

UNIVERSITY OF TARTU

Institute of Computer Science

Cyber Security Curriculum

Raul Nugis

Forensic Data Properties of Digital Signature
BDOC and ASiC-E Files on Classic Disk

Drives
Master’s Thesis (30 ECTS)

Supervisors: Pavel Laptev

Raimundas Matulevičius

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Forensic Data Properties of Digital Signature BDOC and ASiC-E Files

on Classic Disk Drives

Abstract:

This thesis reviews the contents and observes certain properties of digitally signed docu-

ments of BDOC and ASiC-E container formats. After reviewing a set of sample containers,

the author comes up with a header and footer combination (signature) significantly improv-

ing pin-pointed carving-based recovery of those files from a deleted state on NTFS format-

ted uncompressed volumes in contiguous clusters, taking into account the geometry of clas-

sic disk drives. The author also describes forensically meaningful attributive data found in

ZIP Headers and Central Directory, XML signatures as well as embedded ASN.1 encoded

data of the sample files and suggests an algorithm for the extraction of such data. Based on

these findings, the author creates scripts in Python and executes a series of tests for file

carving and extraction of attributive data. These tests are run over the samples placed into

unallocated clusters and the results are compared to several mainstream commercial forensic

examination suites as well as some popular data recovery tools. Finally, the author web-

scrapes a large number of real-life documents from a government agency’s public document

registry. The carving signature and the data-extractive algorithm are thereafter applied on a

larger scale and in an environment competitively supplemented with structurally similar

containers.

Keywords:

Attribution, file carving, file signature, file header, file footer, digitally signed document,

ZIP Local File Header, ZIP Central Directory Record, ZIP Central Directory End Record,

XML signature, ASN.1 encoded object, Web-Scraping, BDOC, ASiC-E

CERCS: P170, Computer science, numerical analysis, systems, control

Digitaalselt allkirjastatud BDOC ja ASiC-E failide kohtuekspertiisis hu-

vipakkuvad omadused klassikalistel kõvaketastel

Lühikokkuvõte:

Käesolevas magistritöös vaadeldakse BDOC ja ASiC-E digitaalselt allkirjastatud dokumen-

dikonteinerite sisu ning kirjeldatakse nende huvipakkuvaid omadusi. Teatava hulga näidis-

konteinerite vaatlemise järel pakub autor välja faili päise ja faili jaluse kombinatsiooni (sig-

natuuri), mis oluliselt parandab nimetatud failide kustutatud olekust sihitud taastamist külg-

nevatest klastritest NTFS vormindatud tihendamata kettal, võttes arvesse klassikalise kõva-

ketta geomeetriat. Ühtlasi kirjeldab autor kohtuekspertiisi koha pealt tähendust omavaid

andmeid ZIP kohaliku faili päises ja keskkataloogi kirjes, XML signatuuris ja ASN.1 ko-

deeritud kihtides ning nende kättesaamise algoritmi. Nendele järeldustele tuginedes loob

autor Püütoni skripte ja viib läbi mitmeid teste failide taastamiseks faili signatuuri järgi ning

huvipakkuvate andmete väljavõtmiseks. Teste viiakse läbi teatava valiku failide üle ja tule-

musi võrreldakse mitme kohtuekspertiisis laialt kasutatava peavoolu töökeskkonnaga, sa-

muti mõningate andmetaaste tööriistadega. Lõpuks testitakse magistritöö käigus pakutud

digitaalselt allkirjastatud dokumentide taastamiseks mõeldud signatuuri ja andmete välja-

võtmise algoritmi suurel hulgal avalikust dokumendiregistrist pärit kehtivate dokumenti-

dega, mis saadi kätte spetsiaalselt selleks kirjutatud veebirobotiga. Nimetatud teste viiakse

läbi dokumentide üle, mille hulgas on nii digitaalselt allkirjastatud dokumente kui ka teisi,

nendega struktuurilt sarnaseid dokumente.

Võtmesõnad:

3

Tõendusmaterjali sidumine isikuga, faili taastamine signatuuri alusel, faili signatuur, faili

päis, faili jalus, digitaalselt allkirjastatud dokument, ZIP kohaliku faili päis, ZIP keskkata-

loogi kirje, ZIP keskkataloogi lõpukirje, XML signatuur, ASN.1 kodeeritud objekt, vee-

birobot, BDOC, ASiC-E

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria)

Acknowledgements

The author wishes to thank the Estonian Competition Authority, and the Authority’s Deputy

Director-General Kristel Rõõmusaar, for her warm support and inspiration for the author’s

studies in digital forensics.

The author wishes to thank the Estonian Forensic Institute’s digital forensics experts, Oliver

Olt and Aivo Vispert, for their valuable insights into the forensic issues associated with the

subjects of this thesis.

4

Table of Contents

1 Dictionary .. 6

2 Introduction ... 7

3 Background ... 8

3.1 The Road to Digitally Signed Documents .. 8

3.2 Digital Forensic Implications of DSDs .. 10

3.3 Container Standard ASiC and National Implementation BDOC 10

3.4 File Signatures and Carving-Based Recovery .. 13

4 Practical Work Contexts ... 17

4.1 Problem Statement .. 17

4.2 Research Questions .. 18

4.3 Methods .. 18

4.4 Validation ... 19

4.5 Practical Considerations ... 20

5 Scope and Limitations ... 21

5.1 Cryptography .. 21

5.2 Scripts and Third-Party Tools .. 21

5.3 Signature and Attributive Data ... 22

5.4 Anti-Forensics Techniques ... 22

5.5 Legal Considerations .. 22

6 Examination of Sample Containers ... 24

6.1 Sample Set .. 24

6.2 Outer (ZIP) Layer ... 26

6.3 Intermediate (XML) Layer ... 28

6.4 Internal (ASN.1 Encoded) Layer .. 29

6.5 Findings .. 30

6.5.1 Header and Footer .. 30

6.5.2 Attributive Data .. 32

7 Validation .. 34

7.1 Samples-Based Testing .. 34

7.2 Large-Scale Testing .. 43

7.3 Results of Validation and Overall Findings ... 49

8 Conclusions ... 50

References ... 51

I. List of Annexes ... 56

5

II. License .. 57

6

1 Dictionary

In this thesis the following notations are used.

Digitally Signed Document (DSD) is a file (digital document) together with an associated

XML signature, stored in a container of the BDOC or ASICE types. Legally, DSDs are

regulated by EU and national legal acts such as, for example, § 24 (1) of “Electronic Iden-

tification and Trust Services for Electronic Transactions Act” (RT I 2000, 26, 150)1 and

conditions set in § 24 (2) articles 1-4 of the same act.

Container is a file compliant with the technical specifications of the ZIP File Format [1].

In addition to ZIP, a container may also comply with additional specifications such as those

of ASIC [14]. In filesystems that allow file extensions, containers may have extensions in-

cluding ‘.zip’, ‘.asice’, ‘.docx’, etc.

Outer (ZIP) Layer is container’s Local File Headers, Data Descriptors, Central Directory

Records and Central Directory End Record as defined in ZIP specifications [1].

Intermediate (XML) Layer is the XML formatted contents of an XML signature file in a

DSD container compliant with XAdES specifications [19].

Inner (ASN.1) Layer is the contents of ‘X509Certificate’, ‘EncapsulatedX509Certificate’,

‘EncapsulatedOCSPValue’ and, ‘EncapsulatedTimeStamp’ objects inside an XML signa-

ture file, compliant with ITU ASN.1 encoding standards [46].

XML Signature is a file with the naming scheme ‘signature*.xml’ holding a signature or

signatures associated with a signed file (document), compliant to XAdES specifications [19]

and stored inside a container.

Digital Forensic Examination (DFE) generally includes acquisition of data from a source,

analysis of the data and extraction of evidence, as well as preservation and presentation of

the evidence [2]. This thesis concentrates on the acquisition of forensic images of media,

data recovery in the form of file carving and extraction of attributive data from carved files

on NTFS formatted classic disk media.

File Carving is part of DFE and reconstructs files based on their contents, rather than using

metadata that points to the content [3], making use of the file header (start of the file) as

well as the file footer (end of the file) [4] or other means to identify the end of the file, and

data in between. In this thesis, only clustered, contiguous data carving is referred to. The

file header and file footer, represented in certain way, can be called the file signature and

must not be confused with an XML signature of DSD, defined above.

