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Real-time Localisation and Tracking System for Navigation Based on
Mobile Multi-sensor Fusion

Abstract:
With the rise of the smartphone, new research opportunities have emerged. With a wide
array of sensors that are available in today’s smartphones, the research possibilities are
endless. In this work, we present a new algorithm that can track and localise a vehicle in
real-time using the GPS, accelerometer and gyroscope data streams from an Android OS
smartphone. The resulting algorithm can respond to speed changes, and the car turns
in real-time without any info from the GPS. This means that the algorithm can estimate
the vehicle position if the GPS data stream is unavailable for unknown amounts of time.
Results are promising and show that the algorithm performs well both in accuracy and
real-time responsiveness. Even without 30 seconds of GPS info, the algorithm is able to
estimate the vehicle location with an average accuracy of 25 meters.
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Mobiilsete sensorite integratsioonil põhinev reaalajaline lokaliseer-
imine ja jälgimissüsteem
Lühikokkuvõte:
Nutitelefoni tõusuga ja nendesse paigaldatud anduritega on tekkinud lõputult teaduslikke
uurimisvõimalusi, ilma kallist riistvara omamata. Selles töös tutvustame uut algoritmi,
mis võimaldab jälgida ja lokaliseerida sõidukit reaalajas, kasutades Android OS nu-
titelefoni GPS-i, kiirendusmõõturi ja güroskoobi andmevoogusid. Loodud algoritm
võib reageerida kiiruse muutustele ja auto pööretele reaalajas ilma GPS-i sisendita. See
tähendab, et algoritm saab hinnata sõiduki positsiooni, kui GPS andmevoog ei ole tead-
mata ajahulgal saadaval. Tulemused on paljutõotavad ja näitavad, et algoritm toimib hästi
nii täpsuse kui ka reaalajas reageerimisega. Isegi ilma GPS infota 30 sekundit jooksul
suudab algoritm hinnata sõiduki asukohta 25 meetrilise keskmise täpsusega.

Võtmesõnad:
Sensorite integratsioon, lokaliseerimine, jälgimine, Android, GPS, Kalmani filter

CERCS:
P170, Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)
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1 Introduction
Nowadays, Modern smartphones are not just for browsing the web, making phone calls
and chatting with friends anymore. The rise of smartphones has, in addition to changing
our everyday lives, also provided the scientific community with a new opportunity to
use the smartphone as a scientific tool with the connection to the Internet and with its
many embedded sensors. The scientific world today uses the smartphone for various
applications including localisation and tracking. The embedded sensors, which include
the GPS, gyroscope and accelerometer, are ideal and more than enough for tracking the
position of the smartphone accurately in real time.

The relevance of real-time tracking and localisation is increasing with every year.
Many fields can be named, that make use of knowing the exact location of the user or
device. For example localisation and tracking is used in parking systems [21], racing
and rally [10], and fleet management[25]. Each of these fields needs the data in real -
time, e.g. with minimal delay from the current time. Also, having an accurate location
is as important. Failing to produce real-time and accurate location data in these fields
could result in a potential financial loss, material damage or loss of life. Moreover, with
autonomous vehicles and other autonomous technology on the horizon, the awareness of
accurate, current location at real-time is essential for these technologies.

1.1 Objectives and limitations
This thesis proposes a software to track and localise vehicle movement in real time using
only the smartphones embedded sensors. The objective is to demonstrate software that
uses the embedded sensors of a smartphone, namely GPS, gyroscope and accelerometer,
to produce an accurate location estimation in real-time, even if GPS signal is lost for
periods of time. The response time for location request must also be adequate. The
software quality was assessed from multiple viewpoints; the following targets were set:

• The software must respond to vehicle turns

• The software must respond to vehicle accelerations and decelerations

• The software must be able to work in real time and produce at least 50 estimations
per second.

• The software must be able to continue providing estimations when GPS updates
are lost.

Limitations There are also some limitations that can affect the proper functioning of
the software. For example, the positioning of the smartphone inside the vehicle. Firstly,

6



the smartphone must be fixed inside the car, for the smartphone to pick up inputs only
from vehicle movements, not from smartphone moving around in the vehicle. Secondly,
the assumption is made that the smartphone is set inside the car with the back of the
phone directed to the vehicle forward moving direction. This assumption was needed to
separate the turn forces from the acceleration forces to the device’s accelerometer.

1.2 Contribution
In this thesis, the work can be divided into three parts:

• Firstly the research phase, where the selection of methods and filters were made.
Many filters were considered to be used in our system, but three were chosen:
Kalman Filter, Moving average Filter and the Simple moving average filter.

• Secondly the system design. The system itself consists of different modules, and
the modules consist of different algorithms, which help to alter the data stream to
produce the wanted result. Each of these modules uses a custom developed mech-
anism and algorithms inspired by the filters as mentioned earlier. In total seven
different size modules were developed. The modules are Gravity, Acceleration,
Angular speed, Speed fusion, Heading fusion, Tracking and localisation fusion
and Map-matching module.

• Thirdly, the implementation of the Android application itself where to put this
technology to the test. The Android app composes of 3180 Java SLOC (source
lines of code) and 301 XML descriptor SLOC. The application includes a map
view, where the results can be viewed in real time, instead of just logging the results
into memory. The map data also is queried over the network in real time, so the
application itself is usable anywhere around the world with internet connectivity
without the application itself including any static map data.

1.3 Road map
There are four major sections in this thesis, and they are as follows:

• State of the art - In this section relevant state of the art technologies are researched
and discussed. Three different viewpoints are taken. Firstly, Real-Time systems
are discussed. Secondly, state of the art Localisation and tracking methods are
examined. Finally, the Location prediction methods are researched.

• System design and architecture - Secondly, the proposed system architecture is
discussed. The choice of platforms used in this project is reasoned, input data
indicated, and the overall system operation explained.
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• Modules and Components - In this section, the main working procedure of the
system is isolated into modules. These modules are then thoroughly examined,
and their processes are reasoned.

• Results and Discussion - In this last main section, the results of system testing are
displayed. The results are then discussed, and explanations regarding the results
are provided.

This is the end of the introduction part of the Thesis. In the next section, the current
state of the art systems that are relevant to this work are discussed.
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2 State of the art
In this section, the state of the art algorithms and terminology are discussed. The chapter
is divided into three subsections, which addresses Real-Time systems, Localisation and
tracking and Location prediction.

2.1 Real Time systems
Real-time systems can be found all around us. From our smartphones to our cars, from
our television sets to the electricity providing power plants. Real-Time systems can
be defined in the following way: A system in which the correct running behaviour is
determined by the logical results of the computations and the physical timeframe when
the results are provided. An example of a non-correct behaviour of real-time systems
would be if a aeroplanes autopilot would respond with control outputs to a set of inputs
(airspeed, wing configurations, altitude, heading, rotation, tilt etc.) with an unexpected
significant delay. The results could be catastrophic, e.g. the plane could crash [7].

Timing constraints As Real-time systems have timing constraints then there must be
consequences when this deadline is not met. Depending on the implications of missing
the real-time deadline systems can be divided into two subgroups.

• Hard real-time systems - When the implication of missing a set deadline is catas-
trophic or fatal to the process, e.g. loss of life, significant financial loss, non-usable
result etc., then the real-time system is defined as Hard real-time systems.

• Soft real-time systems - When the implication of missing a deadline is not catas-
trophic or non-fatal to the process, e.g. slight human discomfort, non-significant
processing delays, then the real-time system is defined as a Soft real-time system.

As real-time systems may compose of multiple real-time subsystems, then the system,
which is composed of only soft real-time subsystems is a soft real-time system as well.
On the other hand, if a system has key hard real-time subsystems, then the parent system
is a hard real-time system as well.

