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Generative Dependency Language Modeling Using Recurrent Neu-
ral Networks

Abstract: This thesis proposes an approach to incorporating syntactical data to the task
of generative language modeling. We modify the logic of a transition-based dependency
parser to generate new words to the buffer using the top items in the stack as input. We
hypothesize that the approach provides benefits in modeling long-term dependencies.
We implement our system along with a baseline language model and observe that our
approach provides an improvement in perplexity scores and that this improvement is
more significant in modeling sentences that contain longer dependencies. Additionally,
the qualitative analysis of the generated sentences demonstrates that our model is able to
generate more cohesive sentences.

Keywords: generative language modeling, recurrent neural networks, natural language
processing, dependency parsing

CERCS: P176 Artificial intelligence
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Süntaktilisi sõltuvusi kasutav generatiivne keele modelleerimine re-
kurrentsete tehisnärvivõrkudega

Lühikokkuvõte: Käesolev magistritöö esitleb meetodit süntaktilise infot kasutamiseks
generatiivses keele modelleerimises, kus sõltuvusparseri loogikat laiendatakse, et jooks-
valt parseri puhvrisse uusi sõnu genereerida. Selleks kasutatakse sisendina vastaval hetkel
pinu tipus olevaid sõnu. Püstitame hüpoteesi, et antud lahendus annab eeliseid kaugete
sõltuvuste modelleerimisel. Me implementeerime pakutud keelemudeli ja lähtemudeli
ning näeme, et välja pakutud meetod annab märkimisväärselt parema perplexity skoori
tulemuse ja seda eriti lausete puhul, mis sisaldavad kaugeid sõltuvusi. Lisaks näitab
keelemudelite abil loodud lausete analüüs, et välja pakutud mudel suudab lähtemudeliga
võrreldes luua terviklikumaid lauseid.

Võtmesõnad: generatiivne keele modelleerimine, rekurrentsed tehisnärvivõrgud, loomu-
liku keele töötlus, sõltuvusparsimine

CERCS: P176 Tehisintellekt
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1 Introduction

A generative language model is a crucial part of natural language processing applications
that contain text generation functionality, for example machine translation systems or
conversational interfaces. As humans, we are able to understand and create structurally
complex sentences that include long-term dependencies between words, but this may
pose a challenge for language models. Before the recent emergence in the popularity of
using neural networks in natural language processing tasks, statistical n-gram language
models were very limited in modeling longer sequences and thus unaware of long-term
dependencies.

In the past 20 years, there have been various research efforts to solve the problem
of modeling long-term dependencies by using syntactically annotated corpora and mod-
eling sentences as their dependency structures instead of word sequences [4, 30, 11].
The aforementioned corpora are primarily used for dependency parsing - the task of
automatically inferring the syntactic dependency tree for a sentence.

With the increasing popularity of neural language models, the issue of modeling
long-term dependencies has been addressed by using different recurrent neural network
structures such as long short-term memory (LSTM) units [12] which are designed for
modeling long-term dependencies. However, as Linzen et al. [18] have shown, even
recurrent neural networks are not able to fully capture long-term dependencies and
therefore it is still relevant to find effective ways to improve language modeling and one
option is to take advantage of syntactically annotated corpora.

In this thesis we propose a novel approach for training language models on syntacti-
cally annotated data. The proposed approach is inspired by the logic of transition-based
dependency parsing applications, the BIST parser [15] in particular, and extends the
dependency parser to fit the task of language modeling. We compare our approach with
other relevant research efforts and implement our proposed language model alongside a
simple LSTM language model baseline to evaluate its potential benefits.

We are particularly interested to see whether we can notice any advantages in mod-
eling long-term dependencies. We hope that thanks to the transition-based dependency
parser logic which will be incorporated into our model, we are able to eliminate irrelevant
words from our context of predicting upcoming words.

We find that our solution is able to outperform the baseline model and that this
improvement is more significant when modeling sentences with long-term dependencies.
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Additionally, when comparing the sentences generated by each model, we can also
observe advantages over the baseline model.

1.1 Structure of the Thesis

This section presents an overview of how this thesis is structured. The thesis contains the
following chapters:

• Chapter 1 provides an overview of this thesis.

• Chapter 2 gives a theoretical overview of the concepts and methodologies that are
relevant to our proposed solution.

• Chapter 3 describes our proposed approach of transition-based language modeling
and the design of our model.

• Chapter 4 provides an overview of other relevant research on this topic and how it
relates to our solution.

• Chapter 5 describes our implementation of the proposed solution as well as the
baseline solution together with all preprocessing steps and parameters.

• Chapter 6 presents our results and contains their analysis.

• Chapter 7 summarizes the thesis with a conclusion section which also provides
suggestions for future research on this topic.
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2 Background

This section provides a technical overview of neural networks, language modeling and
dependency parsing.

2.1 Neural Networks

Artificial neural networks are computational systems which mimic the biological brain
and nervous system. The following overview is based on the tutorial by Yoav Gold-
berg [9].

Feedforward Neural Networks

Similarly to a biological brain that consists of neurons or nerve cells, a neural network is
also made up of cells. These computational units can have multiple inputs, each with its
own weight parameter, and the output of each cell can be fed into other cells as inputs.
Inside the cell, each input is multiplied by its weight, then these values are summed and
applied a non-linear activation function.