Attributive data is any data that can be extracted from DSD during DFE and is helpful in

learning about the signer or their environment. The extraction of attributive data is important

in forensics because attribution is one of its principal tasks [5, 25].

1 Consolidated English translation available at https://www.riigiteataja.ee/en/eli/527102016001/consolide, re-

trieved on 14.03.2018.

https://www.riigiteataja.ee/en/eli/527102016001/consolide

7

2 Introduction

The legal framework enabling electronic signatures in the EU and in Estonia appeared al-

most at the same time, nearly twenty years ago. Since its adoption, the Estonian ID-card

based digital signing has undergone rapid expansion and by the middle of the last decade

had almost completely permeated both the public and private sector, forming an integral

part of documentation and archiving. While widely accepted by the general public, these

documents pose certain challenges from the point of view of digital forensics. This is mainly

due to the similarity of digitally signed documents’ containers to other ZIP files, the short-

comings of known signatures in separating different subtypes of containers and the difficul-

ties of penetrating the multi-layered structure of digitally signed documents by mainstream

indexing and keyword searching tools.

Lack of support from major commercial forensic solutions and a shortage of forensically

comprehensive descriptive sources has motivated the author to undertake this work in order

to explore the internals of digitally signed documents and explain what is learnt. As a result

of this exploration, the author would like to come out with a signature capable of recognising

digitally signed documents and extracting them from raw data. The author also undertakes

the observation and description of pieces of data found in the observed digitally signed doc-

uments, which, in the author’s view, hold attributive value, that is, are helpful for a forensic

examiner in learning more about the signer and their environment, including, but not limited

to, the signer’s data inside a signature-embedded certificate.

8

3 Background

This chapter looks at the goals set by the creators of the digital signature’s framework and

how it was developed over time, as well as the impact that digitally signed documents have

on digital forensic investigations today. The chapter also highlights certain elements speci-

fied in the standards governing ASICE and BDOC containers, which may be relevant for

the purpose of this thesis.

3.1 The Road to Digitally Signed Documents

Even though Estonia’s digital signature supporting website www.id.ee has been registered

to SK ID Solutions AS since 04.07.20102, a website was first opened at this domain in 19983

and in 1999 the concept of the ID-card was revealed. In the words of the authors’ of the

original website the purpose of the project was to develop a new personal identification card

that would be a generally acceptable identification document and contain both visually and

electronically accessible information. The envisaged ID-card was planned as multifunc-

tional, enabling personal identification and containing a personal digital signature. At that

time, the number of personal computers in people’s homes was estimated to be about 40 –

60 thousand [6], which meant that roughly 80-90% of ID-cards, once issued to all citizens,

would rarely be used. The authors of the concept behind the ID-card were clearly investing

in the future, not in the present. This might be one of the reasons why by November 2001

the file format of the documents that could be signed digitally using the ID-card had yet to

be planned. A proposal was made [7] that the format should be XML.

In these early days, a digitally signed document (DSD) was envisaged as information rec-

orded on any type of media, which is created as result of the activity of an organisation or

person, and whose contents, form and structure is sufficiently provable. In the view of the

authors, DSD would have an additional metapart attached to it, which would enable verifi-

cation of the document. A DSD’s metapart is a digital signature and time stamp, which

connect the document to its author and creation time [8] in an undisputable way. Today, the

latter concept is usually understood in English as non-repudiation [50].

At about the same time as the events unfolding in Estonia, the European Communities, pre-

decessor of today’s European Union, adopted “Directive 1999/93/EC of the European Par-

liament and of the Council of 13 December 1999 on a Community framework for electronic

signatures“ (further referred simply as “the Directive”4), later repealed by the so-called eI-

DAS Regulation5. The Directive defined, in article 1, paragraphs 1 and 2, an advanced elec-

tronic signature in terms of identification, which was achievable by uniquely linking the

signature to the signer and capable of identifying the signer; authentication by creating a

signature using means that the signer can maintain under their sole control; and integrity

and verifiability, which was made possible by ensuring that the signature is linked to the

data to which it relates in such a manner that any subsequent change of the data is detectable.

The Directive also raised this type of electronic signature to the same legal level as a tradi-

tional signature.

2 Domain records at www.internet.ee, retrieved on 13.01.2018.
3 Old website available at Wayback Machine https://web.archive.org/web/19981201000000*/www.id.ee, re-

trieved on 13.01.2018.
4 http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31999L0093, retrieved on 14.03.2018.
5http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG, re-

trieved on 14.03.2018.

http://www.internet.ee/
https://web.archive.org/web/19981201000000*/www.id.ee
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31999L0093
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG

9

The Estonian Digital Signature Act (2000, repealed in 2016)6 defined, in § 2, the term “dig-

ital signature” in a somewhat different fashion. According to the definition7, a digital signa-

ture is a data unit, created using a system of technical and organisational means, which is

used by a signer to indicate their link to a document. A digital signature is created by using

the data necessary for giving a signature contained in a secure signature creation device

(private key) to which the data needed for verification of the signature contained in a signa-

ture verification device (public key) uniquely corresponds. The act stipulated that a digital

signature and the system of using the digital signature must have the following properties:

• enabling unique identification of the person in whose name the signature is given;

• enabling determination of the time when the signature is given;

• enabling linking the digital signature to data in such a manner as to preclude the

possibility of changing the data, or the meaning thereof, undetectably after the sig-

nature is given.

The core national definition of “digital signature” is therefore different from the one origi-

nally established in the EU due to the former emphasising identification of the time of sign-

ing.

Over the following years, Estonian ID card-based solutions, including document signing,

were spreading like wildfire and by the middle of the first decade of the century the private

sector was actively switching over to digital signatures, the process of which was branded

“paperless” at that time [9,10]. The EU-wide electronic signature’s legal framework had not

taken off at the same rate [11].

Today, the European Union recognises, format-wise, 3 relevant electronic signature for-

mats8 and one container format, of which the container format (ASiC, with its sub-version

ASiC-E) is relevant to this thesis. The Estonian container format BDOC is declared to be

fully compliant with the ASiC standard9. A plenitude of other digital signing solutions exist

across the Member States, which do not necessarily stick to the Union standards [12]. It is

difficult to know with any degree of certainty what formats are used for DSDs in each indi-

vidual Member State, or whether their signatures and containers are recognised as EU com-

pliant. One piece of research, for example, outlines some of the e-document and signature

formats used in different Member States in 2015. The researchers identified that document

format specifications were nationally adopted in only 5 Member States, of which only one

used the EU backed ASIC container [13].

Even though it is difficult to soundly ascertain how popular DSDs are EU-wide, and what

role they play in public administration and business, they are undoubtedly widespread in

Estonia. Estonia’s Health Authority’s public document registry search10 results, as con-

ducted by the author in March 2018, suggest registration of 5532 PDF documents, 4172

BDOC documents, 425 DDOC documents, 280 RTF documents, 280 DOCX documents,

102 ZIP archives, and 11 ASICE documents. This makes DSDs second only to PDFs, at

least when public administration is concerned, suggesting that DSDs must play an important

role in DFEs concentrating on the extraction of evidentiary information from documents.

6 Consolidated English translation available at https://www.riigiteataja.ee/en/eli/ee/Rii-

gikogu/act/508072014007/consolide, retrieved on 23.02.2018.
7 Text based on later translation.
8 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/e-Signature+standards, retrieved on 13.01.2018.
9 https://www.id.ee/?lang=en&id=34336, retrieved on 14.03.2018.
10http://dokumendihaldus.terviseamet.ee/default.aspx, retrieved on 14.03.2018.

https://www.riigiteataja.ee/en/eli/ee/Riigikogu/act/508072014007/consolide
https://www.riigiteataja.ee/en/eli/ee/Riigikogu/act/508072014007/consolide
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/e-Signature+standards
https://www.id.ee/?lang=en&id=34336
http://dokumendihaldus.terviseamet.ee/default.aspx

10

3.2 Digital Forensic Implications of DSDs

Digital signatures were originally meant for business. The 1999 EC Directive’s recitals11 4,

10, 17, 19, 23, 24 explain the necessity of what is sometimes more narrowly defined as a

digital signature, more broadly referred to as an electronic signature, in terms of trade, com-

merce, contracts, public administration, public procurements, taxation, social security,

health and justice systems. Similarly, the 2014 Regulation, which replaced the Directive,

referred to public and private online services, electronic business and electronic commerce

as the relevant areas. Similar considerations are repeated in the introductory part of the EU’s

standards developed and published by the European Telecommunications Standards Insti-

tute (ETSI) as well as the Estonian specifications referred to below, with more emphasises

added on a digital signature’s security and trust features.

