd - - 

S 60 RFC 86 hfd  - 8 

S 60 LRC 78 psr_alpha alpha  1, 9 

 

In Table 16 we can observe that the prediction results of Patient 2 are less accurate than those 

of Patient 1, but still have a fairly high 75.9% average score.  

For Patient 2, there were a lot of cases where the best feature list was dominated by measures, 

which did not allow to make statements about the best bandwidth or electrode and thus, many 

empty slots are in this table.  
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The most important measure is the Higuchi fractal dimension, which appeared the most 

frequently in almost all of the best feature lists, with the only other stand-out measure being 

psr_alpha.  

The electrodes do not appear to show any patterns, varying for almost all of the combinations. 

4.3.3 Average Scores 

This chapter presents a comparative analysis of all the prediction accuracies over three different 

attributes: patients, window lengths, and partitions.  

Figure 9 presents a comparison of average scores for the patients.  

The statistical GNB has considerably lower scores than the more complex methods, with RFC 

outperforming every method with a total average score of 91.5%, a little over a percent larger 

than the average score of LRC. The scores of Patient 1 are higher than those of Patient 2 in all 

cases, the gap between the scores being the smallest for the GNB and SKB combination and 

biggest for GNB alone.  

 

Figure 9. The average scores for patients 1 and 2. 

 

Figure 10 depicts the average scores for datasets with different window lengths. In the figure 

we can observe that in most cases the minute length windows perform better than the shorter 

time windows. Only with LRC does this tendency change to the opposite.  
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Figure 10. The average scores for 10 second and 60 second datasets. 

 

Figure 11 shows the average scores of the two partitions. This figure indicates that overall, 

explicitly including windows from different segments did affect the prediction scores 

negatively, as was expected. The largest decline is with LRC, while the results of GNB hardly 

changed.  

 

Figure 11. The average scores for partitions 1 and 2. 
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From these results we can concur that in general, RFC and LRC were equally successful, 

producing scores that greatly exceeded those of GNB, with or without SKB. Explicitly 

including windows from random different segments to the training and test data had the most 

impact on the results, compared to the effect of different patients and window lengths.  
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5. Discussion 

This chapter describes the limitations of the results obtained in this Thesis and suggests different 

ideas for future research that these results might be helpful for. 

5.1 Limitations 

The results obtained in this Thesis are limited to only two human subjects and a little over 20 

hours of iEEG data. As it appeared in the results, different patients have different measures, 

features that are most significant for these classifiers and to find any general patterns, a 

considerably larger amount of iEEG data for a larger variety of patients is necessary.  

Also, as intracranial EEG does not have a standard for electrode placement, the locations of the 

electrodes that recorded these datasets is unknown and thus, no conclusions can be made in 

relation to the seizure origins’ locations.  

In addition, only a single feature importance evaluation method was tested with each classifier 

and some other measures of sensitivity like knock-out analysis (excluding one feature to 

measure its impact on the results) might have provided additional insight. This was decided 

against due to limited time. 

5.2 Future Work 

This Thesis presented the most important measures found by conducting experiments but 

further biological analysis of these results would be an important future development. By 

drawing parallels with the biological aspects of the human brain and epileptic seizure generation, 

these results could give further insight into the brain activity connected to seizures. 
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6. Summary 

The aim of this Thesis was to analyze the importance of features used in epileptic seizure 

prediction. These features were extracted from the data by calculating the values of 18 

measures that are commonly used in seizure prediction. These measures were used to extract 

features from iEEG data of two patients. A moving window analysis was conducted on every 

electrode’s data record and the 18 extracted features of every concurrent window were 

concatenated to form a single data row in the new dataset. Two datasets were calculated for 

both patients: one with 10 second windows and the other with minute-length windows. 

The 18 measures are the following:  

 Hjorth activity, mobility and complexity, 

 Higuchi fractal dimension, 

 skewness,  

 kurtosis, 

 spectral power for delta, theta, alpha, beta, low gamma and high gamma frequency 

bands, and 

 spectral power in each of the previously mentioned frequency bands normalized by total 

power in all of the frequency bands.  

In addition, the impact of the different frequency bands and the electrodes that recorded the 

data were analyzed.  

Three classifiers of the scikit-learn library were used for machine learning and predicting: 

Random Forest Classifier (RFC), Logistic Regression Classifier (LRC), and Gaussian 

Naïve Bayes Classifier (GNB). Other classification methods were tried as well (Support Vector 

Machines, Stochastic Gradient Descent, and Multi-layer Perceptron), which provided a smaller 

classification performance and therefore were not suitable for feature importance analyses. 

To analyze the feature importances, a different technique was used for every classifier. For RFC, 

feature importances were acquired using mean decrease impurity, and for LRC, the absolute 

values of the feature coefficients were calculated. The scikit-learn library’s SelectKBest method 

was used in combination with GNB to get the most important features.  

All of the methods were used with cross-validation of 5 folds. The training and test set 

contained an equal number of randomly chosen preictal and interictal windows.  
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RFC and LRC in particular produced extremely accurate results, while the statistical GNB had 

moderate to good results. The prediction results were more accurate with Patient 1 than with 

Patient 2 and the temporally less correlated partition S had a smaller average score than the 

more correlated partition W. Overall, the 60 second datasets produced more accurate results 

with the exception of LRC.  

For Patient 1, the spectral power (ratio) features proved to be the most impactful and the 

theta band was remarkably dominant among the bandwidths, with also the delta and alpha 

bands making a notable contribution. 

The Higuchi fractal dimension was the most important feature for Patient 2, with only the 

spectral power ratio of the alpha band appearing as another significant feature. A significant 

feature, which ranked among the top two measures for both patients several times, was hfd08 – 

the fractal dimension from the recording of the 8th electrode. 

Analysis of predictive features is important in order to understand the mechanisms behind 

epileptic seizures and to improve the selection of features for seizure prediction. The ultimate 

goal of seizure prediction is to create a reliable system that could predict seizures on real time 

data and warn patients of an oncoming seizure. As predicting can be a slow process, especially 

with vast amounts of EEG data, a smart selection of features has to be made to speed up the 

classification process and increase the accuracy of the algorithms. This cannot be done, if the 

influences of features are not measured in studies. 

Future work with this Thesis would be an in-depth biological analysis of these results, finding 

correlations between the significant measures and epileptic seizure generation.  
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