Figure 1. Scheme of a fully connected feed-forward neural network with two hidden layers. Each
circle represents a cell and each arrow has been assigned a weight. The

∫
symbol inside the cells

refers to the sigmoid activation function (1/(1 + e−x). The image is taken from Goldberg [9].
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Feed-forward neural networks, as illustrated on Figure 1, consist of an input layer, an
output layer and a number of hidden layers between them. Networks which have more
than one hidden layer are considered deep neural networks. In case all cells in one layer
are connected to all the cells in the next one, the layer is considered to be fully connected.
In addition, a layer can have a bias term, which is an additional constant added before
the activation function is applied. This can be achieved by adding an additional input
cell to the layer, which has no inputs and has a value of 1.

The simplest feed-forward neural network is the perceptron:

NNPerceptron(x) = xW + b

In this linear function, x is the input vector, W is the weight matrix and b is the bias
term. This can be expanded by adding hidden layers to achieve a multi-layer perceptron
(MLP):

NNMLPn(x) =y

h1 =g1(xW 1 + b1)

...

hn =g2(hn−1W n + bn)

y =hnW n+1

In this MLP, n is the number of layers, h is the output of the respective layer, g is the
layer’s activation function and y is the final output.

Training Neural Networks

The weights, biases and possibly other matrices of a neural network are collectively
referred to as the parameters of the network. In order to achieve the desired output, these
randomly initialized network parameters must be tuned. Other variables, such as layer
dimensions, number of layers, etc. are collectively referred to as hyperparameters and
these are set before the model is trained.

The first step of the training process is forward propagation, where numerous samples
are passed through the network. The outputs are then compared to the expected results
using a loss function which illustrates the differences between the two. The loss value is
0 when the output is correct and positive in all other cases.
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The forward propagation is followed by backpropagation [31] where the errors are
propagated backwards through the network. An optimization method is then used to tune
the parameters to minimize the loss value. This process is repeated until the optimal
model parameters are achieved.

Deep neural networks can experience the vanishing or exploding gradient problem.
This refers to cases where the gradient is moving close to zero or increasing while
backpropagating through the network. The deeper the network, the more relevant the
issue becomes.

In case the trained model is able to work well with the training data but not with
new and unseen data, the model has been overfitted. To monitor the performance of the
model, the model can be periodically tested with a validation or development dataset
and in case the accuracy on that set stops improving, training can be stopped early. The
final performance of the model is measured on a third test dataset. There are also other
regularization methods such as using dropout - a technique where certain nodes within
the network can be randomly ignored during training to reduce overfitting [33].

Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks dedicated to modeling
sequential data. This is possible thanks to their hidden memory state which is an output
of an RNN cell and which is used as an input to the same cell at the next time step as
illustrated on Figure 2.

Figure 2. Scheme of a recurrent neural network with a compact representation on the left and an
unfolded representation on the right. Each of the blue rectangles represents an RNN unit. At each
time step t, the current hidden state is calculated using the input xt and the previous hidden state
xt−1 which in turn is passed to the next time step. The output at time step t is yt.

Unlike feedforward neural networks which perform each calculation independently
without any context of previous or upcoming inputs, the output of RNN cells at each
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time step is affected by the previous inputs via the previous hidden state. This makes
RNNs the preferred method for solving tasks that analyze sequences, such as movement
tracking and a variety of natural language processing tasks like language modeling,
machine translation, etc.

In recurrent networks, the backpropagation is done through the previous time steps
as if the unfolded graph is a single deep network. This process is called backpropagation
through time [35]. This, however, makes RNNs very susceptible to the vanishing gradient
problem which in turn makes RNNs inefficient for modeling long-term dependencies.

Long Short-Term Memory Networks

Long short-term memory (LSTM) [12] networks are a type of RNN designed to overcome
the vanishing gradient problem for modeling data with long-term dependencies.

Figure 3. A scheme of an LSTM unit.1

An LSTM network is made up of LSTM units or cells as depicted on Figure 3. When
a simple RNN unit functions as a single layer, an LSTM unit has four separate neural
network layers with separate weights and biases for each. Each unit contains a forget
gate, an input gate and an output gate. The cell state Ct is passed on from cell to cell and
serves as the memory. The input at the current time step xt and the output at the previous
time step ht−1 are also passed to the cell as inputs.

The forget gate ft is responsible for "forgetting" or "remembering" items in the cell
state vector and uses a sigmoid function to do such filtering. The cell state is further

1The image is taken from http://colah.github.io/posts/2015-08-Understanding-LSTMs
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modified by an input gate it which is responsible for modifying the cell state based on the
input and previous output. The tanh function 2/(1 + e−2x)− 1 provides new candidate
values C̃t which are again filtered by a sigmoid layer and added to the cell state vector.
The output gate ot determines the output by taking the updated cell state and the input,
and applying a tanh layer to the first and a sigmoid filter to latter.

Thanks to this structure with cell states and gates, the gradients can remain high
even with long sequences and therefore LSTMs are particularly useful for many natural
language processing tasks which deal with long sentences with long-term syntactic or
other dependencies.

