
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Andri Jasinski

Lab Package: Automated Testing Using
CI/CD

Bachelor’s Thesis (9 ECTS)

Supervisor: Dietmar Pfahl, PhD

Tartu 2019

Lab Package: Automated Testing Using CI/CD

Abstract:
The primary goal of this bachelor’s thesis is to create a lab package about automated
testing using a continuous integration and delivery system for the course Software Testing
(LTAT.05.006) at the University of Tartu. The thesis introduces the materials produced
for this lab, analyses the feedback gathered from students and makes suggestions for
future improvements.

Keywords:
Software testing, lab package, Selenium, Gherkin, Python, web application

CERCS:
P170 Computer science, numerical analysis, systems, control

Praktikumimaterjal: Automaattestimine kasutades CI/CD-süsteemi
Lühikokkuvõte:
Antud bakalaureusetöö põhieesmärgiks on praktikumimaterjalide loomine automaattesti-
mise kohta kasutades pideva integratsiooni ja tarne süsteemi aine "Tarkvara testimine
(LTAT.05.006)"jaoks, mida loetakse Tartu Ülikoolis. Töös kirjeldatakse loodud materjale,
analüüsitakse tudengite tagasisidet ja tehakse ettepanekuid edaspidiseks arenduseks.

Võtmesõnad:
Tarkvara testimine, praktikumimaterjal, Selenium, Gherkin, Python, veebirakendus

CERCS:
P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

2

Contents
1 Introduction 4

2 Background Information 5
2.1 Course Software Testing . 5
2.2 Behaviour Testing . 5

2.2.1 Gherkin . 6
2.2.2 Cucumber . 7
2.2.3 Agile Methodology and Behaviour-Driven Development 8

2.3 CI/CD . 11
2.3.1 Continuous Integration . 11
2.3.2 Continuous Delivery and Deployment 14

3 Lab Design 15
3.1 Lab Schedule . 15
3.2 Lab Materials . 15
3.3 Pet Clinic Application . 16
3.4 Lab Session Tasks . 16
3.5 Homework Tasks . 17
3.6 Grading . 18

4 Lab Execution 19

5 Feedback 20
5.1 Feedback from Students . 20
5.2 Analysis . 24
5.3 Future Improvements . 25

6 Summary and Conclusions 27

References 28

Appendix 30
I. Lab Materials . 30
II. Feedback Questionnaire . 31
III. Licence . 32

3

1 Introduction
Software testing is a continuous process of investigating and asserting software or system
quality before releasing it to the end users. It is achieved by applying various software
testing techniques and some of them are introduced in the Software Testing course at
the University of Tartu. The course gives second-year Computer Science undergraduate
students the basic knowledge of software testing via lectures, lab sessions and homework.

The labs are intended for the students taking the Software Testing course (mainly
second-year Computer Science bachelor’s degree students). There are 11 labs in total.
Each lab is designed to give an introduction to a new software testing technique aimed to
localize faults in the software. In the past years, behaviour testing has not been covered
in the context of web application testing and continuous integration & delivery systems
have not been observed in any lab or lecture.

The purpose of the thesis at hand is to create a full package of materials for the
new lab session titled "Web-Application Testing in the CI/CD Pipeline", containing a
system to be tested (web application), lab instructions, lab supervisor’s instructions,
a grading scheme, in-class and homework tasks. The main purpose of the lab is to
teach students to write acceptance tests using the following technology stack: Gherkin
programming language, Behave package (Python’s Cucumber implementation) and
Django web framework. Students should be able to create a test suite that would find 11
bugs in the system under test. Bugs are injected intentionally, they are disjointed and
students are provided with their approximate location. The second purpose of the lab is
to give students an introduction to continuous integration and delivery systems. As for
the continuous integration part, students are asked to use the Bitbucket Pipelines CI/CD
system and commit their changes as often as possible. To understand continuous delivery,
students will have to set up deployment of the web application to Heroku web server.
They are provided with the Bitbucket Pipelines configuration file. It is configured to run
tests as the first step and deploy to Heroku as the second step if the testing step is passed
successfully. As part of the thesis, the lab package was created, evaluated in the lab and
feedback about it was collected and analysed.

This thesis contains four main sections in addition to "Introduction" and "Summary
and Conclusions". The second section provides an overview of the Software Testing
course and the existing materials and gives an introduction to the Gherkin programming
language and the Cucumber framework that uses Gherkin as well as to agile method-
ologies and behaviour-driven development. The continuous integration and delivery
practices are also described in this section. The third section describes the lab package
design — schedule, materials, pet clinic web application and more. The fourth section
describes lab execution observations and the fifth section consists of the description of
the feedback collection process, students’ feedback in graphs and feedback analysis.

4

2 Background Information
The following subsections give an overview of the Software Testing course and the main
topics of the lab package.

2.1 Course Software Testing
At the University of Tartu, Software Testing is a 6 ECTS course. It is taken by Computer
Science students of the bachelor’s programme in the fourth semester. In addition to
Computer Science students, this course can be also taken by other students who have
passed a set of compulsory prerequisite subjects [1]. As the course outline states [1],
it covers the foundations of software quality assurance by introducing different testing
strategies. The course consists of 11 labs and the following list contains the topics of
each lab:

1. Debugging

2. Basic Black-Box-Testing

3. Combinatorial Testing

4. Basic White-Box Testing

5. Automated Web-Application Testing

6. Automated Integration Testing

7. Web-Application Testing in the CI/CD Pipeline

8. Automated GUI Testing

9. Mutation Testing

10. Static Code Analysis

11. Document Inspection and Defect Prediction

2.2 Behaviour Testing
Behaviour testing is a black-box testing technique that asserts software’s external be-
haviour by running manually written test cases. It has many implementations, but the
most widely used ones are Gherkin-based implementations.