Based on the above considerations, the task of forensic examination of DSDs is likely to

arise in cases involving business and administration, notwithstanding any other criminal,

administrative and civil cases, where application of forensics is also well warranted. These

cases can, for example, involve e-Discovery of electronically stored information [29], or the

examination of mixed business-related records of both paper and digital types. Electroni-

cally stored information includes electronic records, which are sometimes backups of doc-

uments, but can also be described as data that has been captured and fixed for storage and

manipulation in an automated system and that requires the use of the system to render it

intelligible by a person [49]. Even though personal certificate bound DSDs cannot be gen-

erated in a completely automatic fashion, they are part of the electronically stored documen-

tation retained within the course of business. As circumstances imply, this data can be the

subject of forensic examinations, including high-profile cases of fraud, corporate malfea-

sance and insider trading [23].

Two points are most relevant when the forensic examination of signatures and documents

is concerned: identification of forgery and document attribution. Indeed, forensic examina-

tions of documents involve the examination of documentary evidence in order to determine

these two properties, i.e. authenticity or authorship [5]. Different definitions of attribution

exist, for example defining attribution as a subset of interpretation associated with deter-

mining causality, and it is largely about the interpretation of things that lie outside of the

digital realm in terms of traces that exist within the digital realm [25]. In this thesis the

author is looking simply for any data which is helpful in learning something about the signer

of the document and their environment. As regards the question of falsification of DSDs,

more precisely by breaking their cryptographic defences, no practical compromises are

known [26, 27, 45] and therefore no examination of falsified DSDs is possible.

The questions related to retrieval of attributive data from existent or deleted but recoverable

DSD containers remain valid and the question of practical identification of forgeries must

be set aside.

3.3 Container Standard ASiC and National Implementation BDOC

The latest ETSI standard 102 918 V1.3.1 (2013-06) on Associated Signature Containers

(ASiC) specifies the use of container structures intended for binding together a number of

signed objects (e.g. documents, XML structured data, spreadsheets, multimedia contents)

into one single digital container based on ZIP and supporting certain types of signatures

11 The so-called recitals are part of an EU legal act’s preamble, providing invaluable background and interpre-

tation and published in the Official Journal.

11

[14]. These types include the XAdES signature [19], with which Estonian national specifi-

cations comply, and which is relevant for this thesis. As explained in the standard, ASIC

containers are structurally similar to the OCF (OEBPS Container Format) type of containers,

which were originally designed for use in eBooks, but have been adopted as the basis for

other containers including that used by ODF (Open Document Format - Open Office) and

UCF (Universal Container Format by Adobe Systems) [14]. These observations, gathered

from the introductory chapter of the standard, are quite relevant from a forensic standpoint,

specifically when file carving is concerned.

An ASIC container has certain internal structures, including a root folder for content and a

special ‘META-INF’ folder for metadata about the content, including associated signatures.

The ASICE type of container is the type specifically relevant for this thesis. This container

type can hold multiple data objects signed by one or more signature structures and must

have an uncompressed ‘mimetype’ file containing the data identifying the container type,

which is ‘application/vnd.etsi.asic-e+zip’, situated at offset 38. The ‘mimetype’ file pro-

vides the support for ‘magic numbers’12 and is subjected to certain rules [14]. Standard’s

Annex A.1 [14], while repeating the principles already specified in the document’s main

body, provides more detailed rules on ‘mimetype’ implementation, according to which it:

(1) has to be the first file in the archive;

(2) cannot contain ‘Extra fields’ (i.e. extra field length at offset 28 shall be zero);

(3) cannot be compressed (i.e. compression method at offset 8 shall be zero);

(4) the first 4 octets shall have the hex values: ‘50 4B 03 04’.

An ASICE container file is assigned an IANA13 registered MIME type with ‘magic num-

bers’ of ‘0:PK,30:mimetype,38:vnd.etsi.asic-e+zip’ [15]. These specified rules are repeated,

when appropriate, in later, more specific, standard documentation [16] and therefore must

be considered valid up to this point. Immediately it can be observed that the registration

contains a syntax error because the third length qualifier must be 50, not 38, alternatively

‘application/’ must be added. From the point of view of RFC 4288, section 8 [56], which is

specifying the procedures for registering media types, the syntax for the ASICE ‘magic

numbers’ is incorrect by having only media subtype listed, without identifying the principal

media type. An example of a correct ‘magic numbers’ representation for a closely related

type of file is ‘0:PK0x030x04,30:mimetype,38:application/epub+zip’14. While creating a

signature based on ASICE media type registration, the author will appropriately compensate

for this syntax error.

Observing actual DSD containers of ASICE type first as handpicked samples and thereafter

in a set of a few thousands of naturally occurring documents, we will later learn that they

do not necessary follow rules (2) and (3). As a consequence, ‘magic numbers’ based on an

IANA registry entry frequently do not work. Later tests will suggest that IANA ‘magic

numbers’ or file signatures will fail in approximately 62% cases of examined DSD contain-

ers. No other ‘magic numbers’ are published at IANA.

12 For explanation of the term see IETF RFC 4288: "Media Type Specifications and Registration Procedures",

p. 4.11, https://tools.ietf.org/html/rfc4288, retrieved on 15.03.2018.
13 Internet Assigned Numbers Authority, https://www.iana.org, retrieved on 17.05.2018.
14 https://www.iana.org/assignments/media-types/application/epub+zip, retrieved on 03.05.2018.

https://tools.ietf.org/html/rfc4288
https://www.iana.org/
https://www.iana.org/assignments/media-types/application/epub+zip

12

According to the standard, signatures associated with data objects are contained in one or

more ‘*signatures*.xml’15 XML files in the container’s ‘META-INF’ folder. These signa-

ture files contain one or more XAdES signatures. In an XML signature, signed data objects

need to be referenced, directly or indirectly, with a set of ‘<ds:Reference>’ elements [14].

These rules make examination of sample files easier because XML elements do include

references to their specifications.

Relevant Estonian specifications declare full compliance with the referred ETSI ASiC

standard and with the XAdES signature standard [19]. Altogether, the BDOC container and

XAdES XML signature follow the standards and protocols listed below [17, 18]:

• ETSI TS 101 903 v1.4.2 – XML Advanced Electronic Signatures (XAdES) and its

Baseline Profile ETSI TS 103 171;

• ITU-T Recommendation X.509;

• RFC 3161 – PKIX Time-Stamp protocol;

• RFC 6960 – Online Certificate Status Protocol;

• ETSI TS 102 918 v1.2.1 - Associated Signature Containers (ASiC) and its Baseline

Profile ETSI TS 103 174. The latter is in turn based on OpenDocument standard part

OpenDocument-v1.2-part3 – Packages.

From the point of view of the container, the Estonian specifications do not foresee any ad-

ditional or deviating rules, but confirm the rules already set in the ETSI standard, namely

that a ‘mimetype’ file shall be present in an uncompressed form with contents of ‘applica-

tion/vnd.etsi.asic-e+zip’. Earlier Estonian specifications, version 2.1:2013 [20] as well as

version 2.0:2013 [21] also confirm that that ‘mimetype’ is present in an uncompressed form

having a value of ‘application/vnd.etsi.asic-e+zip’. Both BDOC 2.1 and 2.0 specifications

declare adherence to ETSI standard’s Annex A.1, which not only means that the contents

are not compressed, but mimetype contents must be at a specified offset from the beginning

of the file. Later practical examination will demonstrate however, that one of two “official

samples”16 of version 2.1 BDOC files as well as the sample available for version 2.0 have

‘mimetype’ contents compressed. Interestingly, the documentation of libdigidocpp [22],

which is a C++ programming library for handling document digital signing and verification,

while specifying the contents of the ‘mimetype’ file does not set more requirements.

