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Analysis of Software Applications Computing Resources Usage on
the Edge: A Case Study of Speech Recognition

Abstract:
Billions of sensors are currently deployed around the world. Some are standalone sen-
sors while others can be found in smart-phones, wearables, cars, machinery, buildings,
street lights, wind turbines and other places too numerous to mention. These sensors are
connected to intermediate edge devices which provides connectivity to the core network.
The amount of data generated by sensors is staggering and with the rapid growth of
sensors deployed, generated data will only continue to increase. The traditional way
of handling data where generated data is sent to the network for analysis and decision
made is already inefficient and completely impractical in most applications. A better
approach would be to perform these analytics and decision making tasks on the edge
devices. But due to the very limited available resources on edge devices, it is important
to first analyze the computing resource utilization of sample applications running on
edge device in order to understand what computational tasks are possible on these edge
devices. This thesis aims to take Speech Recognition as a case study and analyze its
resource consumption on an edge device. The thesis further aims to explore the possi-
bility of implementing long running tasks on the edge without significantly impacting
the limited edge resources. Finally, we investigate the possible impact of performing
additional speech analytics tasks on the edge.

Keywords:
Edge Devices, Sensors, Edge Computing Resources, Speech Recognition, Sensor Gen-
erated Data, Data Analytics, Application Resource Utilization, Application Resource
Consumption, Applications on the Edge, Android.

CERCS: Computer science, numerical analysis, systems, control (P170)
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Ääreanalüütika ressursikasutuse uuring kõne tekstiks muundamise
näitel Android seadmes

Lühikokkuvõte:
Igal aastal võetakse kasutusee miljardeid uusi nutikaid seadmeid. Osad neist on klas-
sikalised eraldiseisvad seadmed, kuid enamik on ühendatud internetti või integreeritud
nutiseadmete, autode ja muude tarkade masinate sisse peitu. Enamik seadmeid on ühen-
datud lokaalsete juhtseadmetega ja läbi juhtseadmete internetiga. Andmete hulk mida
andurid igal aastal toodavad kasvab pidevalt ja võib lähiajal tekitada võrguühendustes
ummikuid. Klassikaline isoleeritud tark-andur ja kesksesse pilve andmete saatmine ei
ole enam alati parim lahendus seega viimastel aastatel kogub populaarsust lokaalne
anduri andmete töötlus enne kesksesse pilve andmete saatmist. Samas enamik sead-
mete riistvara jõudlus on piiratud ja sega tuleb hoolsalt jälgida töötlemiseks vajalike
ressursside olemasolu või kasutust. Töös uuritakse kolme kõne tekstiks muundamise
lahendust ja iga lahenduse mälu, protsessori, võrgu ja energia kasutust. Testimiseks
kasutatakse Sphinx ja Google kõnetuvastuse teeke. Magistritöö tulemusena näidatakse,
et Android seadmes on võimalik edukalt taustal teha aktiivset kõnetuvastust ja suurim
ressursikasutus on umbes 5% akut tunnis.

Võtmesõnad:
Ääreanalüütika, andurid, hajusarvutus, kõne tuvastus, suurandmed, andmetöötlus, ressur-
sikasutus, Android

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction

1.1 Motivation
In 2018, a massive 2.5 quintillion bytes of data was generated every day [4] and with
the rapid growth of interconnected devices with embedded sensors, generated data will
only keep increasing exponentially. Sending this huge amount of generated data up to
the cloud for analysis has major drawbacks. First, the current network infrastructure
cannot handle this amount of data and even with the advert of 5G networks, generated
data will eventually outgrow the available infrastructure. Secondly, the available cloud
infrastructure to handle this quantity of data is finite. Added to this is the fact that a
good percentage of sensor generated data includes noise which is not significant when
there is no change in state. Thirdly, some applications require real-time data analysis
and decision making which is difficult to achieve if the analysis is implemented in the
cloud or remote network due to network latency. Finally, there is the issue of data
privacy and handling of sensor generated data due to their private nature. For example,
transmitting the data generated by a smart speaker placed in the bedroom or living room
of an apartment to the cloud for analysis not only introduce privacy concerns but also
exposes the data to potential data breach. Another case for moving some analytics task
to the adge are lowered bandwidth usage and improved energy efficiency.