5

2.2.1 Gherkin

Gherkin allows stakeholders and developers to co-operate on the project by creating
acceptance test cases and mocking the system use [3]. It is mostly used to document
the desktop application and/or cloud service in a natural language without detailing
how software behaviour is implemented [3]. It can be achieved by writing a set of user-
stories-like "scenarios" around specific features. Those scenarios are stored in Gherkin
files with .feature extensions using a specific set of keywords — Feature, Scenario,
Given, When, Then, And, etc [3]. Every Gherkin file starts with the Feature keyword
containing the name of the feature and an optional description. It is followed by one or
many scenarios that are sharing the same template. Scenarios contain (but may not) the
context, the event and the outcome [3] — the Given, When, Then keywords accordingly.

To give a first-hand example, imagine a system that should allow the user to login.
It should handle basic use cases like logging in with valid and invalid credentials. If
logging in succeeds, the user should be redirected to the home page, and if not, user
should be notified with an error message and be able to log in again. Let us construct
two user stories based on this specification:

1. As the user, I want to be redirected to the home page on a successful login so that I
can see the content straight away.

2. As the user, I want to be notified with an error message if I have typed in a wrong
username/password so that I can try to log in again.

Since these user stories are stating preconditions, actions and business values, it is
possible to create the Gherkin file shown in Listing 1:
F e a t u r e : Logging i n

S c e n a r i o : Login wi th v a l i d c r e d e n t i a l s

Given an anonymous u s e r
When u s e r s u b m i t s v a l i d l o g i n c r e d e n t i a l s
Then u s e r i s r e d i r e c t e d t o / page # Home page

S c e n a r i o : Login wi th i n v a l i d c r e d e n t i a l s

Given an anonymous u s e r
When u s e r s u b m i t s i n v a l i d l o g i n c r e d e n t i a l s
Then u s e r i s n o t i f i e d wi th l o g i n f a i l e d message

Listing 1. Gherkin file example

The feature under test is now described better and it is easier to understand the behavior
of the functionality in different situations thanks to the steps definitions. Any business
person should be able to come up with a simple feature file using this example. However,
the real-world acceptance test engineering process does not stop here.

6

2.2.2 Cucumber

Since Gherkin is just a language, it has to be used by some framework. In this case,
Gherkin is mostly used along with Cucumber which is an open-source tool for running
acceptance tests. It was originally used by Ruby developers to create the logic behind the
scenario steps. Its first stable release (version 1.0.0) was published on 21st June 2011 [4].
After that, Cucumber implementation was ported for Java, JavaScript, C++, Python and
more programming languages.

The application areas of Gherkin and Cucumber are wide. Acceptance tests can be
applied for command-line tools, desktop software, web and mobile applications. Since
Cucumber was engineered with ease of use in mind, it allows all team members with
different technical knowledge to contribute equally to product quality assurance [5]. This
allows teams to see acceptance tests not only as a part of the testing process in agile
methodology [6], but rather a colloboration tool for everyone involved in the development
of a piece of software [5].

Let us assume that a software engineering team including developers and QA spe-
cialists had a Gherkin file from Listing 1 as well as initial user stories. To create an
acceptance test out of that, a developer has to tie each step in the scenario to the function
that will execute an appropriate command for the step logic. Since Cucumber has support
for many programming languages, let us implement tests in Python.

from behave i m p o r t g iven , when , t h e n
from app . t e s t . f a c t o r i e s . u s e r i m p o r t U s e r F a c t o r y

@given (' an anonymous u s e r ')
d e f s t e p _ i m p l (c o n t e x t) :

u = U s e r F a c t o r y (username= ' foo ' , e m a i l = ' foo@example . com ')
u . s e t _ p a s s w o r d (' b a r ')
u . s ave ()

@when(' u s e r s u b m i t s v a l i d l o g i n c r e d e n t i a l s ')
d e f s t e p _ i m p l (c o n t e x t) :

b r = c o n t e x t . b rowse r
b r . g e t (c o n t e x t . b a s e _ u r l + ' / l o g i n / ')

b r . f i nd_e l emen t_by_name (' username ') . s end_keys (' foo ')
b r . f i nd_e l emen t_by_name (' password ') . s end_keys (' b a r ')
b r . f i nd_e l emen t_by_name (' su bmi t ') . c l i c k ()

7

@when(' u s e r s u b m i t s i n v a l i d l o g i n c r e d e n t i a l s ')
d e f s t e p _ i m p l (c o n t e x t) :

b r = c o n t e x t . b rowse r
b r . g e t (c o n t e x t . b a s e _ u r l + ' / l o g i n / ')

b r . f i nd_e l emen t_by_name (' username ') . s end_keys (' foo ')
b r . f i nd_e l emen t_by_name (' password ') . s end_keys (' bar i s i n v a l i d ')
b r . f i nd_e l emen t_by_name (' su bmi t ') . c l i c k ()

