

UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Dmytro Tkachuk
Computational aesthetics and identification of

working style
Master’s Thesis (30 ECTS)

Supervisor(s): Marcello Sarini, Assoc. Prof.

 Marlon Dumas, PhD

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computational aesthetics and identification of working style
Abstract:
Nowadays, an enormous amount of companies use Process-Aware Information Systems to
manage, perform, monitor and analyze business processes based on process models. Moreover,
as a part of the monitoring stage, these software systems generate event logs, which represent
actual a-posteriori workflow and are analyzed by process mining techniques. In this work, as a
part of process mining, we introduce the concept of working style as the tool for comprehensive
analysis of the nature of work. Business processes and interdependencies between its
constituents can be evaluated from the perspective of working style which is represented by
measures and patterns. We define the novel event log representation approach, where the log file
is treated as an image. Additionally, we propose measure computation and pattern identification
algorithms based on image analysis technique in combination with computational aesthetics. As
a result, the web-based prototype application for working style evaluation has been built.

Keywords:
Process mining, computational aesthetics, working style, working style artifact, pattern
identification
CERCS:​P170 Computer science, numerical analysis, systems, control

Arvutusesteetika ja tööstiili identifitseerimine
Kokkuvõte
Tänapäeval kasutab meeletu hulk ettevõtteid protsessimudelitel põhinevate äriprotsesside
haldamiseks, teostamiseks, monitoorimiseks ja analüüsimiseks protsessiteadlikke infosüsteeme.
Lisaks genereerivad need tarkvarasüsteemid monitoorimisetapi osana ka sündmuste logisid, mis
kujutavad endast tegelikku faktidest tuletatud (​aposteriori​) töövoogu ning neid analüüsitakse
protsessiandmete hankimise tehnikate abil. Selles töös, osana protsessiandmete hankimisest,
tutvustame tööstiili kontseptsiooni töö olemuse kõikehõlmava analüüsi tööriistana. Äriprotsesse
ja komponentidevahelist vastastikust sõltuvust saab hinnata tööstiili perspektiivist, mis väljendub
meetmetes ja mustrites. Defineerime uuendusliku sündmuste logi esitlemise lähenemise, kus
logifaili käsitletakse kujutisena. Lisaks pakume välja meetmete arvutamise ja mustrite
identifitseerimise algoritmid, mis põhinevad kujutiste analüüsitehnika ja arvutusesteetika
kombinatsioonil. Selle tulemusena on loodud tööstiili hindamise veebipõhise rakenduse
prototüüp.

Võtmesõnad:
Protsessiandmete hankimine, arvutusesteetika, tööstiil, tehistööstiil, mustrite identifitseerimine
CERCS:​P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimisteooria)

2

Table of contents

1. Introduction 5

2. Background 6
2.1 Business Process Management 6

2.1.1 Business Process 6
2.1.2 BPM Definition 7
2.1.3. BPM life-cycle 7

2.2 Process mining 8
2.2.1 Event Logs 9
2.2.2 Stages: discovery, conformance and extension 10
2.2.3 Perspectives: Control-flow, organizational, case and time 10
2.2.4 Organizational mining 11

3. Working style 12
3.1 Working style definition 12
3.2 Working Style Artifact 13
3.3 Patterns and measures of Working Style 14

4. Computational Aesthetics 16
4.1. Computational aesthetics measures 16
4.2 Hierarchical generalization 19
4.3 Half-symmetry measure 21
4.4 Pattern identification 22

Chapter 5. Application 23
5.1 Application workflow 23
5.2 Metadata 23
5.3 WSA generation and constituents 24
5.4 WSA measures 26
5.5 WSA highlight 28
5.6 Kernels and Activations 28

5.6.1 Kernel activation process (KAP) 29
5.6.2 Multiple activities or performers 33
5.6.3 Pattern identification algorithm for Kernels 33
5.6.4 Activation measures and sorting 34

3

5.6.5 Use cases of pattern identification for kernels 34
5.7 Kernel sequences and Activation sequences 40

5.7.1. Kernel sequence activation process (KSAP) 41
5.7.2 Pattern identification algorithm for kernel sequences 45
5.7.3 Use Cases 45

5.8 WSA representation with time of execution 48
5.9 Application features and adjustment 49

Conclusions 51

Future work 51

Appendix A 53
KAP procedure pseudocode 53
KSAP procedure pseudocode 54

Appendix B 55
Table 3. Event log file 55

4

1. Introduction
Needless to say, the initial goal of each organization is to increase customer coverage, income,
performance and bandwidth and to grow in the dynamic, competitive market. Hence, except just
executing work plans, each company should analyse its internal operations. Thus, research,
directed on enhancement of organizational workflow, has moved to analysis of business
processes and their features [3]. Moreover, such powerful tool as process mining was created to
enact this research. Process mining focuses on discovering and enriching real control-flow,
organizational and execution time models, thus executes evaluation of workflow characteristics
based on a posteriori knowledge.
In this work, we are aiming to introduce new technique - working style, which takes its origins in
process mining and combines analysis of business process features to identify measures and
patterns of nature of work. To support represented concept, we have constructed prototype
application, which aims to deliver tool for comprehensive analysis, related to work arrangement,
dependencies between performers and executed tasks.
Chapter 2 focuses on the theoretical basics of Business Process Management and Process
mining, explains their key aspects, features and applications and is aimed to provide an
introductory information that plays a key role in the definition of the working style concept.
Chapter 3 is aimed to represent working style, all its constituents and describe measures and
patterns. Computational aesthetics, presented in chapter 4, determine techniques which can be
applied to working style visual constituent - working style artifact. Chapter 5 presents all key
components of working style application, including all definitions and algorithms connected to
WSA, measure computation and pattern identification.

5

2. Background
In this chapter we introduce the background information regarding the Business Process
Management and the Process Mining. In particular, we provide a brief description of these two
fields as well as their definitions, building blocks, stages and features.

2.1 Business Process Management
Business Process Management (or BPM) is an interdisciplinary field as BPM is developed,
studied and applied from both business management and information technology perspectives
[1,2]. BPM becomes a bridge between an organization, which involves people and systems, and
a task of discovery, analysis and improvement of business processes inside a current
organization. Weske stated, that BPM is based on the connection between product, afforded by a
company on the trade market, and sequence of activities, which was performed by a company to
produce current product [2].
As stated above, BPM is a field which combines groups of specialists, which branches of science
usually do not intersect. From the one side, this is business managers and analysts, who see
Business Process Management as a powerful tool for discovering and solving issues connected to
quality, stability and performance of organization workflow. On the other hand, in nowadays
world, there is no company, which organizational structure does not include information
technology. Thus, BPM facilitates the way in which Information Technology specialists connect
with business stakeholders to develop and maintain IT systems for full organizational life-cycle.
More specifically, the analysis, monitoring and support of business processes are performed by
Process-Aware Information Systems (PAIS) [3]. Most known examples of PAIS are Workflow
Management (WFM) and Business Process Management systems. Former ones are directed on
workflow automation. Otherwise, BPM systems set broader goals. Hence, their aim to provide
support in the management, execution and analysis of business processes.

2.1.1 Business Process
Before getting deeper in Business Process Management, the definition of a business process
should be mentioned. According to [4], there are plenty of definitions, that was given for
business process, but features named below is predominant in all of them:
A business process consists of a finite set of ​activities​ (or tasks).

● Each ​activity has its own ​performer or ​performers​. A performer can be represented
either by human or by IT system.

● Each activity starts with an ​input and finishes with an ​output​. Input and output are data
in any form; it can be a document, service or just a verbal statement.

● Activities​ of a business process are aimed to reach or execute some business goal.

6

Weske in his work [2] mentions business processes as an important tool for structuring
organizational activities and for discovering relationships between them.
When describing a business process, one can also mention ​process instance​. On the so-called
model level, we have a business process which is represented by activities. But, in the real world,
everything can be described in instance level as it is natural to execute constructed business
process iteratively. Thus, each iteration is called a process instance. Process instance also
consists of activities but the set of activities of the process instance is a subset of a set of all
activities of the organizational workflow.
Later ​process instance will be referred to as ​case when it is considered as a part of information
collected by information systems for process mining (see section 2.2).

2.1.2 BPM Definition
Authors of [1] define Business Process Management as ​a body of methods, techniques and tools
to discover, analyze, redesign, execute and monitor business processes​. Furthermore, such
definition is highly close to definition given by Weske [2] and van der Aalst [5].
Thus the former aim of BPM is to explicitly represent business processes [2]. Consequently,
when business processes are defined, BPM is focused on analysis and improvement of such
processes. Described continuous sequence of operations can be described as BPM life-cycle (see
subsection 2.1.3).
The most essential part of BPM, and of PAIS in general, is ​process model. ​Process model
describes all possible execution flows of process instances (cases). Usually, process model is
represented in graphical notation, like BPMN, Petri nets, UML, etc [1,2,5]. Mutual feature of
such notations is that process model is constructed using activities and dependencies between
them. Such construction concept allows to interact with process models while iterating through
organizational life-cycle.

2.1.3. BPM life-cycle

Business Process Management life-cycle (Figure 2.1) shows 4 phases of managing business
process [references here]. The first phase is the ​design​. The current phase is aiming at the actual
development of the business process and its process model. Then created process model is
implemented into a running system in the next phase, which is called the
configuration/implementation phase. Usually, this phase is time-consuming as the model need to
be converted into a traditional software system. When such system is finished and it supports
organizational business processes and model, ​enactment/monitoring phase follows. This phase is
directed at managing actual workflow - processes as they are executed. The main goal of this
phase is to document and analyze processes and see if any changes needed. Part of such changes,
which do not require redesign or software extension, can be made in the ​adjustment phase shown
in Figure 2.1. The current phase is strictly focused on setting the process using predefined
controls, which is included in the ​configuration/implementation​ phase.

7

Figure 2.1 BPM life-cycle (Source: [6])

The last phase of BPM life-cycle iteration is ​diagnosis/requirements phase, which analyzes the
processes as they were executed and monitor changes in the working environment. Former
analysis can identify gaps in performance or quality of service. Environment changes can be
connected either with changes in local, governmental or international laws and policies or with
growing competition. Such kind of changes and issues can provoke new BPM life-cycle
iteration, which starts with the ​redesign​ phase.
According to Figure 2.1, process model plays a significant role in (re)design and
configuration/implementation phases, as in former phase this model is created and in the later
phase software system is constructed based on information from the current model. In
enactment/monitoring and ​diagnosis/requirements phases focus is on data in a system. Current
phases do not depend on the model itself as the development part of the process is finished and
the system is running. At the same time, data holds the dominant role in this phases as
enactment/monitoring phase document information about actual execution. Moreover, this data is
used later in ​diagnosis/requirements phase to analyse workflow and as consequence to redesign
model to fit new constraints.

2.2 Process mining
According to Wil M.P. van der Aalst, process mining (PM) helps to “truly close the BPM
life-cycle” [6]. Before process mining, ​diagnosis/requirements phase (see Figure 2.1) was not
supported adequately, because only issues concerning software errors or external changes could
start new BPM life-cycle iteration. Thus, there was no connection between the process model
and empirical information concerning the actual process.