Bidirectional Recurrent Neural Networks

Bidirectional recurrent neural networks (BRNN) are a variant of RNNs which have two
layers of RNN units that process the input data in different directions. With traditional
RNNs, the output at each time step only depends on the current and previous inputs,
however, no future context is considered. In a BRNN illustrated in Figure 4, the output

Figure 4. A bidirectional neural network unfolded where at each time step, the forward RNN unit
is passed the current input xt and the state of the previous RNN sft−1 and the backward RNN unit
is passed the current input xt and the state of the previous RNN sbt+1 which has processed the
next input xt+1

at each time step uses two RNN units. One unit has already seen previous inputs by
processing the input in a forward order and the other one has seen future inputs by
processing the input in a reversed order. The outputs of these RNN units are afterwards
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concatenated into a single output. This allows the model to use the context of both
past and future inputs and their potential dependencies. The bidirectional method is not
limited to simple RNNs but can be applied to all types of RNN units, including LSTMs
to form a bidirectional LSTM network.

BRNNs are therefore a popular choice for modeling data which includes dependencies
in both directions and where future events are not only conditioned by the previous input.
Natural language processing is once again a good example of a potential use case.
However, it should be noted that BRNNs are not suitable for processing real-time data
streams where the future inputs are not known at the time of processing.

2.2 Language Modeling

Language modeling is the task of assigning probabilities to tokens (words and punctuation
marks) or character sequences, for example to sentences or to words occurring after a
given sequence. The following overview on language modeling is based on Jurafsky and
Martin [13].

There are two main types of language modeling implementations. Discriminative
language modeling is used only for text evaluation purposes to see how well it matches
the model. Examples of different applications where such models can be used include
language detection or checking which domain the text matches, for example whether it is
a legal, technical or medical text. The second type of language modeling is generative and
this is used in applications that deal with text creation, for example machine translation,
conversational interfaces or generating automatic image captions.

The most common evaluation metric for language models is perplexity:

PP = 2
1
M

∑m
i=1 log2 p(xi)

In this formula, M is the total number of words in the test set, m is the number of
sentences and p(xi) is the probability of the current sentence xi. The lower the perplexity,
the better the model is able to predict upcoming words as it is the inverse of the probability
which has been normalized by the number of items in the test set, which in this case
is the number of words. The intuition behind this value is to illustrate the number of
potential options for the upcoming word.

In addition to perplexity, extrinsic evaluation methods can be used by integrating the
language model to another application which uses language modeling and comparing the
models by evaluating the metric by which that application is evaluated.
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Statistical Language Modeling

Statistical language modeling is one of the most common approaches of language
modeling. With this approach, the probability of the upcoming word xt at the current
time step t is determined by how many times it has appeared in the context of the words
that preceded it:

P (xt|xt−1, ..., x0) =
C(xt, xt−1, ..., x0)

C(xt−1, ..., x0)

As words can occur in different and unique contexts, counting the occurrences in the
context of all the preceding words is not feasible. This can, however, be done using the
Markov assumption according to which the approximate probability of the future state is
only dependent on the current state and not the past [20]:

P (xt|xt−1, ..., x0) ≈ P (xt|xt−1)

A language model that only uses the previous word to predict the next one is referred
to as a unigram model, but this approach can be expanded to n-gram language models
where the probability of the next word xt is calculated using n previous words:

P (xt|xt−1, ..., x0) ≈ P (xt|xt−1, ..., xt−n)

Using n-gram models, the probability of an entire sequence with length i would be:

P (x1, x2, ..., xi) ≈
∏
t

P (xt|xt−1, ..., xt−n)

Such language models are able to perform relatively well on common sequences with
length n or less, but are unable to take into consideration longer dependencies which
exist in most languages. For example, in the following sentence, an n-gram model where
n = 3 would not be able to predict the correct grammatical gender of the pronoun her:

Mary was walking home when the bus hit her.

In addition, statistical language models can run into the issue of data sparsity where
all the potential word sequences do not exist in the training data and thus such sequences
will have zero probability. This is because n-gram models are unable to generalize and
take into account similarities between different words and therefore they disregard similar
contexts. There are, however, various smoothing algorithms to alleviate the issue of data
sparsity where the n-gram probabilities are modified to assign non-zero probabilities to
unseen n-grams by reducing the probabilities of more frequent sequences.
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Neural Language Modeling

Neural language modeling is another common approach to language modeling. These
models are able to generalize to solve the issue of data sparsity. Instead of representing
each word as a discrete entity, words are represented by continuous vector representations
which are called embeddings. These embeddings can either be learned separately by a
dedicated application or randomly initialized and tuned among other model parameters
during training. Thanks to this, similar words often end up having similar embeddings.
This helps the model to generalize and predict unseen sequences of words that have
appeared in other contexts.

In addition, neural language models perform better in learning long-term dependen-
cies thanks to their recurrent implementations such as LSTMs [34].

2.3 Dependency Parsing

Dependency parsing is the task of finding the syntactic dependency tree of a sentence as
can be seen on Figure 5. The following overview is based on Jurafsky and Martin [13].

Figure 5. A projective dependency tree of a sentence, where arrows represent dependency arcs
and labels on them the dependency relation types.

A dependency tree illustrates the syntactic structure of a sentence by describing the
directed relations between the tokens. A dependency tree consists of a number of directed
arcs and nodes which represent the tokens in the sentence and an additional root node.
All arcs represent a dependent to head relationship between two nodes. There is one
incoming arc per node from its head with the exception of root nodes which do not have
any incoming arcs. Each of the arcs has a label that signifies the type of relation between
the nodes.

