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Trajectory Reconstruction and Mobility Pattern Analysis
Based on Call Detail Record Data

Abstract: Up until now, GPS data has been greatly used for collecting highly

precise locational data from moving objects including humans. In contrast, mobile

phone data is becoming more and more popular in the last few years. The usage

of mobile phone data, that is also known as CDR data, has many benefits over

the widely used GPS. This means that the methods used for example in GPS

trajectory reconstruction, need to have modifications made be compatible with

CDR data.

The fact that telecommunication companies have started to cooperate more

and share the CDR data with the public is also a boost to the usage of CDR

data. The processed and analyzed CDR data can be used to get an overview of

crowd movement in different scales, for example traveling inside a city as opposed

to between countries. Extracting trajectories from CDR data has numerous com-

plications. This is due to the fact that the data might not be continuous and

discovering of the starting point of the object in motion is complicated.

The goal of this thesis is to use CDR data in the reconstruction of trajectories

made by an anonymous user and to validate the results with GPS data generated

in parallel to the CDR data. Reconstructed trajectories can be used for movement

analysis and population displacement and would help city planning by optimizing

the infrastructures.

Outcomes of this thesis are the reconstructed trajectories based on CDR data

and the precisions of final paths. Also, the frequency of CDR events is analyzed

in addition to distance distribution. After that the areas that the user visits most

frequently are extracted, such as home and work locations.

Keywords: Call detail record, trajectory reconstruction, location data,

crowd movement, mobility patterns
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Trajektooride taastamine ja inimeste liikumise mustrite analüüs
mobiiltelefoni andmete põhjal

Lühikokkuvõte: Tehnoloogiad, mis kasutavad geograafilisi andmeid, on muutu-

nud meie igapäevaelu tähtsaks osaks. Tänu sellele on kasvanud asukoha andmete

massiliine salvestamine ja kaevandamine. Seni on GPS tehnoloogiad olnud põhi-

liseks geograafiliste andmete kogumismeetodiks. Sellega paralleelselt on populaar-

sust kogunud mobiiliandmete kasutamine positsiooni tuvastamiseks ja liikumis-

mustrite analüüsimiseks. Mobiiliandmete (CDR) põhjal trajektooride taastamiseks

on vajalik meetodite kohendamine selleks, et tulemused oleksid korrektsed.

Tänu sellele, et telekommunikatsiooni ettevõtted on alustanud suuremat koostööd

ja hakanud CDR-andmeid järjest rohkem avalikustama, on mobiiliandmete kasuta-

mine mitmetel aladel suurenenud. Töödeldud mobiiliandmed aitavad anda ülevaa-

det rahvastiku liikumisest erinevates ulatustes. Samal ajal on trajektooride taasta-

mine CDR-andmetest kohati raskendatud võrreldes GPS-andmetega. Suurimaks

probleemiks on algus- ja lõpp-positsioonide asukoha määramine, mis on veelgi

enam raskendatud juhul kui objekt liigub.

Selle lõputöö eesmärgiks on trajektooride taastamine anonüümsete kasutajate

poolt genereeritud CDR-andmete põhjal. Tulemuste valideerimine GPS-andmetega,

mis on loodud paralleelselt mobiiliandmetega ning on vajalik selleks, et määrata

saadud trajektooride täpsust. Loodud trajektoore saab kasutada objektide, seal-

hulgas ka inimeste, liikumismustrite analüüsimiseks ja rahvastiku paiknemise tu-

vastamiseks, mis aitab linnade planeerimisel ja infrastruktuuride optimeerimisel.

Lõputöö väljunditeks on trajektooride taastamine ja täpsuse analüüsimine, lisaks

sellele inimese liikumismudelite tuvastamine ja tihedamini külastatavate asukohta-

de identifitseerimine nagu näiteks kodu, töökoht ja poed.

Võtmesõnad: Mobiiltelefoni andmed, trajektoori konstrueerimine, asu-

koha andmed, rahvastiku liikumine, inimeste liikumise mustrid
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1 Introduction

The introduction chapter gives an insight about positioning and how this thesis

work is contributing into the field of Intelligent Transportation Systems (ITS).

The research that has been conducted is focused on investigating the use of mobile

phone data also known as Call Detail Records (CDR) in reconstructing trajectories

and extracting human mobility patterns.

1.1 General view

The usage of geospatial data in people’s everyday lives has become more frequent

over the years. Geospatial data is a dataset that includes geographic data. Spatial

data makes mundane tasks easier by helping to make travel plans from short trips

to the market, to longer more elaborate plans, to travel across country borders.

This data can be presented with location attributes such as latitude and longitude,

address, postal code, street name etc. In some cases the information is represented

by more complex data types and structures.[PT14]

One option to collect enormous amounts of geospatial data is from Global Po-

sitioning System (GPS) devices, such as mobile phones, which are used frequently

by people in their daily lives. The growth over the last 15 years in the number of

mobile cellular services subscribers is remarkable. In the year 2015 the number of

unique cellular (GSM) subscribers has increased to around 4.7 billion.[mob16]

There are some disadvantages with collecting GPS data, such as the user must

enable the settings for GPS tracking and this drains the battery of the device faster.

This is not the case in collecting CDR data. CDR is a record of every transaction a

mobile subscriber makes. These transactions include calls, messaging or even just

waking the mobile phone from sleep mode. This means that every time, when a

mobile phone is connected to an antenna, CDRs are made continuously and stored

by the telecommunication companies. Companies save the records for billing the

subscriber for their use of the telecommunication services.[ict16]

In this thesis CDRs are acquired from a mobile application developed by the

distributed systems group in University of Tartu, Computer Science Institute. This

data is used to calculate the possible location data (latitude and longitude) of the
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mobile user at the moment of the CDR creation. From these sets of latitude and

longitude it is possible to construct trajectories of users from a certain starting

point A to destination point B. Using these trajectories helps in understanding

complex movement patterns that mobile phone users make in their daily lives.

These patterns can give an overview of the complicated migration of crowds in

small and large scale. Small scale meaning commuting to workplace or traveling

around the user’s residential area. Large scale is more sophisticated movement

from non-urban to urban areas and vice versa also migration to foreign countries.

1.2 Research questions and objectives

The goals of this thesis is to compute user trajectories from CDR data, validate

them with the GPS data that was collected in parallel, to assess the legitimacy

and precision of the CDR trajectory reconstruction results. An additional goal is

to examine individual user’s mobility patterns and areas of significance.

• Is it possible to to reconstruct human generated trajectories based on CDR

data and what is the accuracy compared to GPS data?

• What are the individual user’s mobility patterns and places of significance

based on CDR data?

1.3 Scope

In this thesis, CDRs that are used in the trajectory reconstruction and further

pattern analysis are generated by mobile users, who have the mobile application,

developed by distributed group, mobCollector installed and have agreed to share

their data for academic purposes. Data is collected inside Estonia country borders.

In total 3721 CDR and 682 GPS records were used.

1.4 Contributions

Methodologies used in this thesis are mainly built on data analysis: understand-

ing, preprocessing, cleaning, modeling and individualizing the data. The main

objectives that are targets in this thesis are:

11



• acquiring cell ID location data from OpenCellID;

• calculating the cell coverage area polygon centroids;

• processing road data;

• discovering the nearest nodes from the road data;

• reconstruction of the trajectories based on CDR data;

• CDR event distribution analysis;

• CDR distance dispersion analysis;

• detecting frequently visited locations.

1.5 Road map

The road map gives a brief introduction to the structure and chapters of this thesis.

Chapter 2. Gives an overview of the current research that has been done

in the related fields of this thesis. Subjects such as description of CDR data,

trajectory reconstruction and human mobility patterns are covered.

Chapter 3. Includes a more detailed sight into the geospatial data used in

this thesis and a thorough description of the steps and calculations made to

generate the trajectories based on CDRs.