2.1.1 Soft real-time systems

Soft real-time systems fill the timing constraints on best-effort principle, and occasional
deadline misses may occur. These deadline misses are tolerable as they do not cause
a catastrophic event. It must be noted that even though missing the deadline does not
result in a catastrophic event, then the quality of the service may be degraded and thus
this is still an unwanted situation. Some examples of soft real-time applications and their
implications of missing deadlines were hypothesised.
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• Vehicle navigation system - A automobile navigation device is a real-time system
because it responds to GPS inputs in a certain timeframe with routing directions.
If this system would be unresponsive, then the implication would be that the user
might miss the next turn, which is non-catastrophic and thus falls into the realm of
soft real-time systems.

• Smartphone camera system - Smartphone cameras task is to take pictures and save
them onto a storage medium upon command from the user within the manufacturer
proposed timeframe. If the task is not completed within a timeframe, then the
result might be a frustrated user.

• Coffee machine - Coffee machine makes coffee on the command of a user. The
implications of not delivering coffee quickly enough are not catastrophic.

• Gaming console - A gaming console is a real-time system as user inputs commands
via a controller and the gaming console must output the respective view in response
to the command. If there is a slight delay or the video stream is “lagging” then the
situation is not desirable but not catastrophic and thus has the characteristics of a
soft-realtime system.

2.1.2 Hard real-time systems

A missed deadline for head real-time systems is completely unacceptable because it
might result in harm to a human being or significant financial loss. Therefore for hard
real-time systems, both the correctness of the result and execution completion before
the deadline must be guaranteed. In some cases, the timing aspect of a real-time system
might be even more important, as the non-complete results can still be used to perform
actions or present to the user for an acceptable outcome. Again, some example hard
real-time systems and implications of them missing their deadlines were hypothesised.

• Autonomous vehicle object detection system - This system would be responsible
for detecting surrounding objects around the vehicle. This system would be a quite
high rate and missing deadlines for object detection because it could cause a crash
of the vehicle which may result in human harm and financial loss.

• Vehicle anti-skid system - Various anti-skid systems are installed to vehicles to
restrict the user losing control over the vehicle. This system would analyse various
parameters of the vehicle up to hundreds of times per second and thus must be
highly responsive. If an uncontrollable event would be unnoticed or noticed late,
then the result can be an accident that is again a catastrophic event.

• Automatic bitcoin trader - This system would download the bitcoin financial data
multiple times per minute, make the analysis of the acquired data and decide on
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the action. If this system would fail or become unresponsive, then the result might
be a financial loss for the user.

2.2 Localisation and tracking
Localisation and tracking have come a long way since the public adopted the smart-
phones. Nowadays there are various ways to achieve localisation of a device because
there are so many sensors that can be exploited for this. The most obvious sensor to
use for localisation and tracking would be the GPS that most smartphones and various
other devices include. GPS is an excellent device to localise and track a device as its
purpose-built for this and can give a good location estimate within few meters of reality.
Unfortunately, GPS is not perfect and needs unobstructed skies to work. Therefore it
becomes almost useless when tried to use indoors or underground.

Indoors localisation and tracking is a major research area right now as it has a lot of
commercial interest. For example, while shopping in a supermarket or mall, the user
of the indoor location-aware application can benefit from knowing the exact position
within the building and get clear directions to the searched location. It can provide major
benefits for the business owner as well from customer satisfaction to various statistics
like moving patterns around the building. Another area where indoor localisation and
tracking is essential is security. The movement and actions of people must be monitored
to prevent theft or potential harm to other humans. There are various approaches to
achieve indoor localisation and tracking. The following represents some articles and
different methods to achieve localisation and tracking.

2.2.1 GPS localisation and tracking

GPS is a technology that uses the signals sent from earth’s satellites and then triangulates
the position on earth using the relative distances from the receiver device to the satellites.
Results from GPS are not perfect and can be disrupted by anything that blocks the line of
sight to the sky, like high buildings, being indoors or driving through tunnels. Therefore
there exist many methods to improve the results provided by GPS, like installing more
expensive and sophisticated GPS receiver hardware or try to improve the results with
software or by fusing together data from other sensors. The latter is a popular research
area. State of the art GPS localisation and tracking methods can be divided into two
subcategories. Firstly there is the group that focuses on building on algorithms that can
fix GPS errors. The second group uses other sensors to improve the position results in
areas where GPS fails or provides poor accuracy results.

11



GPS data enhancement by error fixing: Fixing GPS errors can be achieved by ap-
plying some filter to the GPS data. An Example of an error fixing method is the strong
tracking filter (STF) which is applied to the GPS data [27]. Strong Tracking filter has
the characteristics to give good results even if the precision of the system is unknown.
The algorithm utilises adaptive fading factor to create a gain matrix, which gives either
more value to the predicted position or the measurement. The results show that the
filter is robust and able to outperform Kalman Filter (KF) if there is no error data on the
GPS stream, the initial value is erroneous, or the state of the system changes unexpectedly.

GPS data enhancement by sensor fusion: Methods based on fusion, use other avail-
able sensors to enhance the position estimation accuracy and make it possible to predict
location before the next GPS update. Sensor fusion is especially effective when the
location is needed in real-time as GPS position updates come at a limited rate. Getting
high-quality location information is essential for future developments of autonomous
vehicles. Such case has been studied in article [13], where GPS sensor is fused with
in-vehicle sensors as Wheel speed sensor, Steering angle sensor and Yaw rate sensor.
As modern standards require that each vehicle has to be equipped with stability control
systems and many vehicles today already include in-vehicle built navigation systems,
then all of these sensors are already included inside the car. The proposed algorithm
uses Extended Kalman Filter for sensor fusion. This article puts a lot of emphasis on the
tyre slip conditions. Tyre slip occurs when a lot of force is put on the tyre like driving
with high speeds or fast cornering situations, such as driving on highways or mountain
roads. Two different models have been proposed for these situations, firstly a standard
kinematic model, where zero tyre slip is assumed. Secondly a dynamic model, where
the slip of tyres has been accounted for dynamically. It is assumed that the lateral force
acting on a tyre is proportional to tyre slip angle. The kinematic model is very accurate
on low tyre slip conditions but breaks down on high slip conditions as opposed by the
dynamic model. Therefore the algorithm can adapt to current driving conditions, for
example, if the vehicle is moving at high speed or under high lateral force situations, a
dynamic vehicle turning model is used. Only visual representations of the accuracy of
this algorithm are provided, but the visuals show the algorithm can estimate the vehicle
position to a high degree.

2.2.2 Inertial sensors

Inertial sensors can successfully be exploited to track and localise when the starting
position of the subject is known. In [22] the four types of inertial sensors were attached
to a shoe of a pedestrian and the performance of these sensors were evaluated. The four
sensors were the acceleration moving variance detector, the acceleration magnitude de-
tector, the angular rate energy detector aka gyroscope, and a novel generalised likelihood
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ratio test detector. The end result were promising and showed that they were able to
estimate the pedestrian position within 0.14% of travelled distance with combining the
results from the likelihood ratio test detector and angular rate energy detector. Inertial
sensors are also often used in combination with other technologies to estimate location.
For example in [30] the mobile phones inertial sensors are used in combination with
Wifi and iBeacon. The method was then put to a test by attaching the sensors to a user
and a predetermined route was travelled. The result shows that with the combination of
all three technologies improve the results using the inertial sensor alone from a mean
error of 2.732m to 0.594m. The main drawback that both articles mention is that using
inertial sensors alone is the accumulation of errors over time. Thus a large deviation of
the real and predicted position can occur if the test has run a significant amount of time.
Therefore most applications use the inertial sensors in combination with other sensors.