Dependency trees can be either projective or non-projective. In projective trees, there
is always a path from the head to all nodes between the head and the dependant. In this
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case the arcs in the tree never cross each other. However, in many languages, especially
in ones with flexible word order, non-projective trees which do not have this constraint
can occur. An example of such tree can be seen on Figure 6.

Figure 6. A non-projective dependency tree of a sentence.

Dependency parsers can be trained on treebanks which are corpora annotated with
dependency information. The best-known source of such treebanks is the Universal
Dependencies (UD) project [28] which has created a standard for treebank annotations
that can be applied for all languages. For example, the dependency tree in Figure 5 can
be represented using the revised version of the UD format, also known as the CoNLL-U
format, as shown in Table 1.

ID FORM LEMMA UPOS XPOS FEATS HEAD DEPREL DEPS MISC
1 She she PRON PRP Case=Nom|Gend... 2 nsubj _ _
2 crossed cross VERB VBD Mood=Ind|Tense... 0 root _ _
3 the the DET DT Definite=Def|Pro... 4 det _ _
4 street street NOUN NN Number=Sing 2 obj _ _
5 . . PUNCT . _ 2 punct _ _

Table 1. An annotated sentence in the CoNLL-U format.

The CoNLL-U format has ten fields for each token - its index number (ID), the token
itself (FORM), its lemma (LEMMA), its universal part-of-speech tag (UPOS), a language-
specific part-of-speech tag (XPOS), a list of morphological features (FEATS), the ID
of its head (HEAD), the dependency relation label (DEPREL), enhanced dependency
information (DEPS) and other information (MISC). There are 37 standard dependency
relation labels which have been derived from the relations described by de Marneffe et
al. [7]. These include nmod for nominal modifiers, aux for auxiliaries, det for determiners,
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etc. Thanks to the standardized CoNLL-U format, many parsers are trained to take
advantage of part-of-speech tags or morphological feature information during parsing [15,
29].

There are two main evaluation metrics for evaluating dependency parsers. The labeled
attachment score (LAS) is the accuracy of correct arcs with the correct relation type
label. The unlabeled attachment score (UAS) is the accuracy of correct arcs without
considering the dependency relation type.

Transition-Based Parsing

Transition-based parsing [6] is a simple yet efficient method of dependency parsing. It
is an extension of shift-reduce parsing which was developed in 1972 [1] and used on
programming languages. In transition-based parsing, the sentence is processed with
various predefined operations that result in different configurations. A configuration c
consists of a stack σ, buffer β and relations T .

The most common transition-based approaches include the arc-standard [27], arc-
eager [26] and arc-hybrid [17] methods. We describe the arc-hybrid approach of
transition-based parsing which has three possible operations to parse all items in the
buffer. These operations can be defined as:

SH (σ, xi|β, T )⇒ (σ|xi, β, T )
LA (σ|xi, xj|β, T )⇒ (σ, xj|β, T ∪ {(xj → xi)})
RA (σ|xi|xj, β, T )⇒ (σ|xi, β, T ∪ {(xi → xj)})

Shift (SH) will move the first item of the buffer to the stack. Left-Arc (LA) will assign
the first word in the buffer as the head of the top word in the stack and remove the latter
from the stack. Right-Arc (RA) will assign the second word in the stack as the head of
the top word and remove the latter.

The initial transition-based parser configuration with the arc-hybrid approach can be
defined as:

c = ([], [x0, ..., xn], [])

where x0 refers to the root and xn to the last word of the sentence. The parser actions
are performed until the terminal condition where the buffer is empty and the stack only
contains the root node:

c = ([x0], [], T )

16



Stack Buffer Operation Relation
root She crossed the street . SH

root She crossed the street . SH
root She crossed the street . LA She← crossed

root crossed the street . SH
root crossed the street . SH

root crossed the street . LA the← street
root crossed street . SH

root crossed street . RA crossed→ street
root crossed . SH

root crossed . RA crossed→ .
root crossed RA root→ crossed

root -

Table 2. A sentence parsed using the arc-hybrid approach.

The transition-based parsing approach is, however, is unable to produce non-projective
parse trees. This can impose a constraint in languages with flexible word order.

A step-by-step example of arc-hybrid operations applied on a sentence can be seen in
table 2.

Graph-Based Parsing

Another common approach to dependency parsing is graph-based parsing. With this
approach, the goal is to find the highest-scoring parse tree as if it were a directed graph.
Unlike transition-based parsing, graph-based parsing is able to produce non-projective
trees.

The optimal graph is selected using graph theory methods (for example the maximum
spanning tree algorithm) and processed further to make sure a valid parse tree is produced
(for example by removing cycles).

BIST Parser

BIST parser [15] is a dependency parser implemented in Python which uses the DyNet [24]
neural network toolkit. The parser uses bidirectional LSTMs (BLSTMs) and has both a
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transition-based as well as a graph-based implementation, however, the latter will not be
regarded in this overview.

Figure 7. The scheme of the transition-based version of BIST parser. The current state of the stack
and buffer are shown on the top and the neural network is on the bottom. The implementation
actually uses two layers of BLSTMs even though only one is depicted. The figure has been taken
from Kiperwasser and Goldberg [15].

The scheme of the arc-hybrid transition-based parser can be seen in Figure 7. The
parser uses the BLSTMs to create a contextual vector representation for each token using
the concatenation of its word and part-of-speech tag embeddings as input.