@then (' u s e r i s r e d i r e c t e d t o { u r l } page ')
d e f s t e p _ i m p l (c o n t e x t , u r l) :

b r = c o n t e x t . b rowse r
a s s e r t b r . c u r r e n t _ u r l . e n d s w i t h (u r l) , \

' User i s r e d i r e c t e d t o a wrong u r l '

@then (' u s e r i s n o t i f i e d wi th l o g i n f a i l e d message ')
d e f s t e p _ i m p l (c o n t e x t) :

b r = c o n t e x t . b rowse r

a s s e r t b r . c u r r e n t _ u r l . e n d s w i t h (' / l o g i n / ')
a s s e r t ' P l e a s e e n t e r a c o r r e c t username and password ' \

i n b r . page_sou rce , ' E r r o r message i s n o t v i s i b l e on page '

Listing 2. Python implementation of Gherkin file example using Behave framework

In the Python world, Cucumber implementation is called Behave1. Backed by the
versatility of Python, it makes Behave a very powerful tool. As shown in the Listing 2,
tests are performing many actions, such as database operations, elements look-up in the
HTML DOM and pattern matching.

2.2.3 Agile Methodology and Behaviour-Driven Development

The agile software development methodology is a well-known set of rules and processes
in the modern software developer community. The core methods behind agile develop-
ment were designed and used back in 1957 and only have evolved with time [7]. The
first round of interest in iterative and incremental development (IID) methods was in
the 1970s [7]. It was a really promising replacement for the waterfall model, and by
1990s, IID was already loved by computer science students and was slowly moving to
the corporate segment [7]. In 2001, a group of seventeen developers gathered together to
compose a new set of development best practices. Later, they published the "Manifesto
for Agile Software Development" [8]:

1Behave https://behave.readthedocs.io/en/latest

8

https://behave.readthedocs.io/en/latest

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

They have also published "Twelve Principles of Agile Software" [8]. Here are some
principles that are related to software testing and quality assurance:

• Business people and developers must work together daily throughout the project.

• The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

• Working software is the primary measure of progress.

This is showing that Cucumber suits the agile software development methodology
well. As mentioned above, it allows all team members with different technical knowledge
and different responsibilities to be on the same page regarding technical and non-technical
requirements throughout the process of software development.

With time, the benefits of agile methodologies over the waterfall and many other
practices created interest in the safety-demanding segment [9]. When developing such
software following agile development rules, it was a serious challenge to ensure that
shipped software meets security requirements and passes all verifications. That was
the moment when the processes of test-driven development (TDD) and behavior-driven
development (BDD) were introduced as part of agile software development. Test-driven
development is all about covering the code with tests even before it is written. The TDD
approach can be simplified down to three points [10]:

1. Write automated test(s) that will fail at the beginning

2. Write code that implements the expected functionality and makes test pass

3. Refactor the code

Behaviour-driven development follows the same principles as TDD. However, it gives
all team members, not only developers, the oportunity to collaborate on the product
quality assurance even before the first line of code is written. It can be done already when
functional and non-functional requirements are gathered and the user stories are created.
BDD covers testing of different kinds of software — from low to high-level. Because
Cucumber allows writing acceptance tests not only for the graphical user interface but
also for REST APIs [5], command-line interfaces and more, it was a great match for

9

BDD. Over the years, more and more teams started to introduce TDD and BDD into
their software development process and used acceptance tests to assure the quality of
the frontend by interacting with HTML elements using the Selenium tool, or RESTful
backend by sending HTTP requests and asserting the expected response to the received
one [5].

10

2.3 CI/CD
Continuous integration (CI) and continuous delivery (CD) systems are known to the
agile software development community for a long time and have been evolving since
1980s [12]. However, the benefits of CI/CD were overlooked by researchers all over the
world [11]. The following subsections will give an overview of various CI/CD paradigms,
its benefits and usages in the modern world.

2.3.1 Continuous Integration

Continuous integration is not a tool — it is a practice, a methodology in software
development automation. CI is based on the idea of regularly integrating code changes
into the existing code base and running the tests [12]. The phrase "continuous integration"
was introduced by Grady Booch in 1991 in his book "Object-Oriented Analysis and
Design with Applications" and was often used in Extreme Programming publications in
the late 1990s [12]. From then on, CI started to conquer the community (especially the
agile software development community) and began to be used more often in enterprise
corporations. It was a big step further for the industry. For example, HP has reported
that continuous integration helped them reduce their development costs by 78% [11].
In 2018, JetBrains published their "The State of Developer Ecosystem"2 survey which
states that 44% of 6000 surveyed developers are using a continuous integration and/or
continuous delivery system.

In 2006, Martin Fowler [17] came up with the list of preferred practices for continuous
integration implementation [12]. The following list contains the CI practices, a summary
of every point [17] and thesis author’s thoughts about whether it is applicable for modern
software engineering processes:

• Maintain a Single Source Repository

By "Single Source Repository" Fowler means a version control system’s repository
(Git, CVS) that contains everything needed to set up the build environment —
from build scripts to third-party libraries and compilers. Nowadays, it is not so
important due to Internet speed improvements and dramatically increased size
of dependencies. The current trend is to have there only source code and some
configuration files/scripts to download third-party libraries or initialise the Docker
container, for example.