2.2.3 Visual aid localisation

Visual aid localisation is the most natural way for humans to assess their location. We
use the visual references to navigate in our world. This method is a popular research area
especially when developing Humanoid robots. Humanoid robots are kind of robots that
visually represent humans body and try to mimic their actions. For example there exists a
football league called “RoboCup” that uses humanoid robots to play football against other
robots. There are many articles that represent algorithms to detect various objects during
a football match. In [29] a visual self-localisation method is described. The algorithms
purpose is to detect the position of the robot in the football field using digital images
from the cameras and preset reference points on the field like the goals and beacons to
produce a coordinate and the angle that the robot is placed on the field. The distances to
these preset items is determined using monocular vision and then triangulation is used.
The results show, that when the reference points are well detected the positioning error
is around 1 cm, but when some problems arise with reference points detection then the
error can turn up to 40 cm.

Another field where visual aid localisation and tracking is used is CCTV (closed-
circuit television). It is primarily used for manual security and surveillance, but can also
be used for statistical analysis and automatic identification if the footage is processed and
objects are tracked and localised. As most modern cities use traffic cameras, then this
network of cameras can be used for example to model traffic and make predictions of
it. Such work has been done in [12] where there is a method described to automatically
calculate traffic volume and speed. This has been achieved by pixel pattern analysis.
Firstly the lanes of road are detected from the video feed and then when the specific lane
pixel brightness change, then it can be assumed that there is a vehicle passing by.
The drawbacks of using Visual aid localisation and tracking are obvious. Firstly, object
detection and tracking is a difficult problem to solve, especially when abstraction of an
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object is needed. Therefore a lot of processing power is needed. Secondly, objects that
are tracked must be in sight of the camera system. When the object leaves the line of
sight, then the object localisation and tracking is obsolete.

2.2.4 Indoor localisation methods

Indoor localisation is a difficult problem and is not perfected yet, although more than a
decade of research time has put into it. Microsoft holds a yearly competition for Indoor
localisation prototypes, with more than 20 yearly ambitious projects [16]. Although
there are prototypes that can achieve sub-meter accuracies, the overhead of equipment
installation for these methods is high, impractical and often expensive. When the over-
head of extra equipment is reduced by using only infrastructure free methods to detect
localisation indoors, then besides the drop in accuracy, the overhead of mapping remains,
and the accuracy is highly dependent on changes in the environment. No method yet
exists that works indoors as well as GPS does outdoors. Two most common methods
exist for Indoor Localisation. One of the methods being fingerprinting, which essen-
tially is mapping the whole indoor area with data and then later, when location needs
to be tracked, this mapping is compared with current data and the most probabilistic
position is chosen. Second method is Triangulation. Triangulation is a method used to
detect a point by measuring the distance to known points. A minimum of three points
is needed to be known for a effective triangulation to take place. The same method is
used with GPS technologies, as the position of the satellites are known and therefore
by knowing distances to satellites a position on earth can be determined. Same ideas
can be applied indoors as well, with various signals, like WiFi, Bluetooth or Radio. Fol-
lowing is the introduction of some of the most common approaches to indoor localisation.

Infrastructure independent methods: 802.11 protocol e.g. WiFi is often exploited
to track the position of a device indoors, because its low cost and has high availability
indoors. The low cost and high availability mean that localisation can usually be achieved
without employing extra hardware indoors. The most prevailing way to use WiFi signals
is using RSSI (Received Signal Strength Indicator) fingerprinting [16]. This method
compares the WiFi signal strengths from various access points to previous mappings
of positions and WiFi signal strengths and chooses the best match from the past data.
While this provides a method to achieve localisation without employing extra hardware,
it is highly dependant on mapping quality Also hardware differences for mapping and
localisation causes inaccuracies [3]. Another way to exploit the WiFi signal to determine
the position of a device supporting IEEE 802.11g signal is to use multiple mutually
synchronised 802.11g receivers to obtain the Time of Arrival (TOA) of the signal [17].
From the TOA a distance between the transmitter, e.g. the target device and a receiver
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e.g. fixed positioned router can be determined. Although better results than RSSI finger-
printing can be achieved, this method is limited with line of sight assumptions. When
some obstacles are introduced the error of this method increases significantly.

Infrastructure dependent methods: Infrastructure dependent systems can use vari-
ous technologies to achieve indoor localisation like Bluetooth beacons, LIDAR, Ultra
Wideband radio or Sound. All of these technologies have different cost and accuracy.
One inexpensive infrastructure dependent way to achieve indoor localisation is using
Bluetooth beacons. Similarly to using WiFi signals, Bluetooth beacons exploit the same
ideas: RSSI fingerprinting and triangulation. In [18] Bluetooth beacons are successfully
used to achieve Indoor Localisation. A particle filter is used based on the floor map and
the proximity of BLE beacons are used. According to authors an average error of 0.999m
is achieved, which is better than similar algorithms.

One of the most advanced and expensive technology used in Indoor localisation
is using LIDAR. Lidar is a technology which creates a high resolution point distance
cloud of its surroundings. In [20] the building is first mapped with LIDAR, and a high
definition point cloud is created of the building. When localisation is taking place, then
this point cloud is matched to the current data. As Lidar creates a very high resolution
image and analysing all in real time that takes a lot of processing power, then some
selection of point data from LIDAR must be taken. Therefore the authors employ feature
detection to select out only the most feature some points from the cloud. The results
show that the location estimation error is on average about 20cm from the reality, which
is a good result.

2.3 Location Prediction
Two most prominent ways to achieve location predictions is Map-Matching, which
predicts the probable location using map data in real-time. Another group of location
predictions algorithms use historical data and make assumptions based on that. Both
of this aforementioned methods are used in different situations. Whilst Map-matching
is usually used to correct data and to provide a smoother, more realistic output to the
user, then movement predictions are used to predict future actions and movements of
users. In this paragraph both of these methods are examined and their advantages and
disadvantages are analysed.

Historical movement: Historical movement data of humans can be used to predict the
future movements of individuals. This is a powerful knowledge that can be used to help
people, save the environment or for monetization purpose. An example of helping the
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environment would be turning on the heat at home only when someone is heading home
from family. Or ride-sharing purposes, getting multiple humans on the same vehicle,
just because you know where they are heading. The possibilities are limitless. There are
multiple algorithms that can achieve such predictions in the literature. Authors of [28]
propose an algorithm that can predict the movement of individual with an accuracy of
85.5% from historical data. Location data is uploaded from the recording device to the
server and predictions of next movements are displayed on a client-side browser. The
idea behind the prediction algorithm is using a simplistic probability model, which is
defined as the probability of user moving to the next region rnext when the input is the
user being in region r. This however does not take into account the times of travel, e.g.
when its 8 o’clock the user is probably going from home to work instead of work to
grocery store. That’s why they introduce the time variable into their probabilistic model.
Therefore the predictions become more accurate, the more data is uploaded to the server
by the user, as user movements are usually time based.

Map matching: As most of human travels happen on predefined paths then this can
be successfully used to predict the future movements of people. Combining this with a
probability model of paths then it can be a powerful short-term prediction method. The
authors of [24] describe an online map matching algorithm that is able to predict future
movements of users. They use a probabilistic model to predict the route of the users by
creating a road graph and then assigning probabilities to each branching. This probabili-
ties are able to change when more data is added and the model is further trained. The
accuracy of their algorithm depends on the sampling rate of GPS inputs, with accuracy
degrading when the sampling is more infrequent. The proposed algorithm achieved an
94% accuracy with trained data model and 92% accuracy with untrained model using
30s GPS sampling rate. The testing was done in Nagakute, Japan, with a total driving
time of 2 hours.
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3 System design and architecture
In this paragraph, a new method is proposed for location fusion and tracking. The
methods design and its architecture are explained in detail in the subparagraph. Firstly,
the choice of Android ecosystem and its possibilities are described. Secondly, the
OpenStreetMap database and Overpass system are introduced. Thirdly, the overall
scheme and architecture of the tracking and localisation system are described.