8

Process mining techniques provide support for ​diagnosis/requirements phase, as they analyse
information collected in the ​enactment/monitoring ​phase by PAIS. Moreover, process mining
aims in monitoring and amending of real processes, which is traced by information systems and
stored in ​event logs ​(see subsection 2.2.1). That is why process mining also has an influence on
redesign phase as it helps to align so-called assumed process model with the model based on a
posteriori knowledge.
Process mining goal is to narrow the gap which most of the system stakeholders faces - how to
get, analyze and benefit from the information about the difference between what is prescribed to
occur and what actually occurs [7].
In this chapter, a short description of process mining types and perspectives will be given
(subsections 2.2.2 and 2.2.3) as well as information concerning event logs (subsection 2.2.1).
The end of the chapter will focus on the organizational perspective of process mining -
organizational mining​, which is strictly related to the working style described in chapter 4.

2.2.1 Event Logs
Event logs is an ​essential part of process mining as process mining techniques can be used only
with event logs, which store all relevant empirical information. Each ​event log is a ​collection of
cases (process instances) [6,7]. In turn, each ​case is a ​sequence of events​. Process mining
presumes that each ​event​ should contain next compulsory information:

● Case​ to which this event refers
● Activity​ which was performed in this event
● Timestamp​ of a current event

Except for mandatory information for events, additional information can be stored:
● Performer​ of activity and its department
● Input​ and​ output values
● Other information​ about product or service (costs, quantity, etc.)

Therefore, such restrictions on event logs allow tracing actual, a posteriori workflow concerning
concrete business processes as each process instance (case) is recorded, represented by atomic
units (events) which contain all required information for analysis and is aligned through the
timeline.
According to [8], there are three main standard file extensions for storing event logs which is
acceptable by the majority of process mining applications and tools. First one is MXML (Mining
eXtensible Markup Language) which was created in 2003 and was taken by process mining tool
ProM as an input format and considered as a standard for storing event logs. Later, second
format XES (eXtensible Event Stream) [9] has replaced MXML and was acknowledged as a new
event log storing standard. XES was developed based on practical experience with MXML,
hence became more flexible and indeed extensible.
Despite there is a standard format (XES), third format Comma-Separated Values (CSV) files are
also used. Each row of CSV file represents the event and each column refers to attributes of that

9

event. As stated above, there are obligatory attributes each event log should contain, therefore
CSV file which stores event logs should contain columns for case identifier, activity name and
timestamp, but there may be more information depending on goals and applied techniques. Often
CSV files are used as intermediate storage step as they are easily convertible in XES format.

 2.2.2 Stages: discovery, conformance and extension
As process mining purpose is to study and improve process models based on real processes
extracted from a posteriori knowledge - event logs, it can be divided into three types [6,7,12].
The first type of process mining - ​discovery - aims in constructing models from event logs
without using any additional information. For instance, 𝝰-algorithm [6,10] can take log file as an
input and then produce process model in Petri net notation. Moreover, models related to
organizational structure or job collaboration can be constructed if log file contains some
additional information as resource or work department (see subsection 2.2.4).
The second type of process mining is ​conformance​. Conformance is directed on a comparison of
the assumed process model with real process traced in an event log. Therefore, this type of
process mining conforms reality to the apriori model and contrariwise. Thus, the divergence
between actual and assumed processes can be detected, explained and measured.
Enhancement is the third type of process mining. The aim of it is to improve the process model
based on information extracted from log files. There are two kinds of ​enhancement. ​First one is
repair​, when process mining techniques are focused on modifying an existing model to minimize
the divergence between model and reality. The second one is ​extension - the process of addition
of new features or perspectives to process model by measuring the cross-correlation.
Based on the description of these process mining types, one can notice that together they cover
the full improvement cycle of the assumed process model. Thus, ​discovery ​constructs model
which is aligned with reality as it refers to information taken from already executed processes.
Then ​convergence ​identifies differences between a priori model and model mentioned earlier.
And in the end, ​enhancement techniques resolve issues connected with the similarity of real
process and presumed one by changing or updating latter.

2.2.3 Perspectives: Control-flow, organizational, case and time
As mentioned previously, process models represent control-flow perspective of business process.
However, as event logs consider information, which represent other aspect of workflow, process
mining is extended to retrieve and analyze additional features of execution process. Thus,
process mining expands to cover more perspectives [6].
The first perspective is the ​control-flow perspective, which aims in analyzing the right order of
activities and representing this order in terms of process model using some notation like Petri
net, BPMN, etc.
Next perspective is ​organizational​. It is directed toward studying information concerned
resources i.e. performers (employees, systems, etc.), their roles, departments and

10

interconnections between them. The focus of the current perspective is to extract organizational
models, which describe department allocation of actors and cross-department relations.
Moreover, organizational perspective focuses on social networks, which is more related to
connections and collaboration between separate organizational units (performers), like handovers
of work or subcontracting [6,7,12].
The third perspective is the ​case perspective​, meaning that its main focus is to discover case

characteristics. Unlike control-flow perspective, which aim is to derive possible paths of
workflow, case perspective discovers properties concerning one actual case, such as originators,
amount of supplied products, etc.
The last one is the ​time perspective​. Event timestamps can be applied to discover frequencies of
events, identify bottlenecks in the processes, predict and monitor remaining process time.

2.2.4 Organizational mining
According to Song and van der Aalst [7], process mining is mostly directed on control-flow
perspective, ignoring information connected to organization structure and interdependencies
between performers. Hence, organizational mining as a part of process mining in general is
developed to focus on organizational perspective. Thus, organizational mining aims to extend
process mining stages using resource information. Therefore, all stages of process mining can be
treated from given perspective.
The discovery stage of organizational mining focuses on deriving two types of models: the
organizational structure model and the social network [7,12]. Note, that both of this models can
be constructed for performers - actual organizational units, or for departments. Moreover, the
originator groups which are allowed to execute similar tasks can be extracted in the discovery
stage. Similarly, social networks can be constructed to represent the connections between the
performers and groups of performers units. There exists multiple metrics that can be derived
from these networks by means of social network analysis techniques as they represent the way
people and groups of people cooperate and work together [11]. To sum up, the organizational
structures reflect the clear hierarchy and structural features of a company, while social networks
focus more on communication between individual performers and their groups.

The general idea of conformance checking and extension stage in organizational mining is
similar to the one mentioned for process mining. The conformance checking stage estimates the
similarity between the previously defined execution plans and observed logs. The extension
stage enriches the initial organizational model with additional data which can be helpful in
revealing the weaknesses.
Initially, Working style, introduced in chapter 3, is related on organizational mining as research
on performers and their interdependencies is the main focus of working style concept [13]. In
combination with Computational Aesthetics (chapter 4), working style provides techniques to
combine analysis of log files from organizational, control-flow and case perspectives.

11

3. Working style
Concept of the style can be noticed in each field of activity, where person (individuum) plays
predominant role. For instance, visual arts experts can identify style of the painter by analysing
artworks. Thus, we can derive two main constituents of style. First one is an ​artifact - the actual
representation of style. Second one is the creation ​process​ of mentioned artifact [13].
Considering these dependent components, we are aiming to map concept of style to the field of
process mining. In this chapter, we introduce concept of working style as a tool for workflow
analysis, where all business process features are considered as interdependent. Moreover, we
present working style artifact (section 3.2), which serves as visual depiction of working style. In
section 3.3, we provide description of working style measures and patterns, which can be applied
to artifact.

3.1 Working style definition
As was mentioned in section 2.2, process mining is used as a tool for analysis of a posteriori
information. According to PM perspectives, these tools are focused on retrievement of models
and dependencies, that can be used to enhance existing models. However, none of them
combines observed information to benefit from incorporate analysis.
The main item of working style identification is a nature of work, which describes how workflow
is arranged, executed and what interdependencies exist between each of business process
features. As all of this process constituents are inseparable and equally important for working
style analysis, we want to introduce working style, as approach for aggregated research.

Definition 3.1 (Working style) Working style is a concept, that describes a working process as
relations of indivisible units - activities, performers and cases. It is characterized by measures
and patterns, which identify differences and similarities in nature of work of concrete
organization structure. Thus, working style preserves uniqueness for each particular organization
as it depends on not only control-flow but also on performers, their style of task execution and
interdependencies between them.

Furthermore, the working style concept based on the principle of locality. Thus, it considers that
events are more related to the events, that happens strictly after or before given events, then to
ones which were executed lately. This principle is used in the construction of a visual
representation of working style and in methods for computing measures and patterns.
As was mentioned above, the working style is unique for each organization in its identification
approach, as needed enhancement of business process differs for different organizations. Hence,

12

to identify the working style, we need to define commonly structured constituent, which, on the
one hand, holds features of the current style of work and, on the other hand, can be analysed to
retrieve measures and patterns. Thus, we introduce the concept of working style artifact.

3.2 Working Style Artifact
As the concept of working style is abstract and its measures and patterns depend on each
concrete organizational structure, there is a necessity in a standardized representation of working
style. On the one hand, the working style is related to organizational mining and process mining
in general, thus its representation should contain information extracted from event log files. On
the other hand, our goal is to represent working style in a visual form which holds mentioned
features and also recognizable as a representative of a certain style. Hence, the working style
artifact is constructed in a way, that it holds information about a business process, but
represented as visual art, therefore, has a unique style, which can be evaluated by techniques
given in chapter 4.

Definition 3.2 (Working style artifact) ​Working Style Artifact is a matrix of size ​n ​x ​m​, where ​n
is the number of cases, extracted from event log and ​m is the maximum number of events
performed in one case. Each cell of WSA is a figure, which is represented by three features:
shape, color and size. Each unique shape represents one concrete activity. In the same way, set of
colors and set of performers has the one-to-one relation. The size of the figure is related to the
time of execution of exact activity by a concrete performer.

As mentioned previously, working style aims to combine analysis of business process features to
leverage from studying interdependencies of events, which holds these features. Taking this into
account, working style artifact is constructed as it is described in definition 3.2. Each row of
WSA is a separate case. Such construction will be used later in this work to analyse cases which
have happened one after another, as closer cases hold more information about the working style
in general. Moreover, each cell of WSA characterizes an event, which consists of features
mentioned above. Hence, each separate cell contains one unit of information needed for future
identification and analysis of working style. Example of WSA, generated from event log file
given in Table 3 can be seen on Figure 5.2.
Definitely, based on the structure of WSA, one can notice that the working style artifact is a
visual constituent of the working style, as it holds features as figures, thus it is represented as an
image. Moreover, WSA is considered to be a dynamic image, as patterns of working style
identified using the algorithms described in chapter 5 are shown directly on WSA. Such WSA
form is called the ​highlight (see subsection 5.5). Thus, working style artifact represents the event
log file in a visual form and, at the same time, can represent the pattern of working style.
Other than being dynamic, working style artifact has other benefits. First of all, in comparison to
the event log file, WSA is more compact, as it holds one case as a row and each event is

13

represented by one figure with different features. Furthermore, such representation of event
makes working style artifact more human-comparable. This means, that comparison of two
events is simplified because a person can easily derive differences and similarities between the
two figures. For instance, when human sees two squares of different color, it is natural, that
person will identify similarity in shape and difference in color. Moreover, as described in section
5.9, working style artifact can be adjusted for different purposes and business processes.