Estonian BDOC specifications concentrate on rules for verification of the signer’s certificate

at the time of signing, which involve time-stamping or time-marking, depending on the par-

ticular solution. Specifications require the XML signature to include an OCSP responder

certificate and the signer’s CA certificate, as well as the value of the OCSP response. In

more specific cases when time-stamping is used, the signature must contain the TSA (Time

Stamping Authority) certificate, as well as specifying encodings for those additional time-

stamps, which is ASN.1 “der” encoding. Specifications also regulate how XML elements

contain the signer’s X.509 Certificate [17], which holds crucial attributive data about the

signer. Estonian DSD specifications are especially relevant in this work because a practical

shortage of ASICE sample files leads to their observation being limited to samples generated

by Estonian DSD signing applications, such as DigiDoc3, and a few others collected by

15 Among the official sample DSDs discussed later BDOC v 1.0 uses ‘signature*.xml’ naming scheme.
16 Samples available at https://www.id.ee/?lang=en&id=36161, retrieved on 13.01.2018.

https://www.id.ee/?lang=en&id=36161

13

web-scraping. Overall, there is no easy way to independently generate massive amounts of

different DSD samples because SK ID Solution17 provided test ID-cards face limitations18.

It can be reasonably expected that ASICE sample files generated by popular Estonian ap-

plications would stick closely to BDOC specifications with the difference that an ASICE

XML signature contains a time-stamp instead of a time-mark as in the case of BDOC19. This

difference will cause an ASICE XML signature to hold one more encapsulated ASN.1 ob-

jects. An ASICE XML signature will include, in addition to an OCSP confirmation of the

validity of a signer’s certificate, the Time Stamping Service’s time-stamp response. BDOC,

on the other hand, will have both proof of time of signing as well as proof of validity of the

signer’s certificate within a single OCSP response, i.e. time-mark [22].

3.4 File Signatures and Carving-Based Recovery

Before extraction of data from a file can take place, the file’s data must be located in the

storage media either by means of file system records or otherwise. Within the course of DFE

it is frequently the case that a file is deleted or hidden and is residing in the parts of the

storage media unallocated by the file system. Sometimes the file system itself is gone or

damaged. In situations like these the file cannot be found by the file system, even if the file’s

data is still present on the media. Carving techniques can be applied instead to recover the

data [3, 4], with varying success. Carving of files from storage media is therefore an essen-

tial aspect of digital forensics. The process of carving is usually defined as recovery of data

from “raw” information, as opposed to the recovery of data from the file system metadata

[3, 4, 47]. Carving makes use of the file header, which are certain bytes indicating the be-

ginning of recoverable data. Carving can also make use of the file footer, which are certain

bytes at the end of the file, or takes some other approach for identifying the end of the

recoverable data. Data in between of those two points, i.e. header and footer, is then ex-

tracted and saved to a new file, which is the carved file [4, 47]. This approach works best

with contiguous clusters, while carving from non-contiguous clusters is by far a more ardu-

ous task. Garfinkel [3] performed large-scale analysis of files over a large collection of

“classic” hard drives, containing predominantly FAT and NTFS file systems. This 2007

research indicated that only 6% of the files surveyed were fragmented, i.e. non-contiguously

stored.

For carving to work, the header of the original file, and, depending on the carving technique

used, some identification of the end of file must be obtained. For many types of files, the

so-called ‘magic numbers’ can be transferred into header signatures [47]. ‘Magic numbers’

are byte sequences that are always present at a given place in the file and thus can be used

to identify entities as being of a given media type [56]. It is possible that for certain types of

files the ‘magic numbers’ are provided in specialised sources, including IANA’s Media

Types Registration20. Still, file headers do not depend on the existence of these ‘magic num-

bers’ and their signatures can be freely constructed based on examination of the contents of

17 According to https://www.sk.ee/en/about (retrieved on 07.03.2018), SK ID Solutions is the partner of the

Estonian state in issuing certificates for national identity documents (ID-card, Mobile-ID, Digi-ID, residence

permit card and e-resident's Digi-ID).
18 https://www.sk.ee/en/services/testcard, retrieved on 16.03.2018.
19 See “What's the difference between the digital signature formats .ddoc, .bdoc and .asice?”

https://www.id.ee/?lang=en&id=37370, retrieved on 15.03.2018.
20 The page for Media Type Registration is https://www.iana.org/assignments/media-types/media-types.xhtml,

retrieved on 03.05.2018. Note that not all of the file types, for which Media Type is registered have ‘magic

numbers’ descriptions supplemented.

https://www.sk.ee/en/about/
https://www.sk.ee/en/services/testcard/
https://www.id.ee/?lang=en&id=37370
https://www.iana.org/assignments/media-types/media-types.xhtml

14

the files [47]. File footers, on the other hand, have no relation to ‘magic numbers’, but they

too can sometimes be discerned by looking at a file’s contents.

While contemplating file carving one must take into account that many file systems allocate

file data on disk media in units called blocks [47] or clusters. The start of a file or the file

header is located at the beginning of a cluster. To speed up the carving process it is suggested

that searching for the file header could be made in the first few bytes of a cluster [4], as

opposed to reading the entire cluster-size of data. It is also noted that the data does not fill

those clusters exactly, leaving slack space, which is the unused space within the last cluster

allocated to a file [47]. A source indicates that in the versions of MS Windows in use today

this slack space is “empty”, in other words, it is filled with hexadecimal ‘00’s [53]. Later in

this thesis this will play a role in carving DSDs from NTFS formatted volumes.

Digambar et al [4] describe the workflow of file carving and summarise several carving

techniques. File carving typically works by reading into memory a pre-defined portion of

the media or media image under examination [47]. Each chunk of data read from the media

is searched for the file header. If a matching header is found, then the corresponding file

footer is searched for. This method is called “header/footer carving” [4] and is useful in

carving many file-types, which, in addition to the file headers, have identifiable file footers.

Typically, once the header is located, a file carving tool will search for the footer of the file

until one is found, or a file size limit is reached. The data between the start of the header and

the end of the footer, or, in the absence of the latter, of the administratively set maximum

size, is extracted and a recovered file is created [47]. The method of carving relying on

maximum file length is called “header/maximum file size carving” and can be used for carv-

ing any file type, especially partially overwritten files [4]. Another, more specialised carving

technique is “header/embedded length carving” [4], which relies on reading the length of

retrievable data (file size) from the data itself. This way, certain file-types can be carved,

for example certain versions of PDF files. Another method of file carving is “carving with

validation” [4], which relies on searching for a file type specific validator. This is done in

addition to common carving techniques such as identification of the header and the footer,

in order to minimise false positives. Examples of files to which this method can be applied

include some image file-types as well as PDFs.

It is suggested that certain types of files, including ZIP files, can be found and successfully

recovered using yet another carving method, which is “file structure based carving” [4]. In

case of ZIP files, this method relies on the existence of certain structures, which are pertinent

to ZIP format. These are Local File Headers, which precede the beginning of each file stored

inside a ZIP archive, and Central Directory situated at the end of a ZIP file, which consists

of records for each archived file. The Central Directory ends with Central Directory End

Record, located at the end of ZIP file [1]. These structures are the most relevant to the ques-

tion of carving signatures and are schematically depicted in the figure below.

15

Figure 1. Schematic representation of the structures in a ZIP archive

A more detailed overview of ZIP file structure is provided in Annex 1.

From the point of view of carving ZIP files, it is relevant that a ZIP file starts with Local

File Header and ends with Central Directory End Record. Sources [4, 47] suggest that algo-

rithms for carving ZIP files work incrementally by parsing each Local File Header, which

have predetermined headers of hexadecimal ’50 4B 03 04’ (ASCII-hexadecimal represen-

tation of ‘PK\x03\x04’). In each Local File Header an algorithm is parsing the flag indicat-

ing the compressed file size for the stored (archived in ZIP container) file. To arrive at the

beginning of the next stored file, an algorithm adds, to the compressed file size, the length

of the Local File Header itself, which also includes the name of the stored file as well as the

optional ‘Extra field’, described in more details later in this thesis. Finally, an algorithm

arrives at the last structure of the ZIP file, the Central Directory. As stated above, a ZIP file

ends with Central Directory End Record, whose beginning is identifiable by hexadecimal

‘50 4B 05 06’ (ASCII-hexadecimal representation of ‘PK\x05\x06’). Central Directory End

Record may have varying size due to the presence of the optional ‘Zip file comment’. To

determine the correct length of this end-structure (sometimes called “the trailer” of the file

[48]), a carving algorithm reads the value of the flag indicating the length of the comment

field in Central Directory End Record [4, 47]. In this way, for example, 10 iterations may

be required to parse a sample ZIP archive containing 9 files [47].