Chapter 4.Is about analyzing one anonymous user’s event and distance

distribution in addition to identifying most frequently visited places.

Chapter 5. Conclusion of the thesis and description the possible future

work is in the last chapter.

12



2 State-of-the-art

This chapter gives an overview of research that has been conducted in the related

CS fields. CDR data, trajectory reconstruction and crowd movement have been

part of many academic research papers and this chapter will examine the possible

overlapping of these subjects.

2.1 Call Detail Records

CDRs are records that are generated by the mobile subscriber of a telecommuni-

cation company. These records are generated, when the mobile phone is connected

to an antenna and the user has interacted with their mobile phone. Different in-

teractions are called events. The records can consist of various data and usually

are not identical among the providers. There is no universal format implemented

for this data and the providers can choose the content of the records themselves.

Given the sensitivity of information in CDRs, it is a good practice to anonymize

the identifying fields in the records. This means the names and/or mobile numbers

are removed from the data and commonly replaced with unique integer numbers

for specific subscribers.

2.1.1 Relevant issues with CDRs

Because CDR data is very different from GPS data it presents multiple challenges

in processing it. Some of them are:

• Temporal sparseness - The CDRs are generated when the user interacts with

their mobile phone. A large number of mobile users make infrequent calls

and messages or the records made are periodically irregular. This is not the

case with GPS generated data.

• Spatial sparseness - The location recorded with an event is the location of

the cell tower and this brings the spatial sparseness into the CDR data.

• Non-routine events - Regular events like going to work or home are easier to

detect. Non-regular events like football or some other social events are not

13



part of the usual routine trajectories and therefor are more unpredictable.

[DPG+15]

The privacy concerns with using and processing CDR data are an additional chal-

lenge. Even when names and mobile phone numbers are anonymized and all

identifying data linked to the user is removed, there is an increasing awareness of

the re-identification possibility. For example, identifying the specific field of work

or a profession of a mobile subscriber from a seemingly random CDR dataset.

By clustering one specific user’s two most visited areas it is possible to discover

significant locations by checking, if it is a residential area for home area.[Pul13]

2.1.2 Applications with CDR data

There are many possible development opportunities for mobile phone network

data. Benefits in smart city planning and transportation are a given and presented

in one of biggest projects with mobile phone data in fixing bus routes in the

city of Abidjan. The telecommunication company released 2.5 billion CDRs to

research the possibilities of improving the bus routes and scheduling in the city.

The research included extracting frequent sequential patterns from the stops made

and locating users’ home and work areas, resulting in 65 improvement suggestions

and two new added routes. This optimized the system enough for a 10 percent

decrease in travel time for citizens.[BCDL+13]

In addition to transportation system planning, CDRs can also be used in dis-

aster response. This was researched with data collected after the Haiti earthquake

in 2010. It is a natural response to any disaster to flee from the affected areas,

therefore finding out exactly how people react and move after catastrophes can

help in organizing and managing first responders. Disasters also include infec-

tious disease outbreaks and man-made hazards, for example terrorist attacks or

industrial accidents.[BLT+11]

There have been many projects made in health research and disease prevention

with mobile phone data. One of most significant studies was with quantifying

malaria outbreaks in Kenya. Around 15 million mobile subscribers’ data was

acquired for a time period of one year, to map their regional travels. Together

with the malaria transmission model, which shows the rate of infection, specific
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ares were located, where the probability of malaria spreading was higher.[WET+12]

Social science research can also benefit from applying mobile phone data. In

2012 census data and CDR were used to research and find recognizable patterns

in various social groups of the subscribers. In this project census data consisted

of socioeconomic information from the same area as the CDRs are collected from.

Around 10 million subscribers’ data was acquired from 12 cities[FMV12]. Results

showed a strong correlation between the socioeconomic level of a specific subscriber

and the expenses, physical distance with the contacts and geographical areas where

people travel. Another research in Republic of Côte d’Ivoire was conducted to use

CDRs to determine and map poverty lines in that area. Greater amount of mobile

communication between subscribers and larger range of calls are an indicator for

larger prosperity. As a result poverty lines of eleven regions of Côte d’Ivoire were

estimated.[SMC13]

2.2 Trajectory data mining

Spatial trajectories are location sequences generated by moving objects, such as

humans, vehicles or even animals. As a result of rapidly advancing tracking tech-

nologies and mobile computing, processing and generating trajectories from that

data is becoming more prominent. Research in trajectory reconstruction and data

mining is extensive. Most of the studies inspect different techniques for trajectory

computing with location data like GPS or CDR. In the research paper ”Trajectory

Data Mining: An Overview” by Dr. Yu Zheng, there is detailed description of tra-

jectory construction methods. The five major subjects trajectory preprocessing,

indexing, uncertainty, pattern mining and classification are introduced in the next

four chapters.[Zhe15]

Figure 1 gives a simple overview of the process flow in trajectory data mining

and subjects covered in this thesis. Spatial data in the beginning of the chart can

represent both GPS and CDR data. In this thesis it represents CDR data collected

from volunteer users.
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Figure 1: Overview of trajectory mining methods.

2.2.1 Trajectory preprocessing

Before using the trajectory data there are numerous problems that need addressing

in order to start working with the data. More substantial issues concerning trajec-

tory preprocessing can be covered with five suggested solution methods explained

in more detail in the list below.

• Noise filtering. When working with trajectory data some location measure-

ments may be incorrect by several (hundred) meters. These deviations in the

data depend on the technology used and the physical objects that interfere
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with the signal near the true location. To remove the inaccurate points from

the trajectory a median filter can be used. The filter algorithm calculates

medians between a point n and its n − 1 predecessors in a period of time.

If the next median differs more than the agreed upon allowed error, it is

a noise point. The median filter is not efficient for sparse trajectory data.

This means the filter cannot be used with CDRs. For scattered data Kalman

filter or particle filter can be used. Kalman filter takes a motion model into

account and estimates states like speed with assuming linear models. The

particle filter algorithm relaxes these assumptions and therefore is a less

efficient algorithm.[LK11]

• Stay points. Some points in a trajectory are more significant than other, for

example opposed to noise points there are also stay points. These points

represent locations where an object has stayed for a longer period. When

calculating data generated by humans, the stay points can be shops, malls,

restaurants etc.[Zhe15]

• Compression. To minimize memory storage and computing time there are

two compression methods. The offline method reduces the trajectory after

it has been completely generated and the online method, which compresses

trajectories instantly as an object moves.[LK11]

• Segmentation. For a very detailed analysis on trajectory segmentation it is

split into smaller parts. Segmentation can be based on time, the shape of

the trajectory or semantic meaning (walking, driving) of the parts.[Zhe15]

• Map-matching. Last preprocessing method is map-matching, which converts

a sequence of latitude and longitude data to a road segment where the object

generated corresponding points.[Kru11]

2.2.2 Trajectory data management

Searching and querying over enormous sets of trajectory data is time consuming.

Indexing increases the efficiency of these queries and makes trajectory data storage

management easier. Queries are divided into two types K-Nearest Neighbor (KNN)
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and range. KNN query recovers the top-K trajectories that are positioned inside

the minimum accumulated distance range. In order to use KNN queries a distance

(or similarity) function, that is based on minimum bounding rectangles between

two trajectories, needs to be determined. Two concepts that are acquired from

string matching can be implemented in function Longest Common Subsequence

(LCSS) and Edit Distance. Range queries are also referred to as distance metric,

meaning the evaluation of distances between two trajectories. Range queries fetch

segments of the trajectory that are within a previously defined spatial range. The

result of the query can be used to verify a feature within the segment such as

object speed.[DXZZ11]

2.2.3 Trajectory uncertainty

As a result of spatial data sparseness uncertainty occurs in trajectories. As ob-

jects move constantly, but the number of recorded location points are limited, the

locations of objects between two documented points are ambiguous. This problem

arises with CDR data more frequently than in GPS.[Tra11]

2.2.4 Trajectory pattern mining

In trajectory pattern mining there are four distinguishable categories that observe

and inspect patterns from one or more trajectory. These categories include moving

together patterns, trajectory clustering, sequential patterns and periodic patterns.