3.3 Patterns and measures of Working Style
As the goal of a working style is to identify and describe the nature of work, based on business
process features, we need to introduce two vital concepts: measures and patterns.
On the one hand, measures are aimed at evaluating the global perspective of working style.
Hence, they represent scores derived from WSA, which characterize the working process as one
consistent unit. On the other hand, working style patterns retrieve local structures and
dependencies between single units - events.
As was mentioned previously, the working style is based on the concept of locality. Thus,
measures and patterns preserve this principle in its construction. Former ones represent
descriptive values, which combine evaluations of the relation between events with different
positional distances in WSA between them. Computations for the measures are performed using
the tools presented in the next chapter. In chapter 5, examples of measure computations for test
event log file given. Latter concept - patterns - identifies repetitive structures in WSA, which
describes interdependencies between events. The approach used to determine such repeated
constructions is based on two constituents.
The first one is the ​pattern structure​, which represents the actual construction of the required
behaviour or the dependency of events. The second one is the ​pattern instance ​- the concrete
occurrence of a pattern structure in the working style artifact. Thus, the ​pattern structure ​is an
abstraction of a sequence, where each element is an event, and the ​pattern instance ​is the actual
example of such sequence. The tools to identify patterns are based on the concepts described in
chapter 4. Moreover, the actual pattern identification algorithms are represented in chapter 5,
where pattern structures and instances are associated with the concepts of kernels and kernel
sequences.
Although the working style combines the analysis of all business process features together and
we consider them equally important, the initial feature should be defined. This is because
identified patterns are shown directly on working style artifact. Hence, we need to have one
constituent, which will play a predominant role in pattern visualization (see subsection 5.5). It is
natural to take performer (resource) as such feature. As the working style is aimed to identify the
nature of the work process, the most crucial element of each process is the performer, as
execution quality and speed directly dependent on a person. Definitely, there are cases, where
events are represented by machines, which performance is stable. However, the main goal of the

14

working style is to analyse business processes which consider human work, as only this kind of
processes can hold some style.
Although, our goal is to give an opportunity for the user to construct any pattern structure, there
exist some commonly known patterns [13]. Such patterns include ​rework-orientedness and
handover-orientedness​. Former one describe scenarios, when concrete performer should execute
some activity twice in one case. Second pattern describe process of transferring work from one
performer to another. Later we will use provided patterns as examples for pattern identification
use-cases.

15

4. Computational Aesthetics

Computational aesthetics is a field, which directed on development of computational procedures
that can identify ​aesthetics, ​as people can [15].
Computational aesthetics takes its origins in 1933, when Birkhoff published his work “Aesthetic
Measure” [14]. In this work he derives so-called ‘intuitive feeling of value’ which accompanies
visual or auditory perception of object. Such feeling can be named aesthetic, as it is definitely
differ from other feelings like emotional, moral, etc [14]. Moreover, object which makes person
to perceive aesthetic feeling called aesthetic objects. Despite the fact that aesthetic object can be
divided into vast number of categories, all of them can be divided into two common - created by
nature and by human (or generated by machine, which is also belong to later). However,
aesthetics​, the actual knowledge gained from aesthetic feeling, based more on second category as
nature is random in quality, but human-created object displays aesthetic ideals of creator.
Birkhoff as a mathematician in his work [14] aimed to derive formula for this feeling of value or
aesthetic measure M, ​which combines from the one hand ​complexity C of the object -
characterization of the effort needed to percept the object - and from the other hand feeling that
object has symmetry, harmony or ​order O​. Such measure is represented by formula

M = O/C (1)

Current measure considers universal and can be applied to all artforms. However, according to
[15], choice of aesthetic measures and algorithms is bounded to concrete application. Thus, we
should consider relevance of methods as our goal is to concentrate attention on aesthetic
decisions which can be applied to working style artifact.

4.1. Computational aesthetics measures
The main focus in this section is given to measures, describe by Dr. Allen Klinger and Nikos A.
Salingaros in their work “A Pattern Measure” [16]. Measures, mentioned in this work, is strictly
related to concept of working style, as they evaluate dependencies between closely related
events. Thus principle of locality is preserved in this case. Moreover, presented by authors
hierarchical generalization technique, which is applied to given measures, combines values from
local units to retrieve global measure. Definitely, it is related to how working style measures are
described. Furthermore, measures and hierarchical generalization algorithm, given by A. Klinger
and N.A. Salingaros, are applied to matrices, which corresponds to our approach, as working
style concept considers computation of its measures using working style artifact.

16

In our case, we considers WSA as a structured image, because it is constructed as matrix,
holding visual information in each of its cells as figures - visual items. Two main measures,
which is used to evaluate structured images is ​temperature T and ​symmetry H (​also known as
harmony) ​[16]. First one describes measure of information and represents number of unique
visual items. Second one evaluates actual value of order in image, because, according to [16],
symmetries existence is correlated to deficiency of disorder. Moreover, each particular image has
maximum harmony , which identifies maximum value, that image can have if it is totally Hmax
symmetrical.
Actually, Harmony ​H ​is combination of 9 different symmetries, which can be considered or not,
based on goals of measure computing. These symmetries are

● - reflectional symmetry along ​x​-axish1
● - reflectional symmetry along ​y​-axish2
● - reflectional symmetry along diagonal ​y = xh3
● - reflectional symmetry along diagonal ​y = -xh4
● - 90 degree rotational symmetryh5
● - 180 degree rotational symmetryh6
● - similarity to another element (translational symmetry)h7
● - translational symmetry plus reflectional along ​x​-axish8
● - translational symmetry plus reflectional along ​y​-axish9

Based on measures mentioned above, two compound measures can be constructed - ​life L ​and
complexity C. Life L ​is defined by formula

 ​L = T H ​(2)

and represents the value, which describes image as being informative (measure ​T​) while
preserving order (​H​).
Complexity ​C ​is represented by formula

C = T (- H) ​(3)Hmax

and gives image evaluation as combination of informativeness and disorder.

17

Figure 4.1 Images represented by matrices of symbols

Now, we can provide computation examples for given measures. Consider, we have 4 different
images given in Figure 4.1. Each of these images is constructed from elements, which are
positioned in matrix 2 by 2. First of all, we are computing temperature, which represents
informativeness. According to [16], temperature of element, which consists of one single unit
should be equal 0. Thus, actual formula for measure T​ ​is

T = number of unique units - 1 ​(4)

Hence, current measure value for image A is T(A) = 0​. Obviously, that elements B, C and D
have only two different symbols each, which means that

 T(B) = T(C) = T(D) = 1

As temperature is computed, we can proceed to harmony (symmetry) H. Certainly, symmetry
constituents - can be computed minimum on matrix 2 by 2. Moreover, symmetries - h1 h6 h7 h9
represent comparisons of distant elements, thus they require minimum two elements. Therefore,
for current example, we will consider measure H as a sum of first six symmetries. Image A
consists of only one unique unit, so harmony value H(A) = 6, as all symmetries appear on current
element. Matrix B has only diagonal symmetry and matrix C - only reflectional symmetry h4
along ​y​-axis. Hence, H(B) = H(C) = 1. Last image D preserves two diagonal symmetries and h3

and rotational symmetry . That is why, H(D) = 3. Also note, that = 6, as currentlyh4 h6 Hmax
computed harmony consists of 6 symmetries.
As temperature and harmony were computed, we can calculate composite measures L and C.
Using formulas (2) and (3), next values for life and complexity are evaluated

L(A) = 0, L(B) = 1, L(C) = 1, L(D) = 3
C(A) = 0, C(B) = 5, C(C) = 5, C(D) = 3

18

According to this values, we can retrieve several conclusions. First of all, elements with only one
unique symbol is lifeless and not complex. Although, they give maximum symmetry value, they
are non-informative. Secondly, one can notice, that life combines informativeness, while
considering preservation of symmetry. Thus, images with equal temperature, has higher life
value, if holds more symmetries. On the other hand, complexity measure decreases, when the
number of symmetries grow, because presence of order (described by harmony) reduces chaotic
structure of image, thus it becomes less complex.

4.2 Hierarchical generalization
Certainly, when the size of the image, presented by matrix, increases, symmetry value can reduce
significantly. For instance, illustration, given on Figure 4.2 and represented by symbol matrix of
size 6 by 6, has no symmetries.

Figure 4.2 Image, which does not hold symmetries, but its subblocks holds

But, after more close examination, we can see that submatrices of size 2x2 and 3x3 in given
image has symmetries in them. Thus, authors of [16] introduces hierarchical generalization
technique. According to this algorithm, image is divided into subblocks of size 3x3 and 2x2, as
shown on Figure 4.3 below. Note, that index for each subblock is represented in bottom right
corner of each subblock division.
Computational aesthetics measure, for instance temperature, is computed in each subblock.
Then, measure for each submatrix size is estimated by taking average, as stated in formulas
below

T​(3x3) = (+ + +) / 4 T a T b T c T d (5)

 ​T​(2x2) = (+ + … +) / 9 (6)T 1 T 2 T 9

19

Figure 4.2 Image division by subblocks

Hence, global temperature of the image, can be computed as average between measures for each
size

T​ = (​T​(2x2) + ​T​(3x3) + ​T​(6x6)) / 3 (7)

For example, we will show temperature computation, with all the steps presented for image
given in Figure *. For other measures, values are given in figure *. Informativeness for whole
image is ​T​(6x6) = 2, as total number of unique elements is 3. In case of image division by
subblocks 3x3, temperature values for each subblock and average measure are as follows

 = 2, = 2, = 2, = 1T a T b T c T d

 ​T​(3x3) = (2 + 2 + 2 + 1) / 4 = 1.75

For subblocks 2x2, next values take place

 = 1, = 1, = 0, = 1, = 0, = 2, = 0, = 1, = 1T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9

 ​T​(2x2) = (1 + 1 + 0 + 1 + 0 + 2 + 0 + 1 + 1) / 9 0.78≈

As a result, global temperature can be calculated

T ​= (0.78 + 1.75 + 2) / 3 1.51≈

20

Therefore, hierarchical generalization technique allows to compute global measure for the big
images, by considering local structure of subblocks. It is worth noting, that exactly the same
techniques is planned to use for working style measures computation. First of all, hierarchical
generalization is applied to images which construction holds form of a matrix. Working style
artifact has identical structure. Moreover, as working style focuses on locality principle and its
measures computation needs a technique which is applied to local elements, while describing
global situation, current algorithm satisfies working style measures concept.

4.3 Half-symmetry measure
However, while getting deeper into applying symmetries to WSA, two new symmetry
constituents should be defined. Consider, we need to calculate harmony H for subblock given in
Figure 4.3.

Figure 4.3 Subblock of WSA

Obviously, each of constituents - of H gives 0. But, in reality, top left and top right h1 h6
elements are equal, thus our goal is to display identity of current symbols. This can be obtained
by defining next harmony components:

● - reflectional half-symmetry along ​x​-axish10
● - reflectional half-symmetry along ​y​-axish11

Half-symmetry takes into consideration each pair of symmetrically positioned symbols along
given axis. For instance, when applying half symmetry along x-axis to subblock of WSA in
Figure 4.3, each two symbols with the same position along given axis is compared. If they are
equal, half-symmetry measure increases on , where ​n ​is the size of subblock. Otherwise, /n1
half-symmetry does not change. In our case each two elements with the same position along
x​-axis do not equal, thus = 0. Similarly, when calculating half-symmetry along ​y​-axis, first h10
pair of elements is equal, thus measure increases by ½ as size of subblock is 2. Elements in
second position are different, thus = ½ . Note, that half-symmetries can replace h11

21

corresponding reflectional symmetries and , as if all elements with identical position along h1 h2
some axis are equal, then half-symmetries measures equal to 1.
Thus, taking into account all defined initial measures as temperature and symmetries, user can
construct custom measures, to retrieve global statistics for WSA. Example of such construction
is given in subsection 5.4.