At a certain point in this thesis the author will attempt several techniques, described by the

sources referred above. The “header/footer” carving technique will be the main method to

16

test the signatures created for the identification and recovery of DSD containers. This tech-

nique will not require iterations inside the ZIP archive. The choice of this particular tech-

nique, which is different from the one preferred in the referred sources [4, 47], relies on

understanding that possible scripted tools, as well as the mainstream forensic examination

suites can sometimes have basic built-in support for header/footer based carving.

To validate whether this approach works the author will first create new or modify existent

signatures making use of the headers and the footers identified in the files’ contents. Sec-

ondly, the author will write scripts applying these signatures to raw data. To achieve suc-

cessful carving of DSDs the author will have to overcome the main difficulty in carving ZIP

containers, which is the absence of a predetermined footer. As fail-safe the author will make

use of most of the techniques identified in referred sources [4, 47]. The carving process will

be supplemented with “maximum file size” break. The author will also add the optional

choice of reading the size of the end of a ZIP file directly from the Central Directory End

Record’s relevant flag, instead of relying on the footer. To reinforce the results, the author

will also add, at an appropriate point in the scripts, a validation check as suggested in the

“carving with validation” technique. This check will not make use of the ZIP structures or

flags, but of the structures specific to DSDs.

17

4 Practical Work Contexts

This chapter outlines the questions raised by the author, which is finding a better signature

for carving DSD containers as well as looking for their attributive data. Empiric observation

by examining different layers of DSDs in collected samples is the method chosen. To vali-

date their findings the author will launch a series of tests, on both a smaller and a larger

scale, applying the identified signature found to carve deleted files as well as extracting

attributive data based on the proposed algorithm.

4.1 Problem Statement

The broader area that this thesis is trying to address is what are forensically useful properties

of DSDs and how to obtain relevant data based on this knowledge. As identified above, two

important tasks arise when examining signed documents. These tasks are attribution and

detection of forgery.

The question of forgery of DSDs is a complex one. Cryptographic reinforcement of digital

signatures, even though not eliminating the possibility of their compromise, makes it ex-

tremely difficult to attack them this way. The latest studies [26, 27] indicate that even though

there are certain vulnerabilities as well as issues of “ageing” of cryptographic and hashing

algorithms, no practical cryptography-related exploits compromising Estonian eID are

known. The situation felt worse in late 2017 with the ID-card chip scare [28]. However,

according to the RIA21 blog [45] no actual cases of compromises have been discovered,

which remained so as late as in February 201822 and is likely to be so at this moment despite

the fact that in April 2018 RIA’s partner Cybernetica AS succeeded in cryptographic com-

promise of eID, the details of which remain secret [55]. Based on these considerations, no

samples of forged DSDs could be obtained. As this thesis is highly practical and bases itself

on smaller or larger scale examinations of samples, the question of falsification must be left

out.

As concerns the question of document attribution it is worth remembering that before any

conclusions can be drawn, a forensic examiner must perform many intermediate tasks.

These tasks include collection, extraction and preservation of evidence [2]. The common

workflow of extraction involves recovery of deleted or hidden data, as well as decoding and

indexing of full contents. After data holding potential evidence is collected, extracted and

indexed, the content is examined, which is assisted by using keyword searches, content

recognition or more complicated forms of text, image etc. analysis. Nothing prevents the

examiner from extracting pieces of data, which can reveal something useful under investi-

gation, but which were not left intentionally by perpetrators or persons of interest. Those

pieces are sometimes called forensic artefacts, a widely used term without a clearly estab-

lished definition [54]. Digital signing of a document by the holder of private key does create

attributive data in DSD, but this data is not an artefact.

In this thesis author will be looking for ways to recover DSDs and collect various relevant

data from their contents.

21 Information System Authority, https://www.ria.ee/en.
22 Actual cases of practical compromises are yet to be discovered even with regard to aged DDOC documents

based on depreciated SHA-1, according to RIA’s Markus Kullerkup 09.02.2018 e-mailed answer to author’s

request for possible samples of compromised BDOC, ASICE and DDOC documents.

18

4.2 Research Questions

As identified above, with a deeper knowledge of the relevant data properties of DSDs, iden-

tification of attributive data can prove useful in DFE. In this work the relevant DSD con-

tainers are of BDOC and ASICE types as implemented in Estonia under RIA’s supervision.

The review of the properties of those containers, stored on classic HDDs (hard disk drives),

attempts to address the following questions:

1. How to recover DSD containers by file-carving separately from other similar con-

tainers;

2. What is and how to obtain, information useful for attribution of those DSDs.

To answer those questions, the author will undertake a review of available BDOC/ASICE

samples. This will involve hexadecimal and plaintext observation of their ZIP encapsula-

tion, including such ZIP format features as Local File Headers and Central Directory Rec-

ords. This will also involve a review of the XML contents of their signatures as well as

ASN.1 encoded data embedded in those signatures. These steps will be referred to as: review

of the outlying layer (ZIP container), intermediate layer (XML signature) and inner layer

(ASN.1 encoded data including X.509 certificates). When appropriate, the author will also

support this review with corresponding documentation.

While answering these questions, the author will concentrate on solving more practically

the following tasks:

• Finding header and footer combination(s) useful for identifying the existent files, as

well for data carving from unallocated space using classic methods in such a way as

to differentiate DSD containers from similar ZIP containers;

• Finding attributive data, that is meaningful for attribution, in all of the layers stated

above, as well as exploring how to extract this data and proposing a suitable algo-

rithm.

4.3 Methods

The method for finding headers, footers and attributive data as described in 4.2 will be em-

piric observation [30]. As direct empiric observation of digital data must be assisted, the

author will use appropriate technical tools. These tools will be listed in the corresponding

chapter of this thesis.

The author will collect and additionally generate a small set of sample BDOC and ASICE

containers and conduct reviews of their outlying layer, intermediate layer and inner layer.

Samples will be obtained from SK ID Solutions published “official samples”23. These sam-

ples will be further supplemented by DSDs signed, in relevant formats, by the author using

his certificate and various current applications for signing documents. Reviewing ZIP, XML

and ASN.1 layers with tools capable of reading and interpreting, in human-readable ways,

plaintext and binary data, such as hex editors, XML capable browsers and ASN.1 dumpers,

will enable insights into what is relevant for research questions including carving based

recovery of containers and obtaining possible attributive data.

As a result, the author will deliver a perfected DSD container carving signature, a represen-

tation of header and footer. The author will also create an algorithm explaining how to obtain

attribution related data.

23 https://www.id.ee/?lang=en&id=36161, retrieved on 07.03.2018.

https://www.id.ee/?lang=en&id=36161

19

4.4 Validation

As one of the stated goals is to find ways to comprehensively recover DSD containers em-

ploying file carving techniques, the author will simulate several scenarios. In the first sce-

nario, the author will attempt carving using mainstream data recovery and commercial fo-

rensic examination suites24. In the second scenario carving-based data recovery will be at-

tempted using a known ZIP signature, a known DSD signature based on ‘magic numbers’,

and the author’s footer-header combination, developed as result of empiric observation. Re-

sults will be compared.

These tests will be run over unallocated clusters in a forensic image of a typical HDD un-

compressed NTFS volume where a mix of the author’s chosen sample BDOC/ASICE files

will be placed together with ZIP archives and MS Office documents (‘.docx’, ‘.xlsx’,

‘.pptx’). Files will be deleted and the NTFS volume quick-formatted, thus forcing clusters

to a filesystem-wise unallocated state. To succeed, the author’s proposed signature will have

to produce better results than typical ZIP signatures, the official DSD signature, as well as

mainstream applications and suites. Under these conditions, successful file carving means

recovery of DSD containers separately from any other container of similar type, such as ZIP

archives and MS Office documents. To enable file carving with custom signatures, the au-

thor will write a script in Python capable of detecting different headers and footers, includ-

ing all of the above.