3.1 Android ecosystem
The proposed method is built and tested on the Android ecosystem. The choice for
Android run mobile devices was taken due to many factors.

• Android is by far the most popular operating system worldwide from all the mobile
operating systems [17]. About 75% of mobile devices run Android OS as of
February 2018, with the second most popular operating system, iOS, used by 20%
of devices. The extensive usage of Android reflects in the scientific community,
and thus the research can be used directly in other projects as well.

• Android apps are written in JAVA, which is one of the most popular programming
languages out there. There are sources that rate it the most programming language,
others claim it to be in the TOP 3 [4, 23]. Using JAVA as the programming
language makes it more likely, that someone can take advantage of the project in
the future. Also, the author had previous experience writing Android apps in Java,
which made a choice even more desirable.

• Android testing devices are easy to obtain, and most of these devices have a wide
range of available sensors. As the author of this paper has multiple Android
devices that can be used for testing purposes, then it made sense to use an Android
ecosystem.

3.1.1 Available hardware sensors

Android supports many hardware sensors, which the manufactures can install to the
device, for the OS to take advantage of. Also, android provides software sensors, where
outputted data is calculated using a combination of other sensors. According to the
Android documentation [15], the sensors that are supported and maintained are listed
in Table 1. The localisation and tracking method uses a subset of available hardware
sensors to provide real-time location info:

• GPS

• Accelerometer
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• Gyroscope

The availability of these sensors in a device is a requirement for the localisation and
tracking method to work correctly.

Sensor Type Description
GPS Hardware Measures the device position on earth and

other parameters like speed and heading
Accelerometer Hardware Measures the acceleration force that is ap-

plied to a device on three device axes (x, y,
and z). Includes the force of gravity

Ambient temperature Hardware Measures the room temperature
Gravity Software or

Hardware
Measures the force of gravity in m/s2 that is
applied to a device on all three physical axes
(x, y, z)

Gyroscope Hardware Measures a device’s rate of rotation in rad/s
around each of the three physical axes (x, y,
and z)

Light sensor Hardware Measures the ambient light level (illumina-
tion) in lx

Linear accelerometer Software or
Hardware

Measures the acceleration force in m/s2 that
is applied to a device on all three physical
axes (x, y, and z), excluding the force of
gravity

Magnetic field Hardware Measures the ambient geomagnetic field for
all three physical axes (x, y, z) in µ T

Pressure Hardware Measures the air pressure
Proximity Hardware Measures the distance of an object to the

sensor. Typically this is used for determining
if the user is holding the phone against the
users head.

Relative humidity Hardware Measures the relative ambient humidity in
percent (% )

Rotation vector Software or
Hardware

Measures the orientation of a device by pro-
viding the three elements of the device’s ro-
tation vector.

Table 1. Android sensor support
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3.2 Open Street Maps and Overpass
OpenStreetMap (OSM) is a community built geographic map database [8], using commu-
nity provided Ariel images, GPS data and low tech field maps. All the data is submitted
by volunteers that can create and update the map data anywhere in the world. This data
is open, meaning that everyone can use it for free, with the only requirement being, that
OpenStreetMaps are credited. OSM includes roads, buildings, landscapes, points of
interests and other data of the world.

As raw OSM data itself is more than 65GB large compressed, then obviously some
subset of the map data must be chosen to access only the interesting dataset. Overpass
Turbo API is a web-based tool [2] that can return a subset of map data based on a query.
This API can be used to query a piece of map data that is interesting to the user. This tool
then can return a bounded data object only with interesting data objects. For example
one would be interested in only road-map of a city, then Overpass Turbo API can provide
such a data. In the application, this API is used to query the surrounding area from the
user location perspective, and this data is then cached to be used again. When the user
starts to leave the bounding area, by arriving at the edge of the bounds, then another area
is queried from the API to ensure a continuous road map data.

3.3 Design and architecture
In the following, the architecture and overall design of the localisation and tracking
application are discussed. The big picture composes of three different phases (Figure 1):

• Data gathering phase - hardware sensor outputs are gathered and mapped to a
suitable form.

• Location fusion phase - The input data is then filtered and fused into more accurate
and higher frame rate data-stream.

• Map Matching phase - The location fusion output data is then constantly matched
with map data, and a final localisation estimation is provided.

The subsections onwards go into these phases more deeply, discuss their tasks and
how the results are achieved.

3.3.1 Input data

Location data and tracking require some raw input data from the device. The input
data for location fusion and tracking is gathered from three different hardware sensors.
Following is a list of the required sensors and description of their outputted data:
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Figure 1. Overall architecture of the algorithm

• GPS - GPS sensor is the primary measurement tool which outputs the devices
speed, heading and coordinate. The frame rate of the outputted data on Android
devices peaks usually at 1Hz. The low GPS update rate means that this sensor
cannot provide enough detail for real-time localisation and tracking and thus needs
to be improved.

• Accelerometer - This sensor detects the phones accelerations and decelerations on
three different axes (x,y,z) and their strength [Figure 2]. The outputted frequency
is device dependent but can exceed 100hz on higher-quality smartphones. Android
provides methods to choose the data output frequency. Higher frequency increases
noise and vice versa. The sensor is used because of two reasons. Firstly, its used
to detect the accelerations and decelerations of the vehicle to estimate the speed.
Secondly, its used to identify the devices rotational position in reference to earth.

• Gyroscope - Measures the device’s rate of rotation on all three physical axes (x,y,z)
[Figure 3] and outputs the data in rad/s per axis. Again the output frequency is
device dependent but can exceed 100hz. Android provides a selection of frequency
outputs, with higher rate having higher noise and vice versa. The usage of this
sensor is needed to observe the vehicles turns.

3.3.2 Fusion phase

Location fusion consists of two subtasks. Firstly the input data is filtered and modified.
Secondly, the data is fused together using Kalman Filter to produce accurate real-time
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Figure 2. Smartphone’s accelerometer measures accelerations on x,y,z axis

Figure 3. Smartphone’s gyroscope measures accelerations on x,y,z axis

location, heading and speed estimations. The filters and fusing methods used in the
tracking and localisation algorithm and their short descriptions are:

• Simple moving average filter (SMA) - SMA filter is used to smooth out a noisy
data stream and thus can provide values closer to the reality. SMA filter is used on
a time series data. A time interval of values are selected from the input data, and
the average function is applied. The result is then outputted. In the localisation
and tracking algorithm, the simple moving average filter is used to smooth out the
accelerometer and gyroscope outputs.

• Exponential moving average (EMA) filter - Similarly to SMA, the EMA filter is
used to smooth out a noisy data stream. EMA filter computes its output by taking
values from a time series data stream, assign weights to those values and then
calculate an average. It is shown that EMA filter can perform better than simple
MA filter and can give smoother results than simple MA filter [6]. EMA filter is
used in the algorithm context to isolate the gravity from the accelerometer data.
The priority is given to earlier data, and an average estimation of data is outputted.
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• Kalman filter (KF) - Kalman filter uses a series of measurements over time and
the estimated errors of those observations as input and outputs an estimation of a
true state. The measurement error distribution must be Gaussian for the Kalman
filter to achieve the best performance. Kalman filter is also capable of prediction
of future state given the right inputs. In the context of localisation and tracking
algorithm, this filter is used to fuse the location data together. Kalman filter has
this ability to use data streams from multiple sources, like GPS, accelerometer and
gyroscope to produce a fused data output stream. Besides, to ensure its proper
functioning effectively, it is needed to have an accurate error estimation for both
the measurement inputs and the filtering process itself. This latter is needed since
a lower measurement error gives more weight to the measurement data stream and
lower process error gives more weight to the filters own predictions.