• Make Your Build Self-Testing

This is not strictly a requirement for continuous integration but rather a recommen-
dation for software architecture. It is very important to cover the code with tests,

2"The State of Developer Ecosystem in 2018" by JetBrains. https://www.jetbrains.com/resear
ch/devecosystem-2018/

11

https://www.jetbrains.com/research/devecosystem-2018/
https://www.jetbrains.com/research/devecosystem-2018/

and Fowler as a TDD evangelist recommends developers to use TDD together with
CI, stating the following point of view: "Imperfect tests, run frequently, are much
better than perfect tests that are never written at all" [17].

• Automate the Build

In this section, Fowler again emphasizes the point of view he has stated in the
Maintain a Single Source Repository section description — one should be able
to build the application from the source code on a fresh and clean machine by
executing a single command. It is a very useful recommendation not only for
continuous integration but also for the development process in general because
setting up the development environment from scratch for an existing project is
always a hassle.

• Everyone Commits To the Mainline Every Day

As the headline states, it is important that developers keep their progress in sync.
This makes it easier to resolve conflicts when changes are committed every few
hours or even more often. However, Martin Fowler seems to speak about the
master branch of the repository. The author of the thesis wants to emphasize that
for a project in production state it is important to open feature branches from
the master one in order to keep the not-ready code away from the latest and stable
version of the service. Once the feature is ready to be released, the feature branch
has to be merged into the master branch.

• Every Commit Should Build the Mainline on an Integration Machine

Since developers are most likely using different machines, the build may work on
one machine, but may not work on the other. With that said, application builds that
are running on the integration machine with the correct environment have a higher
possibility to be fully operational if the source code does not contain errors. It is
also the responsibility of the developer as the commit author to monitor the build
and fix it if fails.

• Fix Broken Builds Immediately

In this section, Martin Fowler again seems to be speaking about the situation
of committing straight to the main branch. The impact to the business can be
significantly reduced by developing in a separate branch and syncing with the main
branch at least once per day.

• Keep the Build Fast

There is no real reason to have 1-hour builds. A long build means a higher
power draw during the build in the case of self-hosted CI system or N-amount of
time reduced from the time credit of a cloud CI system. This is why a group of

12

developers came up with the "Ten-minute build" rule [12]. It states that build and
test steps should pass within 10 minutes. Having a fast build is very important so
that developers can communicate within a few minutes after the faulty code was
added to the repository and discovered. Nowadays, build time can be improved by
using a faster build machine, having heavy-weight dependencies pre-installed in
the environment, using isolated systems, such as Docker, and optimizing the build
configuration (changing the compiler, etc). Martin Fowler also suggests that if the
build takes too long, it is important to divide it into steps — the first step should be
the most important one that will deliver a notification to the development team if
the pipeline has failed. The next steps can be testing (also separated into steps or
even run in parallel) and deployment.

However, not all platforms are able to meet the ten-minute build rule, one example
is mobile application building. The compilation alone can take up to 20 minutes,
and if tests are included, we are looking at approximately an 1-hour build. There
is definitely room for improvement and the mobile app development community is
not standing still.

• Test in a Clone of the Production Environment

This requirement is not always easy to reach. Depending on the application
type, the production environment can be changeable as in the case of desktop
applications. It is not possible to test all the possible desktop environments people
will be running the application in, but developers have come up with ways to
build apps at least against different operating systems. One of the examples is
the Travis-CI system that allows to run matrix jobs (in parallel) with different
OS’es3. If your application is web-based, a cloud service or again a desktop app
but for tech-savvy users, you can go with Docker since it allows you to develop,
run tests, production environment and continuous integration system with the
same environment configuration and also distribute pre-built containers to all users
interested in it.

• Make it Easy for Anyone to Get the Latest Executable

This is the place where continuous delivery comes into play — it is very important
for users to be able to download and run the latest and stable executable. Everyone
is free to decide where they want to store it and how, but manual distribution should
not be the developer’s concern.

• Everyone Can See What’s Happening

3"Testing Your Project on Multiple Operating Systems" by Travis-CI. https://docs.travis-ci.c
om/user/multi-os

13

https://docs.travis-ci.com/user/multi-os
https://docs.travis-ci.com/user/multi-os

This section explains the importance of the dashboard that will mirror the builds
history and give a fast and clear overview of what was the state of the last build. It
is still very useful even today because that way developers, business people and
quality assurance engineers are on the same page with regard to product health.
As we already know, communication is highly important for agile methodologies.

• Automate Deployment

The final section speaks about the benefits of continuous deployment, describes
the possible problems and discusses how to resolve them. Continuous deployment
is described in details in the next section.

2.3.2 Continuous Delivery and Deployment

Continuous delivery comes side by side with continuous integration. When the testing
step is passed and the new version of the application is built, the next question arises —
how to deliver the new version of the web, mobile or desktop application? Continuous
delivery systems are answering this and many more questions.

The purpose of continuous delivery systems is to speed up and ease the process of
supplying end user with the latest build of the service (deployment to web server or
delivering the executable binary), lower the risk of faulty build due to the difference in
the environment and increase productivity by delegating heavy load and time-consuming
tasks from developers’ machines [13].

Studies show that companies can benefit from introducing continuous delivery into
their release pipeline. The benefits include, but not limited to, increased and more stable
collaboration between developers and customers, improved productivity, quality and
decreased risk of failures [13]. To give a real-world example, in 2018, the CI/CD tool
for mobile developers Nevercode claimed in their blog post that they have saved 20%
of a developer’s work day just by combining continuous integration and delivery for
the project4. Taking into account that mobile application build and distribution time
can be bigger than, for example, Docker container build time, the respective number for
general-purpose CI systems can be higher than 20%.