Thereafter the author will conduct a larger-scale exercise, which will further validate the

findings. To achieve this larger scale, the author will web-scrape25 a large amount of DSD

containers from an open source, in this particular case26, from a government agency’s public

document registry. The large set of containers obtained in this way will be supplemented by

files of structurally similar types. More precisely, MS Office documents, ZIP archives, as

well as ODT, ODF documents and EPUB e-books will be added into the mix, this is because

the latter are identified in the ETSI standard as especially similar filetypes, structure-wise.

The author will thoroughly document the process of web-scraping and the results of file

carving exercises. To succeed, the author’s signature will have to recover DSD containers,

this time on a larger scale, separately from any other container of a similar type.

As the second stated delivery is creating an algorithm for obtaining attributive contents to

collect and document relevant data, the author will create a Python script that applies the

algorithm. The author then will test this script as well as mainstream commercial forensic

examination suites for obtaining relevant contents. To reach this goal certain data from the

innermost layer, which was identified as ASN.1 encoded data containing certificates and

responses, must be retrieved. For forensic suites, this test will be done by running “keyword

searches” for keywords known to exist. Files will be placed in an image. No file deletion

will be necessary at this stage. The author’s script, on the other hand, can still be tested over

deleted files in both small as well as large scale tests. To succeed, the author’s script will

have to obtain relevant ASN.1 layer data better than mainstream commercial forensic ex-

amination suites.

24 EnCase Forensic Licence Agreement defines “suite” as a collection of modules with module meaning a

version of the licensed lroduct designed to increase functionality for certain specific tasks or to serve the re-

quirements of a subset of users.
25 An official-looking definition of this widely used term is hard to come by, however a less official one can

be found at https://medium.com/the-andela-way/introduction-to-web-scraping-using-selenium-7ec377a8cf72,

retrieved on 22.03.2018.
26 Based on Web Browser automation using Python Selenium library.

https://medium.com/the-andela-way/introduction-to-web-scraping-using-selenium-7ec377a8cf72

20

4.5 Practical Considerations

In-depth knowledge of DSD containers enables their differentiation from other similar ZIP-

like files. This is a requirement for successful carving-based data recovery over large data

sets or if other limitations exist, for example on the types of data to recover.

The relevance of the recovery of different subcategories of ZIP containers can be shown in

the following example. Commercial forensic examination suite X-Ways Forensics’ File

Type Category for “Microsoft Office XML Data Source” is ‘2’, while the Category for ZIP

is ‘3’. The header signature for MS Office 2007+ documents is based on an internal structure

specific to MS Office documents, while the signature for ZIP containers is based on classic

ZIP header, in ASCII-hexadecimal representation at certain offsets27. Later tests will

demonstrate that this forensic suite successfully separates MS Office documents and ZIP

archives in file carving results.

While the usual sources such as file signature tables, supplied with forensic examination

suites, or PhD G. C. Kessler’s web-published signature tables [48] do not list specific DSD

containers’ headers and footers, a source for such a signature is the IANA media type reg-

istration. This source was identified above as result of a thorough review of corresponding

documentation. Later tests will suggest that most DSD containers do not follow the ETSI

ASiC standard-mandated header.

Keyword searches in both contents and metadata, when multi-layered and encoded files are

concerned, can be improved by following their internal structure, for example first uncom-

pressing files and thereafter indexing their contents. Knowledge about the structure is thus

crucial in forensic examinations because they may sometimes have a large scope [31] in

terms of size of data. This knowledge is equally useful where strict limitations are imposed

on DFE, which is not an entirely implausible scenario for a criminal search warrant [32] or

in an e-Discovery-like scenario [33]. In such circumstances, insufficient understanding of

DSDs, if they have significant bearing in the dataset under DFE, will result in an examiner’s

failure.

DSDs have a radically different purpose and are inherently more complex than traditional

office documents of non-proprietary formats. Yet not only are they not supported by forensic

examination suites, but they are lacking in sources of forensic information, as opposed to

mainstream “office” documents, for which there are forensic overviews [34, 35] available.

Discussions held by the author with digital forensic experts of the Estonian Forensic Insti-

tute in November 2017 largely confirmed the above considerations.

27 Signatures and file categories are described in files ‘File Type Categories.txt’, ‘File Type Signatures

Search.txt’, inside main folder where X-Ways Forensics v 19.5 executable ‘xwforensics64.exe” is located.

Header entry for MS Office 2007+ is ‘_Types\]\.xml’ at offset 38. Footer is “~14”, which means that algorithm

no. 14 is used to locate the end of file. Header entry for ZIP is ‘PK\x03\x04|PK00|PK\x05\x06’ at offset 0.

Footer is “~14”, which means that algorithm no. 14 is used to locate the end of file.

21

5 Scope and Limitations

This thesis touches upon the multidisciplinary field of digital signatures. Digital signatures

rely on complex tangible and intangible means and concepts involving PKI (public key in-

frastructure), secure hardware, and law and public administration. This thesis concentrates

solely on forensic applications relevant to specific forensic tasks and the conclusions are

true only for the types of DSDs examined in the specific environment stated.

5.1 Cryptography

As described above, relevant digital signatures are based on the cryptographic assurance of

authenticity, of which non-repudiation is the most important. 117 different attacks on sig-

natures, notwithstanding their practicality in our case, are classified in a 2013 source [43].

Two base scenarios lead to non-repudiation failure: private key compromise and compro-

mise of the signature authentication function. Interestingly, the Digital Signature Act of

2002 accounted for the first type of compromise, while current Electronic Identification and

Trust Services for Electronic Transactions Act28 does it in a softer wording, referring to

possibilities of using the private key of the certificate without the consent of the certificate

holder in several scenarios. In practice these attacks, i.e. social compromise of eID, must

happen almost daily. As this is written on 22nd of March 2018, the latest criminal case pub-

lished in the Court Registry29 is from 01st of February 2018 and is describing counts of

unauthorised use of another person’s ID-card and “passwords” (likely pin codes) to sign

lease contracts [44]. The Court Registry lists many similar cases. Despite the apparent fre-

quency of private key compromise and existence of many other potential vectors, successful

cases of cryptographic related attacks, for example pre-image attacks, on national signatures

are unknown [26, 27, 45]. As samples of compromised or falsified DSDs are not available,

no such samples are reviewed in this thesis.

The scope of this thesis does not cover the area of forgery of digitally signed files, or, in a

broader sense, attacks directed at their compromise, including any issues related to cryptog-

raphy. Even though in this work the author decodes, to the extent necessary, data from cer-

tificates and responses, which are part of the broader cryptographic framework, this work

remains agnostic to the algorithms in question, being only interested in the relevant data

stored in the signatures. On similar grounds, packaging algorithms such as ZIP’s deflate,

encoding schemes such as Base64, and format languages (XML, ASN.1) are not the topic

of this thesis.

5.2 Scripts and Third-Party Tools

Some parts of validation of the findings of this thesis include Python scripts for, essentially,

extremely simplified mock-ups of forensic examination. Standard Python libraries are fa-

voured. In some cases, external libraries are used, for example Pandas30, which is used for

documentation and aggregation of results. In all cases additional plaintext CSVs are created

in parallel.

The scripts written by the author are delivering described results as applied to particular

problems and datasets. The author is not legally responsible for the results of applying those

scripts to different datasets or problems. Scripts developed by the author for the purposes of

28 Consolidated version’s English translation available at https://www.riigiteataja.ee/en/eli/ee/Rii-

gikogu/act/527102016001/consolide, retrieved 22.03.2018.
29 https://www.riigiteataja.ee/kohtulahendid/koik_menetlused.html, retrieved on 22.03.2018.
30 https://pandas.pydata.org, retrieved on 29.03.2018.

https://www.riigiteataja.ee/en/eli/ee/Riigikogu/act/527102016001/consolide
https://www.riigiteataja.ee/en/eli/ee/Riigikogu/act/527102016001/consolide
https://www.riigiteataja.ee/kohtulahendid/koik_menetlused.html
https://pandas.pydata.org/

22

validation of this work are intentionally verbose and are not object oriented, unless other-

wise apparent. They are not intended to be, computationally, efficiency-optimised.