Figure 4. Archidecture of the location fusion phase

Figure 4 illustrates the architecture and design of location fusion phase. The inputs
from the hardware sensors are sent to different location fusion modules. These modules
are responsible for determining different states of the system:

• Gravity calibration - This module’s task is to accurately capture the gravity strength
on each smartphone accelerometer (x, y, z) axes (Figure 2). A custom algorithm
has been implemented for estimating the gravity value, which differs from the
Android standard gravity sensor.

• Vehicle acceleration - Measures the acceleration and deceleration of the vehicle
in one direction. It uses the accelerometer for extracting measurements, Simple

22



moving average filter to smooth out the data and the gravity sensor to refine the
output.

• Angular speed - Detects vehicle turns using gyroscope output as its measurements.
It also uses the gravity to rectify the data and the low pass filter to smooth out any
noise from the gyroscope.

• Speed fusion - this module is in charge of accurate estimations of speed. Kalman
filter is used to fuse the GPS speed outputs and vehicle acceleration sensor outputs
together.

• Vehicle heading - Keeps track of the bearing of the vehicle. It uses Kalman filter
to fuse together the GPS heading and the gyroscope output.

• Location fusion - Uses Kalman filter that takes data from the GPS, Vehicle heading
and Speed module to estimate the location of the vehicle.

The output of the phase provides enhanced and high-frequency estimations of location,
speed and heading. Each of these modules will be discussed at length in the next Section.

3.3.3 Map matching phase

After the location fusion phase has been completed, then the next task of the algorithm is
to map match the location. This is a three-part task (Figure 5). Before map matching
can be done, the detailed road maps must be acquired for the current location. This map
retrieval process is split into two tasks - caching and download. Instead of creating fixed
implementations, the tasks are created as interfaces. Interfaces help to make sure that
everyone can create a map retrieval process that is suitable for them. For instance, one
could implement map downloading and cache by just providing a static copy of the map
on to the device. Another example would be to download the map data dynamically from
the network and cache the data onto to device. The latter is also implemented in the
algorithm and can be used. The third task is to map match the location and provide the
outputs.

Map Data Fetcher: An interface class that has the task to retrieve map data from
external sources. Can be implemented to fetch data from the device local storage or
various network sources. An implementation is provided, that downloads the map data
from Overpass Turbo API. The map data provider asks to fetch map tile. The bounding
map tile north, south, east and west coordinates are then inputted into the network query,
and the map data is retrieved as a MapTile object. The MapTile object includes all the
roads of the surrounding bounding box.
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Figure 5. Archidecture of the map matching phase

Map Data Provider: An interface class with a task to provide map data to the map
matcher module. For example, implementations can cache the already downloaded data
for future use with various settings. An implementation is provided that caches map data
that has already been retrieved from the Network once. Map data is cached as tiles. The
tile size is configurable as is the maximum cached tiles count. The configured amount
of map tiles are kept in memory simultaneously, and the latest retrieved map tile will
be set to head of the queue. This configuration makes sure that tiles that were used last
will be evicted from the queue first. Configuration is necessary to optimise the network
download times and memory requirements of the mobile application.

Map Matcher: The main module for map matching. Receives the location data from
the fused location phase and then processes it and outputs a map matched result. It first
asks for a map tile (a rectangle section of a map) that falls within the location area to
match the location with. A map tile includes the road network as lists of coordinate
points. If there is no data right now, then the processing is skipped, and the location
fused phase location is outputted. If the data is provided, the location is matched to the
preexisting, and an enhanced location estimation is provided.

This is the final phase of location fusion and tracking algorithm. Next, the outputs
can be displayed to the user.
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3.3.4 Location output

There are two different outputs of the data. The first one is a visual output to the screen
where the user can see the outputs in real-time. The visual output was primarily used for
development purposes and to see how well the algorithm performed. Secondly, a text
logging output was needed for further analysis of the data and to calculate some results.
The user interface of the visual output of the algorithm is displayed in Figure 6. The
Android UI composes of a map, control elements and data stream textual display.

Figure 6. UI of the Android application

Map: The map used in the application is an android library OSMDroid [1]. OSMDroid
uses OpenStreetMap data to create a map view for android mobile devices. It has various
possibilities to add overlays to the map like Map markers, polylines and other simple
geometric instances. In this application, two markers are put on the map: A red GPS
output marker and the blue system output marker.

25



Control inputs: There are a total of 3 different control inputs that allow manipulating
various algorithm parameters. Firstly the recalibrate gravity button, which is used to
calibrate the gravity when launching the app and when the position of the device changes
within the vehicle. The calibration of gravity is to ensure, that the gravity input can be
removed from the accelerometer data stream. Secondly, there are two parameter text
inputs. These are used to edit the process noise parameters of the speed and heading.
Process noise is discussed in the next section.

Text data outputs: These are used mostly for debugging purposes. The first row of
red outputs is used to output various speed parameters. For example, the algorithm
speed estimation can be compared with the vehicle’s speedometer, or see how well it
responds to vehicle accelerations and decelerations. The second blue row of text outputs
is dedicated to the heading estimation. Again, the algorithms heading estimate can be
compared with the GPS outputs. The bottom row of green outputs are the filtered outputs
of the gyroscope and accelerometer and the last two the GPS and location accuracy
estimations.

This section discussed the overall architecture of the application. Next chapter
describes the different modules of the algorithm and reasons their functionality.
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4 Modules and Components
Based on our system architecture described in the previous section, the algorithms and
methods integrated into our real-time system’s modules are structured as in the next
following subparagraphs.

4.1 Gravity
In order to get linear acceleration data, the gravity must be isolated from the data stream.
Furthermore, gravity allows us to determine the rotational position of the phone with
reference to Earth (Figure 7).

Figure 7. Gravity forces on Smartphone’s accelerometer

Android provides a dedicated software sensor for accessing gravity data on the smart-
phone. However, this does not provide a satisfying degree of accuracy as the gravity
is assumed to be constantly changing in the Android gravity sensor due to rotations of
the smartphone. To get more accurate linear acceleration data, we have assumed that
the phone has a fixed position inside the vehicle. The fixed nature of the smartphone
inside the vehicle allows the user to recalibrate the gravity output while the vehicle is
at a standstill and on an even field. Ideally, this needs to be done once after fixing the
smartphone inside the vehicle.
Once the user starts the calibration sequence, a number of samples of accelerometer data
are collected, and a moving average filter is applied with the priority given to the earlier
data. First, we denote the gravity state vector as ~gi and the measurement vector as ~mi,
where the vectors represent the gravity strength values on x, y, z axes. Therefore, the
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new estimated gravity state vector is defined as follows:

~gi+1 = ~gi +
~mi+1

i+ 1
∀i ∈ N; (1)

Since there are no other acceleration inputs to the accelerometer other than gravity during
the calibration phase, the data stream outputted by the accelerometer is an accurate gravity
strength estimation on all x, y, z axes. Moreover, the gravity direction and strength on
x, y, z axes can be used to alter other data.

4.2 Vehicle acceleration
GPS speed data is highly offset when there are big changes in speed [5]. Besides, the
frequency of GPS in modern smartphones is usually 1hz, which is too slow for an
accurate real-time application. Therefore, to get the best estimation of speed as possible,
there is a need for data fusion by extracting the acceleration from another sensor, such as
the accelerometer (Figure 8).