4.4 Pattern identification
As was mentioned previously, working style is described not only by measures, but also with
patterns. Pattern identification focuses on retrievement of identical structures, thus one can
suppose, that similarity of elements and translational symmetries and can be used, to h7 h8 h9
determine identical parts of WSA. Moreover, there is a possibility to construct half-symmetries
for mentioned symmetry constituents. But, suggested technique has several drawbacks. First of
all, consider we have subblock. Hence, to discover all subblocks similar to given one, we need to
compare current with all others, which is not efficient. Secondly, if executing such procedure, all
similar submatrices will be identified. Thus, after completion, user need manually study all
founded patterns. So, such approach creates additional work for analyst.
Furthermore, we want to provide experts with tool, which focuses on possibility to specify
pattern structure. In this way, tool becomes universal and satisfies working style concept, which
differs in analysis approach for particular organization.
Thus, we expands measures techniques with algorithm of applying kernels, which represents
pattern structures. Therefore, to find pattern instances, first of all, user constructs pattern
structure as kernel (section 5.6) or kernel sequence (section 5.*). Then, given representations
(kernels or kernel sequences) are applied to working style artifact. Such procedure combines
features of symmetry computing and convolutional approach.h7
According to [17], Convolutional Neural Networks is based on convolutional approach, where
kernels or filters (matrices of size n) are applied to submatrix of the same size of inputted matrix.
Cells of both kernel and matrix are represented by numbers (weights). Thus, according to this
approach, matrix multiplication is applied to kernel and submatrix. Matrix of smaller size
receives as an output. Thus, kernel iterates through submatrices with some step and output
matrices combines in new matrix.
In our approach, we also apply kernels to WSA, but instead of matrix multiplication, comparison
algorithms perform on kernel and submatrix. In such way, we are not aiming in transforming
input WSA. Our goal is to detect if each submatrix contains pattern structure in it. Therefore,
kernels, constructed by user, represents desired structure of pattern and by iterating and applying
these kernels to submatrices of WSA, pattern instances are detected.
Before diving into actual algorithms, we introduce some basic definitions, needed for these
procedures (chapter 5).

22

Chapter 5. Application
Based on working style (chapter 3) and its visual representation - working style artifact,
application for working style identification was constructed. This chapter will cover all
application parts and its algorithmic constituents. In section 5.1, application workflow is given.
Then section 5.2 describes metadata as one of most important element for WSA generation and
manipulation. Section 5.4 covers practical aspects of measure computations. Next, definition and
examples of WSA highlight is given in section 5.5. Kernels and kernel activations - core units of
kernel activation process - is described in section 5.6. Moreover, in the same section, first pattern
identification algorithm will be given. Then, section 5.7 provides kernel sequences as
representation of more sophisticated patterns, kernel sequence activations, activation progress
connected to them and second pattern identification algorithm.

5.1 Application workflow
Workflow of introduced application is straightforward. First of all, user inputs event log file.
This file is preprocessed and all column names are retrieved. Moreover, application choses
which column names corresponds to case number or id, activities and performers. Then, user has
a possibility to check chosen columns, change them or choose if application does not succeeded
in automated retrievement of columns. Furthermore, log file and columns are used as an input to
WSA generation algorithm. When WSA is generated, user can view WSA measures or start
pattern identification. To do this, user inputs kernels and kernel sequences, which represents
pattern structures. Then, they are applied to WSA to retrieve pattern instances. Moreover, user
can inspect WSA highlight, all activations and their scores for each concrete kernel.

5.2 Metadata
According to the application workflow (section 5.1), when user inputs event log file, it is parsed
and WSA, as described in section 5.3, is generated. Moreover, while processing the log file,
metadata is constructed.
In this section, we will give definition of metadata, its relation to WSA and its usefulness for
working style analysis. In addition, examples of metadata for the test event log file (Table 3) will
be provided.
Definition 5.1 (Metadata) ​Metadata is an information about unique activities and performers,
stored in lists of relations. Thus metadata aligns each activity with corresponding unique shape
and each performer with particular color.

23

Figure 5.1 Metadata, which contains all unique activities and performers from

event log given in Table 1.

As event log file is given as raw text data, metadata saves all necessary information needed to
convert log file into WSA matrix, where each event element is encoded. This is the first benefit
of metadata. But, there is no purpose in storing and showing metadata to user, if it is used only
on the stage of construction of WSA.
And here comes second benefit, which corresponds more to application design as it meets
so-called user-friendly approach. As WSA and its image consists of figures, presenting metadata
in front of WSA image in application is crucial, as it helps user to connect figures with
corresponding events. In this way, user has an opportunity to benefit from using WSA as a visual
representation of event log file and to stay focused on the main goal of application - working
style identification.
Moreover, metadata makes pattern identification more fast and cleaner. As described below ​(see
subsections 6.6 and 6.7), pattern identification is based on kernels and kernel sequences, which is
constructed by user itself, based on desired results. As, activities in event log files can have long
names, for instance ​register request or ​examine thoroughly (see Table 1), when constructing
kernels, user can benefit from metadata by using corresponding shape names, like ​s1 or ​s2​, to
keep process fast and clean, while not losing the informativeness.
As Figure 5.1 shows, each activity in metadata is aligned with actual shape and short name and
each performer has unique color assigned.

5.3 WSA generation and constituents
According to workflow, described in section 5.1, user inputs event log file and choses columns,
which corresponds to case number or id, activities and performers. This incoming data is used to
generate Working Style Artifact. As was mentioned before, event log file is a sequence of events,

24

Figure 5.2 Working style artifact

where each event holds information about activity, performer and case to which current event
belongs. Thus, to generate WSA, log file is parsed and for each event next procedure executes.
First of all, figure of current event is generated from activity and performer data. Taking each of
this elements, firstly it is checked for presence in metadata. If element is binded to shape or color
in metadata, then this value is retrieved, otherwise a new relation for current element is created in
metadata and a new value is used. When figure for the element is generated, based on case
information the aforementioned figure is appended in one of the existing rows if such case is
already created or new row is defined and current event becomes first event in a row. An
example of working style artifact is given on Figure 5.2. This WSA is generated from test log
file, which is represented in Table 3.
Algorithms for WSA measures computing and pattern identification are based on two essential
elements of working style artifact - WSA submatrix and submatrices rows.
WSA submatrix is a matrix of size 2x2, which represents pairs of adjacent events from working
style artifact. Submatrices is retrieved from WSA by iterating over working style artifact matrix
with step size equals to 1. Thus, first WSA submatrix consists of first and second cells of first
and second rows of WSA as shown of Figure . Next submatrix contains second and third cells of
same rows. Other submatrices from the same raw are taken in similar way by increasing the

25

Figure 5.3 Submatrix of WSA (blue dashed square) and submatrices row (red rectangle with dash-dot

border).

column index by one. But as each WSA row is appended by empty cells, obviously not all
submatrices are considered, as submatrices which contains all empty cells are ignored.
Furthermore, when submatrix with all cells being empty is found, it means all submatrices of
current row are identified and row index is increased by one. Thus all submatrices for current
row are founded, and WSA submatrices first row is retrieved. Similarly, all other submatrices
and rows can be determined. Figure 5.3 shows example of submatrix and submatrices row.
Note, that in this and next sections, working style artifacts cells presented only by shape and
color. For simplicity of explanations we skip size of the figure. In reality it can happen if
inputted event log file do not consider information connected to time of execution. Section 5.8
presents WSA construction with size of figure.

5.4 WSA measures
Working style measures is determined and evaluated using computational aesthetics measures,
described in chapter 4. According to this chapter, we have two basic measure: temperature and
harmony, which is applied to the image. Temperature describes number of unique symbols, and
harmony represents symmetries. Moreover, evaluation is done using hierarchical generalization
(see subsection 4.2).
Thus, constructed application applies given measures to the working style artifact to retrieve
global characteristics of nature of work. Initially, our prototype computes two standart compound
measures - ​life ​and ​complexity. However, these scores do not give a lot information for future
analysis of business processes. Hence, application provides opportunity to construct custom
measures, which can present characterization of working style, depending on analyst needs.
Therefore, we will provide an example of such measure, which will be constructed based on
half-symmetries given in subsection 4.3.

26

Suppose, user wants to create measure called ​stability (S)​. Idea of this measure is
straightforward. It compares events on the same positions in close cases, thus gives an global
score of how cases differ between each other. We are comparing each case with two consecutive
cases, as working style based on locality principle, hence dependencies between these cases are

Figure 5.4 Example of WSA

most important. In this way, to construct such cases we need to use reflectional half-symmetry
along ​x​-axis, as each case in WSA takes one row, therefore two events with the same location in
adjacent cases share similar position along ​x​-axis. As we need to compare each case with at most
one which is after next one, subblocks of size 2x2 and 3x3 are used for hierarchical
generalization technique. Subsequently, application performs computation for each subblock size
and returns scores separately. Moreover, it takes average and returns value of constructed
stability measure. Additionally, it is worth mentioning, that as current measure uses symmetries,
maximum value of it is also calculated.
Now, based on working style artifact, presented on Figure 5.4, we will dive into several technical
aspects. Then the actual computation results will be provided.
Hierarchical generalization technique used in application prototype differs from one given in
chapter 4. As one can notice, hierarchical generalization given in previous chapter, takes
non-overlapping subblocks, therefore in matrix 6x6 there are 9 subblocks 2x2. In our approach,
subblocks is taken with step one for row and column, which means that, for instance, second
subblock 2x2 will contain last column of previous subblock as first column. This is done,
because WSA image can take any size, therefore all possible symmetries is counted. For
instance, in given example in Figure 5.4, working style artifact has size 4x5, thus it can not be
divided into non-overlapping subblocks 3x3 without prepending empty columns and rows.
However, even if we will resize WSA to matrix 6x6 by adding empty events, last row will be
included as the only non-empty row in each submatrix 3x3. Hence, the best solution for this
problem, is to consider overlapping matrices. Obviously, one can notice that in given calculation

27

approach third and fourth subblocks has in common one column with symmetry. But, in reality it
will not impact badly the given measure, as maximum value of it also increases.
As computational approach is described, computational results are provided below.

(2x2) = 4.5 (2x2) = 12S S max
(3x3) 3.67 (3x3) = 6S ≈ Smax

 4.085 = 9S ≈ Smax

5.5 WSA highlight
Before describing techniques connected to pattern identification, WSA appearance form -
highlight - should be mentioned. According to section 3.3, founded patterns is shown directly on
the WSA. Thus, highlight is a modified WSA image, which corresponds to visual representation
of patterns. As was mentioned in section 5.*, most important feature of each event in WSA is
performer, as Working style directly related to people or departments, who execute work
process. Hence, to distinguish events (WSA cells) which corresponds to identified patterns from
those which are not belong to pattern instances, former events preserve their color and latter ones
obtain grey color. This transformation of WSA is called ​highlight​. It is obvious, that each
detected pattern instance has respective WSA highlight. Examples of highlight is given in section
below in subsection 5.6.5.

5.6 Kernels and Activations
As was mentioned earlier, one of the constituents of working style is patterns which structure
depends on companies workflow and desired analysis results. Thus, created application provides
an opportunity for the user to describe what patterns should be found. For such purpose, kernels
and kernel sequences (section 5.7) were developed.
Kernels are designed to define patterns which consists of one event, two consecutive events or
patterns which describe relation between events which have the same positional number in two
consecutive cases. Thus, kernel represents the pattern structure, which means it allows user to
illustrate and characterize interested pattern. Hence, kernel is applied to WSA submatrix, to
check if current submatrix fits pattern structure. If it is, kernel activation is generated, which
represents concrete instance of pattern, constructed in kernel.