All these are issues that we hope to mitigate by implementing some analysis on the
edge devices to filter the amount of data sent to the cloud and make some decision on
the edge. As the major aim of edge analytics is to move data analytics close to the
data source [1], this will not only reduce latency but lead to cost savings in network
bandwidth and cloud storage. On the issue of data privacy particularly considering the
fact that data collected from sensors could be very personal, processing the data locally
on the edge ensures that it does not get into the wrong hands and the user can be sure
that private data never leaves the device. Additionally, because the data is processed
locally, chances of data security and privacy breaches are greatly reduced.

In order to explore the viability of moving data analytics task to the edge, there
is need to first analyze the resource comsumption of sample applications running on
edge devices as the available Power, CPU and Memory resource on an edge device is
much limited. For this study, we settled on a Speed Recognition application running
on a Samsung Galaxy S10+ smartphone. We selected speech recognition because of
the rapid growth in voice interactive computing which can be found in everything from
the voice assistant on our smart-phones to the smart speakers in our homes. These
systems mostly depend on some remote server for speech recognition as these systems
can only recognize simple commands locally although they are growing to support more
sophisticated speech. In addition, due to the high computational and memory resources
required for speech recognition, this makes for an ideal case study.
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1.2 Goal and Problem Statement
The goal of this thesis is to analyze the computing resources used by a Speech Recog-
nition application running on an Edge device. It is intended to carry out usage analysis
of such resources as Power, CPU and Memory with the aim of identifying the usage of
these resources by a Speech Recognition application running on an edge device. Addi-
tionally, we aim to explore the possibilities of constant background speech recognition
on an edge device and further text analysis of the converted text.

To this end, we identify three research questions:

• What are the Power, CPU and Memory resource consumption of a speech recog-
nition application running on an edge device?

• What is the impact on computing resources when running continous speech recog-
nition?

We first carry out a literature review of related works in edge analytics in Section
2 while in Section 3 we examine the basic process of speech recognition and briefly
discussed some speech recognition libraries while outlining the reasoning behind our
choice of speech recognition libraries. Then in Section 4 we lay out our experiment
methodology including the test system, speech recognition application and experiment
setup and in Section 5 we discuss the application’s achitecture and implementation. In
Section 6 we presented the Power, CPU and Memory resource consumption of running
speech recognition application on an Android device, analyzed the extracted results
and explored the possibility of running speech recognition in the background. Finally
Section 7 contains the conclusion where we discuss our findings and possible future
directions.
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2 Related Work
This section outlines some existing applications of analytics on edge devices.

2.1 Machine Learning on the Edge
Jianxin et al. [12] implemented the Zoo system which is a Composable Service that
allows the user to pull and compose different basic Machine Learning(ML) services
to form a more complex ML service. The basic idea stems from the fact that ML
services are just composition of other ML services. The composed ML service can
then be deployed to an edge device, the cloud, a combination of both edge device
and cloud or to multiple edge devices. The system was tested by deploying an image
classification service based on Google’s InceptionV3 which consists of a neural-network
that output a image vector class and a decoding service for ImageNet. Both services
were then deployed to local Raspberry Pi devices with the option to deploy to the cloud.
Automatic image tagging tasks were then ran. The system’s performance was evaluated
by comparing the computation tame against running similar tasks on Google ML with
the results showing that the Zoo system archieved lower response latency.

2.2 Video Analytics on the Edge
Shanhe Yi et al. [11] detailed the implementation of Latency-Aware Video Edge Analyt-
ics (LAVEA) system, a Video Analytics Computing Serverless Architectural Platform
running on the Edge, necessary due to the computational intensive and bandwidth hun-
gry nature of video analysis. LAVEA is a 3-tier mobile-edge-cloud platform where the
authors focused more on the mobile-edge and inter-edge design. Clients are allocated
bandwidth and submit task to the platform then these tasks are then offloaded to the
edge nodes. Sharing workload, managing queue priorities and scheduling tasks is
automatically handled by the platform. The nodes run light computing tasks while
using inter-edge collaboration between nearby edge nodes to speed up processing of
tasks by offloading computationally intensive tasks to nearby edge nodes that are less
busy. The functionality of the system was demostrated by building and deploying the
platform on a network consisting of four (4) edge computing nodes and implementing
an application for Automated License Plate Recognition (ALPR). The execution time of
these tasks were then analyzed and compared against running similar tasks on the cloud
which showed a 1.7x increase in processing times when processing tasks locally on the
edge.
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2.3 Augmented Reality on the Edge
In this paper, Marco et al. [10] presented the NEAR solution aimed at providing realtime
AR features on lightweight IoT devices without any changes to the device or client
application. NEAR, which is NFV at the Edge for transparent Augmented Reality,
uses network function virtualization (NFV) to reprogram the network and transparently
integrate functionalities on intermediate network nodes. The solution can be deployed
could be deployed anywhere in the network using hardware devices with adequate com-
putational power and made accessible via SOCKS proxy. The general operational flow
includes retrieving the video stream, decoding, processing and providing the augmented
video to the client. While testing, the authors reported AR acceleration gains compared
to streaming the videos to remote servers.