Figure 8. Smartphone’s accelerometer measures the acceleration

Besides, to the phone having a fixed position in the vehicle, a requirement is made that
the base of the phone is pointing directly towards the front of the vehicle (Figure 16),
which is the usual positioning of the phone inside vehicles. This positioning requirement
is needed because it would be complicated to separate the centripetal force from turns
and the acceleration forces when the phone would be in an arbitrary position within the
vehicle.
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Obtaining acceleration data: Vehicle acceleration is obtained from the accelerometer
by modifying it in the following way. Firstly, the gravity from the gravity module ~g is
isolated from the accelerometer data vector ~a to acquire the linear accelerations ~al, by:

~al = ~a− ~g; (2)

The phone inside the car can be tilted and thus the acceleration forces would reflect on
both the Z and Y axes, which would make the algorithm underestimate the acceleration
forces if the unmodified data would be used from the Z axis. Hence, it is needed to
reflect the vehicle acceleration and deceleration on the Z axis only. To accomplice this,
the ~al is rotated by ~g with and angle β (Figure 9). The computation of the new value of

Figure 9. Smartphone’s linear accelerometer data rotation

the acceleration ~al is done using the quaternion rotation formula [11]. Since we know
that the force generating this rotation is the gravity ~g = gx~i+ gy~j + gz~k, we will apply
Euler’s formula to compute the quaternion:

q = exp
β

2
(gxi+ gyj + gzk) = cos

β

2
+ (gxi+ gyj + gzk) sin

β

2
(3)
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Then, we evaluate the conjunction and compute the new value of the acceleration by
applying the following formula:

~a
′

l = q~alq
−1 (4)

After the modifications are applied, a low pass filter is performed to smooth out the data.
A constant s is defined, which acts as a smoothing parameter.

~ali+1
= ~a

′
li

+
~mi+1

s
; (5)

4.3 Angular speed
Accurate tracking of vehicles turns is essential for localisation and tracking of the vehicle.
Without keeping track of the moving direction of the vehicle, a drift occurs in location
estimation every time the vehicle turns (Figure 10). GPS is too slow in most smartphones
to respond to vehicle’s headings changes and very unreliable at slow speeds under 3
m/s. Hence, a method is needed to observe vehicles angular movements. The solution

Figure 10. Heading drift

to this problem relies on the use of gyroscope sensor. The Gyroscope, which measures
the rotations of the smartphone in 3D space (Figure 11), are included in most modern
smartphones. Using the gyroscopes datastream, and by taking into account that our
smartphone is in an immobile position, we can easily estimate with good accuracy the
vehicle’s turns.

Obtaining rotational data: As the phone can be tilted and positioned irregularly in
the vehicle; thus the vehicles turns can be reflected on multiple axes. Isolating the
vehicles turns into one data stream is essential for accurate turn estimations. As with the

30



Figure 11. Smartphone’s gyroscope measures rotation

Figure 12. Smartphone’s gyroscope measures rotation

acceleration module, the data is rotated using gravity in a similar way (Figure 12). As a
consequence, the rotation isolates the vehicle turn inputs into Y axis. Now the data from
the Y axis can be used to estimate the turns of the car. In the end, a low pass filter is
applied similarly as in acceleration module to smooth out the data stream.
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4.4 Speed fusion
Speed is a vital part of accurate estimation of location. With speed, it is possible to
interpolate the position in real time when GPS updates are not frequent enough. Speed
estimation is acquired by fusing the GPS speed from the GPS sensor and the vehicle
acceleration from the acceleration module using Kalman filter. GPS speed updates act as
measurement inputs to Kalman filter and the data from vehicle acceleration module acts
as a control variable for the prediction phase of Kalman filter. Some definitions have to
be made to apply Kalman filter to estimate speed.

Average acceleration definition: Firstly, we will start by defining the concept of
average acceleration a∆t, which is a weighted average of acceleration measurements
between times ti and tj , where time difference acts as a weight. Hence, our average
acceleration is computed as follows:

ai,j =

∑j−1
i (ti+1 − ti) ∗ ai

tj − ti
(6)

Measurement error estimation: Moreover, Kalman filter requires a good error esti-
mation of measurements. Most Android smartphones unfortunately do not offer speed
error estimations form the GPS data stream. Therefore, a method was required to estimate
the error in GPS speed updates. Since GPS speed updates are accurate when the vehicle
is moving at a constant speed, but offset once some acceleration is applied, the proposed
method to estimate the measurement error em is defined as follows:

em = (t2 − t1) ∗ at1t2 ; (7)

where t1 is the last measurement time and t2 is the current measurement time. The errors
in speed measurements are equal to the average acceleration from the last measurement.
For example when the last measurement was 30kph, and the new measurement comes
in 3 seconds later, with an average acceleration of 5kph/s2, then the error of the new
estimation is 15kph. An opposing example would be that if the last measurement was
done at 30kph and the new measurement comes in 3 seconds later with an average
acceleration of 0.5kph/s2, then the error would be estimated to be only 1.5kph.

Process error definition: Kalman filter requires the definition of process error, which
we introduce as ep in speed estimation. It is defined as a constant:

ep = 1m/s (8)

This states that for every second the estimation can drift off to the real speed by 1m/s.
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Prediction and update phase: In order to constantly predict the state of speed v and
the error e at time ti, the Kalman filter prediction equations are used in the following
manner:

vti = vti−1
+ (ti − ti−1) ∗ ati−1,ti (9)

eti = eti−1
+ (ti − ti−1) ∗ ep (10)

Besides, new measurements vm and measurement errors em are included into the speed
state estimation v and error estimation e using the Kalman gain k as follows:

kt = et−1 ∗ (et−1 + em)−1

vt = vt−1 + kt ∗ (vm − vt−1)
et = (1− kt) ∗ et−1

(11)

This ends our cycle for speed estimation and a speed estimation v can be output.

4.5 Heading’s fusion
Heading estimation is used to avoid drifts while interpolating the location in real time
with speed. It makes sure that the interpolation direction is constantly pointed in the
right direction. The heading of the vehicle is estimated by fusing the GPS sensor outputs
and the angular speed data outputs using the Kalman Filter. The GPS heading data
acts as measurements, and the angular speed data acts as the control variable of the
prediction phase of the Kalman filter. As with speed, most smartphones do not provide
error estimations for the GPS bearing data.

Measurement error estimation: Since the heading accuracy and availability is highly
dependent on speed in GPS measurements, the following quadratic function for error
estimation em technique in GPS heading measurements is computed as follows:

em =
90

(speedm/s)1.5
(12)

The error measurement has a high value at slow speeds and quickly closes near 0 at higher
speeds, which will help the Kalman filter to prefer measurement data in its predictions
with higher speeds and disregard measurement data at low speeds.

Process error definition: The process error is defined as a constant, as with speed. It
is assumed that for each second the estimation can drift up to 0.2deg/s, which means
that the Kalman filter will lean more measurement data when the measurements are more
infrequent. Hence, we assign to the process error constant the value 0.2deg/s

ep = 0.2deg/s (13)
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Average rotation definition: Average rotation (ri,j) is defined as the average rotation
in rad/s from time tj to ti

ri,j =

∑j−1
i (ti+1 − ti) ∗ ri

tj − ti
(14)

Prediction and update phase: The Prediction phase, where h is state of heading, e is
the current error estimation, ti is the current time, tj is the last prediction time and rij is
the average rotation from tj to ti:

hi = hi−1 + (ti − ti−1) ∗ ri−1,i (15)
ei = ei−1 + (ti − ti−1) ∗ ep (16)

GPS heading measurements hm and measurement errors em are input into the state and
error estimations using the Kalman gain k:

kt = et−1 ∗ (et−1 + em)−1

ht = ht−1 + kt ∗ (hm − ht−1)
et = (1− kt) ∗ et−1

(17)

After all of these processes the speed estimation is done for this cycle and an estimation
of heading h is output.