At each parsing step, the vectors for the top three tokens in the stack and the first
word in the buffer are concatenated and scored using two multi-layer perceptrons. One
MLP is used to determine the best scoring valid parsing operation and the other MLP is
used to pick the best scoring dependency label.
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3 Transition-based Language Model

We propose a generative dependency language model that uses the logic of an arc-hybrid
transition-based dependency parser while generating new words to the buffer using the
top items in the stack as input. We hope that when the parser removes words from the
stack, we are also removing irrelevant words from our prediction context and improving
our ability to model long-term dependencies as the tokens removed from the stack
cannot be the head of any upcoming tokens that we generate. Due to its similarities
to transition-based parsers, we will be referring to this solution as the transition-based
language model.

Our transition-based language model (TLM) will be based largely on the existing
implementation of BIST parser. The model will process word embeddings in each
sentence using LSTMs to create contextual encoded vector representations for each
token as can be seen in Figure 8. Unlike in BIST parser, these LSTMs will not be
used bidirectionally due to the constraints of generative language modeling where the
upcoming tokens are not available to the model while the current token is being processed.
The word embeddings are randomly initialized lookup parameters and tuned with other
model parameters during training.

Figure 8. Illustration of how LSTMs are used in the proposed language model to transform the
embedding xi of each word i to its encoded representation vi.

The transition-based language model contains functionality for dependency parsing
and for token generation, and the neural network parts dedicated to these tasks are
illustrated in Figure 9. The token generation functionality will be used whenever the
stack is empty, therefore after each Shift operation, until the end-of-sentence marker
(<EOS>) is generated. The latter also serves as the root node in the tree. The parser
functionality is used at all other times until the terminal configuration is reached. All
parts of the model are trained together.
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Figure 9. Illustration of the transition-based language model with the part of the network dedicated
to generating new words on the left and the part responsible for scoring parsing actions on the
right.

The parser functionality is similar to BIST parser as it takes the vectors of the top
three stack items and the first item in the buffer and uses a multi-layer perceptron to
opt for the highest scoring parsing action. However, when BIST parser looks for the
best parsing action and the best dependency label, our implementation disregards the
dependency label completely.

For the token generation part, we tested two different variations of the model. In
the first approach (TLM-MLP), the generation functionality is similar to the parsing
functionality and uses the top items in the stack and an MLP to predict the upcoming
word. In the second approach (TLM-LSTM), an LSTM is used instead of an MLP to
produce the predictions for new tokens. Therefore, with TLM-MLP, the output depends
only on the current parser configuration whereas with TLM-LSTM the configurations
during previous time steps also affect the token prediction. In both variants, a softmax
function is applied to convert the outputs to a probability distribution over the entire
vocabulary using the following formula to find the probability of each element yi where
y is the vector of scores and y = (y1, ..., yK):

eyi∑K
j=1 e

yj

It should be noted, however, that this approach limits us from implementing several
techniques that are used in language modeling. For example, the tokens cannot be split
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into smaller units because the syntactic annotation and parser transitions can only be
used on the token level. In addition, the approach is unsuitable in applications which do
not deal with full sentences but shorter phrases.
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4 Related Work

This section provides an overview of some of the previous research that has explored
different methods of using syntactic information to improve the quality of language
modeling and explains how they compare with our proposed approach.

4.1 Statistical Dependency Language Modeling

There has been a considerable amount of research emerged from the need to overcome
the constraints of the n-gram model which is unable to predict words based on context
beyond the n-gram’s reach.

One of the first attempts of creating language models that use syntactic information
date back to 1997 when Chelba [4] developed a language model that would, similarly to
our proposed approach, process a sentence left to right either predicting upcoming words
based on the parse or parsing existing words using the logic of a transition-based parser.
The goal of this was to filter out irrelevant past words by knowing their syntactic structure.
The initial experiments proved to perform better than the baseline n-gram models when
comparing perplexity scores. In 2000, this idea was successfully developed further by
Chelba and Jelinek [5] who applied the same type of model to a speech recognition
application. This use case was also the reason why it was considered important to process
the sentence left to right.

In 2010, Popel and Mareček [30] proposed a different solution for improving statis-
tical language models where each word is predicted using its parent (head) or parent
and grandparent. Gubbins and Vlachos [11] have also proposed a similar solution for
sentence completion where each word is conditioned by its entire ancestor sequence.

4.2 Neural Dependency Language Modeling

Although neural language models, especially the ones using RNNs, are able to use
context beyond an n-gram’s reach, Linzen et al. [18] have shown that LSTMs are not able
to fully capture syntax-sensitive dependencies. Therefore, using syntactic dependencies
to improve language modeling has been relevant even with the increasing utilization of
recurrent neural networks.

Like Gubbins and Vlachos did in 2013 with n-gram models [11], Mirowski and
Vlachos [22] implemented a generative RNN language model to be used for sentence
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completion where words were also conditioned by their ancestor sequences and were
successfully able to outperform baseline RNN language models. Similarly, Zhou et
al. [38] have proposed another generative language model by implementing top-down
tree generation where the tree is later flattened to form a sentence as the decoder of their
conversational sentence generation application.