Definition 5.2 (Kernel) ​Kernel is a matrix of size 2x2, where each cell can be one of the next
four types: ​strict​, ​parametric​, ​combined or any​. Moreover each kernel has ​threshold​, which is
used as a boundary to consider kernel activation (see definition below) as pattern instance.
All cell types is described below in more detail. Note that, cells of kernel also is referred as top
left, top right, bottom left and bottom right depending on its position.

28

Strict cell is tuple (activity, performer)​. Thus such cell will represent unique event to identify in
WSA.
Parametric cell holds unique constant which displays parametric choice of event for activations.
In other words, parametric cell is a variable which value differs for different activations and
gives an opportunity to construct pattern in non-constant way.
Combined cell is similar to strict cell as it is also represented by tuple (activity, performer), but
in case of combined type one or both of the elements of tuple can be a parameter, similarly to
parametric cell.
Cell of type ​any​, represented by * (star), is cell which is not interested for current pattern, thus
can be skipped.
As kernels goal is to define the common structure of desired working style pattern, described
above kernel cell types help to achieve possible pattern variety and to make working style
identification tool more universal. Particular detailed example of how kernel cells of different
types work will be described in subsection 5.6.1 after definition of kernel activation is stated.
Furthermore, more sophisticated examples of kernels and its cell types usage will be provided in
Use Cases in subsection 5.6.4.
Aforementioned, based on the pattern structure, inputted by user, kernel activation process will
be applied to the WSA submatrix to retrieve the actual pattern instances - kernel activations.

Definition ​5.3 (Kernel activation) Kernel activation is a matrix of size 2x2, where each cell is a
concrete event, represented by corresponding figure. Each activation aligns to concrete kernel,
therefore each activation cell is related to the corresponding kernel cell. Moreover, activation has
number parameter, which describes quantity of current activations in whole WSA and is strictly
connected to kernel threshold as it defines the number of similar activations needed to consider
current activation as a part of pattern. Also, activation holds position of each its appearance in
WSA, which is used on the stage of WSA highlight construction.

5.6.1 Kernel activation process (KAP)
Activation process is a ground unit of pattern identification algorithm for kernels. As an input it
takes kernel and WSA submatrix. According to this process, kernel will be applied to the current
part of artifact by comparing each cell of submatrix with kernel cell. Such procedure will return
activation if all comparisons are successful, which means submatrix satisfies pattern structure.
Otherwise, if some comparison fails, KAP execution stops and it is considered as failed. Thus, it
does not return anything.
Hereinafter, consider kernel and submatrix are ​activated​ if kernel activation is found.
Now, based on examples, comparison procedure for different kernel cell types will be provided.
It is worth mentioning, that next example represents situation, when activation is successful and
procedure returns activation. However, in description of activation process for parametric kernel
cell, activation failure case is described with examples.

29

Figure 5.5 Successful activation process (P1), which takes as input WSA submatrix (A) applied to it
kernel (B). Consequently, as an output activation (C) is received.

Consider as an input to the activation process (P1) from Figure 5.5, submatrix of WSA (A) will
be given. Kernel, with four different types of cells (B), will be applied to the current submatrix.
As was mentioned above, each kernel cell will be compared with corresponding cell from WSA
submatrix.
Strict type
In current example, first kernel cell (top left) is strict, thus represents concrete event, where
activity is ​register request and performer is ​Pete​. On Figure 5.5 in kernel (B), one can see how
using metadata ​register request activity is expressed by key ​s1 to keep kernel clean. Note, that
the same is done for the third kernel cell. To perform KAP, we need to apply current cell to the
corresponding cell of submatrix. Referring metadata, we can easily identify, that the top left cell
of submatrix is event of ​Pete performing activity ​register request​. In case of strict kernel cell,
activation process is equivalent to simple comparison. In other words, if both activity and
performer of strict cell is equal to activity and performer from respective submatrix cell, current
comparison is considered successful. Hence, top left submatrix equals to respective strict kernel
cell, which leads to activation of current cell. This is represented by top left cell of activation (C)
on Figure 5.5.
Parametric type
Second cell (top right) of provided kernel is parametric. As was mentioned above, parametric
cell holds the name of parameter. While executing comparison process for parametric kernel cell,
there exist two possible cases. If current parameter did not occur before or current procedure step
is first, then cell considers activated and parameter is saved with submatrix cell event as value.

30

Figure 5.6 Successful activation process (P1), which takes as input WSA submatrix (A) applied to it

kernel (B). Consequently, as an output activation (C) is received.

Otherwise, on the current step of process parameter has already occurred, thus sumatrix cell
should be compared with parameter value. In this case, comparison is executed equivalently to
comparison of strict kernel cell. Hence, event from parameter value are compared to event from
corresponding submatrix cell.
In given example, top right cell contains parameter named ​x​. Such parameter did not appear in
previous kernel cells, therefore parameter is saved with current submatrix cell value and cell is
activated. It means, that for current activation process P1, parameter ​x is associated with event
(s2, Sue)​, where metadata key ​s2 ​represents activity ​examine thoroughly​.
As kernel B of activation process P1 has only one parametric cell, alternative case, where
parameter is retrieved and compared with submatrix cell, does not exist. To give example of such
scenario, two new activation processes P2 and P3 are provided (see Figure 5.6). According to
this Figure, both processes have similar kernel B, where top left and top right cell are parametric
with identical parameter. While executing activation processes P2 and P3 on first cell of
submatrices A and A*, procedure behaviour is identical - parameter ​x is saved with value
(​s1,Pete​). On the next iteration for top right cell, activation process determines kernel cell as
parameter ​x​, which has already occurred, so value for this parameter is retrieved and used to
perform comparison with submatrix cell. For process P2, submatrix cell has value ​(s1, Pete)​,
which definitely equals value of parameter ​x​. Thus, cell is activated and process continues
iterative execution. In totally same way, process P3, compares top right submatrix cell with value
(s3, Ellen). ​Obviously, value of parameter ​x does not equal submatrix cell value, so value is not
activated. And as was mentioned before activation process is stopped and returns nothing
because of failed comparison.

31

Figure 5.7 Kernel with three cell containing parameters with common name but different

 relation.

Therefore, as activation process P2 is successful, activation is founded, which can be noticed
from colorful cells from matrix C. On the other hand, as process P3 has failed, cells of matrix C*
is colored in gray, as no activation exists.
Combined type
Activation of the combined type cell is similar to parametric cell, as it compounds strict and
parametric types. Particularly, there are two possible variations for cell of this type. First case
considers cell which consists of concrete activity and performer represented by parameter and
the second one is opposite - activity holds parameter and performer is stated as one of the
performers from metadata.
Thus activation of cell of combined type is divided into two scenarios: if parameter appears first
time it is saved and cell is activated, otherwise parameter is compared with submatrix cell. For
instance, in case of activation process P1 third cell of kernel B is combined, so it has strict
activity ​register request represented by metadata key ​s1 and parameter ​x for performer. Hence,
when executing comparison of current kernel cell and third submatrix cell, activity is compared
as for cell of strict type, but performer similarity is identified as for parametric cell. As activity in
third cell of submatrix A is ​register request​, which equals to activity in combined type cell,
comparison continues to performer. Since performer in kernel cell is parametric and there is no
other parametrically represented performers with the same parameter, performer value ​Mike of
submatrix cell A is assigned to parameter ​x​. Analogously to cells of parametric type, if in
succeeding kernel cells equivalent parameter appears, instead of saving, comparison process is
executed.
Important to note, that parameters for parametric cells and parameters for activities and
performers for cells of combined type are not connected between each other. For instance, we
have kernel with two combined cells, one parametric cell and one cell of type ‘any’ (see Figure
5.7). First combined type cell has activity represented by parameter ​x​. Similarly, second kernel
cell consists of performer defined by parameter with the same name. Moreover, third kernel cell
is parametric also with parameter ​x​. Although all of this parameters have identical name, their
values are saved separately. Thus when performing activation process for current kernel, three
different relations is created, even if key name is ​x​ for each of them.

32

‘Any’ type
Last cell in kernel B of activation process P1 has type ​any​. According to description of current
cell type above, such kind of cells is used to identify parts of pattern structure which is not
interested for the user. Thus, comparison iteration on this cell is skipped and cell is not activated
and not highlighted. Then, the iteration process continues. This described behaviour can be seen
in activation processes P1 and P2. One can notice that each cell of activation that corresponds to
kernel cell of type ‘any’ is not highlighted, however activation process is not failed.
In the next subsection KAP upgrade is discussed and kernel activation process pseudocode is
provided.

5.6.2 Multiple activities or performers
In addition to variety of pattern structures gained by four types of kernel cells, strict and
combined cell can be improved to accept several activities and performers at once. Such kernel
enhancement allows to cover situations when user want to specify several concrete activities and
performers, but do not want to use parameter. Idea of parameter is connected more to
identification of all possible variations or explicit similarity requirement for cells or their parts.
Therefore, possibility to state multiple activities or performers obviously differs in its goal from
parametric usage.
Consider user decides to specify two different activities in strict kernel cell. On KAP comparison
step for current kernel cell, corresponding submatrix cell activity is compared to both provided
activities and comparison is considered successful if at least one inputted activity is equal to
submatrix cell activity. Comparison is performed in the same way for multiple performers in
strict kernel cell or multiple activities or performers in combined cells.
Pseudocode of KAP can be seen in Appendix A.

5.6.3 Pattern identification algorithm for Kernels
As all constituents - kernels, activations and activation process - is described, pattern
identification algorithm can be presented. First of all, note that if activation was founded during
activation process, it does not guaranteed it to be the pattern instance as threshold should be
satisfied. Thus, activation process should be applied to each submatrix of WSA to retrieve all
activations. Then, they can be analyzed to retrieve existing patterns that fits threshold of kernel.
So, based on scenario above, pattern identification algorithm for kernels can be constructed and
its pseudocode can be given. This algorithm is very straightforward. As an input it takes kernel
and WSA. Taking each submatrix of WSA and kernel, procedure executes KAP. If current
process is successful, output activation is stored. Activation storing technique has two scenarios:
if activation appears first time, it is saved with number of appearances equals to 1 and with first
presence position, otherwise activation number is incremented by one and new occurrence
position is appended to the list of already identified positions. When algorithm finishes, all

33

founded activations is checked: if activation number is greater or equal threshold, then current
activation is a pattern instance, otherwise it does not satisfy threshold and should be excluded.
Note, that currently mentioned pattern identification algorithm works only for kernels. In section
5.7, kernel sequences is presented. And based on its unique structure, another pattern
identification algorithm is constructed.

5.6.4 Activation measures and sorting
After execution of pattern identification algorithm, all founded pattern instances - activations that
have reached threshold - are characterized by number of occurrences. To improve analysis of
each single instance, application provides two activation measures - total and relative density.
Total density describes the degree of how pattern measure covers working style artifact. Thus, it
is a relation between number of WSA cells highlighted by current activation and total number of
WSA cells. Obviously, this value ranges between 0 and 1.
Similarly, relative density is a measure, which defines relation between highlighted by current
pattern instance WSA cells and all cells highlighted by all activations except current one.
Moreover, application provides opportunity to sort by this three measure - number, total and
relative density. Hence, user can benefit from aligning activations from most frequent to less
frequent one.
It is worth mentioning also that except sorting by given measures, activations can be sorted by
activity or performer in order of appearance in metadata.Therefore, user receives more advanced
tool for analysis.