While cases of video analytics, machine learning, data analysis and augmented
reality on the edge abounds, there are only few cases of voice analysis on edge devices.
This could be due to the complex nature of voice recognition on devices with limited
computing power and this can also be seen in most of the voice recognition libraries
that have to stream the audio to the cloud for recognition due the computing resources
required. New advances in the speech recognition field had also been relatively slow
although this is no more the case with the recent announcement by Google’s of the
All-Neural On-Device Speech Recognizer. The lack of voice analytics research and
the complex nature of speech recognition with high computing resource requirements
makes speech recognition an ideal case study in analyzing computing resource con-
sumption.
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3 Background
In this section we provide background information on the basics of Speech Recognition
and discuss some Speech Recognition libraries with the reasons behind our choice
of speech recognition libraries used in developing the Speech Recognition Android
application.

3.1 Speech recognition
Speech recognition is a complex process and due to the lack of clear boundaries between
words, speech to text translation is probabilistic and never 100% accurate. Speech is
made of continuous audio stream with different states and simlar classes of sounds make
up phones which in turn makes up words. The waveform of a phone can vary greatly
which in turn makes phones vary from their representation due to various factors. In the
actual speech recognition process, the sound waveform is first split by silence into parts
and then each part is decoded into words. To decode the words, all possible combination
of words is matched with the part and the best matching combination is selected.

In the actual speech recognition process, the sound waveform is first split by silence
into parts and these parts are further splitted into frames of about 10 milliseconds in
length. From the frame, a group of 39 numbers, called the feature vector, is extracted
from the speech from to represent the speech. A speech model containing common
attributes of the spoken word is necessary and for speech recognition, a generic model
such as the Hidden Markov Model could be applied. For speech recognition, three(3)
types of models are required. First is the acoustic model which contains the most
probable feature vectors for each phone, secondly is the phonetic dictionary which
maps words to phones and finally is the language model which mainly restricts the
matching process to consider only probable words thus greatly reducing the search space
complexity.

3.2 Speech Recognition Libraries
Here we outline four major speech recognition libraries with focus libraries that are
accurate, offer online or offline speech recognition, have customization options, easy to
integrate into existing application, support muliple programming languages and have
up-to-date documentation. While Microsoft Bing Voice Recognition, IBM Watson
Speech-to-Text and Google Cloud Speech-to-Text offer almost similar functionalities,
we selected Google Speech-to-Text service due to recent Google’s cutting edge ad-
vancements in the field of speech recognition, the option to perform offline speech
recognition and the inbuilt availability of Speech-to-Text library in Android. Our second
choice of the CMUSphinx library is due to the open-source nature of the project which
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provides far more customization options and the focus on offline only speech recog-
nition. Additionally, CMUSphinx Android integration is easy using the PocketSphinx
library.

3.2.1 Microsoft Bing Voice Recognition

Microsoft Bing Voice Recognition [9] is a subscription based Microsoft product which
is part of the Cognitive Speech Services offering realtime Speech-to-Text, Text-to-
Speech and Translation services. The Speech-to-Text service can convert speech to
text from audio files or streaming audio source and additionally identify participants in
a conversation using the conversation transcription service. The recognition process is
completely online as the audio source is sent to the cloud and the partial or complete
text result returned as response. The service allows the user to customize or create
new langauge models for used in the speech recognition process. In addition to a
REST API for speech recognition, there are libraries in all major languages including
Java(Android) with support for the service core the functionalities.