As LSTMs are designed for modeling sequences, Zhang et al. [37] developed a
different LSTM structure called TreeLSTM for predicting trees. In their approach, the
probability of each node was conditioned by its subtree. As a result, they implemented
a generative language model which was tested in a sentence completion application.
Similarly, Alvarez-Melis and Jaakkola [2] have also proposed a new neural network
architecture to decode encoded vector representations into trees. Their implementation
of a generative language model is a doubly-recurrent network which models both the
relationships between head and dependant nodes and between siblings.

In 2015, Buys and Blunsom [3] proposed a feed-forward generative parser which
used the logic of a transition-based arc-standard parser, but generated new words with
their part-of-speech tags with every shift operation. To do this, they used the context of
the top four items in the stack and the left and right dependants of the top two stack items.
This implementation is the only neural language model that is somewhat similar to our
proposed approach as it processes the data left-to-right and uses the logic of a transition-
based parser, however, our approach uses recurrent neural networks to generate encoded
vector representations for all tokens to better fit the sequential nature of linguistic data. In
addition, in our approach the dependants of the top stack items are not used during token
generation, because a token that has already been removed from the stack cannot be the
head of any upcoming tokens and therefore we consider these words to be irrelevant for
predicting new tokens.
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5 Implementation and Experiments

This section describes the implementation of a baseline language model and the transition-
based language model, and details about the experiments. The software solutions were
implemented using the DyNet neural network library [24] in Python3. As input, both
implementations expect files in the CoNLL-U format.

5.1 Baseline Language Model

For the baseline implementation, we opted for the simplest possible solution using
LSTMs. The baseline implementation considers each sentence as a list of tokens which
can be either words, punctuation marks or the token to represent the end of a sentence.

The neural network used for language modeling consists of LSTM units that are used
to predict the next token using the current token as input. At each step, an output vector
with size equal to the vocabulary size is produced and a softmax function is applied to
this vector in order to provide the target probability distribution across the vocabulary
(see Figure 10). For generative language modeling, the model picks a token using this

Figure 10. Illustration of the baseline language mode where xi is the token embedding of the
word i.

probability distribution and this is done at each time step until the end-of-sentence token
is generated.

The model contains a randomly initialized lookup table to provide embeddings for
all tokens in the vocabulary which are used as LSTM inputs. These embeddings were
tuned during training together with other model parameters.

Using bidirectional LSTMs for the baseline model was also not an option as the

24



objective of having a generative language model prohibits us from knowing the upcoming
words and processing the sentence backwards.

5.2 Dataset and Preprocessing

To train and evaluate the proposed language model, we used the Wikitext-2 [21] corpus
which contains a collection of Wikipedia articles. The corpus has a raw and a prepro-
cessed version. Both versions were tokenized, but in the preprocessed version infrequent
words were replaced with <UNK> tokens.

In order to train the transition-based language model, syntactic annotations had to
be added to the corpus. Due to this, we used the raw version of the corpus as the <UNK>

tokens are not suitable for generating the syntactic annotation.
The text was truecased using the Moses truecasing script [16] and split into sentences

using the sentence tokenizer in the NLTK library [19] in Python. In addition, the
tokenization format of the corpus was slightly changed to fit our preprocessing pipeline.
For example, hyphenated words that were originally split into three parts were united (e.g.
guest @-@ starring was changed to guest-starring) and titles that contained a number
leading and trailing equals signs that would not normally be seen in the CoNLL-U
format were stripped from these symbols (e.g. = = Filmography = = was changed to
Filmography).

The information about training, development and evaluation datasets can be seen in
Table 3.

Training Development Testing
Sentences 81 670 8 635 9 828

Tokens 1 976 819 205 930 231 703

Table 3. The size of training, development and testing sets of Wikitext-2 used in the experiments.

The syntactic annotation was added by using the transition-based version of the BIST
parser 2 [15]. In order to do so, the corpus had to be annotated with part-of-speech tags
which was done using the MarMoT morphological tagger 3 [23]. Both of these tools

2BIST parser: https://github.com/elikip/bist-parser
3MarMoT tagger: http://cistern.cis.lmu.de/marmot/bin/CURRENT/
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were trained on the Universal Dependencies English Web Treebank [32], which is the
largest treebank in English. The BIST parser model was trained for 30 epochs and the
model with the highest unlabeled attachment score (UAS) of 98.20% on the development
set was chosen. UAS on the test set for this model was 87.34%. The trained BIST parser
model was used to parse the training, development and test sets of the Wikitext-2 corpus.

5.3 Experiments

Experiments were run with the vocabulary size configuration of 33,247 which is the
number of tokens that had at least 3 occurrences in our training set and is a comparable
vocabulary size to the preprocessed version of Wikitext-2 (33,278).

We performed a minimal hyperparameter search to find optimal parameters with
which we would also be able to train the models in a reasonable time on a CPU. In
the final experiments, all models used the same set of parameters which can be seen in
Table 4.

Parameter Value
Vocabulary size 33 247
Word embedding dimensions 512
Batch size 16
LSTM layers (for token encodings)* 2
LSTM hidden units (for token encodings)* 512
Number of stack items used (for parsing)* 3
MLP hidden layers (for parsing)* 2
MLP hidden units (for parsing)* 256
Number of stack items used (for token generation)* 2
LSTM/MLP layers (for token generation) 2
LSTM/MLP dimensions (for token generation) 512

* Not relevant for the baseline model.