5.6.5 Use cases of pattern identification for kernels
Definitely, each cell type provide features for the pattern structure to fit user purposes. In current
subsection, we will provide examples of cell type combination with explanations how user can
benefit of using them in pattern identification.
One non-any cell
Kernels with one non-any cell define patterns, which are aimed on analyzing single events. Thus,
the most primitive pattern can be constructed by using one strict type cell and three cell of type
any. Obviously, pattern identification algorithm for such kernel can return only one activation or
nothing. Hence, such kernels can be used to identify if such event exists in WSA. Moreover, if it
appears in WSA, user can study activation measures - number of occurrences and total density.
Definitely, in this case relative density is meaningless as kernel has only one activation. In this
way, user can perform analysis of concrete event. Also in combination with kernel threshold,
user can filter such events to retrieve only pattern instances satisfies some number of
occurrences.
But, more informative patterns based on one non-any cell kernels can be constructed using
parametric and combined cells. Using parametric cells, user can find all possible unique events if
kernel threshold is 1. Undoubtedly, this is useful for analysis common statistics, as each unique

34

event has number of occurrences and total density, thus activations can be sorted to retrieve, for
instance, the most and the least frequent pattern instances.
Furthermore, all unique events, retrieved using current kernel, can be sorted by activity. In this
scenario, user can identify originators groups, which shows all performers executing similar
tasks. In combination with total density, user can also identify originators, who have executed
this unique task more frequently than others.
When using combined type cells, patterns connected to concrete activations or performers can be
identified. Such kind of kernels can bring more practical analysis. Previous two kinds of kernels
give an opportunity to just compare some statistics of events, but using current kernel user can
perform search. For example, user is interested in identification of all performers, who were
executing some concrete activity. Thus specifying this activity, and using parameter for
performer, one can find all possible pattern instances. Moreover, by increasing threshold, these
activations can be filtered to satisfy desired number of occurrences.
For instance, user wants to identify all performers, who have executed activity ​register request.
Thus, kernel represented on Figure 5.8 aligns with pattern structure described above.

Figure 5.8 Kernel which represent pattern structure to identify all performers who have executed activity

‘register request’

Analysing highlight for given kernel (Figure 5.9) and founded activations, user can identify that
four different performers have executed activity ​register request. Moreover, current kernel
obviously identifies case, where two similar activities were performed one by one. Thus, user
can also notice human mistakes in process execution. Although, created application always
shows activations, we will not provide activations for current example, as evaluation can be done
without actual representation of pattern instances.
Two non-any cells
When constructing kernels with two non-any cells, user goal is to analyze or identify patterns in
adjacent events. The basic case of this kernel is to use two strict cells. However, this scenario
does not differ from strict cell in one non-any cell kernel. Definitely, using this kind of kernel,
user can analyze concrete adjacent events, find their occurences and inspect measures. Similarly,
two parametric cells can be used to find all possible pairs of adjacent events.

35

Figure 5.9 WSA highlight for kernel given in Figure 5.8

However, more informative scenario considers usage of different cell types combinations.
Hence, strict or combined cell can be used with parametric one, to perform search of adjacent
event to some concrete event. Thus, for instance, user wants to identify which event occurs after
event with activity ​decide. ​Moreover, search can be specified by inputting performer for activity
decide. But for illustration purposes, we will leave performer as parameter. Hence, given kernel
is shown in Figure 5.10 and result of applying pattern identification algorithm is demonstrated
below. WSA highlight is shown on Figure 5.11 and founded activations on Figure 5.12. Also,
note that activations for current kernel is given in different form, than they were represented
previously. Such visual difference occurs because, activations shown on Figure 5.12, is taken
from application directly, as all visual results for this section are computed by constructed
program.

Figure 5.10 Kernel to search for all events which occur after ‘decide’ activity

36

Figure 5.11 WSA highlight for kernel given in figure 5.10

Figure 5.12 Activations for kernel given in figure 5.10

37

As in previous section, we were retrieving results straight from WSA highlight, here example
analysis of activations is provided. First obvious result is based on first cell color of each pattern
instance. As first kernel cell is ​(s4,x), ​pattern identification algorithm should retrieve all
performers executing activity ​s4. ​Hence, we can undoubtedly state that current activity is always
performed only by one performer - ​Sara. ​Secondly, based on inputted activations, user can
perform analysis of adjacent events, as initial goal was to identify events which are executed
after ​decide ​activity. As a result, activities ​reject request, pay compensation ​and reinitiate
request ​appears after stated activity. Moreover, based on fourth pattern instance, user can
identify case when event with activity ​decide was last event in a case, as white long rectangle
states about end of case. Such scenario means that something went wrong in current case, as
according to logical construction of work process after making decision some event from
mentioned above events should be executed. Hence, kernels can help only in pattern search but
also in workflow gaps identification.
In the same way, two combined type cells can be used for more advanced analysis. For example,
user wants to identify which activities were performed when originator ​Pete ​was executing work
before ​Sue. ​As a result, all possible pairs of events ​(x, Pete) ​and (y, Sue) ​are found. Note, that
there are two different parameters for activities are used, thus if ​Pete ​and ​Sue have executed
similar activities, such pattern instance will not be found. To identify such pattern, one common
parameter should be used.
Three and four non-any cells
Kernels which hold three and more non-any cells consider more sophisticated analysis of event
which are adjacent not only in row but also in column. Description of all possible scenarios is out
of the scope of this section, however, the most informative one is given.
As was mentioned in chapter 3, information about adjacent cases are more relevant to working
style as timeline is considered as an important factor in working style identification. Thus,
patterns to identify cases differences and similarity can be constructed using kernels. Consider,
user constructs kernel shown in Figure 5.13.

Figure 5.13 Kernel with parametric cells

38

Goal of kernel stated above is to identify parts of two adjacent cases, where two similar events
occurs on the same position in the case, which means they were executed when similar number
of events have been already executed. Moreover, user is interested in identification of events that
follow current event in the case, but only if these events are different. Results of applying such
kernel to the test WSA is represented on Figure 5.14.
First of all, one can notice new visual element on WSA highlight - red dot in the top left corner
of some events. This item is created to represent overlapping of some activations, thus it helps
user to identify events which belong to several pattern instances at once.
By analyzing given WSA highlight, we can identify that most of the cases hold only one similar
event on the same position. This event consists of ​decide ​activity performed by ​Sue. ​From this
analysis, we can already conclude that nearly all adjacent cases similar in their execution.
However, there exist several exceptions, where some adjoint cases have similar cases on equal
positions. Hence, user, when applying such kernel, has an opportunity to analyze working style
artifact and retrieve conclusions based on organizational structure. Later this results can be used
in enhancement of working process.

Figure 5.14 WSA highlight for kernel presented in Figure 5.13

Therefore, in this section we have provided examples of how kernels can be used to retrieve
information about adjacent events to benefit in later analysis.

39

5.7 Kernel sequences and Activation sequences
In previous section, kernels and kernel activations are described. Kernels as a pattern structure is
a powerful tool to analyze single or adjoint events. According to all above use-cases for kernels,
that were described in subsection 6.6.5, one can notice usefulness of kernels. However, kernels
are bounded and can’t identify patterns for non-adjoint events. For instance, user want to
determine pattern, which describes performer executing at least two different tasks in one case.
Definitely, such task can not be completed using kernels, as current pattern consider analysis of
non-adjacent events, which can be distributed over the case. Therefore, there is a need of having
more sophisticated tool - kernel sequences.
Definition 5.4 (Kernel Sequence). Kernel sequence is a chain of related kernels. Thus each
successive kernel is related only to preceding one and there are two kinds of kernel relations:
strict and non-strict. Strict relation means that if former kernel activates any of submatrices, latter
kernel should activate next adjacent submatrix. If kernels connected by non-strict relation, then if
former kernel activates any submatrix, latter kernel should activate any following submatrix in
the same row. Kernel sequence has threshold, which identifies the number of identical activation
sequences, which is needed to receive pattern instance. Hereinafter, non-strict relation will be
presented by → and strict relation by ⟹.
On Figure 5.15, kernel sequence is represented. It consists of three kernels and two relations,
where first relation is strict and second one non-strict.
Identically to kernels, kernel sequences also has activations, which can be found based on
activation process (see subsection 5.7.1).
Definition 5.5 (Activation sequence)​. Activation sequence is a chain of activations, where each
activation corresponds to respective kernel. Relations between sequence activations are identical
to relations between corresponding kernels. Each activation sequence has number and it becomes
a pattern instance when number reaches threshold of matching kernel sequence. Also activation
sequence holds all positions of compound activations, thus if activation sequence reaches
threshold, these positions is used to construct highlight.

40

Figure 5.15 Kernel sequence with three kernels and two different types of relations

5.7.1. Kernel sequence activation process (KSAP)
As kernel sequences describe pattern structures which incorporate events distributed through
case, KSAP should take row of submatrices as input. Moreover, current activation process
includes kernel activation process for each kernel in inputted kernel sequence. Each outputted
activation then combined into activation sequence.
For strict relation between kernels, KSAP is straightforward: when any submatrix in a row is
activated by former kernel, only next sequential submatrix is checked for activation for latter
kernel. On the other hand, non-strict relation requires checking of all subsequent submatrices.
Thus, one can suppose that KSAP can be iterative and stops when activations for all kernels in a
sequence is found.
However, KSAP is more complicated in its structure, then just sequential applying of KAP. For
instance, user wants to find pattern which identifies all activities performed by ​Pete, ​when ​Pete
executes first activity ​register request ​before that​. ​Kernel sequence for such pattern structure is
shown on Figure 5.16. For simplicity, each kernel of provided kernel sequence has only non-any
type cell. Thus, based on KAP description (see subsection 6.6.1), it is obvious to consider that
kernel activated submatrix if top left cells activate. Moreover, consider that KSAP is applied to
the row of WSA submatrices given on Figure 5.17.

Figure 5.16 Kernel sequence , which describes pattern sequence to find what activity Pete executes after

executing ‘register request’

41

Figure 5.17 Row of WSA submatrices. Note, that characters a,b, b* and c, which mark some event cells

are for description purposes and do not appear in WSA itself.

As was mentioned above, activation process starts from comparing first kernel with all
submatrices one by one until activation. For kernel sequence given above, first kernel is activated
on first submatrix, as ​Pete performing activity ​s1, ​according to metadata, is represented by
orange square (​a​), which is obviously identical to first submatrix top left cell (marked as ​a on
Figure 5.17). Thus, first kernel is activated and if now iterative procedure is applied, as relation
between kernels is non-strict, activation for second kernel is identified in third submatrix, as top
left cell of given submatrix holds event (​b​) which represents ​Pete performing activity ​check
ticket (s3). ​Since last kernel of kernel sequence is activated and KSAP is an iterative procedure
described above, process finishes successfully returning activation sequence shown in Figure
5.18.

Figure 5.18 Activation sequence, retrieved by KSAP, if it takes row of WSA submatrices (Figure 5.17)

and kernel sequence (Figure 5.16) and executes iteratively.

Activation sequence founded by procedure described below is totally correct, but as one can
notice not the only one, that should be found in given submatrices row. By observing current row
more closely, one more event, which fits second kernel, named ​b*​, can be seen. Thus, finishing
KSAP strictly after identification of first activation sequence, can lead to activation sequences
losses. Definitely, iterative process can be continued even after first activation sequence occurs,
so current activation will be identified. Nevertheless, it is not guaranteed that all activation
sequences are activated.