• Moving together patterns. As the name suggests, this category discovers ob-

jects that move together in a certain period of time. These patterns are used

in species migration, military surveillance and traffic event detection. It can

be used to detect possible bottlenecks in city road systems during rush hours.

The groups of objects traveling together are called flocks and swarms. Flock

is a group that is moving simultaneously in at least k period of time. Swarm

is a composed version of a flock leaving out the time requirement.[JYJ11]

• Trajectory clustering. Combining together objects, that have same paths at

some point in their movements, is called trajectory clustering. The paths are
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split into segments and objects with similar ones can be identified by cal-

culating the distances between two complete trajectories. Micro-and-Macro

Clustering approach is also used to first find clusters in very small subsets

and grouping small micros together to generate bigger macro clusters.[JYJ11]

• Sequential patterns. When objects travel in homogeneous paths through

points and during similar times, sequential patterns can be identified. The

sequences share same locations and comparable travel times, although the se-

quence does not have to be consecutive. As an example view the trajectories

A and B in Formula 1.

A : l1
1.5h−−→ l2

1h−→ l7
1.2h−−→ l4. B : l1

1.2h−−→ l2
2h−→ l4, (1)

where l is a location. In the example A and B share the same sequence

l1 → l2 → l4 although they are not consecutive. Discovering these patterns

can enhance the accuracy of next location calculation, estimating similarities,

trajectory compression and travel recommendation.[JYJ11]

• Periodic patterns. Searching and identifying recurring events results in pe-

riodic patterns. These patterns are made by objects that generate similar

trajectories when certain time period has passed. For instance people going

to the market on weekends or gift-shopping before holidays. For detecting

these patterns two stage detection method is used. Density algorithm is im-

plemented to find popular locations among objects. Considering the result,

trajectories are reconstructed into time series with values in and out as a

status of the moving object at a certain popular location. The final stage is

to generate summaries from partial movement sequences using hierarchical

clustering algorithm.[JYJ11]

2.2.5 Trajectory classification

Separating trajectories (or parts of it) by difference in status is called trajectory

classification. Various states include movement, such as walking, biking, driving

or using public transport. Adding these semantic descriptions to trajectories adds
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value in context aware computing. Trajectory classification process is broken down

to three major stages:

1. Using segmentation methods to divide trajectories into sections.

2. Extracting characteristics from all sections.

3. Generating a model to identify every section.[Zhe15]

A research project based on GPS data categorizes object’s trajectory by trans-

portation mode [ZLWX08]. The main classes were driving, biking, walking and

taking public transport and the reason for them is that a person can take multiple

transportation method during one trajectory. The segments are identified with a

class through Decision Tree Classifier. The principal is that movement information

about heading change, stop and velocity adjustment rate are extracted and read

into the Decision Tree after that results are classified the a model is implemented

in the Decision Tree.[ZCL+10]

2.2.6 Applications of trajectory data mining

Numerous fields, such as transportation, urban planning, environment, energy, so-

cial, business and public safety, use trajectory mining applications. In this chapter

urban planning and transportation applications are explained in detail [MT16].

For a regular smartphone user more familiar applications might be path discovery

in transportation such as Google Maps1 or any alternative, for instance WikiMapia

Map2, MapQuest Map3 or Waze Map4. The main applications for trajectory data

mining are explained in detail in the list below.

• Path discovery. Is the most common trajectory mining application, it is

also very popular among users in their daily lives. Finding the most rea-

sonable route for travels has been the focus point of many research projects

[DYGD15]. As users’ preferences for route attributes vary the path discov-

ering algorithm also differ. As some people prefer shorter distance lengths

1www.google.ee/maps
2www.wikimapia.org/
3www.mapquest.com
4www.waze.com/livemap
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for smaller gas consumption others only care about the time spent on the

travels. More sophisticated path detections techniques also take into ac-

count the traffic and even weather. In ITS various research examines how

to update the paths simultaneously with real time data from various sensing

technology.[Zel98]

• Destination prediction. Is linked to path discovery and it is found that hu-

man mobility and movement is profoundly regular and therefore predictable

in high precision. In a research paper about restraints of human mobility the

prediction accuracy rate was 93% [SQBB10]. Large number of location based

applications use destination prediction to send advertisements or special of-

fers to potential clients. Recording past trajectories to databases improves

destination predictions. When a user is traveling through a regular path des-

tination corresponds with the final location in the past trajectories.[CLC10]

• Movement behavior analysis. Trajectory calculations gives many ways of

analyzing object’s movement and finding occurring patterns. One substan-

tial research is conducted in determining patterns between sociodemographic

groups based on age, wealth, gender, educational level and wealth [RBdM+13].

Another research paper identifies groups, such as animals, humans and ve-

hicles, traveling together in time intervals. The movement behavior for this

type of event is called gatherings and are found by large dataset indexing,

searching and updating issues. Gatherings can be celebrations, parades,

protests, traffic congestions and other public assemblage. The five main

characteristics of gatherings are:

1. number of participants is high;

2. participants arrange a compressed group;

3. event should occur in a certain time interval;

4. geometric attributes of groups stay the same;

5. there is a number of participants, who stay in the group at any time for

a certain interval.[ZZYS13]

In the research a sizable dataset, consisting of location data, is collected from

taxicabs in Beijing [ZZYS13]. Research in discovering object’s, in this case
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a human’s, rationality to enter a certain point of interest (POI). POI can

be any potential stopping point from shopping malls, restaurants and to bus

stops, hospitals.[LQW15]

• Group behavior analysis. Examines clusters of objects, that are likely to

generate between groups, during motion. These clusters develop due to

their social behavior and to discover them techniques from Chapter 2.2.4

are used. Research has been conducted in trajectory modeling to describe

the movement patterns in shifting groups. These patterns include events like

parades, protests and traffic bottlenecks.[ZZYS13]

• Urban computing. Obtaining data from sources such as sensors, devices, vehi-

cles, buildings, humans and analyzing it to find better solutions for problems

in the city. Using data to solve these issues, like air pollution, energy con-

sumption and traffic bottlenecks, in cities is called urban computing [FZ16].

The usage of trajectory data in urban development has many benefits, for

example processed trajectories can be used to optimize public transportation

schedules and routes, also in planning and building new roads. The identifi-

cation of regions, such as residential, business and education, in cities helps

urban planners to understand the complexity of cities.[ZCWY14]

• Understanding trajectories. Making sense of trajectory data without seman-

tic descriptions can be problematic and to simplify this attributes are added

to segments of trajectories by modeling data with specific features. More fre-

quently used semantic attributes are divided by the mean of transportation

used, such as walk, drive, bus [PSR+13]. Some location applications require

a semantic attribution of locations for instance work or home [LCC12]. An-

other method to make the trajectory data understandable is to use visual

analytics methods such as map-matching, graphs, images.[AA13]
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2.3 Human mobility patterns

Human mobility has been mentioned several times in Chapters 2.1 and 2.2.4.

This chapter gives a more detailed analysis about human mobility pattern dis-

covery and presents prominent research in the field. This chapter is divided into

four subchapters: transportation, urban planning, event detection, semantic anal-

ysis. All of these subchapters cover a specific field, which uses mobility pattern

applications.