Table 4. Hyperparameters used in the final experiments for the baseline model and transition-based
language models.

During our experiments we opted to use the Adam optimizer algorithm [14]. Ada-
Grad [8] and stochastic gradient descent algorithms were also considered and tested,
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however, these performed considerably worse and were excluded from the final ex-
periments. In addition, regularizing the model with dropout was tested, however this
provided no improvement in our case.

During training, all models try to minimize the average cross-entropy loss over the
batch where x is the batched vector of the predicted probabilities while vs is the list of
all true classes in the batch:

− 1

|vs|
∑
v∈vs

log xv

A hinge loss function was also considered for the parser functionality as it is used in
BIST parser [15], however, this proved to be extremely inefficient in our application
resulting in lower UAS scores.

All language models were trained for up to 10 epochs in the Atlas cluster of the High
Performance Computing Center of the University of Tartu using the CPU-based version
of DyNet. All models also used DyNet’s automatic batching functionality [25].

At the start of each epoch, the sentences were shuffled and any inter-sentence depen-
dencies which exist in these articles were ignored in these experiments.

5.4 Evaluation

After training, the highest-scoring model on the development set was chosen. This
evaluation was based on the model’s perplexity score. In addition, the UAS scores for
transition-based models were calculated, however, this was done only for informative
purposes.
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6 Results

This section provides the quantitative results of our transition-based language models
and the baseline model, and an analysis of the sentences generated by each model.

6.1 Quantitative Results

The scores of the transition-based language models and the baseline can be seen in
Table 5. The transition-based models outperformed the baseline model and the model
which used a multi-layer perceptron for word generation performed better than the
LSTM-based model.

Although our models are not comparable to the current state-of-the-art models, such
as those by Gong et al. [10] or Yang et al. [36] which currently reach perplexities of 40.85
and 42.41 respectively on the same corpus, the improvement of our approach compared
to the baseline can be considered significant.

Model PP (DEV) PP (TEST) UAS (DEV) UAS (TEST)
Baseline 169.1 159.8 - -

TLM-MLP 152.1 145.0 66.6% 66.5%
TLM-LSTM 161.2 152.2 67.2% 67.0%

Table 5. Perplexity (PP) and unlabeled attachment score (UAS) results of the final experiments
on development and test sets.

To observe whether the transition-based language model provided any advantages
in modeling long-term dependencies, we split the sentences in our test corpus into two
sets and calculated the perplexity scores separately for sentences that included long
dependencies (7392 sentences) and sentences that did not (2436 sentences). The sentence
was considered to include long dependencies in case it contained at least one token with
a head that was at least 10 tokens away.

As can be seen in Table 6, all models performed better on sentences which did not
contain long dependencies. However, the difference was less significant for transition-
based models and the improvement over the baseline is greater with sentences that contain
long dependencies. These findings provide support to our hypothesis that the transition-
based language model provides an advantage in modeling long-term dependencies.
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Model PP (TEST-1) PP (TEST-2) UAS (TEST-1) UAS (TEST-2)
Baseline 161.4 147.2 - -

TLM-MLP 146.1 135.6 65.7% 73.8%
TLM-LSTM 153.6 142.0 66.2% 74.6%

Table 6. Perplexity (PP) and unlabeled attachment score (UAS) results the test set sentences with
long dependencies (TEST-1) and sentences without them (TEST-2).

6.2 Qualitative Analysis

To see whether using the transition-based models provided any improvements in gen-
erating sentences with long-term dependencies, we analyzed 20 sentences randomly
generated by each model. Generation was limited to 80 tokens per sentence and thus any
sentences that exceeded that limit do not contain the end-of-sentence marker (<EOS>).

As can be seen from the example sentences below, most sentences make very little
sense. However, the sentences generated by each model have some unique characteristics.
Only 50% of the sentences generated by the baseline model contain the <EOS> tag
compared to 95% and 100% of the sentences for TLM-MLP and TLM-LSTM models
respectively. Due to this, the baseline model has a comparatively high average sentence
length of 65.45 tokens and even if the example sentences contain some common or at least
grammatically correct phrases, the full sentences fail to form cohesive and meaningful
units and we are unable to find any semantic or grammatical relations between words
that are more than a few tokens apart. In addition, the baseline model seemed to prefer
some seemingly uncommon words, such as Tzu and hop which appeared in 65% of the
sentences.

With the transition-based model which used a multi-layer perceptron for new token
generation, slightly longer logical phrases can be noticed, for example the while Lowe
received mixed-to-positive reviews in example (2-b) and severe flooding in the old
Baltimore Pike in example (2-c). Thanks to the tendency of generating shorter sentences
(average token count of 32.45) with the LSTM-based model, the complete sentences of
that model seem slightly more cohesive.

Whereas the improvement of our proposed approach over the baseline is noticeable,
analyzing the full sentences of either of the transition-based models does not provide any
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clear evidence they are able to generate sentences with long-term dependencies.