3.2.2 IBM Watson Speech-to-Text service

IBM Watson Speech to Text is a subscription based Watson service [] providing a
realtime Speech-to-Text convension service with support for pre-recorded or streaming
audio in various formats. There are options to recognize individual speakers, spot spec-
ified keywords and select a pre-built or customize the language or acoustic model used
in the recognition process. The service is cloud based with HTTP REST, Websocket
and Asynchronous HTTP programming interface for easy integration.

3.2.3 Google Cloud Speech-to-Text

Google Cloud Speech-to-Text [8] uses neural network models to convert speech to text
with support for short or long form audio. The service can transcribe realtime streaming
or pre-recorded audio with support for 120 language, automatically identify spoken
language and identify individiual speakers in a conversation. The service offers the
option to select specific pre-built speech recognition models based on the target use-
case and context. The user can also specify words are phrases that are likely to be
spoken in the speech. The Google Cloud Speech-to-Text service as the name implies is
a cloud based service where the audio is first sent to the cloud for recognition and the
text result sent back as respones.

Android Speech Recognizer in the android.speech package [7] provides access to
the speech recognition service for Android applications using the core Google Cloud
Speech-to-Text service. Due to the high consumption of battery and bandwidth, the rec-
ognizer is not suitable for continous speech recognition because of the need for stream-
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ing of the recorded audio to remote servers to perform the actual speech recognition
although the recognizer can also perform speech recognition locally using downloaded
speech models.

3.2.4 CMUSphinx

CMUSphinx [2] is a an open-source offline speech recognition engine developed at
Carnegie Mellon University and used for developing speech related applications with
support for multiple programming languages such as C and Java. The suite contains
tools for speech recognition and training acoustic models. There are extensive cus-
tomization options including the option to specify the language and acoustic models in
addition to making changes to the source code.

PocketSphinx Android [3] is a lightweight speech recognition library based on the
CMUSphinx library and specifically tuned for smaller devices. It is written in Java and
converts speech recordings into text using the CMUSphinx acoustic models with support
for US English and some other languages. PocketSphinx depends on the SphinxBase
library which provides common functionality across all CMUSphinx projects and can be
deployed on Linux, Windows, on MacOS, iOS and Android platforms. For integration
in the Speech Recognition Application, Android application, we include the Android
Archive library containing binary files and independent Java code.
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4 Experiment Methodology
Here we outlined the library, systems and configurations used in performing the exper-
iments to evaluate the utilization of computational resources of a speech recognition
application running on an edge device. The experiments were divided into two groups.
The first group is an edge device running a speech recognition application that is com-
pletely offline and all the recognition is performed on the edge device while the second
group is running a speech recognition application on the same device but this time
speech is sent over the network to the cloud where the actual recognition is performed.
Apart from analyzing the resource utilization of each group, they are compared against
each other to better understand the trade-offs in resource utilization. Our main focus is
on energy, memory and processing computation resources. Speech recognition accuracy
was not a focus of this thesis, although we took that into consideration when comparing
the results between the two groups.

4.1 System
The edge device used in the experiment was a Samsung Galaxy S10+ with a Exynos
9820 (8 nm) chipset, 2x2.31 GHz Cortex-A75 CPU and 8 GB RAM. Network com-
munication on the device is provided by both a LTE cellular connectivity and a Wi-Fi
802.11 a/b/g/n/ac/ax wireless controller. We used Cellular for network connectivity
during the experiment with wireless connection as a backup. The device was running
version Android 9.0.

4.2 Application
In developing the speech recognition application, we used the open-source Pocket-
Sphinx Android library [3] developed at Carnegie Mellon University for local speech
recognition on the edge device and Google Text-to-Speech [8] framework for cloud
based speech recognition. While the Google Text-to-Speech framework offers little
customization options, the PocketSphinx library is open-sourced and we could use cus-
tom dictionaries, acoustic and language models. But in keeping the experiment simple,
we used the default dictionaries, acoustic and language models. The implementation of
the aplication is discussed in Section 5.

4.3 Experiment setup
The speech recognition application was installed in the edge device, with battery per-
centage at above 50% and no other visible application running in the background and
the speech recognition application was then ran on the device lasting 10 minutes where
a sound recording containing a looping speech was played on a separate device. The
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speech recognition are divided into two sets - offline and cloud-based speech recogni-
tion. We ran the cloud-based speech recognition using the Google Speech Recognizer
as it supports supports both offline and cloud-based recognition, while for the offline
speech recognition we ran it using both PocketSphinx and Google Speech Recognizer.
We also ran a longer experiment lasting an hour in exploring the possibility of running
speech recognition in the background.