2.3.1 Transportation

Detecting and analyzing human mobility patterns from location data has numerous

benefits in transportation, such as rescheduling public transport when needed and

discovering traffic anomalies. Planning and building streets and infrastructure is

also moderately connected to transportation but in this paper, will be covered in

Chapter 2.3.2. This chapter gives an overview of techniques for processing CDR

data to improve the transportation infrastructure in a certain region.

Understanding the human mobility in a city and detecting POIs for the purpose

of improving transportation is crucial. There is regularity in the trajectories and

time in human mobility, that lead to the following characterizing aspects:

• movements of individuals are summarized in as a set of points, where they

stay the longest time;

• places visited only once are time consuming;

• humans travel between points based on temporal distance;

• most frequently visited POIs are home and work.[PJZ+16]

Traffic anomalies such as congestion, accidents, bottlenecks can greatly affect nor-

mal traffic flow in cities. To identify unusual events from mobile data metrics,

such as trip rates, travel distance and travel time need to be calculated [CMS+16].

In the research project about determining these values trajectories of individuals

were mostly used.[GHB08]

Observing the traffic flow in cities, at a crowd level can give additional insight

to problems. Big datasets of trajectories are an effective base for understanding
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mobility patterns at society-wide range. For example a study in Milan identified

roads most used by the morning and evening commuters in addition to the exact

times when traffic bottlenecks developed in the city.[GNP+11]

2.3.2 Urban planning

Using spatial data in urban planning can increase the understanding of urban dy-

namics and human movement flows. Analyzing location data allows urban planners

to monitor the fast changing urban dynamics. Also to detect upcoming trends in

movement of the citizens[DL99], which can be very time consuming and difficult

using traditional surveys, such as questionnaires.[RFPW06]

Approximately 15 million CDRs were collected around city of Morristown to get

an overview of residents’ daily travels. The geographical areas surrounding the city,

where workers live are given a semantic name laborshed. In contrast, areas where

people would frequently visit the community location such as bars and restaurants

are called partyshed. By grouping residents by their preferred activities around the

city it is possible to model typical flow of the residents between different parts of

the city.[BCH+11]

Human mobility is complex, but almost never random. The movement of

people is affected by their needs, commitments and social obligations. As an

outcome of these factors human mobility patterns show regularity in daily (weekly,

monthly, etc) movements. These regularities can be characterized by defining the

Relevance Ratio and POI [NSL+12] of the user u under observation, such as in

Formula 2.

RR(POI, u) =
dvisit(POI, u)

dtotal(u)
(2)

where dvisit(POI, u) is the sum of days that the location has been visited and

dtotal(u) is the sum of all days in the user data. These locations are categorized

into three classes Mostly Visited POIs (MVP), Occasionally Visited POIs (OVP)

and Exceptionally Visited POIs (EVP), by frequency of visits.[JZGR16]
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2.3.3 Event detection

Event is considered a substantial activity not regular in daily human patterns. To

discover these type of events, object’s history and regular movements are taken

into account and any sort of deviations from regular paths are detected. After

that Poisson and exponential distribution models are used. With these steps it is

possible to characterize regular behavior and recognize anomalous events. If the

thresholds of frequencies and spans are smaller than for any event that occurred,

it can be categorized as an anomaly.[ZD12]

Alternative method for detecting unusual events, from more than one object,

is more suitable for CDR data, because of the issues described in Chapter 2.1.1.

The process is divided into multiple steps, firstly CDRs are received and split into

clusters, after that crowds are detected from sequences of clusters. Afterwards

constraints are verified for each crowd detected and a tag (unusual) is added to it.

One or more crowds construct an unusual event.[DPG+15]

Definition 2.1. (Crowd) A crowd C is
{
CCtm, CCtm+1, ..., CCtn

}
that represents

consecutive clusters with three constraints. Movement, because number of points

visited needs to be over one. Durability, number of consecutive clusters is bigger

than threshold. Commitment, number of participants in any given moment is

greater than the threshold.

Unusual events were detected from CDRs in Abidjan, Côte d’Ivoire. Markov

modulated Poisson process (MMPP) was modified to detect hourly and daily be-

havioral anomalies from spatial data. As result unusual events found from mobile

data correlated with events such as protests, holidays and major sport events that

actually occurred in the area. Additionally, analyzing mobile data as a time series

gives better output in tracking masses during movement.[GISL16]

2.3.4 Semantic analysis

From object spatial data such as CDRs most visited places, also known as POI,

are attainable as mentioned in previous chapter. Giving these POI a semantic

meaning adds more personal information about the object under observation. Two

places with the highest frequency of visits often are home and work. Finding other

semantic locations from trajectory data is more complex.
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The two issues with combining the location data to a semantic meaning, are

obtaining the spatial data and after that labeling the locations with semantic

meaning. To obtain most occurring points from location data, clustering (parti-

tioning, density-based, time-based) algorithms are used. The disadvantage with

these techniques is that the result is a geographic point with a radius, but does

not include a semantic meaning. Another approach uses hierarchical algorithm

compiled with both time-based and density-based clustering.[LCC12]

Definition 2.2. (Location point) Is P from the trajectory as a pair p = (lat, lon).

Where lat is the latitude and lon is the longitude.

Definition 2.3. (Trajectory) Is a sequence of location points with added times-

tamps, represented as traj =
{

(p0, t0), ..., (pn, tn)
}

, where p is a location and t is

the timestamp.

Definition 2.4. (Visit point) Is a location with two timestamps, defined as vp =

(p, tin, tout), where p is the location and tin is arrival time and tout is departure

time.

Definition 2.5. (Physical place) Is a cluster of location points, represented as

pp = (vp1, ..., vpn), where vp1 and vpn are nearby.

The time-based algorithm checks, if vp is located in the cluster of points already

generated, and compares the time intervals and distances. If the time period is

greater and distance is less than the tolerated threshold, it is in fact a visit point.

[LCC12]

In another research same types of clustering algorithms were used to find vari-

ous user groups from CDR data. The main attributes for clusters, were time (day,

week) and distance (Euclidean distance). All of the unique users’ CDR data was

aggregated into 1-hour blocks by day of the week. Results show that it is possible

to identify student mobile users by their daily and hourly usage pattern. The

other group identified is commuters, who use their mobile phones more during the

morning and evening rush hours.[BCH+]

In comparison, location data can be nowadays collected from social sites, such

as Twitter5. This was tried in a project for mining users mobility patterns within

5www.twitter.com
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urban context. As a result it was possible to identify most frequent route pat-

terns between famous London landmarks. The outcome can be used to generate

personalized travel recommendations for tourists.[CFT16]

Because mobile phones are ubiquitous nowadays and present in high and low

income households, CDR data can be used to recognize and analyze needs and

habits of various groups. In a project conducted in Latin America mobile phone

data was combined with socio-economical census data, collected by the National

Statistical Institute, during a period of five years and divided into Geographical

Units (GUs). CDR data was grouped into polygons using Voronoi diagrams and

then merged with GUs. Results display correlations among various socio-economic

levels. Larger distances of the call maker and receiver means a higher economic

background of the users. Accuracy of these calculations is R2 ≈ 0.82.[FMV12]

2.4 Conclusion

To summarize, there is extensive work done in the fields of trajectory data mining

and human patterns, but many problems are still unsolved. Thanks to open data

movements gaining support, many telecommunication companies have started to

take steps towards sharing their CDR data. This gives more opportunities to

investigate human mobility more extensively and with less financial losses. At the

moment CDR trajectory reconstruction methods are not highly accurate. This is

due to the fact that origin and destination point recovery is difficult and usually

not very precise.[LWB+13]
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3 Calculating the trajectories

This chapter introduces the methods and technologies used in the processing of

CDR data that has been collected by a mobile application developed by the dis-

tributed systems group at the University of Tartu, Computer Science Institute.