However, the continuous delivery and deployment pipeline is not always 100% stable.
It is highly important to have a plan B — ability to roll back any faulty deployment and
return the system to an operating state [17]. Nobody is insured from deploying a buggy
build that is partially or completely breaking the application. Redeployment can be done
by special tools or by reverting a faulty commit. Anyone from the development team
should be able to do so. Preferably, from any available device.

4"What we learned about CI/CD analysing 75k builds" by Nevercode. https://nevercode.io/blo
g/what-we-learned-about-ci-cd-tool-analysing-75k-builds

14

https://nevercode.io/blog/what-we-learned-about-ci-cd-tool-analysing-75k-builds
https://nevercode.io/blog/what-we-learned-about-ci-cd-tool-analysing-75k-builds

3 Lab Design
The following subsections give an overview of the materials created for the "Web-
Application Testing in the CI/CD Pipeline" lab session.

3.1 Lab Schedule
As the "Software Testing" course outline states, the amount of hours expected to be spent
on independent work (outside classroom) is 92 person-hours [1]. The homework task
should take approximately 5 person-hours to solve [2]. Students are working in pairs.
The "Web-Application Testing in the CI/CD Pipeline" lab schedule is as follows:

• Approx. 70 minutes for development environment preparation, introduction to
behaviour testing and continuous integration and delivery, writing the first test case
with the help of the supervisor.

• Approx. 20 minutes to overview the homework task and answer questions.

3.2 Lab Materials
The author of the thesis created the following materials for the lab "Web-Application
Testing in the CI/CD Pipeline":

• Lab instructions for students containing a specification of the system under test, the
local environment setup tutorial, the continuous integration and delivery system
guide and the example of a test case for the login page.

• Lab supervisor’s instructions containing everything from lab instructions for stu-
dents and links to test cases completely covering the system under test, an example
of test cases for the "Register" page and the list of bugs that the system under test
contains.

• The Pet Clinic web application that is available in two different versions:

– The "master" [14] version that is clean of bugs.

– The "lab" version that contains 11 bugs on different pages.

Links to lab materials can be found in Appendix I. In addition to setup instructions and
two test examples (in the case of the lab supervisor version), lab materials contain an
introduction to lab, homework description and grading schema.

15

3.3 Pet Clinic Application
The Pet Clinic "Bark!" web application is a cloud service that allows pet owners to book
the visit to the veterinarian. This service was created as part of this thesis in order to act
as a system under test for students of the Software Testing course. Besides booking the
visit, the web applications allows users to register, log in, add pets, browse the list of
vets, manage booked visits by changing the vet, visit time or date and modify personal
information.

Since the author of the thesis is a Python developer, the technologies stack was easy to
predict — Python as the main programming language using the Django web framework.
It was chosen because it is easy to set up from scratch, has good integration with SQL
databases (common for second-year undergraduate students) and template rendering
engine. The web user interface was developed using Bootstrap.

Students receive the faulty version of the Pet Clinic "Bark!" application. It contains
11 bugs that are disjoined from each other, hence are not blocking, and students can
decide in which order they are going to test the cloud service. Bugs are located at:

• Profile page — /profile

• Vets page — /vets

• Visit booking form

This information is given to students along with the service specification.

3.4 Lab Session Tasks
The lab session tasks have the following purposes:

• Guide students through the process of setting up the development environment for
an existing project to simulate the process of onboarding at the new job

• Introduce students new technologies, such as Django, Gherkin and cloud hosting
services on the example of Heroku

• Give an introduction to the homework task

The lab should start with the introduction to behaviour testing by lab supervisor. After
that, lab supervisor can show the "master" version [14] of the web application to students
and tell about the features of the application. All features are also described in lab
instructions under the "Specification" section.

After students have a clear understanding of the system under test, they can start to
set up the local development environment. To do so, they need to download Git and

16

Python (if they do not have it installed before the lab session) and application source
code. The code they will receive already contains the 11 bugs described above.

When students download the source code and install third-party dependencies, they
will need to migrate the database schema and, optionally, create a superuser and populate
the database with a sample set of veterinarians. To ensure that the setup is done correctly,
students are asked to run the web application on localhost.

The next step is to get first-hand experience with Gherkin by executing their first
test case. They are provided with the login page tests containing two scenarios — one
for logging in with valid credentials and one for logging in with invalid credentials.
It is a small and good example because it demonstrates how the Gherkin application
works (testing one software feature by stressing it under different scenarios), useful
Gherkin features like steps reusability [15] and pattern matching [16] and an example
of Python implementation. Students can conveniently copy the source code and place
it in the appropriate location mentioned in lab instructions. Before executing login
page tests, students need to download a webdriver. The system under test is configured
to use geckodriver by Mozilla Firefox5 and chromedriver by Chromium team6. If
everything is set up correctly, students can execute tests locally and tests should pass
successfully.

3.5 Homework Tasks
The homework assignment contains the following tasks:

1. Cover the cloud service with acceptance tests by creating a set of test cases using
Gherkin and the behave-django framework.

2. Familiarize with the continuous integration and continuous delivery tool Bitbucket
Pipelines.

Task 1 expects students to do a lot of manual research — they will need to go through
the documentation for different technologies, such as Gherkin, behave, behave-django,
django QuerySet API, Selenium, etc. The purpose of that is to show students the real-
world example of having to work with technology they may not be familiar with at
all.