4.6 Tracking and localisation fusion
The final step in the algorithm is to put all of the data together to achieve localisation
and sensor fusion. Once again, Kalman Filter is used for fusing the data. GPS location
lat, lng updates act as the measurements data acts as measurements and the already fused
speed and heading act as control variables.

Converting speed and heading to latitude, longitude speed: As the speed and head-
ing are output respectively asm/s and deg from the speed and heading modules then they
must be converted to latitude and longitude speeds. The need for conversion to latitude
and longitude speeds comes from the fact that the location inputs use earth coordinates.
The speed and heading will be converted to vlat and vlng - given the speed v, heading h,
current point lat1, lon1 and the earth’s radius R. Firstly we calculate the lat2 and lng2

point after 1 second of movement given the previous parameters. The formula used for
this purpose is as follows [26]:{
lat2 = arcsin(sin(lat1) ∗ cos(d/R) + cos(lat1) ∗ sin(d/R) ∗ cos(h));
lon2 = lon1 + arctan 2(sin(h) ∗ sin(d/R) ∗ cos(lat1), cos(d/R) ∗ sin(lat1) ∗ sin(lat2));

(18)
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Finally, to get the latitude speed vlat and longitude speed vlon per second, we subtract
from the future point the current point.

{
vlat = lat2 − lat1
vlon = lon2 − lon1

(19)

Measurement error definition: The measurement error err is outputted on most
Android devices. From the Android documentation [14] the accuracy is defined as a
68% confidence radius with respect to the real location. In other words, if a circle is
drawn from the outputted location with a radius of the outputted error, there is a 68%
chance that the real location falls within that circle. As the measurement error is one
dimensional and the measurements are two dimensional then the measurement error Em

is defined as following:

Em =

[
err 0
0 err

]
(20)

Process error definition: The process error ep is defined as the possible drifted dis-
tance D away from the prediction, knowing the heading uncertainty from the heading
module α, elapsed time from the last prediction ∆t and the current estimated speed v and
speed error ev from the speed module (Figure 13). In other words, the error is described
as, if the heading and speed error are both true, then we would drift away distance d from
the real location. By using the law of cosines, the process error Ep can be calculated as

Figure 13. Process error estimation of the tracking and localisation fusion
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follows:

d =
√

(∆t ∗ V )2 + (∆t ∗ v + ∆t ∗ ve)2 − 2(∆t ∗ v) ∗ (∆t ∗ v + ∆t ∗ ve) ∗ cos(αe)

(21)

Ep =

[
d 0
0 d

]
(22)

Prediction and update phase: As stated before, working with latitude and longitude
separately requires calculations in two dimensions. Therefore our state X and error
estimation E will be defined as 2x2 matrices.

X =

[
lat 0
0 lon

]
; (23)

E =

[
elat 0
0 elon

]
; (24)

The prediction phase of location fusion is performed using the following formulas:

V =

[
vlat 0
0 vlon

]
; (25)

Xi = Xi−1 + (ti − ti−1) ∗ V (26)
Ei = Ei−1 + (ti − ti−1) ∗ Ep (27)

In addition, each observation can be included to our estimation by applying the measure-
ment functions:

K = E ∗ (E + Em)−1 (28)
Xi = Xi−1 +K ∗ (Xm −Xi−1) (29)
Ei = (I −K) ∗ Ei−1 (30)

After applying all of these equations the location can be outputted for this cycle. This
was the last step in the Localisation and tracking phase. Next up is the Map matching
module descriptions.

4.7 Map-matching
The reason for using map-matching in our system is meant to enhance the location
accuracy visually to the user and possibly to reduce errors of the process. As maps can
have errors as well, it cannot be stated that map-matching will reduce the error of the
process as there could be errors in the mapping data as well. It might reduce errors
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in the location estimation, although it improves human visuals and readability. Visual
improvement of location is reached by matching locations to the adjacent road links by
orthogonal projection [19]. After the map data has been queried from the Map Data
Provider and a "MapTile" object has been received, then the map matching can begin.

Definitions: To define how the map-matching algorithm works, we have to define
the road network model. First, let’s annotate V ∈ R2 as nodes. Each node has two
coordinates, latitude and longitude. E ∈ V × V as the edge segments connecting the
nodes. As a result, we get a directed graph G =< V,E > which defines our road
network. We also assume that the road links are represented as straight segments, which
is true for OSM data [9]. For each outputted location gi from sensor fusion phase we
perform in four stages:

• Extracting the road link candidates set Si within a circle (gi, r) with centre gi and
radius r that represents the area of 3 standard deviations of outputted location error,

• Calculate the difference of segment angle and heading angle and apply a likelihood
function,

• Applying an orthogonal projection to the selected candidates’ ci from the road
segment vi and calculate likelihood with a function,

• Multiply the heading and distance likelihood and emit the maximum likelihood
projection.

Segment extraction: Segment extraction is performed by applying the following
equation:

Sei,r = { e | e ∈ E ∧ proj(gi, e) ≤ r } ; (31)

where, proj(, ) is the minimum distance between a location and a segment e, aka
orthogonal projection distance. For each extracted road segments ei ∈ L, two evaluations
are applied. Firstly the orthogonal projection is calculated between the segments and
the point gi. Secondly, the segment angle and the heading angle are compared, and a
likelihood is calculated. The latter helps to avoid matching one-way segments which
might run in the opposite direction than the current heading. Also, it helps to match the
right segment near intersections, where the orthogonal projection alone might pick the
wrong segment.

Distance likelihood set: Distance setDgi,r is computed using an orthogonal projection
on all the edges in set Sei,r (Figure 14) and Distance likelihood Ldi set has the likelihood
function fd applied to the distance set:
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Dgi,r = { proj(gi, ej) | ∀ej ∈ Dgi,r} ; (32)

fd(x, r) = argmin(1, argmax(0, (1− x

3 ∗ r
) ; (33)

Ldi,r = { fd(d, r) | ∀d ∈ Dgi,r} ; (34)
(35)

Heading likelihood set: To calculate the heading likelihood set, we first must acquire
the segment heading he. The bearing between segment starting point (lat1, lng1) and
ending point (lat2, lng2) aka, two geographical locations is calculated as follows.

lngd = lng2 − lng1; (36)
he = atan2(sin(lngd) ∗ cos(lat2), cos(lat1) ∗ sin(lat2)− sin(lat2) ∗ cos(lat2) ∗ cos(lngd));

(37)

Now, the segment heading calculation can be applied to all the edges in Sei,r and the
Likelihood function fh can be used on the segments in the Heading set H .

Hgi,r = { hej | ∀ej ∈ Sgi,r} ; (38)

fh(x) = argmin(1, argmax(0, (1− x

90
) (39)

Lhi,r = { fh(h) | ∀h ∈ Hgi,r} (40)

Selecting segment: Afterwards the likelihood sets can be combined by multiplying all
the corresponding edge likelihoods (element wise set multiplication) and the maximum
likelihood segment will be selected. Finally, the point that is projected onto the selected
segment will be output.

proj(gi, vj) = argmax xi ∀xi ∈ Lhi,r • Ldi,r; (41)

This ends the Module section of this thesis. In the following section the Results of testing
the system are displayed and discussed.
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Figure 14. Map-matching Algorithm: Projection of GPS point g and distance to road
segments candidates ci within defined GPS error circle

5 Results and Discussion
This section discusses the evaluation of the project and displays the results. The following
aspects of the algorithm are presented, firstly the response times in the real-time point of
view. Secondly, the accuracy of the algorithm is put to the test in various conditions.