In parallel to CDRs, GPS data was also gathered in the same time period. This

enables the verification of data legitimacy in trajectory reconstruction covered in

Chapter 3.5. Additionally to CDRs multiple resources were used to collect and

filter data. In Chapter 3.1 there is a detailed description of CDR data, after that

in Chapters 3.2.1 and 3.2.2 two additional services are introduced that were used

in the trajectory reconstruction process.

3.1 Call Detail Records

GSM is an international mobile phone standard that provides connection services

for subscribers. The GSM system consists of base transceiver stations or BTSs.

Each system covers a geographical area that is called a cell coverage area (polygon).

BTS enables the gathering of information about every GSM device that is in

connection. This type of data is known as call detail records or CDRs (also station

messaging detail record or SMDR). Information collected in CDRs can include:

1. metadata;

2. phone number of the mobile subscriber or when anonymized, user id (SID);

3. timestamp;

4. cell location data such as MCC, MNC, LAC, CI (descriptions in Chapter

3.2.1);

5. event type (i.e. handover, pickup).

In addition to information in the list above, telecommunication operators can

include or remove fields as they choose. CDRs are described as passive location

data compared to GPS data, which is considered active. CDRs are generally

formatted in XML (eXtensible Markup Language) based tagging schema that is
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defined by the operators. CDR data is used to generate invoices for subscribers of

telecommunication companies and to analyze network traffic.[cdr13]

Table 1: Example of CDR data used in this thesis.

ID SID tascii CGI

1 100562421962333 2016-10-16 09:00:39.853 248-2-1002-54412

2 100562421962333 2016-10-16 09:00:53.227 248-2-1002-54415

3 100562421962333 2016-10-16 09:00:58.546 248-2-1002-56593

4 100562421962333 2016-10-16 09:01:10.524 248-2-1002-54412

Example of a CDR used in this thesis, is shown in Table 1. Irrelevant fields,

to this thesis, were left out of the table. User generated CDRs are represented as

a row and contains SID, timestamp (tascii) and CGI that includes location data

divided by a dash.

Figure 2: Antenna and four cell coverage areas (polygons) surrounding it.

Figure 2 is an illustration of one antenna that can four coverage areas (poly-

gons). In real life the antenna can have multiple cell towers mounted on it. The

polygons are irregular and can overlap each other. In more complex cases, one

coverage area can wrap another entirely.
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3.2 Technologies applied

Various libraries and software was used in this thesis. Reading in and processing

CDR data was made by using Python programming language6 library named Pan-

das7. Pandas is an open source library offering high-performance, easy-to-use data

structures and data analysis tools. Jupyter Notebook8 was used as a programming

environment because it contains live code, equations, visualizations and supports

Python and all the libraries used in this thesis. Other technologies used in this

thesis:

• OpenCellID9 - explained in Chapter 3.2.1;

• OpenStreetMap10 - explained in Chapter 3.2.2;

• NetworkX11 - explained in Chapter 3.2.3;

• QGIS12 - free open source software for creating, editing, analyzing geospatial

information. In this thesis QGIS was used to visualize CDR paths;

• Numpy13 - package for scientific computing with Python was used to conduct

multiple calculations with location data and distances;

• Matplotlib14 - Python library for generating high quality graphs and plots;

• Requests15 - the HTTP library for Python was used to make queries to

various services;

• Geopy16 - Python client for numerous geocoding web services was used in

trajectory reconstruction;

6www.python.org
7www.pandas.pydata.org
8www.jupyter.org
9www.opencellid.org

10www.openstreetmap.org
11www.networkx.github.io
12www.qgis.org
13www.python.org
14www.matplotlib.org
15www.python.org
16www.geopy.readthedocs.io
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• Scipy17 - Python-based system of open-source software for mathematics, sci-

ence and engineering was used in various computations.

3.2.1 OpenCellID

OpenCellID is an open-source community collaboration project that aims to col-

lect and document GPS locations of cell towers and share this data. Volunteer

users can upload and download spatial data through a Location API (Application

Programming Interface). OpenCellID data together with CDR data can be used

to replace GPS as a tracking method with cell IDs, which helps to save device

battery power and to track a device in a building, where GPS is not available.

Figure 3: Cell tower locations in Estonia from OpenCellID API.

In this thesis four fields of data was used to identify the cell ID. An example of

location data is in Table 1 where cell tower data is in column CGI. When splitting

the column by dash, the fields are:

• MCC - Mobile Country Code represented as a integer number (Estonia is

248);

17www.python.org
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• MNC - Mobile Network Code represented as a integer number;

• LAC - Location Area Code of the operator network;

• CI - Cell ID.

Accuracy of the data may vary, because OpenCellID is open-source and community

based service. This means that some API queries got inaccurate results back or no

result at all and these errors were removed. In Figure 3 all the cell tower positions

are shown inside Estonia. In urban areas there are clearly more towers to serve

bigger number of users as opposed to rural areas.

3.2.2 OpenStreetMap

OpenStreetMap (OSM) is an online service that collects world’s geographic data

and distributes it for free. The service has about 20 000 active users, who volunteer

to assemble and upload geographic data. All maps generated with collected data

are adjustable by users and can be used as they see fit. The data can be downloaded

in the format of XML. The XML files include tags:

• node is a geographical point on earth with latitude and longitude as at-

tributes;

• way is an ordered sequence (list) of nodes that all together make up a portion

(polyline) of a road or a street;

• relation is a connection to model logical (usually local) or geographic rela-

tionships between objects.

OSM data includes additional data about road segments, for example max speed,

bus stops etc. In addition to the data, OSM has multiple functions to query and

manipulate spatial data. OSM has an API for querying and saving data. [HW08]

For this thesis the road data is downloaded by boundary box query to the API.

For example the downloaded road data for Tartu had 24655 nodes and 27933 ways.
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3.2.3 NetworkX

For the purpose of searching and processing OSM road data faster, nodes, ways and

relations were read into a network structure with NetworkX. NetworkX is a Python

language software package for creating, manipulating and studying structures and

functions of the network, in addition it is possible to read in and store data as a

graph. While reading OSM data into structure, every node and way was identified

with an ID number from the original OSM road data file. In Figure 4 nodes in
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Figure 4: OSM road data of Tartu shown in NetworkX structure.

Tartu are shown in a graph structure using NetworkX. Nodes have id, latitude and

longitude as data. As seen in the figure, nodes make up a network that resembles

Tartu’s road system.
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3.3 Trajectory preprocessing

As mentioned in the previous chapters, multiple technologies were used to recon-

struct the trajectories from original CDR data. In this section all the steps in data

processing are described in detail and intermediate results are visualized.

3.3.1 Cell ID query

OpenCellID API is used to search and download cell IDs in Estonia. CDR data

does not include latitude and longitude parameters, because of this querying the

OpenCellID API is necessary. When an API query is successful JSON format file

is downloaded as a response. An example of a JSON file for one query is below.

{
” lon ” : 24.774672192307694 ,

” l a t ” : 59.377463307692295 ,

”mcc” : 248 ,

”mnc” : 2 ,

” l a c ” : 1 ,

” c e l l i d ” : 55145 ,

” averageS igna lSt r ength ” : 1 0 ,

” range ” : 14157 ,

” samples ” : 26 ,

” changeable ” : true ,

” rad io ” : ”GSM”

}

Listing 1: OpenCellID API query response in JSON.

As can be seen from the example above, desired cell tower latitude and longitude

attributes are included in the JSON file. Due to the fact that OpenCellID data is

gathered by volunteer users, the data may have errors or be missing in some cases.

Around one third of the results were empty.

3.3.2 Geometric center

Because the cell ID latitude and longitude are not the cell center, the geometric

centroid from a polygon is calculated and the total number of the vertices is un-

known in the polygons. Formulas (3),(4) and (5) were used to find the latitude
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Clatitude and longitude Clongitude of the center point of the polygon.