Since the application contains 11 bugs, we expect students to have at least 11 test
cases. Test cases for login and register pages written during the lab sessions are excluded.
Students are also provided with the explanation of a "done test case":

• The test case is in appropriate feature file

5geckodriver by Mozilla. https://github.com/mozilla/geckodriver
6chromedriver by Chromium. http://chromedriver.chromium.org

17

https://github.com/mozilla/geckodriver
http://chromedriver.chromium.org

• The logic behind scenario steps is implemented in Python and placed in the
features/steps folder

• The test case is passing or it is failing due to an encountered bug

Task 2 expects students to get the understanding of basic usage of continuous integration
and delivery systems in general. Students are asked to commit every finished test case.
This will simulate the process of developing tests for the service that already contains
some functionality. CI/CD is used in this practice session because it is not covered in any
course, however, CI/CD implementation is required in the Software Project course at the
University of Tartu. When taking the Software Project course, the author of the thesis
was not aware of CI/CD in any form and this is how the idea for this bachelor’s thesis
was born. The author hopes that the lab materials and introductions to behaviour testing
solutions and CI/CD given in this thesis will provide enough explanation about general
purpose continuous integration systems so that students can make use of it during the
Software Project course and in their future projects.

3.6 Grading
The lab session is measured at 10 points maximum. The grading schema is divided into
four sections:

• 1 point for lab attendance

• 1.3 points for the usage of CI/CD system

• Maximum 4.4 points for 11 test cases (login and register pages tests are not
included)

• Maximum 3.3 points for 11 discovered bugs

Test cases for the login and register pages are not included in the 11 test cases. If a
student has less than 11 test cases, he/she will receive only 0.4 points times the number
of test cases. If a student finds less than 11 bugs, he/she will receive only 0.3 points times
the number of found bugs. If a student writes more than 11 test cases, it is still treated as
11.

18

4 Lab Execution
The Software Engineering course had eleven labs in the spring semester of 2019. The
"Web-Application Testing in the CI/CD Pipeline" was the seventh lab in a row and was
given to 4 groups on 2nd and 3rd of April.

The basics of behaviour testing were explained to students in the lecture on the
21st of March. Students who attended the lecture should be familiar with Gherkin and
Cucumber. The author of the thesis was present in 3 lab sessions out of 4 to observe the
time consumption of each lab section, possible points for improvements and to react to
any possible issues during the lab execution.

During all sessions, lab assistants started with the introduction of the core compo-
nents of the lab — behaviour testing, the system under test and CI/CD. During the first
lab session, Windows users encountered a problem with Python’s third-party depen-
dencies installation. To resolve this, they had to download the "Microsoft Visual C++
Build Tools". After this lab, the author of the thesis created a virtual machine (VM)
running Ubuntu 18.04.2 long-term support version (LTS). All students were aware of the
VirtualBox tool and were able to set up the environment and start developing quickly.
The Ubuntu virtual machine had only Python 3 since Ubuntu comes with Python 3
preinstalled. The other tools, such as Git and Heroku CLI, had to be installed manually.
This way, students using the VM had to go through the same installation process as the
students working on their local machine.

Once this problem was overcome, students proceeded with the required dependen-
cies installation and execution of the given example test case. As soon as the local
development environment and CI/CD using Bitbucket Pipelines were configured, some
students had enough time to proceed with in-class exercise — writing test cases for the
Registration page.

The lab session took roughly 90 minutes and some students stayed in the class to ask
questions from the lab assistant or the author of the thesis. At first sight, students found
this lab package interesting. They tended to ask for help and were looking forward to
know more about Gherkin and its features. However, the author of the thesis expected
students to be more proficient with Git since Software Engineering (SE) is a prerequisite
for the Software Testing course and Git is highly covered in SE.

19

5 Feedback
The following sections include an overview of the feedback received from students
and its analysis. This also includes a section about the author’s suggestions on how to
improve the existing lab based on the lab execution experience and gathered feedback.

5.1 Feedback from Students
One week after lab execution, students received the questionnaire with 7 statements and
an empty field to write additional feedback in. The statements were as follows:

1. The goals of the lab were clearly defined and communicated.

2. The tasks of the lab were clearly defined and communicated.

3. The instructions of the lab were appropriate and helpful.

4. The tools used in the lab were appropriate and useful.

5. Compared to the previous labs, the homework assignment was more difficult.

6. Overall, what I learned in the lab is relevant for working in the software industry.

7. Overall, the lab was interesting and inspiring.

The copy of the questionnaire can be found in Appendix II. The questions are aiming
to find out whether students found the lab instructions, tools and tasks appropriate
and helpful, how complex the lab was compared to previous assignments and if it was
interesting and inspiring. Students had five answer options:

• -2 — strongly disagree

• -1 — disagree

• 0 — so-so

• 1 — agree

• 2 — strongly agree

Feedback was received from 58 students which is 59% of all the students registered
to the Software Testing course (98 students in total). The following figures show the
distribution of the students’ opinion on all seven questions.