4.4 Resource Consumption Measurement
The focus was in measuring the CPU, Memory and Energy resource consumption of the
Speech Recognition Application. Here we outline each resource, terms and measure-
ment metrics.

4.4.1 Energy

The device contains a Li-Ion 4100 mAh battery which we aim to measure actual en-
ergy consumption in mAh of the running application the energy consumption of the
running application. This information is extracted by running the Dumpsys tool with
the batterystats to generate a battery statistics report which is then saved to an output
file. Additionally, we note the computed and actual energy drain which could be used in
finding cases where the application’s power consumption is inconsistent with the actual
power drain.

4.4.2 Memory

The device contains 8 GB of RAM and we aim to measure the total memory allocation
in Kilobytes of the application at any point in time. While Android Profiler contains a
memory view where detailed information about an application’s memory allocation is
displayed, the same information could also be extracted using the Dumpsys tool with
the meminfo option although here the information is not as detailed.

4.4.3 CPU

In measuring the CPU usage, the main focus is on the allocated CPU time in seconds.
The information is extracted either using the Android Profiler or using the Dumpsys tool
with the cpuinfo option.

4.5 Resource Consumption Measurement Tools
We identified two major ways of extracting information about resource consumption of a
running application on Android. These tools are Dumpsys and Android Studio Profiler.
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The Android Studio Profiler tool presents a high level of information collected in a
single interface and the option to easily compare results, while Dumpsys tool provides
us a more indepth information about resource usage although in a less readable format.
So for more accurate results, we used both tools in collecting the resource comsumption
data.

4.5.1 Dumpsys

Dumpsy [5] is an Android tool that is used in extracting information about system
services which can be called from command line using the Android Debug Bridge
(ADB) to get diagnostic report about services running on a connected device. The
command can be customized to output information about specific system services such
as RAM, battery, network, CPU and many more. Combining dumpsys with the mem-
info, batterystats, procstats, cpuinfo and netstat options we can generate statistical data
about the division of the application’s memory between different types of RAM, battery,
memory and cpu usage respectively. Using such tools as Battery Historian, which is
a tool to visualize system and application level events, view aggregated statistics and
compare reports, we can visaulize some of the generated data.

4.5.2 Android Profiler

Android Profiler [6] provides realtime data about an application CPU, Memory, Net-
work and Battery usage. The tool by default shows a shared timeline view which shows
the timeline graphs for CPU, Memory, Network and Energy. Detailed information about
any of these can then be accessed by clicking on the corresponding graph. We can
record and save profiler data to later compare the data between sessions. There are also
options for advanced profiling where we can view detailed information about number of
allocated objects, garbage collected events and details about files transmitted over the
network.
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5 Application Implementation
In this section we outline the architecture, implementation, functionalities and user
interface of the Android Speech Recognition Application the aim of which is to measure
the resource consumption of a Speech Recognition application running on an edge
device which in this study is an Android smartphone. The Android Application was
developed in Java using the Android Studio IDE with minimum target SDK 26 (Oreo
8.0.0) and target SDK 28 (Pie 9).

5.1 Architecture
The Speech Recognition Application implemented is made of the two major compo-
nents which are the external speech recognition libraries discussed in Section 3 used for
speech recognition and the application component containing the speech recognition
services.

Figure 1. Application Architecture
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The speech recognition application is an Android application writen in Java using
the Android Studio IDE.

Google Speech Recognition library is used in the application for both online and of-
fline speech recognition. The android.speech is already included in the android package
by default so we do not need an additional step to access the library functionality. Using
the library customization options, we customized the Speech Recognizer by setting the
language model to en-US as this is our target language. We aim to recognize general
speech so the language model is set to free-form while the minimum speech length is
set to the maximum value as we need to recognize long utterances. The library does
not have an option to set offline or cloud-based speech recognition. As a walkround
to enable only offline speech recognition, we first ensure that the respective language
file has been pre-downloaded on the device and then disable network connection on the
device before running speech recognition application.