The author is aware of the MD5 hashing algorithm’s cryptographic weakness [26]. In all

cases MD5 is used as a unique identifier for files or data where the expected risk of collision

is considered negligible.

Testing done with third party digital forensic solutions assumes a standard workflow in-

tended for similar forensic examinations with these tools. This does not mean that the same

tools will not perform better using different workflows or in combinations with other tools.

The choice of the mainstream commercial tools is based on the same tools chosen for testing

in a referred source [42].

5.3 Signature and Attributive Data

The proposed signature has been tested under Windows 10 Home 64 for file carving in an

NTFS v 3.1 formatted volume of a hard drive disk. The application of the header signature

is dependent on the drive’s geometry. The footer signature has been successfully tested in

zero-slack media as described in the corresponding chapter. Only extraction of data de-

scribed as attributive has been tested.

5.4 Anti-Forensics Techniques

Suspects and persons of interest in a DFE can impede an investigation by destroying or

modifying evidence. This practice is sometimes called anti-forensics. Gül et al [57] provides

an overview of some anti-forensic techniques including those which are directed at manip-

ulating the file header, which is sometimes referred to as “transmogrification”. This tech-

nique could seriously impede a DFE relying on header based signatures for identification of

files. The headers could be manipulated by applying a specialised tool, or by manually

changing the hexes, causing a forensic examination suite to incorrectly detect file type.

In this thesis the author proposes a signature for detecting DSD files. Though this signature

is specific to a particular type of file and will not detect generic ZIP archives, it does rely on

a typical ZIP header of ASCII-hexadecimal representation ‘PK\x03\x04’. Assuming that the

use of anti-forensics is to obstruct an investigation while still retaining the data, the most

straightforward and the easiest way of hiding a DSD file from being detected by the auto-

mated tools is changing its ZIP header, effectively falsifying the file type. For example,

changing the file type effectively into a Microsoft CAB file by replacing the current header

with ‘MSCF’ [48] could, in the author’s opinion, make the file look inconspicuous. This

would also render a custom DSD signature powerless. Despite that and assuming that trans-

mogrification does not go deeper, the file can still be identified by the existence of DSD

specific contents, such as the XML signature file ‘META-INF/signature*.xml’. To achieve

that, the signature proposed later in this thesis would have to be modified starting at offset

4 and loosing the 4-hexes long ZIP header of ‘PK\x03\x04’.

Changing the contents of the signed files or of the XML signature itself, on the other hand,

is easily discoverable as warning messages about signature invalidation are displayed in

DSD signing applications.

5.5 Legal Considerations

With regard to web-scraping of a government agency’s public document registry looking

for publicly available documents, the author is aware that the ‘robots.txt’ of the particular

domain does not allow bots. The complexity of the legal issues associated with this situation

exceeds the scope of this work. For this thesis the author has commissioned legal analysis

23

from a national legal bureau highly experienced and competent in the field of data protection

law. In this analysis it was found that this particular thesis does not infringe, in any way,

data protection rules and regulations. The legal analysis is not attached to this work but is

made available at the defense. To protect personal data included in the scraped documents,

any such data is left out of this publication, except for highly aggregated impersonalised

summaries. The scripts used for web-scraping are not made public.

24

6 Examination of Sample Containers

This chapter describes collecting and reviewing contents of both official DSD samples,

which are the files made available at the certification authority’s Web page, and samples of

the author’s own documents signed in several different applications. The structure of a ZIP

container as well as an XML formatted signature and ASN.1 encoded objects inside signa-

ture files are reviewed with the purposes of this thesis in mind, which are finding a better

carving signature and learning about forensically attributive data.

6.1 Sample Set

SK provides a sample of supported DSD containers for all major versions. These containers

are currently listed and described on an SK ID Solutions dedicated Web page titled “Digi-

Doc file container format support cycle (life cycle)”. The files in question and their container

versions are ‘BDOC-1.0.bdoc’ v 1.0, ‘BDOC2.0.bdoc’ v 2.0, ‘BDOC2.1.bdoc’ v 2.1 (TM)

and ‘BDOC2.1_TS.asice’ v 2.1 (TS). MD5 hashes for these and for the following files are

provided in a separate Annex IV to this thesis.

These samples are supplemented by the author’s signed DSDs and are described in Table 2

below.

As for the document that was to be signed, the author used the Estonian Chamber of Com-

merce and Industry’s example document titled “Power of Attorney”31. This file is named

‘Volitus_firma_esindamiseks_inglise_keeles.pdf’ and its contents filled out with fictitious

information, which can be summarized as “Ivan Orav” from the company “Vanad Tuttavad

OÜ” representing a fictitious foreign company “Market-Research Oy”. The unsigned docu-

ment is converted to a PDF prior to signing.

If the application used for signing allowed for additional fields, the following information

was entered by the author at the signing process.

Table 1. Additional fields in the author’s signed DSD containers

Field Value entered

Role Signator

Resolution Agree

City Tallinn

State Harjumaa

Country Estonia

Zip 13628

The signed documents as well as the environment used for signing are described in the table

below.

31 https://www.koda.ee/et/tooriistad/valiskaubandusalaste-dokumentide-naidised, retrieved on 10.02.2018.

https://www.koda.ee/et/tooriistad/valiskaubandusalaste-dokumentide-naidised

25

Table 2. DSDs signed by the author

Application Application

Version

OS Signed with DSD name

with extension

DigiDoc3 3.13.4.1515 MS Windows 10 Id-Card DCC.bdoc

DigiDoc3 3.13.4.1515 MS Windows 10 Mobile Id DCM.bdoc

DigiDoc3 3.13.4.1515 MS Windows 10 Id-Card DCC.asice

DigiDoc3 3.13.4.1515 MS Windows 10 Mobile Id DCM.asice

app.digidoc.ee n/a n/a Id-Card DAC.bdoc

app.digidoc.ee n/a n/a Mobile Id DAM.bdoc

app.digidoc.ee n/a n/a Id-Card DAC.asice

app.digidoc.ee n/a n/a Mobile Id DAM.asice

DigiDoc

Finestmedia

2.0.14 Android 6.0 Mobile Id DMM.bdoc

DigiDoc3 3.13.4.1515 MS Windows 10 Empty DCE.bdoc

DigiDoc3 3.13.4.1515 MS Windows 10 Empty DCE.asice

The applications and operating systems used to sign the documents listed in Table 2 are in

more details described below.

(1) DigiDoc3 application: qdigidocclient version 3.13.4.1515, released 14.11.2017, base

version: 17.11.0.1762, under MS Windows 10 Home 10.0.16299. DSDs in this client appli-

cation were signed using a Gemalto ID-card reader (s/n I17C01474009795) as well as Mo-

bile ID under Android 6.0 Kernel v 3.4.0.

(2) Web based application of https://app.digidoc.ee, domain records indicate ‘UAB ES-

TINA’. DSDs in this client application were signed using a Gemalto ID-card reader (s/n

I17C01474009795) as well as Mobile ID under Android 6.0 Kernel v 3.4.0.

(3) DigiDoc v 2.0.14 by Finestmedia, signing with Mobile ID under Android 6.0 Kernel v

3.4.0. The application has the Mobile ID signing document’s format set to BDOC and itself

generates the filename of the container, based on the name of the file to be signed. In this

particular case, the application also added a string “1518515471170” to the end of the file-

name. For the purpose of this examination the filename was changed to the one listed in

Table 2.

After the creation of the set of DSD samples, their contents can be observed based on the

layers identified above. Figure 2 provides a schematic32 depiction of the observational stages

of reviewing of the sample containers’ contents.

32 Note that in the figure, certain elements such as the signed documents themselves (DOCX, PDF etc), as well

as some of the embedded certificates are not shown.