20

Figure 1. Feedback to "The goals of the lab were clearly defined and communicated"

Figure 2. Feedback to "The tasks of the lab were clearly defined and communicated"

21

Figure 3. Feedback to "The instructions of the lab were appropriate and helpful"

Figure 4. Feedback to "The tools used in the lab were appropriate and useful"

22

Figure 5. Feedback to "Compared to the previous labs, the homework assignment was
more difficult"

Figure 6. Feedback to "Overall, what I learned in the lab is relevant for working in the
software industry"

23

Figure 7. Feedback of "Overall, the lab was interesting and inspiring"

Figure 8. Summary for all questions including all lab groups

5.2 Analysis
The figure 1 shows that students mostly understood the main goals of the lab. Only 2
students in the lab group 1 and in the lab group 2 strongly disagreed with the statement.

Figure 2 also shows mostly positive feedback for the second question "The tasks of
the lab were clearly defined and communicated".

24

Regarding the lab instructions, students tend to be rather neutral. In figure 3, it is
visible that students in the lab group 1 have a stronger opinion (the "so-so" option was
not marked by any student), but the overall majority answered neutrally or positively.

Students have mixed feelings regarding the tools used in the lab. For example, over
50% of the students in lab group 2 liked the tools (marked "strongly agree" option),
however, nearly 50% of the students in lab group 1 responded negatively to this statement
(figure 4). One student from lab group 4 expressed his/her discontent regarding the usage
of Python.

As figure 5 shows, at least half of the students in each lab agreed that the homework
assignment was more difficult than previous ones. It may or may not be treated as a
positive outcome. The lab was intended to be more complex than the previous lab, but
not too difficult.

Figure 6 is showing the neutrality or agreement of the students regarding the sixth
statement — "Overall, what I learned in the lab is relevant for working in the software
industry". The number of negative opinions is peaking at around 25% in the lab group 4,
which is considered to be a good result.

Last but not least, students are mostly neutral or positive regarding the seventh
question — "Overall, the lab was interesting and inspiring". It is highly important that
students are motivated to complete the tasks even if the lab is more complex than what
they have done before.

In the "additional feedback" section, some students expressed their discontent re-
garding problems they had faced with Windows machines. Fortunately, most of them
managed to overcome the problems by using the virtual machine, but one of the student
had reported that "it was not working". However, as lab supervisors have reported, no
students contacted them regarding this issue.

Overall, the thesis author considers lab execution to be successful and the feedback
analysis supports this statement. As expected, the first lab group had a stronger opinion
as they were the first group to try out the lab materials and face issues. Other 3 groups are
more neutral in their answers, however, it is clear that everyone’s feedback is different.
This is interesting within the confines of this one particular lab session.

5.3 Future Improvements
After the lab execution, the following list of possible improvements was composed taking
into account both the students’ and lab supervisors’7 feedback:

1. Distribute the virtual machine running Ubuntu to students in advance. Make the
virtual machine usage a prerequisite for this lab.

7The feedback from lab supervisors was gathered and discussed after each lab session.

25

2. Pre-install all dependencies and tools for the lab in order to reduce the development
environment preparation time.

3. Give a more detailed overview of the Django web-framework and more examples
of database queries and database usage.

4. Give more examples of Gherkin scenarios and its implementation using Behave.

5. Reduce the number of bugs in the web application.

The Software Testing course staff may or may not take these suggestions into consid-
eration. The thesis author would definitely apply changes described in points 1 and 2.
It would significantly decrease the amount of time spent on the installation routine and
possibly increase the students’ interest in this lab.

26

6 Summary and Conclusions
The goal of this thesis was to create a lab package containing a system to be tested,
lab instructions, lab supervisor’s instructions, the grading scheme, an in-class and a
homework task. The lab package was created for the Software Testing (LTAT.05.006)
course at the University of Tartu and given to 98 students registered to the course in the
2019 spring semester.

The lab execution went smoothly with some improvements applied after the first lab.
58 students provided feedback a week after the lab execution. Although the feedback
was mostly positive, there is room for improvement. Based on the feedback of students
and lab supervisors, the list of possible changes was created and shared with the course
staff. All things considered, the created lab materials met course requirements and can
be used in the future for the Software Testing course.

27

References
[1] "Course outline (2019)" [Online]. Available: https://www.is.ut.ee/rwservl

et?oa_ainekava_info.rdf+1339229+PDF+61283862742284155392+applicati
on/pdf. [Accessed 05 03 2019].

[2] "Lecture 1 - Introduction to Software Testing" [Online]. Available:
https://courses.cs.ut.ee/LTAT.05.006/2019_spring/uploads/Main/S
WT2019_lecture01v03.pdf. [Accessed 05 03 2019].

[3] "A Natural Language Driven Approach for Automated Web API Development:
Gherkin2OAS (2018)" [Online]. Available: https://doi.org/10.1145/3184558.
3191654. [Accessed 07 03 2019].

[4] "Cucumber release list" [Online]. Available: https://github.com/cucumber/cu
cumber-ruby/releases. [Accessed 08 03 2019].

[5] Matt Wynne. 2012. The Cucumber Book: Behaviour-Driven Development for Testers
and Developers. Pragmatic Bookshelf, Raleigh, NC.

[6] "What is Acceptance Testing in Agile" [Online]. Available: https://www.testin
gexcellence.com/acceptance-testing-agile. [Accessed 09 03 2019].

[7] "Iterative and Incremental Development: A Brief History" [Online]. Available:
https://doi.org/10.1109/MC.2003.1204375. [Accessed 09 03 2019].

[8] "Manifesto for Agile Software Development" [Online]. Available: http://agilem
anifesto.org. [Accessed 09 03 2019].