5.1 Experiment setup
For the testing, the following equipment was used

• Nexus 5X Smartphone with Android 8.0.0 operating system

• Dedicated Brodit phone cradle for Nexus 5X (Figure 15), to eliminate any factors
of bad fit phone cradle.

• Sporty car, to test out the algorithm under harsher breaking, accelerations and
turns.

The Brodit phone cradle was mounted into the vehicle as required: The base of the
phone or in other words the back cover was set straight into the moving direction, to
eliminate inputs from turns onto the accelerometer Z axis. Figure 16 displays a correct
and incorrect mounting of the phone inside the vehicle.

The route used for testing and driving was a 1,98km long city course along the
streets of Võru, Estonia. The path taken is illustrated in Figure 17. The route has
quite an extensive array of common road characteristics, like long straights, sharp turns,
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long smooth turns, short straights with short bursts of acceleration and deceleration, a
roundabout and almost a U-turn, which are perfect to test out the performance of the
algorithm.

Figure 15. Nexus 5X smartphone and Brodit phone cradle

(a) Case of a correct placement inside the
vehicle. The base of the phone is in the same
direction as the vehicle moving direction

(b) Case of an incorrect placement inside
the vehicle. The base of the phone is at an
angle of the vehicle moving direction

Figure 16. The correct and incorrect placement of smartphone inside the vehicle

5.2 Evaluation strategy
The real-time system and its estimation techniques were put to the test using real-world
conditions. The route was driven by a road legal vehicle during normal business hours,
using only publicly available devices like the Nexus 5X smartphone and the Brodit
smartphone cradle. To test the performance of our system with different sparseness
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Figure 17. A Google Maps satellite image of the common route driven during the test
period

of measurements in time, the route was driven for four times with four different GPS
update rate inputs (0.4Hz, 0.2Hz, 0.1zHz, 0.033Hz). The different frequency rates
were chosen to see how the technique was behaving. In order to evaluate our system
besides the visual evaluation, a separate GPS data stream of 1HZ was logged separately.
This allows the comparison between the localisation and tracking predictions and the
GPS 1HZ datastream.

5.3 Experimental Results
The results of our testing of the four different GPS frequencies (0.4Hz, 0.2Hz, 0.1zHz,
0.033Hz) are illustrated in Figure 19. The map shows the path traces of what the system
estimated in real-time. The red line represents the location estimations by multi-sensor
fusion. The blue line shows the location after the map-matching process. And green
markers with arrows show the GPS measurements used as inputs to our system. The
outcome shows that even when there is no GPS input for up to 30 seconds, our real-time
system is still capable of providing a location estimation with acceptable accuracy.
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(a) Case of a vehicle having the inten-
tion to turn to the right

(b) Case of a vehicle moving in a
straight road segment

Figure 18. Overview of the real-time system (at t and t+1) - red arrow is the GPS
measurement and blue arrow is the prediction (Tracking)

Figure 20 shows the distance difference in meters between our system output and
the latest logged GPS 1HZ output. The graph presents three different metrics used for
evaluation:

• The error measurement shows the 1HZ GPS location errors outputted by the
Android system.

• The fusion difference shows the difference in meters between the predicted location
and the GPS outputs.

• Map matched difference is the distance between each outputted GPS location and
the predicted map-matched location.

We can notice that the moment the frequency of GPS inputs gets smaller, the accuracy
of our estimation for localisation and tracking becomes slightly lower. The drop in
accuracy is expected because drift occurs between the measurement inputs and only
new inputs can correct that error. It must be noted, that most of the drift occurs due to
the fact of bad speed estimation. While the estimation of heading is quite accurate, the
speed estimation performs more poorly. The poor speed estimation is partly because
inclinations of the road affect the acceleration estimation due to changing gravity and
partly because the Accelerometer data stream is noisy. The results also show that the map-
matching in average gives sometimes good results and other not, since the measurement
has errors and also the used map-matching is very simplistic, and it can be made better
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(a) Testing with 0.4hz frequency GPS (b) Testing with 0.2hz frequency GPS

(c) Testing with 0.1hz frequency GPS
(d) Testing with 0.033hz frequency
GPS

Figure 19. Overview of the system’s results on a map - After fusion process and also
after Map-matching process

(Table 2). Map-matching is also affected by the poor speed estimation because while it
can keep the estimation on the right road, the fact how far on the road the vehicle has
travelled is directly connected with the speed estimation.

The computational time of our system is represented in table 3. The multi-sensor
fusion needs approximately 2ms to finish the execution, and the map-matching process
requires about 1ms, which means the whole system needs around 3ms to show the
final results on the map. In general, the system has a very acceptable performance as a
real-time system for localisation and tracking.
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(a) Evaluation of 0.4hz GPS inputs (b) Evaluation of 0.2hz GPS inputs

(c) Evaluation of 0.1hz GPS inputs (d) Evaluation of 0.033hz GPS inputs

Figure 20. Overview of the system’s evaluation results - Difference between 1HZ GPS
data stream and system’s outputs in meters

Frequency 0.4HZ 0.2HZ 0.1HZ 0.033HZ
Average measurement error 3.76m 4.23m 4.2m 4m
Average fusion difference 2.09m 2.92m 5.15m 14.18m
Average map matching difference 4.21m 4.43m 6.03m 13,96m

Table 2. Average evaluation results for each GPS measurement frequency

Task Mutli-Sensor fusion Map Matching process Total
Measurement cycles 2269 2228 4497
Average time 2.02ms 1.14ms 3.16ms

Table 3. Time response of the system and the measurement cycles

6 Conclusion
In this thesis, a software is presented that can take advantage of the many sensors inside
a smartphone and localise and track vehicles. The application is installed on a device
with an Android OS, and the sensors that are exploited for localisation and tracking are
the GPS, accelerometer and gyroscope. They all give out data at different rates and must
be fused together to achieve the best localisation and tracking system. Kalman filter
is used in the proposed system to fuse the data together. GPS data stream is used as a
measurement and accelerometer and gyroscope data stream is used as control variables
for speed changes and turns respectively. Finally, to achieve better human readability,
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the outputted location is map-matched to the displayed map. As the map is composed
of straight segments, then the most likely segment must be chosen, where the user is.
The segment is chosen by calculating the location and segment distance and heading
likelihood. When the likelihoods are calculated for both distance and heading, then the
respective numbers are multiplied, and the segment with the highest likelihood is chosen.
The last step in map matching is to project the point to the segment and output that
projection.

Results: The software can respond to sudden speed changes satisfactorily and excep-
tionally well to vehicle turns. Even if the GPS signal is lost for 30 seconds or more,
then the location estimation error remains on average below 30m accuracy. It must be
noted that the most significant error accumulation comes from the aspect of incorrect
speed estimation. Also, the processing time is for each cycle of location estimation is
on average around 3ms, which means that the application can process more than 300
estimates per second, which is well above expected. In conclusion, the system achieves
all the goals set at the beginning of development and even exceed expectations.

Future work: In the future, the map matching algorithm could be fine-tuned and
developed further with more sophisticated methods to achieve even better map matching
results. Secondly, the speed estimation methods are disturbed by inclinations, so that
must be taken into account with some techniques. Perhaps an OBDII interface with the
car could be exploited to get the speed input from the vehicle. The use of OBDII speed
output would significantly increase the accuracy of speed estimation.

The system gives out promising results and accurate results with even lousy GPS
reception. With some work, it could be easily used in production environments.
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