Clatitude =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (3)

Clongitude =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (4)

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi) (5)

In Formula (5) polygon’s area A is calculated. In Formulas (3) and (4) latitude

and longitude coordinates is calculated by using the intermediate area result and

number of n vertices (x0, y0), (x1, y1), ..., (xn−1, yn−1).

Figure 5: Calculated centroids with coverage areas (polygons). The centroids are in
green and polygons are in blue.

Calculated centroids are shown in Figure 5 with the cell coverage area polygons.

As can be seen from the figure, some cell areas are overlapping others and some

even hide multiple smaller areas underneath.
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3.3.3 Importing Tartu road data into a network

Nearest road to the centroid is calculated using OSM service that was described in

Chapter 3.2.2. Using the API, tiles of OSM with a boundary box are downloaded

and processed. Boundary box query consists of attributes, such as minimum longi-

tude, minimum latitude, maximum longitude and maximum latitude. Due to the

fact that downloaded OSM files are very big (OSM file of Tartu has 24655 nodes

and 27933 ways) a script was made to download road data according to latitude

and longitude points. Two different methods were used to calculate bounding box

attributes to download road data. Calculating bounding box from one point and

two points. The last one was used to reconstruct path between two CDR points.

The XML files of road data were read into a complex network with NetworkX.

Road data in a network structure enables nearest node and path search.

3.3.4 Nearest road

To find the nearest road OSM data is used to find the closest node to the centroid.

Vincenty’s inverse formula [Vin75] was used to calculate distances, because of the

high accuracy of the calculations with geographic points. The high precision is

achieved by calculating geodesic distances on ellipsoids, this gives results within a

one millimeter error radius. The high accuracy is important when reconstruction

the trajectories and also in mobility pattern analysis. Formula of the Vincenty’s

inverse equation is shown below and also the notations are explained in Table 2 .

Table 2: Notation to the Vincenty’s inverse formula.

a radius at equator, 6378137.0 meters in WGS-84
f flattening of the ellipsoid, 1/298.257223563 in WGS-8
b = (1− f)a radius at the poles, 6356752.314245 meters in WGS-84
U1 = arctan[(1− f)tanΦ1] reduced latitude
U2 = arctan[(1− f)tanΦ2] reduced latitude
L = L2 − L1 difference in longitude of two points
λ1, λ2 longitude of the points on auxiliary sphere
α1, α2 forward azimuths at the points;
α azimuth at the equator
s ellipsoidal distance between two points
σ arc length in the middle of positions on auxiliary sphere
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sinσ =
√

(cosU2 sinλ)2 + (cosU1 sinU2 − sinU1 cosU2 cosλ)2 (6)

cosσ = sinU1 sinU2 + cosU1 cosU2 cosλ (7)

σ = arctan
sinσ

cosσ
(8)

sinα =
cosU1 cosU2 sinλ

sinσ
(9)

cos2 α = 1− sin2 α (10)

cos(2σm) = cos σ − 2 sinU1 sinU2

cos2 α
(11)

C =
f

16
cos2 α

[
4 + f(4− 3 cos2 α)

]
(12)

λ = L+(1−C)f sinα
{
σ + C sinσ

[
cos(2σm) + C cosσ(−1 + 2 cos2(2σm))

]}
(13)

When λ has been assembled using Formulas 12 and 13 to the wanted degree of

precision (1012 corresponds to 0.06mm). Assembling λ is done by iterating over

Formulas(6 to 11. After all that proceed to evaluate the following formulas.

A = 1 +
u2

16384

{
4096 + u2

[
−768 + u2(320− 175u2)

]}
(14)

B =
u2

1024

{
256 + u2

[
−128 + u2(74− 47u2)

]}
(15)

∆σ = B sinσ
{

cos(2σm) + 1
4
B
[

cosσ
(
− 1 + 2 cos2(2σm)

)
−

1
6
B cos(2σm)(−3 + 4 sin2 σ)

(
− 3 + 4 cos2(2σm)

)]} (16)

s = bA(σ −∆σ) (17)

, where ∆σ is a result of Formulas 14, 15 and 16.

u2 = cos2 α
a2 − b2

b2
(18)

37



After all that the result can be calculated by Formulas 19 and 20.

α1 = arctan

(
cosU2 sinλ

cosU1 sinU2 − sinU1 cosU2 cosλ

)
(19)

α2 = arctan

(
cosU1 sinλ

− sinU1 cosU2 + cosU1 sinU2 cosλ

)
(20)

Explanations to variables in Vincenty’s inverse formulas are in Table 2. In this

thesis WGS84 is used in distance calculations and visualizations in QGIS. WGS84

is an Earth-centered reference system and geodetic datum. WGS84 projection is

based on a set of constants and parameters that describes the Earth’s size, shape.

Figure 6: Cell coverage area centroid and nearest node in OSM. The centroids are in
blue and nearest nodes are in yellow.

Results of the nearest node search from OSM road data are shown in Figure 6.

Blue points are the calculated centroids from polygons and yellow are the nearest

nodes from the road data.
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3.4 Reconstructing the trajectories

After completing all of the steps in preprocessing, path reconstruction is possible.

Firstly the shortest path between two nearest node points, that are in chronological

order, are calculated. With the length of shortest path a cutoff is calculated and

used to find paths between two nodes with depth-first search. This is covered in

mored detail in Chapter 3.4.2. To choose the final path from intermediate results,

time intervals are calculated in Chapter 3.4.1 and compared to timestamps of

two CDRs from the original data and the closest time interval is the resulting

trajectory.

3.4.1 Calculating the time intervals

Time intervals are used to find closest time to the CDR timestamps. Two different

times were calculated to find the most accurate path. The average car driving

time and the average walking time for previously generated paths using depth-

first search. The speed limits were extracted from road data using the OSM

service. When data about the legal speed limits was missing, it was set as 50

km/h (city limit) and 90 km/h (highway limit) for driving and 5 km/h for walking.

After calculating the result of estimation times for paths, they were compared to

the starting point time and destination point time. The path with the closest

estimation time was chosen as the trajectory.[LV11]

3.4.2 Reconstructing paths

Paths are generated by first finding the shortest path between two nodes. After

that using length of the shortest path to run depth-first search with a cutoff. Be-

cause of the fact that a smartphone can ping-pong between cell towers and connect

multiple times to one cell tower even when not in movement, there might be mis-

leading data in CDRs. These type of double nodes were filtered out from CDRs

during the path reconstruction process, to reduce inaccuracies of path generation.
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procedure DFS i t e r a t i v e (G, s ta r t , end , c u t o f f ) :

l e t S be a stack

S . push ( s t a r t )

whi l e S i s not empty

v = S . pop ( )

i f S i s sma l l e r or equal to the c u t o f f :

i f s t a r t i s not l ab e l ed as d i s cove r ed :

l a b e l s t a r t as d i s cove r ed

f o r a l l edges from s t a r t to end in G. adjacentEdges (

s t a r t ) do

S . push ( end )

Listing 2: Pseudocode of the depth-first search with a cutoff.

In Listing 2, the cutoff if-statement is used before going through the graph

nodes and edges. Intermediate results from depth-first search were saved and time

intervals were attached to them. After this, time periods were compared and the

closest one was resulting path.

3.4.3 Cell ping-pong handover problem

While processing the CDRs for the trajectory reconstruction an anomaly in the

spatial data was discovered. For some sequences of CDRs, multiple cell towers

reoccurred numerous times. This problem is called the cell tower ping-pong han-

dover problem, which means that when the user is located between two cell towers

the connection can be passed from one tower to another, due to network traffic

fluctuations. In trajectory reconstruction, these double cell towers were removed

to get more accurate results. This was done by going through the sequence of cell

towers and comparing patterns of three last cell towers to the next ones. When

the patterns matched, double occurrences were removed.
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3.5 Validating with GPS data

As mentioned previously, GPS is considered an active tracking method and CDR a

passive one. In this thesis GPS location data was used to verify the results of the

trajectory reconstruction. CDR characteristics, such as total number of CDRs,

CDR per reconstructed trajectory, total number of OSM nodes per trajectory

and the percentage of accuracy of the reconstructed path are covered in Table 3.