42

Consider, event marked by character ​c, ​is replaced by event where ​Pete performs activity
register request (​marked as a). ​In such submatrix row, first kernel of input kernel sequence
should be activated twice. But, using iterative process for KSAP, it is impossible to identify this
activation sequence. Thus KSAP should be applied recursively, as when some kernel of kernel
sequence is activated, there is a possibility that next kernel is activated in several later
submatrices and, moreover, current kernel also can activate in following submatrices. As a result,
all activation sequences are found, as all possible cases is passed.
Moreover, it is worth mentioning, that all parameters for events, activities and performers are
shared between all kernels. In this way, user can benefit from pointing out parts of kernels from
kernel sequence, which is desired to be identical.
On this stage, algorithm explanation can be provided. But before diving into algorithm
description, definition of ​array slice​ should be given.

Definition 5.6 (Array slice). Consider, there exists array ​a = [] ​and two indices ​i ​and ​j​. , ..,a0 . an
Array slice ​is a function defined as next

Hence, based on considerations and definitions above, KSAP algorithm can be described as
follows. Consider, current recursive procedure on each level of folding takes as an input:

● array of kernels of size ​n ​which consists of all kernels from given kernel sequence
(​kernels​)

● array of relations between kernels of size ​n-1​ (​relations​)
● submatrix row of WSA - array of size ​m (submatrices)
● parameters connected to events, performers and activities
● two indices ​i ​and ​j​. Index ​i ​corresponds to submatrix, from which we need to start

activation process. And index ​j represents positional number of submatrix, on which to
finish activation process.

Note, that name of each mentioned inputted array is stated in brackets.
Consider, on initial call of current procedure index ​i ​equals to ​1 and ​j equals to ​m - n + 1.
Explanations connected to the value of index ​j ​is given below in ​case 2​. Parameters are inputted
as empty.
On each recursive step, first kernel of inputted kernel sequence is taken and initialized as current.
Thus, current kernel is always element kernels[1]. ​Current kernel and each submatrix, from array
slice ​submatrices[i:j]​, is inputted in KAP (see subsection 5.6.1). Note, that for current procedure,

43

KAP is modified to accept also parameters connected to events, activities and performers.
Moreover, if it is successful, it also returns updated parameters. If kernel activation process
returns failure, procedure continues to the next submatrix. When activation of current kernel
appears, activation is saved as a part of activation sequence and algorithm execution collapses in
three different cases based on relation ​relations[1]​. For instance, current kernel activation
appears when processing submatrix ​k​.
Case 1​.​ ​If relation is strict, algorithm folds into next recursive step with following inputs:

● kernels array slice ​kernels[2:n], ​containing all kernels from kernel sequence except
current kernel (which is always first).

● relations array slice ​relations[2:n-1]
● submatrix row ​submatrices
● parameters from KAP algorithm if exists in inputted kernel
● indices ​i​ = ​k+1 ​and ​j​ = ​k+1

Based on this input to next recursive step, one can notice that if relation is strict only one
submatrix will be passed to KAP in new recursive cycle, as according to slice definition,
submatrices[k+1:k+1] = submatrices[k+1]​. Thus, current condition fits the strict relation
definition.
Case 2. If relation is non-strict, then algorithm folds with the same input, as for strict relation,
except index ​j​. Index ​i ​stays the same as we need to start activation detection from next
submatrix, as was described above. Index ​j is assigned to ​m - n + 1. ​This is done, because for
non-strict relation, activation for latter kernel can be found in any submatrix after current
activated one. But there is no reason to apply KAP to submatrix if number of submatrices after
current one is less than number of kernels which is still should be activated, that is why end
index ​j ​equals to total number of submatrices minus number of kernels left for activation.
Therefore, when initially calling KSAP algorithm index ​j ​is assigned to the same value ​m - n + 1​,
as first kernel can appear in any submatrix, but kernel sequence size should be considered.
Case 3. Third possible case is that ​relations array is empty, hence current kernel is last kernel in
kernel sequence. As it is activated, activation process is successful and new activation sequence
is found. Moreover, in this case algorithm will go back from the current recursion step to the
previous one.
Three cases stated above describe situations when algorithm falls into new recursion step. Also
there are two scenarios when procedure goes back to the previous recursion level. First one is
mentioned above and describes case of successful kernel sequence activation, as all kernels are
activated. Other possible case when recursion unfolds is when all submatrices from array slice
submatrices[i:j] ​are passed but no activations found. Such scenario means that activation for
current kernel fails. Thus, execution of algorithm continues for the preceding kernel on previous
recursion level.
Obviously, KSAP execution finishes when all submatrices from the initial recursion level is
passed. Then, procedure returns all activation sequences, that are saved in case of kernel

44

sequence successful activation (case with empty ​relations array) or returns nothing if no
activation sequences appear. Pseudocode for KSAP is given in Appendix A.

5.7.2 Pattern identification algorithm for kernel sequences
Based on KSAP algorithm, pattern identification for kernel sequence can be constructed. This
can be done identically to pattern identification for kernels, pointed out in subsection 5.6.3.
It is worth mentioning, that if KSAP returns activation sequences, it does not guaranteed
identification of the pattern instances as number of identical activation sequences should reach or
leverage kernel sequence threshold. Hence, KSAP output for each WSA submatrix row should
be analyzed.
Thus, pattern identification algorithm for kernel sequences executes as next. As an input it takes
working style artifact and kernel sequence, similarly to identification algorithm for kernels.
Then, KSAP procedure is applied to each submatrices row of WSA. For every iteration, KSAP
returns nothing or list of activation sequences. In later case, for each activation sequence next
procedure is performed. If such activation sequence appears first time, it is saved with number of
occurrences equals to 1. Moreover all positions of constituent activations are stored also. If this
activation sequence already exists, its number increments and new positions of all activations are
appended to list of positions. When iterative process through all submatrices row finishes, all
stored activation sequences is checked. Sequences with number equal or more than threshold are
considered as pattern instances and all their positions are used to generate WSA highlight.

5.7.3 Use Cases
As kernel sequences can consist of several kernels and each one of later can contain distinct
kernel cells, we present only several most common and interesting cases in this subsection.
Definitely, user can construct kernel sequences with two kernels and non-strict relation, where
each kernel hold unique parameter and three ‘any’ cells. In this case, all pairs of events occuring
in one case will be found. Obviously, WSA highlight with all events highlighted and overlapped
will be given as a result. Such highlight is not informative, but user can benefit from analysing
statistics of activations, like number or total density. As a huge amount of different pattern
structures can be defined, this section is directed on representing several more informative
pattern constructions.
For instance, user wants to identify rework. Rework pattern appears when some performer
executes the same activity twice in one case. Kernel sequence represented in Figure 5.19, defines
patterns structure which represent rework in general case, which means all pattern instances
where originator executes the same task twice are found. The result of applying current kernel
sequence to WSA is shown in Figure 5.20.

45

Figure 5.19 Kernel sequence, which presents pattern structure of rework-orientedness

Figure 5.20 WSA highlight for kernel sequence from Figure 5.19

First of all, based on given example, one can see that kernel sequence preserve parameters for
each its kernel. Thus, user, by constructing current kernel, can identify that two identical events
should be found in one case. Secondly, according to resulted WSA highlight, user can analyze
cases in which rework happens. For instance, It can be seen directly from the image, that in some
cases ​Sara ​performers activity ​decide ​even more than two times. Also, it is worth mentioning,
that in previously mentioned scenario, figure which corresponds to (​decide, Sara​) ​has red dot in
its top left corner, which states about overlapping. This happens, because we are searching for
two event of rework, but as there are three instances of given event, three similar pairs is found.
Besides most common patterns like rework, kernel sequences allow to construct more specific
patterns, which purpose is to perform sophisticated analysis. One example if such identification,

46

can be the case, when user want to derive patterns connected to particular person or group of
people.
Consider, user have already done analysis using kernels, thus knows that activity ​decide
(represented by key ​s4​) is performed only by ​Sara. ​Moreover, based on previous analysis user
knows that activity ​pay compensation goes strictly after ​decide ​activity​. ​Therefore, analyst wants
to know which performers have executed task ​check ticket​, and then, after ​Sara performs ​decide
activity, the same performers pays compensation. Described pattern structure is represented on
Figure 5.21. Founded pattern instances are shown on Figure 5.22.

Figure 5.21 Kernel sequence, which represents search for performers which executes activities ‘check
ticket’ and ‘pay compensation’. Moreover, between this activities Sara should perform ‘decide’ task.

Figure 5.22 WSA highlight, which presents activation sequences for kernel given on Figure 5.21.

47

Therefore, by analysing output, user can identify two performers, who have checking ticket and
paying compensation in one case. Note, that examples given in this chapter, were for
representation purposes of kernel sequences, thus considers one cell in each kernel. However,
using actual application prototype analysts can benefit from using several types of cell in each
kernel to identify more sophisticated patterns.

5.8 WSA representation with time of execution
Previously, for simplicity and clarity of given examples, we were ignore third feature of each
event figure - size. Moreover, example log file, given in Table 3, does not include information
from which size can be retrieved. As was mentioned in chapter 3, size is aligned with execution
time of current event, therefore, obviously, timestamps provided in logs (Table 3) are not enough
to extract event duration, as only time of registration of event in management system is included.
Thus, to support figures’ sizes, event log file should be recorded or updated in one of two
specific ways. To demonstrate these scenarios we will modify first case of test log file to fit
requirements.
First possible approach is to record time of execution directly as shown in third column of Table
1. Therefore, on the stage of event log file parsing, respective time will be related to each event.
It can not be converted into size straight away, as we need to know the longest execution time.
Hence, after WSA matrix construction, one more iteration through working style artifact will be
performed and each time of execution will be normalized, which means that each performing
time will be divided by longest one. Thus, the size is distributed between 0 and 1, and based on
this value figures are constructed.
Second way to store time of execution is to present each event in two logs, first describes the
start of execution, later one - end of event (Table 2). Obviously, file received with this approach
can be converted to the file of first type on the stage of parsing. First of all, when event appears
first time, his timestamp is saved. When second occurrence of the same event is founded, saved
timestamp is subtracted from later one. Thus, the time of execution is extracted. Then, the size is
calculated in the same way for the first approach.

Table 1. One case of event log file, where time of execution is provided as separate

column.

48

Table 2. One case of event log file, where each event is represented by two occurences with timestamps:

start of task and its end.

As one can notice both of log files consists of events with the same time of execution. Thus we
can construct one row of WSA, which represents result of parsing of current case including sizes
of figures (Figure 5.23).

Figure 5.23 WSA row, which represents figures with different size, thus it includes time of execution

Currently, kernels and kernels sequence do not include time of the execution as a feature for pattern
identification. Therefore, on the current stage of the app, size of the figure can be used for manual
identification of difference between events.

5.9 Application features and adjustment
Constructed application prototype is a tool for working style identification, which includes
computation algorithms for measures and patterns. According to these methods, analyst can
manually construct measures and pattern structures which are needed for research connected to
nature of work in its organization. However, there exists situations when result mixes several
informative outcomes. For instance, user uses kernel with parametric cells to identify pattern,
which is aimed to find some dependencies between events. But, as a result a vast amount of
activations are received. As all of these pattern instances is shown on WSA highlight
simultaneously, more sophisticated post processing of results can not be performed. Therefore,
given prototype provides tools for following analysis of founded patterns.