The PocketSphinx android library is used for offline speech recognition. The library
which is distributed as Adroid Archive including both binary files and java code is added
as a library and then added to the build.gradle file as a dependency. Language model files
are required and these are included by copying the model files to the assets folder of the
application while adding the gradle command to build the assets.xml file. The Speech
Recognizer is created using the SpeechRecognizerSetup builder which also allows us
to configure the main properties of the Speech Recognizer. we configured the language
and dictionary Recognizer to use the language and dictionary models included in the
app. To complete the setup, we added the digits and custom Grammar Search models.

5.2 Views
Launching the application the first time presents a permission dialog to allow the appli-
cation to use the phone’s microphone which is required for speech recognition and the
application exits if the permission is denied. The main page of the application contains
two buttons each for Google and Sphinx Speech Recognition respectively.

Clicking on any of the buttons takes you to the respective Speech Recognition page
where there are options to select the language model, write the extracted text to file, run
the speech recognition in the background and start the actual speech recognition. A run-
ning speech recognition can be stopped at anytime to change any of the configurations.
The speech recognition is continous and restarts at end of each recognition sequence so
the speech recognition could non-stop in the foreground or background.
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Figure 2. Application Main Page
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Figure 3. Application Sphinx Speech Recognition Page
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6 Evaluation
This section presents the result of running the speech recognition application on the
target device.

6.1 Results
6.1.1 Google Speech Recognition (Offline)

The results of running the Google Speech Recognition in offline mode are shown below.
Results extracted using the Dumpsys tool are shown in Figures 4 while those extracted
using the Android Studio Profiler Tool are shown in Figures 5, 6, 7 and 8.

Figure 4. Google Speech Recognition Resource Usage (Dumpsys)
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Figure 5. Google Speech Recognition Cosumption Overview (Profiler)

Figure 6. Google Speech Recognition Energy Cosumption (Profiler)
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Figure 7. Google Speech Recognition Memory Usage (Profiler)

Figure 8. Google Speech Recognition CPU Usage (Profiler)
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6.1.2 Sphinx Speech Recognition (Offline)

The results of running the Sphinx Speech Recognition (Offline) are shown below. Re-
sults extracted using the Dumpsys tool are shown in Figures 9 while those extracted
using the Android Studio Profiler Tool are shown in Figures 10, 11, 12 and 13.

Figure 9. Sphinx Speech Recognition Resource Usage (Dumpsys)
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Figure 10. Sphinx Speech Recognition Resource Cosumption Overview (Profiler)

Figure 11. Sphinx Speech Recognition Energy Cosumption (Profiler)
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Figure 12. Sphinx Speech Recognition Memory Usage (Profiler)

Figure 13. Sphinx Speech Recognition CPU Usage (Profiler)
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6.1.3 Google Speech Recognition (cloud)

The results of running the Google Speech Recognition using cloud services are shown
below. Results extracted using the Dumpsys tool are shown in Figures 14 while those
extracted using the Android Studio Profiler Tool are shown in Figures 15, 16, 17 and
18.

Figure 14. Google Speech Recognition Resource Usage (Dumpsys)

26



Figure 15. Google Speech Recognition Cosumption Overview (Profiler)

Figure 16. Google Speech Recognition Energy Cosumption (Profiler)
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Figure 17. Google Speech Recognition Memory Usage (Profiler)

Figure 18. Google Speech Recognition CPU Usage (Profiler)
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6.2 Long Running Speech Recognition Results
Here we present the results of running Offline and Cloud based Speech Recognition for
an hour to represent cases of long running background speech recognition. The focus
here is on the battery and memory usage so only the results obtained using the Dumpsys
tool is presented here.

Figure 19. Long Running Google Speech Recognition Resource Usage (Offline)
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Figure 20. Long Running Sphinx Speech Recognition Resource Power Usage
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Figure 21. Long Running Google Speech Recognition Resource Power Usage (Cloud)
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6.3 Results Analysis
6.3.1 Experiment Results

From running the Sphinx and Google Speech Recognition, we were able to extract
estimated Memory, CPU and Battery usage of the application running on our target
device. Of most importance to us is the battery usage due to the increased storage
capacity and computing power of edge devices compared to the minimal increase over
the years in battery capacity of edge devices. Additionally, looking at the exttracted
resources consumption results shows relatively insignificant CPU and Memory con-
sumption which are also almost constant throughout the application’s lifetime unlike
the power consumption which is higher the longer the application runs.