The accuracy percentage is calculated by splitting the CDR trajectories into road

segments and dividing the accurate number of segments with the total number of

segments in the trajectory.

Apercentage =

(
Saccurate

Stotal

)
· 100 (21)

In Formula 21 Apercentage is the correctly reconstructed trajectory the percentage,

Saccurate is the number of road segments that are equal to the GPS trajectory and

Stotal is the total number of road segments in the path.

Table 3: Table of the processed CDR characteristics.

Characteristics of CDR trajectories

Date Total num-
ber of
CDRs

CDRs per
trajectory

Number of
trajectory
nodes

Percentage
of accuracy

1 May 230 15 87 ∼ 66%

16 May 240 18 93 ∼ 75%

19 May 340 12 46 ∼ 69%

20 May 204 16 34 ∼ 57%

23 May 61 6 37 ∼ 70%

In Table 3 five datasets of CDRs are shown, separated by date, that were

used to create the overview of CDR trajectory reconstruction accuracy. First

dataset might have a lower accuracy because the number of CDRs was somewhat

lower, but competed to the fourth dataset, it was located near the city border of

Tartu and because lower cell towers the accuracy is lower. Second dataset has a
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much higher percentage than others. This could be because the area where the

trajectory was did not have many roads. This mean only one or two paths could

be generated between two simultaneous CDRs and the correct one was chosen

from the results more often. Fourth dataset gave the most inaccurate result. This

might be because the CDR in this dataset were more sparse than in others and

this made the trajectory error bigger. Accuracy in the fifth dataset is one of the

highest, but not as high as in the second one. This might be due to the fact that

the number of CDRs is much lower.

Figure 7: Trajectory reconstruction based on CDR data. Trajectory points are in pink
and GPS locations are shown as blue rectangles.

Trajectory reconstruction is shown in Figure 7, for CDR dataset of 19th of May,

outside the city of Tartu. Reconstructed path nodes are pink and GPS positions

are represented with blue triangles. The path is not continuous and breaks multiple

times. Also the trajectory seems to go along numerous side roads and not go along

the Tallinn-Tartu highway in a straight line. This result is expected, because in

the reconstruction phase object’s real starting position can be different from the

cell coverage area centroid. In cases where the object starts movement somewhere

near the cell polygon edge, the difference in the calculated and real starting point
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can be up to hundreds of meters. In Figure 9 that situation is displayed in cell

number 3. This difference in real positions and the centroid affects trajectory

reconstruction less in urban areas, because the number of antennas and cell areas

is increased. This means that the coverage areas are smaller and close together.

This decreases the amount of side roads in the final trajectories and the paths are

more accurate. The overall accuracy of the trajectory reconstruction in this thesis

is ∼ 67.4%.

Figure 8: Trajectory reconstruction based on CDR data. GPS trajectory is in red and
CDR trajectory is in blue.

In Figure 8 reconstructed CDR trajectory is illustrated. The path seems to take

many side streets and this is because of the fact that object’s real position and the

polygon centroid are not int the same location. There is method for trying to fix

this problem using Kalman filters and identifying if the cell is a stay, bypassing or

a jump cell and by using these identifiers the real position of the user is calculated

with a higher accuracy in stay cases, while in bypassing it is lower.[BHLV15]
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Figure 9: Cell 3 centroid and the real starting position of the object.
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4 Human mobility patterns

In this thesis individual user mobility patterns are investigated. In Chapers 4.1

and 4.2 the distribution of user generated CDR events and distances traveled are

visualized with time intervals in histograms. To find these patterns in the frequency

of the CDR events and the distribution of distances traveled many methods from

Chapter 3, such as using road data from OSM and calculating distances. After

that the user’s most frequently visited POIs are identified. In the last chapter

CDR cell tower connecting issue is described. The inspected CDRs start from the

date 16th of October, 2016 and end in 24th of November, 2016. In total there were

3721 CDRs.

4.1 Frequency of CDR events

Visualization of the CDR event frequencies gives an overview of time periods when

the user is most active during the day or week. In Figures 10a and 10b the

frequency of the CDR events is shown during workdays and weekends. The number

of users events over business days is a lot higher than in weekends. This might

be due to the fact that the user works during the week and weekends are leisure

time. The first peak in Figure 10a starts around 9 a.m. and ends around 11 a.m,

these are the usual commuting to work hours. There is another smaller peak in

the lunch time. The biggest peak is during the after office hours from 6 to 7 in

the evening, when the user might leave work. There is a smaller peak around 9

p.m., which might indicate some leisure activity for the user. The weekends in

Figure 10b have far less activity and the day starts from 9 a.m. to 11 a.m. with

the first peak. Overall the events in weekends are evenly distributed and low. In

Figure 10c the frequency of events are shown by weekdays. The busiest days of

the week are Tuesdays and Saturdays. Weekend days have a lot less activity, with

Sundays having the smallest frequency of events. In Appendix 5.1 the daily event

frequencies of the weekend days are shown. Mostly, the daily histograms conform

the overall patterns.
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(a) Events per weekdays (b) Events per weekends

(c) Events per weekday

Figure 10: Histograms of event frequencies for the entire dataset.

4.2 CDR dispersion over distance

Plotting the distances of the CDR events in chronological order gives an overview

of the times when the user is travels the most distances during the day or week.

In Figures 11a and 11b the distance dispersion is shown during workdays and

weekends. There are many similarities between the event and the distance distri-

bution histograms. The user moves a lot more during weekdays than weekends.

In weekdays there are three noticeable peaks. The smallest is from 8 a.m. to 9

a.am., which can be the time interval when the user travels to work. Second one

is 4 p.m. and the third one 7 p.m. These hours might be when office workers
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usually goes home from work and complete other daily obligations (e.g. shopping,

visiting friends). In the evening at 9 p.m. there is a peak, which can indicate to

recreational activities. The peak at 1 a.m. is very unusual. Figure 10c confirms

that the user travels more during the weekdays and less during weekends. The

daily distance distribution is shown in Appendix 5.1. The daily frequencies in

the Figure 19 are similar to the overall distance distribution during the weekends,

which shows that the user does not travel a lot in the days off from work.

(a) Distances per weekdays (b) Distances per weekends

(c) Distances per weekday

Figure 11: Histograms of distance distribution for the entire dataset.
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4.3 User POI

To find the user’s POI the CDRs were analyzed. In the data there were 883 unique

cell IDs that represent sell towers the user had been connected to at some point of

the time. In Figure 12a all of the connections are shown and in Figure 12b the 18

most frequently connected towers are shown. Around 763 towers had connections

less than 10 times, which means these areas were most likely visited only once.

This means that these cell towers were used, when the user was in motion.

(a) All the cell tower connections. (b) Most popular cell towers.

Figure 12: Cell tower connections.

4.3.1 Home and work

The most frequently connected cell towers were analyzed to find the home and work

areas of the user. From Figure 12b the ten first cell locations were investigated, to

find the area where the user most likely lives and works. Most frequently visited

cell location polygons (cell coverage areas) were extracted and visualized. The cell

coverage areas that were very close together or even overlapped were considered

one area of interest. Area with the most frequently visited cell ID is considered

to be the area where the user lives. Because there was insufficient location data

for four of the most frequently visited cells additional tasks had to be made. To

confirm the home and work place hypothesis the timestamps were extracted and

compared. The cell tower that was consistently connected to first in the mornings

and last in the evenings was considered the home location and the second area
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was the place of work. The resulting home and work areas are shown in Figure 13,

where the user’s home seems to be in the south part of Tartu, in an area called

Karlova. Because the original home area was very large, topographical attributes

were considered, to crop the area to be even more precise. For example the Tartu

river and big shopping center were left out, because there are not any residential

areas in this region. In addition, the workplace seems to be in Tartu city center.