[9] "Combining STPA and BDD for safety analysis and verification in agile develop-
ment (2018)" [Online]. Available: https://doi.org/10.1145/3183440.3194973.
[Accessed 10 03 2019].

[10] Kent Beck. 2000. Test-Driven Development By Example. Addison-Wesley Profes-
sional, Boston, MA.

[11] "Understanding and improving continuous integration (2016)" [Online]. Available:
https://doi.org/10.1145/2950290.2983952. [Accessed 12 03 2019].

[12] "Continuous Integration! You Keep Using Those Words. I Do Not
Think They Mean What You Think They Mean. (2019)" [Online]. Avail-
able: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lare
port/LA-UR-19-20745. [Accessed 12 03 2019].

28

https://www.is.ut.ee/rwservlet?oa_ainekava_info.rdf+1339229+PDF+61283862742284155392+application/pdf
https://www.is.ut.ee/rwservlet?oa_ainekava_info.rdf+1339229+PDF+61283862742284155392+application/pdf
https://www.is.ut.ee/rwservlet?oa_ainekava_info.rdf+1339229+PDF+61283862742284155392+application/pdf
https://courses.cs.ut.ee/LTAT.05.006/2019_spring/uploads/Main/SWT2019_lecture01v03.pdf
https://courses.cs.ut.ee/LTAT.05.006/2019_spring/uploads/Main/SWT2019_lecture01v03.pdf
https://doi.org/10.1145/3184558.3191654
https://doi.org/10.1145/3184558.3191654
https://github.com/cucumber/cucumber-ruby/releases
https://github.com/cucumber/cucumber-ruby/releases
https://www.testingexcellence.com/acceptance-testing-agile
https://www.testingexcellence.com/acceptance-testing-agile
https://doi.org/10.1109/MC.2003.1204375
http://agilemanifesto.org
http://agilemanifesto.org
https://doi.org/10.1145/3183440.3194973
https://doi.org/10.1145/2950290.2983952
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-19-20745
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-19-20745

[13] "Perceived Benefits of Adopting Continuous Delivery Practices. (2016)" [On-
line]. Available: https://doi.org/10.1145/2961111.2962627. [Accessed 12 03
2019].

[14] "Pet Clinic "Bark!"" [Online]. Available: https://bark-pet-clinic.herokuap
p.com. [Accessed 17 03 2019].

[15] "Reusable Cucumber Steps" [Online]. Available: https://collectiveidea.c
om/blog/archives/2011/06/09/reusable-cucumber-steps. [Accessed 17 03
2019].

[16] "Cucumber Expressions" [Online]. Available: https://docs.cucumber.io/cuc
umber/cucumber-expressions. [Accessed 17 03 2019].

[17] "Continuous Integration" [Online]. Available: https://www.martinfowler.com
/articles/continuousIntegration.html. [Accessed 17 03 2019].

29

https://doi.org/10.1145/2961111.2962627
https://bark-pet-clinic.herokuapp.com
https://bark-pet-clinic.herokuapp.com
https://collectiveidea.com/blog/archives/2011/06/09/reusable-cucumber-steps
https://collectiveidea.com/blog/archives/2011/06/09/reusable-cucumber-steps
https://docs.cucumber.io/cucumber/cucumber-expressions
https://docs.cucumber.io/cucumber/cucumber-expressions
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html

Appendix

I. Lab Materials

Students Lab Materials
• Lab instructions "Lab 7: Web Application Testing in the CI/CD Pipeline", PDF file

https://courses.cs.ut.ee/LTAT.05.006/2019_spring/uploads/Main/SWT
2019-lab07-20190402.pdf

Lab Supervisor Materials
• Lab Supervisor instructions "Lab 7: Web Application Testing in the CI/CD

Pipeline", PDF file

For confidentiality reasons, lab supervisor materials are not made available in the thesis,
but will be made available on request.

Pet Clinic "Bark!" Web Application Source Code
• Pet Clinic "Bark!" Web Application (version intended for testing), ZIP file

https://dyaz2zepqbyns.cloudfront.net/lab-package-full.zip

• Pet Clinic "Bark!" Web Application (faultless version), ZIP file

For confidentiality reasons, source code of the faultless version is not made available in
the thesis, but will be made available on request.

30

https://courses.cs.ut.ee/LTAT.05.006/2019_spring/uploads/Main/SWT2019-lab07-20190402.pdf
https://courses.cs.ut.ee/LTAT.05.006/2019_spring/uploads/Main/SWT2019-lab07-20190402.pdf
https://dyaz2zepqbyns.cloudfront.net/lab-package-full.zip

II. Feedback Questionnaire

31

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Andri Jasinski,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Lab Package: Automated Testing Using CI/CD,

supervised by Dietmar Pfahl.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Andri Jasinski
06/05/2019

32

	Introduction
	Background Information
	Course Software Testing
	Behaviour Testing
	Gherkin
	Cucumber
	Agile Methodology and Behaviour-Driven Development

	CI/CD
	Continuous Integration
	Continuous Delivery and Deployment

	Lab Design
	Lab Schedule
	Lab Materials
	Pet Clinic Application
	Lab Session Tasks
	Homework Tasks
	Grading

	Lab Execution
	Feedback
	Feedback from Students
	Analysis
	Future Improvements

	Summary and Conclusions
	References
	Appendix
	I. Lab Materials
	II. Feedback Questionnaire
	III. Licence