Table of the resource consumption results obtained from the three experiments is
presented below:

Name Battery Usage CPU Memory Time Running
(mAh) (s) (K) (m)

Sphinx (Offline) 9.03 26.6 61,835 10
Google (Offline) 0.137 3.3 36,945 11
Google (Cloud) 0.169 6.7 34,744 10

Table 1. Resource Consumption

From the extracted results, we obtained far lower CPU, Memory and Battery usage
when using the Google Speech Recognition library (Offline) compared to the Sphinx
Recognition library. In Memory usage, while the Sphinx Speech Recognition used
61,835K of memory, with the Google Speech Recognition libray (Offline), the memory
usage was 36,945K which is about 40% less than the Sphnix Speech Recognition library
memory usage. We see the same situation in the CPU usage where the Sphinx Speech
Recognition library recorded a total CPU time of 26.6s, while for the Google Speech
Recognition the CPU time was 3.3s which is 12.4% of the CPU time used by the Sphinx
Speech Recognition library. The battery usage follows the same pattern. The Sphinx
Speech Recognition library recorded a battery usage of 9.03mAh for a total running time
of 10.2m while that of the Google Speech Recognition (Offline) was 0.137mAh with
total running time of 10.6m which is just 1.52% of the power used by the Sphinx Speech
Recognition library although this is to be expected considering the higher CPU time of
the Sphinx Speech library. We see that both offline and cloud-based Google Speech
Recognition have similar resource consumption values with the highest difference in
the CPU usage.

While the low resource consumption of the Google Speech Recognition library is
impressive more so considering the fact that while the Sphinx Speech Recognition
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library had only basic speech models with limited vocabulary the Google Speech Recog-
nition library had full speech models with far wider vocabulary support, taking into
account only the resource usage of our running application could be deceiving. When
we ran the Google Speech Recognition for a longer period of an hour, we discovered
that while the Speech Recognition application used very little Power and CPU resources,
the Google Speech Recognition library made use of core Google Services which were
actually much more resource hungry in terms of power and CPU time. This fact can
be deduced by looking at the raw output data of the Dumpsys batterystats tool where
we observed that the computed drain was much higher for a situation where only in-
significant power was drawn. The long running Google Speech Recognition (Cloud)
reported an actual power drain of 360-400mAh and looking at the power consumption
of the underlining Google Service we found a power usage of about 6% which trans-
lates to an actual power usage of about 246mAh. The long running Google Speech
Recognition (Offline) also reported an actual power drain of 120-160 with the Google
Services reporting a battery usage of about 4% which gives us actual power usage
of 164mAh. In contrast, when we ran the Sphinx Speech Recognition for the same
time period, the resource consumption was as expected based on our previous result of
9.03mAh and we have actual power consumption of 61mAh. Also, we recorded the
lowest actual power drain running the Sphinx Speech Recognition. From these results,
the Sphinx Speech Recognition library ultimately have better performance in terms of
power usage. As the Sphinx Speech Recognition library contains all required libraries
and we could accurately track its resource usage, its resource consumption can be used
as the benchmark for the minimum Power, Memory and CPU resource requirements to
run Speech Recognition on an Edge Device´.

6.3.2 Continous Speech Recognition

Using the consumption statistics gethered from running the Speech Recognition, we
explored the possibility of having a continuous speech recognition service running in
the background by running a continuous speech recognition for an hour and present
the obtained results below. Of note here is the low battery usage recorded by the
Google Speech Recognition which does not reflect the actual battery consumption of
the application which uses Google core services for the actual speech recognition. In
this case, the Power Darin gives a more accurate picture of the of the actual battery
consumption.
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Name Battery Usage CPU Memory Time Running Power Drain
(mAh) (s) (K) (m) (mAh)

Sphinx (Offline) 61.0 193 62,131 63 80-120
Google (Offline) 0.694 23.1 42,198 59 120-160
Google (Cloud) 0.603 19.1 36,338 62 360-400