49

First one is a ​activation toggling mechanism​. According to it, user can deactivate some of the
pattern instances, thus figures, which belong to these activations, are losing their color.
Moreover, all activations can be deactivated, so the user will later have an opportunity to activate
single instances. Therefore, hidden outcomes can be revealed. Note, that deactivated figures
adopt grayscale color, but it differs from the one which is applied to not activated figures. Hence,
user can still recognize parts of WSA, where activation occurs.
Furthermore, ​sorting techniques can be applied to activations, to order pattern instances based on
performer, activity or total density and relative density. In this way, analyst can distract groups
of similar activations.
The last but not the least feature is ​activation overlapping​. This technique was already mentioned
in subsection 5.7.3. It identifies figures which belong to several pattern instances.
Also, it is worth mentioning, that identification of working style can be adjusted to represent
other business process features. For example, consider car shop want to identify
interdependencies in their style of work. However, they have only on activity in their log files -
car sold. In this case, activity can be replaced by car mark. In the same way, departments can be
used instead of performers to reveal measures and patterns in style of work between groups of
originators.

50

Conclusions
In this work, we introduce the concept of working style as a part of process mining research.
Therefore, our main goal was to define working style and its connection to process mining and
its perspectives and to represent it as a tool for process management analyst. As a result,
provided working style in its initial structure combines all business process features to give their
indivisible analysis. Moreover, to benefit from using techniques of computational aesthetics in
combination with kernel approach, we have defined visual part of working style - working style
artifact. Subsequently, algorithms for measure computation and pattern identification were
constructed. As working style depends on each unique organizational structure, provided tools
and algorithms give an opportunity for the expert to define measures and pattern structures,
based on desired results. Furthermore, given methods were implemented as web based prototype
application.

Future work
Currently, as we have defined working style and its artifact and have presented universal tools
and algorithms for measures and patterns, future focus can be given on these algorithms
improvement. First of all, even if time of execution is shown on WSA, it is not used for actual
construction of patterns. Therefore, obvious next step is to provide kernel extension, which will
accept some minimum or maximum values of task execution time. If it will be implemented,
then application also should be customized, to show task completion time, as currently analysts
can observe the size of the figure, but do not have access to actual value.
Also, currently kernel cells can proceed multiple values for activities and performers. But there is
not technique to choose all except some of the them. Such improvement can be also beneficial.
Moreover, application can be expanded to apply WSA subsections. In this case, user will have an
opportunity to apply measures and pattern structures to predefine parts of WSA. Thus, there will
be a possibility to compare computed results for these sections.

51

References

[1] Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A. Reijers. Fundamentals of Business
Process Management. Springer-Verlag Berlin Heidelberg, 2013
[2] Mathias Weske, Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag Berlin Heidelberg, 2012
[3] Aalst, Wil M. P. van der. “Process-Aware Information Systems: Lessons to Be Learned from
Process Mining.” Trans. Petri Nets and Other Models of Concurrency 2 (2009): 1-26.
[4] Andrea Burattin. Process Mining Techniques in Business Environments. Springer
International Publishing, 2015
[5] Wil M. P. van der Aalst. Business Process Management: A Comprehensive Survey. 2012
[6] Wil van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer-Verlag Berlin Heidelberg. 2011
[7] Minseok Song, Wil M.P.van der Aalst. Towards Comprehensive Support for Organizational
Mining. Decision Support Systems, volume 46, issue 1 (2008): 300-317
[8] http://www.processmining.org/logs/start
[9] http://www.xes-standard.org/_media/xes/xes_standard_proposal.pdf
[10] https://en.wikipedia.org/wiki/Alpha_algorithm
[11] Wil M. P. van der Aalst, Hajo A. Reijers, Minseok Song. Discovering Social Networks from
Event Logs. Computer Supported Cooperative Work (CSCW) volume 14, issue 6 (2005):
549–593.
[12] Tao, Jie and Amit V. Deokar. An Organizational Mining Approach Based on Behavioral
Process Patterns. AMCIS (2014).
[13] Marcello Sarini. Can Working Style Be Identified?University of Milano-Bicocca,
Department of Psychology,
I-20126 Milan, Italy.
[14] Birkhoff G.D. Aesthetic Measure. Harvard university press. 1933
[15] Florian Hoenig. Defining computational aesthetics. Computational Aesthetics in Graphics,
Visualization and Imaging (2005)
[16] Allen Klinger, Nikos A. Salingaros. A Pattern Measure. Environment and Planning B:
Planning and Design, volume 27 (2000): 537-547.
[17] http://cs231n.github.io/convolutional-networks/

52

Appendix A
KAP procedure pseudocode

procedure KAP(kernel, submatrix)
 parameters = {events: [], activities: [], performers: []}
 for cell of kernel do
 submatrix_cell = retrieve corresponding submatrix cell

if cell type is strict then
 if cell equals submatrix_cell then

activate cell
 else

stop procedure and return false
else if cell type is parametric then
 param = retrieve parameter from cell
 if param in parameters[events] then
 if parameters[events][param] equals submatrix_cell then
 activate cell
 else

 stop procedure and return false
 else
 activate cell

save param in parameters[events]
else if cell type is combined then
 if param in activity of cell then
 if param in parameters[activities] then
 if (parameters[activities][param],performer of cell)

 equals submatrix_cell then
 activate cell
 else

 stop procedure and return false
 else
 activate cell

 save param in parameters[activities]
 else if param in performer of cell then
 if param in parameters[performers] then
 if (parameters[performers][param],performer of cell)

 equals submatrix_cell then
 activate cell
 else

 stop procedure and return false
 else
 activate cell

 save param in parameters[performers]
else if cell type is any then
 skip

 end for
return activation

53

KSAP procedure pseudocode

procedure KSAP(kernels, relations, submatrices, parameters, i, j)
 current = kernels[1]
 for submatrix of submatrices[i:j]

/* Note that procedure KAP is modified to accept parameters as initial input */
 call KAP(current, submatrix, parameters)
 if KAP returns activation and parameters then
 save activation for current recursive step
 relation = relations[1]

 if relation strict then
 call KSAP(kernels[2:n],relations[2:n-1],submatrices,new parameters,i,j)
 else if relation non-strict then
 call KSAP(kernels[2:n],relations[2:n-1],submatrices,new parameters,i,m-n+1)
 else if relations is empty
 collect all activations from recursive steps
 save activation sequence based on activations
 return all activation sequences

54

Appendix B
Table 3. Event log file

Case ID Event ID dd-MM-yyyy:HH.mm Activity Resource Costs

1 35654423 30-12-2010:11.02 register request Pete 50

1 35654424 31-12-2010:10.06 examine thoroughly Sue 400

1 35654425 05-01-2011:15.12 check ticket Mike 100

1 35654426 06-01-2011:11.18 decide Sara 200

1 35654427 07-01-2011:14.24 reject request Pete 200

2 35654483 30-12-2010:11.32 register request Mike 50

2 35654485 30-12-2010:12.12 check ticket Sean 100

2 35654487 30-12-2010:14.16 examine casually Sean 400

2 35654488 05-01-2011:11.22 decide Sara 200

2 35654489 08-01-2011:12.05 pay compensation Ellen 200

3 35654521 30-12-2010:14.32 register request Sue 50

3 35654521 30-12-2010:14.32 register request Pete 50

3 35654524 30-12-2010:16.34 check ticket Ellen 100

3 35654525 06-01-2011:09.18 decide Sara 200

3 35654526 06-01-2011:12.18 reinitiate request Sara 200

3 35654527 06-01-2011:13.06 examine thoroughly Sean 400

3 35654530 08-01-2011:11.43 check ticket Pete 100

3 35654531 09-01-2011:09.55 decide Sara 200

3 35654533 15-01-2011:10.45 pay compensation Ellen 200

4 35654641 06-01-2011:15.02 register request Ellen 50

4 35654643 07-01-2011:12.06 check ticket Mike 100

4 35654644 08-01-2011:14.43 examine thoroughly Sean 400

4 35654645 09-01-2011:12.02 decide Sara 200

55

4 35654647 12-01-2011:15.44 reject request Ellen 200

5 35654711 06-01-2011:09.02 register request Pete 50

5 35654712 07-01-2011:10.16 examine casually Mike 400

5 35654714 08-01-2011:11.22 check ticket Pete 100

5 35654715 10-01-2011:13.28 decide Sara 200

5 35654716 11-01-2011:16.18 reinitiate request Sara 200

5 35654718 14-01-2011:14.33 check ticket Ellen 100

5 35654719 16-01-2011:15.50 examine casually Mike 400

5 35654720 19-01-2011:11.18 decide Sara 200

5 35654721 20-01-2011:12.48 reinitiate request Sara 200

5 35654722 21-01-2011:09.06 examine casually Sue 400

5 35654724 21-01-2011:11.34 check ticket Pete 100

5 35654725 23-01-2011:13.12 decide Sara 200

5 35654726 24-01-2011:14.56 reject request Mike 200

6 35654871 06-01-2011:15.02 register request Mike 50

6 35654873 06-01-2011:16.06 examine casually Ellen 400

6 35654874 07-01-2011:16.22 check ticket Mike 100

6 35654875 07-01-2011:16.52 decide Sara 200

6 35654877 16-01-2011:11.47 pay compensation Mike 200

7 44100000 15-01-2011:12.00 register request Mike 50

7 44100001 16-01-2011:12.00 examine thoroughly Sean 400

7 44100002 17-01-2011:12.00 decide Sara 200

7 44100003 18-01-2011:12.00 pay compensation Ellen 200

8 44200000 19-01-2011:12.00 register request Mike 50

8 44200001 20-01-2011:12.00 examine thoroughly Sean 400

8 44200002 21-01-2011:12.00 check ticket Pete 100

8 44200003 22-01-2011:12.00 decide Sara 200

9 45654711 06-01-2011:09.02 register request Ellen 50

56

9 45654712 07-01-2011:10.16 check ticket Pete 100

9 45654714 08-01-2011:11.22 examine casually Mike 400

9 45654715 10-01-2011:13.28 decide Sara 200

9 45654716 11-01-2011:16.18 reinitiate request Sara 200

9 45654718 14-01-2011:14.33 check ticket Ellen 100

9 45654719 16-01-2011:15.50 examine casually Mike 400

9 45654720 19-01-2011:11.18 decide Sara 200

9 45654721 20-01-2011:12.48 reinitiate request Sara 200

9 45654722 21-01-2011:09.06 examine thoroughly Sean 400

9 45654724 21-01-2011:11.34 check ticket Pete 100

9 45654725 23-01-2011:13.12 decide Sara 200

9 45654726 24-01-2011:14.56 reject request Mike 200

10 55654521 30-12-2010:14.32 register request Pete 50

10 55654522 30-12-2010:15.06 examine casually Mike 400

10 55654524 30-12-2010:16.34 check ticket Ellen 100

10 55654525 06-01-2011:09.18 decide Sara 200

10 55654526 06-01-2011:12.18 reinitiate request Sara 200

10 55654527 06-01-2011:13.06 examine thoroughly Sean 400

10 55654530 08-01-2011:11.43 check ticket Pete 100

10 55654533 15-01-2011:10.45 pay compensation Ellen 200

57

I. Licence
Non-exclusive licence to reproduce thesis and make thesis public
I, ​Dmytro Tkachuk​,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:
1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and
1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis
Computational aesthetics and identification of working style
supervised by Marcello Sarini
2. I am aware of the fact that the author retains these rights.
3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.
Tartu, 09.08.2018

58