(1) Example 1: Sentences generated by the baseline model

a. according to direct moment of the poem <EOS>
b. additionally , managing the Fort Tzu still later Lamby early practice with some

plagued development as ruler future withheld Humphrey northwestern at only
similar Tzu takes an Awards <EOS>

c. Raghuveer just as name in 1897 closed in later Sb2S3 one rebel Antineutrino
undetectable sparking humanitarian intimately nearly five 30-yard hop year on 10
hop studies Maccabi time prior during Mogadishu <UNK> girl you called Carey
three Sabre " here still weak 1993 WB complete World Longyearbyen for ordinary
hop new and no Koreans 50 Tzu physical Intifada by the materials at other infiltrates
no Llanilltern hop of an education in 2011 state ten hop <UNK> derived as 1959
Niño Basilica in 1878 Niño ZX Antineutrino expectancy of young visits to allow
birth as they named before in 1996 Pleistocene

(2) Example 2: Sentences generated by the transition-based model TLM-MLP

a. Kamara entered the 5th side of Cyrus ’ eminent courts did not really full matter and
later surpassed the Jin force 4th Brien , <UNK> the only one of the base of 1648 .
<EOS>

b. in honor of Miller of cent of the Soviets <UNK> runways that revealed that linking
" you wo n’t you Wanna hear — wrote that broke out of 1913 – took place as he
said , including Feldman regarded as it was nearly 45 minutes after seven months
before Kaifeng moved to see the founding of the finest beloved him first downs and
ceremony . " Pie mammals , while changing conversion for example of the <UNK>
, while Lowe received mixed-to-positive reviews praised music for extra years ago .
<EOS>

c. the next weekend rate of the friendships that made serious severe flooding in the
old Baltimore Pike and the devil comes forward of the island before its use of the
wires surrounding northern Ireland ’s objective <EOS>

(3) Example 3: Sentences generated by the transition-based model TLM-LSTM

a. they took place in 1723 <EOS>
b. Lock Haven had been built while the Boy hop in 1973 <EOS>
c. this for Kedok Ketawa was recorded by the <UNK> comeback at nightstick at

Jasper as soon before his tract 26 , but in 2007 Haiti ’s 14th centuries ( including
Tsubame ’s oldest in the Kannada models that year dates from Italy <EOS>
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7 Conclusion

This work proposes a novel approach for generative language modeling by modifying the
existing logic of transition-based dependency parsing and extending this to generative
language modeling where new words are generated to the buffer with hopes to improve
modeling long-term dependencies in texts.

The results from our experiments that compare a simple LSTM baseline language
model with our proposed transition-based approach reveal noticeable improvements over
the baseline. This is evident when comparing the perplexity scores of these models as
well as when performing a qualitative analysis of the sentences that the models generated.
Additionally, our analysis shows that the improvement is more significant in modeling
sentences that contain longer dependencies which also supports our hypothesis.

However, there is a great difference between the perplexity scores achieved in this
work and the current state-of-the-art language models. Therefore, further research
is required to see whether the advantages of using our approach persist with a more
sophisticated baseline that is able to provide results closer to the state-of-the-art models.
This would also reveal whether the benefits of this solution outweigh the limitations of
transition-based language modeling and the additional preprocessing which is required
by this approach.
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Zens, Chris Dyer, Ondřej Bojar, Alex Constantin, and Evan Herbst. Moses: Open
source toolkit for statistical machine translation. 06 2007.

[17] Marco Kuhlmann, Carlos Gómez-Rodríguez, and Giorgio Satta. Dynamic program-
ming algorithms for transition-based dependency parsers. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages 673–682, Stroudsburg, PA,
USA, 2011. Association for Computational Linguistics.

[18] Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms
to learn syntax-sensitive dependencies. CoRR, abs/1611.01368, 2016.

[19] Edward Loper and Steven Bird. Nltk: The natural language toolkit. In In Pro-
ceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching
Natural Language Processing and Computational Linguistics. Philadelphia: Asso-
ciation for Computational Linguistics, 2002.

[20] A.A. Markov. Theory of Algorithms. TT 60-51085. Academy of Sciences of the
USSR, 1954.

33



[21] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer
sentinel mixture models. CoRR, abs/1609.07843, 2016.

[22] Piotr Mirowski and Andreas Vlachos. Dependency recurrent neural language
models for sentence completion. CoRR, abs/1507.01193, 2015.

[23] Thomas Mueller, Helmut Schmid, and Hinrich Schütze. Efficient higher-order CRFs
for morphological tagging. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 322–332, Seattle, Washington,
USA, October 2013. Association for Computational Linguistics.

[24] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,
Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul
Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980, 2017.

[25] Graham Neubig, Yoav Goldberg, and Chris Dyer. On-the-fly operation batching in
dynamic computation graphs. CoRR, abs/1705.07860, 2017.

[26] Joakim Nivre. An efficient algorithm for projective dependency parsing. In
Proceedings of the 8th International Workshop on Parsing Technologies (IWPT,
pages 149–160, 2003.

[27] Joakim Nivre. Incrementality in deterministic dependency parsing. In Proceedings
of the Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together, IncrementParsing ’04, pages 50–57, Stroudsburg, PA, USA, 2004. Asso-
ciation for Computational Linguistics.

[28] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan
Hajic, Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman. Universal dependencies v1: A
multilingual treebank collection. In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph
Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors,

34



Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016), Paris, France, may 2016. European Language Resources
Association (ELRA).

[29] Joakim Nivre, Johan Hall, and Jens Nilsson. Maltparser: A data-driven parser-
generator for dependency parsing. 01 2006.
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Appendix

I. Source Code

The implementation of the baseline language model and the proposed dependency
language model can be found in the following GitHub repository:
https://github.com/liisaratsep/TLM
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