Table 2. Long Running Speech Recognition Resource Consumption

34



Considering that Sphinx Speech Recognition library has the lowest cumulative bat-
tery drain with an average power requirement of 9.03mAh per 10 minutes, we expected
an average power consumption of 55mAh per hour or 1320mAh per day which equates
to about 32% of a 4100mAh battery. In practice, we obtained a power consumption
of 61mAh or about 1.5% of the total battery capacity. With these findings, running a
Speech Recognition application in the background will have significant effect on the
edge device total power consumption in the range of 30% to 40% of the total battery
capacity and having a speech recognition running in the background for most of the
day would significantly increase the device’s battery drain. But in cases where speech
recognition is of high priority, continous background speech recognition could run for
about two days on a single charge. An alternative could be to modify the application
with a sleep feature where continous speech recognition is automatically activated in
moments of speech and deactivated in moments of silence. We assume that this will
lead to great improvements in the battery consumption and could even lead to barely
noticeable affect on the power consumption of the device.

6.3.3 Additional Processing Task

In speech recognition, there might be need to process the extracted text and saving
or sending the process text to the cloud. From the consumptions results obtained,
additional analytics tasks on the converted text could be implemented where the speech
recognition is not continous as the resource consumption here is mostly insignificant.
Where we have continous background speech recognition, the speech recognition al-
ready takes significant power and implementing further processing task would signifi-
cantly increase the battery consumption.
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7 Conclusion
In this thesis we carried out analysis of the computing resource usage of applications
running on the edge with the aim of mitigating the various issue facing the traditional
method of sending sensor generated data to the cloud for analysis and decision. To
explore the possibilities of implementing additional processing tasks and reduce depen-
dance on the cloud, there was need to first analyze the computing resource usage of
a sample application running on an edge device. In analyzing the computing resource
usage, we selected the speech recognition domain due to the growth in voice interactive
devices and the high computational and memory resources required for speech recogni-
tion.

An Android speech recognition application was implemented using the Google and
Sphinx Speech Recognition libraries. We then ran 10 minutes and 1 hour long offline
and cloud-based speech recognition to analyze the application’s memory usage. The
Dumpsys tool and Android Studio Profiler tool were used in extracting the computing
usage data. From the analysis of usage data, we were able to predict that we could
implement continous speech recognition on an edge device although this will significant
affect the battery consumption. Alternatively, we could modify the speech recognition
application to sleep in between silence utterances. We proposed that adding additional
processing tasks would significantly affect the power consumption of continous speech
recognition applications. On the other hand, we could implement additional analytics
tasks where we have short running speech recognition as the power consumption there
is almost insignificant.

Our future direction is to explore the possibility of developing a continous and
background speech recognition application running on the edge while greatly reducing
battery consumption. Next, we could also implement text processing on the speech
recognition application running on the edge while keeping battery consumption constant
or with only slight increase. From our findings in here where an application that is
given permission to use the microphone and started by user can continue to use the
microphone in the background even when the screen is locked, it is possible to develop
a stealthy spy device that uses background continous speech recognition to spy on the
user. The possibility of using the resource usage footprint to identify such an application
that is maliciously running speech recognition in the background could be investigated.
´
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Appendix

I. Glossary
Android Speech Recognition Application source code on GitHub.

39

https://github.com/medalionk/android-speech-recognizer


II. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Bilal Abdullah,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Analysis of Software Applications Computing Resources Usage on the Edge:
A Case Study of Speech Recognition
supervised by Alo Peets

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Bilal Abdullah
15.08.2019

40


	Introduction
	Motivation
	Goal and Problem Statement

	Related Work
	Machine Learning on the Edge
	Video Analytics on the Edge
	Augmented Reality on the Edge

	Background
	Speech recognition
	Speech Recognition Libraries
	Microsoft Bing Voice Recognition
	IBM Watson Speech-to-Text service
	Google Cloud Speech-to-Text
	CMUSphinx


	Experiment Methodology
	System
	Application
	Experiment setup
	Resource Consumption Measurement
	Energy
	Memory
	CPU

	Resource Consumption Measurement Tools
	Dumpsys
	Android Profiler


	Application Implementation
	Architecture
	Views

	Evaluation
	Results
	Google Speech Recognition (Offline)
	Sphinx Speech Recognition (Offline)
	Google Speech Recognition (cloud)

	Long Running Speech Recognition Results
	Results Analysis
	Experiment Results
	Continous Speech Recognition
	Additional Processing Task


	Conclusion
	Acknowledgement
	References
	Appendix
	I. Glossary
	II. Licence