Due to the fact that there are many polygons overlapping around the work area,

there can be other POI in that area. This hypothesis is further investigated in

Chapter 4.3.2.

Figure 13: Work and home areas shown in blue polygons.

4.3.2 Additional POIs

To detect user’s other POI the frequently visited areas were furthermore examined

and intersections were generated. The overlapping areas represent potential loca-

tions, where the user has another POI. The two intersections found are presented

in Figure 14a with the color red and the frequently visited areas are blue. The big-

ger overlapping area seems to be due to the fact that it is the area, where the user

works. Second intersection on the other hand seems to be a POI. To confirm this
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the possible locations of stay, such as shops, gyms and restaurants were extracted

from OSM service. The result is shown in Figure 14b, where the frequently visited

areas are in blue and locations of potential POI are in red.

(a) Intersections of frequently visited areas.
Intersections are shown in red and frequently
visited areas are in blue.

(b) Most visited areas with POI from OSM.
Most visited areas are shown in blue poly-
gons and POI are in red.

Figure 14: Frequently visited areas.

Determining the exact location, that the user visits in the second intersection,

timestamps from the CDRs were investigated again, to find time intervals of the

stays. Results showed that the user usually arrived to the area between 6 p.m. and

7 p.m. and left around 9 in the evening. This means that the user stayed in the

area for over three hours per every visit. The OSM data about potential locations,

where the user could visit, consisted of two retail establishments, three food shops

or restaurants, two sports locations (gym, stadium) and an educational building.

The retail and education locations were left out because these institutions are

closed during the visitation time interval and the sport and food businesses remain.

After examining opening hours of the remaining locations only three remained, two

sporting establishments and a food market. Due to the fact that visits were regular

and mostly made on Tuesdays and Wednesdays (also some Sundays), it is highly

plausible that the user visited the sport center shown in Figure 15.
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Figure 15: POI inside the frequently visited area. Visited area is shown within a blue
polygon line and POI are in green dots.
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5 Conclusion

Geospatial technology in the daily lives of people has become an essential com-

modity and many applications use different types of spatial data to make mundane

tasks easier, such as making travel plans or finding a suitable path. The rise of

these technologies enables massive geospatial data collection and analysis. The

results can be used in optimizing transportation, urban planning, event detec-

tion and semantic studies. Numerous research shows the benefits in using spatial

data, for example GPS or mobile phone (CDR) data, to improve the daily lives of

citizens.

In this thesis, CDR data was used to reconstruct user paths. Due to the fact

that CDR and GPS data have various differences many preprocessing phases were

completed before beginning with trajectory reconstruction. For example CDR

data does not include location data, but the information about the cell tower that

it has been connected to. Location data was obtained by using an open source

service and calculating the centroid of cell coverage areas. The center found as a

result was appointed as user’s location at a certain moment in time. The trajectory

reconstruction results showed that the paths generated took on some cases many

side streets or roads. This is because the real location of the user was in the edge

of the coverage area and the result was less accurate. Comparing rural and urban

areas showed that because in cities the number of cell towers is larger the paths

generated were more accurate.

In addition to the trajectories, human mobility patterns were investigated,

by analyzing one user’s CDR data. The data consisted of CDRs starting from

16th of October, 2016 and ending with 24th of November, 2016. CDR distance

and event distribution was visualized and patterns detected. Additionally user’s

significant places, such as living and work, were located from the intersections of

frequently visited cell coverage areas. To find the user’s recreational destinations

times interval of the visits were compared to the points of interest in the coverage

area. As a result the sport center, which the user visited regularly, was located.
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5.1 Future work

There are many areas, where future work could improve the accuracy of trajectory

reconstruction based on CDR data and there are various ways to do this. Some

suggestions for the future work are in the list below.

• Starting and ending point detection could be improved, by giving attributes,

such as Stay, Jump and Move to the cell coverage areas, where the object has

been in. This could be done by using Kalman method with three ingrained

movement models.

• The path choosing could be improved by taking into account public trans-

port, in addition to the walking and driving times.

• Calculate more accurate average speeds by including times of traffic conges-

tion in the city.

• Alternative path generating algorithm could be used to find more accurate

trajectories.
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Example of an OSM road data file

1 <?xml version=” 1 .0 ” encoding=”UTF 8 ”?>

2 <osm version=” 0 .6 ” genera tor=”CGImap 0 . 0 . 2 ”>

3 <bounds minlat=” 58.3774406 ” minlon=” 26.721533 ” maxlat=” 58.3790047

” maxlon=” 26.7315473 ”/>

4 <node id=”377093405” l a t=” 58.3791890 ” lon=” 26.7181400 ” user=” Ivo ”

uid=”46882” v i s i b l e=” true ” version=”1” changeset=”676636”

timestamp=” 20 0 8 0 9 2 1 T21:37:45Z”/>

5 <node id=”418065240” v i s i b l e=” true ” version=”4” changeset=”

48083103” timestamp=” 201 7 0 4 2 4 T08:17:25Z” user=”

CharlieHotelRomeo” uid=”5718944” l a t=” 58.3771593 ” lon=”

26.7271446 ”>

6 <tag k=” c r o s s i n g ” v=” t r a f f i c s i g n a l s ”/>

7 <tag k=”highway” v=” t r a f f i c s i g n a l s ”/>

8 <tag k=” t r a f f i c s i g n a l s ” v=” c r o s s i n g ”/>

9 </node>

10 <way id=”29980910” v i s i b l e=” true ” version=”6” changeset=”14894434

” timestamp=” 20 1 3 0 2 0 3 T11:27:20Z” user=” k ” uid=”156900”>

11 <nd r e f=”330042903”/>

12 <nd r e f=”2139961606”/>

13 <tag k=”highway” v=” r e s i d e n t i a l ”/>

14 <tag k=”name” v=”Va l l i k r a av i ”/>

15 <tag k=” source ” v=”Tartu City Government”/>

16 </way>

17 <r e l a t i o n id=”2959823” v i s i b l e=” true ” version=”2” changeset=”

16333718” timestamp=” 201 3 0 5 2 9 T07:00:54Z” user=”MHohmann” uid=

”129688”>

18 <member type=” r e l a t i o n ” r e f=”2959820” r o l e=””/>

19 <member type=” r e l a t i o n ” r e f=”2959819” r o l e=””/>

20 <tag k=”network” v=”Tartu l i nn ”/>

21 <tag k=” operator ” v=”Sebe”/>

22 <tag k=” r e f ” v=”2”/>

23 <tag k=” route master ” v=”bus”/>

24 <tag k=” type” v=” route master ”/>

25 </ r e l a t i o n>

26 </osm>

Listing 3: Example of an OSM road data
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Event frequency daily

(a) Events on Mondays (b) Events on Tuesdays

(c) Events on Wednesdays (d) Events on Thursdays

(e) Events on Fridays

Figure 16: Event frequency during weekdays.
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(a) Events on Saturdays (b) Events on Sundays

Figure 17: Event frequency during weekends.
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Distance distribution daily

(a) Distances traveled on Mondays (b) Distances traveled on Tuesdays

(c) Distances traveled on Wednesdays (d) Distances traveled on Thursdays

(e) Distances traveled on Fridays

Figure 18: Distance distribution during weekdays.
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(a) Distances traveled on Saturdays (b) Distances traveled on Sundays

Figure 19: Distance distribution during weekends.
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