26

Figure 2. Stages of decoding and reviewing of the contents of the sample DSDs repre-

sented as layers

6.2 Outer (ZIP) Layer

ZIP can be described as a file format, universally used to aggregate, compress, and encrypt

files into a single interoperable container [1, sec. 1.2.1]. According to ZIP specifications [1]

ZIP containers start with a Local File Header, which begins with hex ‘50 4B 03 04’ and is

describing a single file inside the container [1, sec. 4.3; 36]. The Local File Header also

specifies whether the file is zipped or not. After the Local File Header, which contains a

plain-text filename, the file’s contents follow. ZIP containers end with Central Directory

Records, the start of which is designated with hex ‘50 4B 01 02’ carrying additional infor-

mation regarding file attributes. Both the Local File Header as well as the Central Directory

Record may include ‘Extra field’, the Central Directory Record may also include ‘File com-

ment’. The Central Directory ends with Central Directory End Record, starting with hex ‘50

4B 05 06’, which may also have an optional ‘Zip file comment’ field. If no optional fields

are used, Local File Header, not including filename, is 30 bytes long and Central Directory

End Record is 22 bytes long.

As discussed above, DSD containers must have a ‘mimetype’ file, which comes as the first

file inside the archive. Standards and specifications for at least ASICE, BDOC 2.0 and

BDOC 2.1 mandate that ‘mimetype’ contents are not deflated. Some of the sample contain-

ers (‘BDOC-1.0.bdoc’, ‘BDOC-2.0.bdoc’, ‘BDOC2.1.bdoc’) were observed to have the Lo-

cal File Header flag at offset 9 set to ‘08’ indicating that the file ‘mimetype’ is zipped. In

other files the flag was set to hex ‘00’ indicating that file ‘mimetype’ is not zipped [1, 36].

The sample file ‘BDOC21-TS.asice’ has ‘mimetype’ contents undeflated, but because of a,

seemingly unmandated, use of ‘Extra field’, has the start of contents at offset 66 instead of

27

the standard’s 38. Out of the official samples, no files were fully compliant with the part of

the standards and specifications regarding the first Local File Header, which also suggests

that they could not be located using the official ‘magic numbers’ described above.

As previously noted, three containers have ‘mimetype’ file contents zipped with the first

part of the zipped contents matching for all three files. This is relevant from the point of

view of creating a carving signature for identified headers.

Table 3. Certain containers ‘mimetype’ file zipped contents

Container Zipped ‘mimetype’ contents in hex view

First part (matching) Second part (different)

BDOC-

1.0.bdoc

4B 2C 28 C8 C9 4C 4E 2C C9

CC CF D3 2F CB 4B D1 4B

4A C9 4F D6 35 D4 33 00 00

BDOC-

2.0.bdoc

4B 2C 28 C8 C9 4C 4E 2C C9

CC CF D3 2F CB 4B D1 4B

2D 29 CE D4 4B 2C CE 4C D6 4D

D5 AE CA 2C 00 00

BDOC2.1.bdoc 4B 2C 28 C8 C9 4C 4E 2C C9

CC CF D3 2F CB 4B D1 4B

2D 29 CE D4 4B 2C CE 4C D6 4D

D5 AE CA 2C 00 00

The other sample files, which include containers generated by the author, appear to have

‘mimetype’ files’ contents not zipped and, according to specifications, situated at offset 38

from the beginning of the container, with one exception where the contents were at offset

66.

Some of the files (‘DMM.bdoc’, ‘DAC.bdoc’, ‘DAM.bdoc’, ‘DAC.asice’, ‘DAM.asice’,

‘BDOC-2.0.bdoc’, ‘BDOC2.1.bdoc’) make use of Data Descriptors, which are optional and

are situated after the end of file data. Data descriptors have their own headers of hex ‘50 4B

07 08’. These structures appear to hold flags related to validations of the stored file data and

its size [1].

Several of the sample containers make use of the Central Directory Record’s ‘File com-

ment’, or the Central Directory End Record’s ‘ZIP file comment’ to describe system related

metadata. For example, Central Directory’s End Record for ‘DAC.bdoc’, which was signed

by the author using the Web application of app.digidoc.ee contains the string ‘LIB Digi-

Doc4j/DEV format: application/vnd.etsi.asic-e+zip signatureProfile: ASiC_E_BASE-

LINE_LT Java: 1.8.0_111/Oracle Corporation OS: Linux/amd64/3.10.0-514.el7.x86_64

JVM: OpenJDK 64-Bit Server VM/Oracle Corporation/25.111-b15’. This might suggest

that this application is running on an operating system with CentOS33 Kernel 3.10.0-

514.el7.x86_64. Such a data entry may, in the author’s view, be, forensics-wise, considered

an “artefact”, as it provides additional data about the signer of the document or, in this par-

ticular case, about the signer’s environment. Notwithstanding classifying this data as an

“artefact” or as more general attributive data, it might prove useful in DFE. In fact, OS and

application (Web Browser) related information has been used by prosecutors as evidence to

attribute an attack to a suspect [38]. Programming documentation [37] of DSD suggests that

inclusion of this system related metadata is intentional for debugging purposes.

As regards examined samples’ footers, they end with Central Directory End Record’s stand-

ard ZIP header of hex ‘50 4B 05 06’ with some of the samples having the ‘ZIP file comment’

33 Look at kernels listed at https://buildlogs.centos.org/c7.1611.01/kernel/20161117160457/3.10.0-

514.el7.x86_64, retrieved on 08.03.2018.

https://buildlogs.centos.org/c7.1611.01/kernel/20161117160457/3.10.0-514.el7.x86_64/
https://buildlogs.centos.org/c7.1611.01/kernel/20161117160457/3.10.0-514.el7.x86_64/

28

field filled. These sample files apparently end with alphanumeric [58] data, while containers

not using ‘ZIP file comment’ field end with hexes of ‘00 00 00 00’.

A more detailed hex-editor review of a sample file ‘DMM.bdoc’ as well as a review of Local

File Headers’ ‘Extra field’, which is found in ‘BDOC21-TS.asice’ is provided in Annex I.

HxD Hexeditor 1.7.7.0 and FTK Imager 3.0.1 were used for observation of contents.

6.3 Intermediate (XML) Layer

XML or “eXtensible Markup Language” is defined as a software- and hardware-independ-

ent tool for storing and transporting data. The tags and the structure of an XML document

are defined by the author, i.e. by the person who created the document34, or by the applicable

specifications.

Reviewing the sample containers’ XML contents is made easier by the inclusion in their

XML elements of references to their corresponding specifications. References include XML

schemas and rules, as well as syntax specific to signature processing. When observing a

sample file’s signature part, we can use this information to more accurately ascribe its con-

tents. For example, reading signature contents together with specification, we ascertain that

XML element ‘<ds:X509Data>’ inside a sample signature contains one or more identifiers

of keys or X509 certificates. If thereafter we encounter a ‘<ds:X509Certificate>’ element,

we understand that this a Base64-encoded X509v3 certificate [39] with Base64 defined as

Content-Transfer-Encoding designed to represent arbitrary sequences of octets in a form

that need not be humanly readable35.

The XAdES or XML based digital signature’s standard [19] further expands understanding

of XML elements by including those specific to a particular signature format. In sample

files, for example, ‘<xades:SigningCertificate>’ contains, among other data, the signer’s

certificate number and ‘<xades:SigningTime>’ contains the time at which the signer claims

to have performed the signing process. The ‘<xades:SignerRole>’ tag is present in some

sample signatures, but absent in others. Those signatures where the author entered, during

the signing process, optional information, have tags related to ‘City’, ‘StateOrProvince’,

‘PostalCode’, ‘CountryName’, ‘ClaimedRole’ filled with the relevant information. It can be

well argued that elements such as the role assumed by signer, or time of signing, can have

attributive value as exculpatory or inculpatory evidence, similar to what can be observed in

some court rulings [38]. Observation reveals that the XML part of the signature does not

have a plain-text readable name and personal code of the person who signed the document.

Most other XML signature elements appear, to a large extent, to be describing signing pro-

cess and ensuring the validity of the signature. For example, the tag ‘<ds:SignatureMethod>’

indicates the algorithm used to sign data in the ‘SignedInfo’ element. The ‘Reference’ ele-

ment points to the data object that was signed, i.e. the signed document. ‘<ds:Digest-

Method>’ indicates the digest algorithm (ECDSA-sha256 in the case of ‘DMM.bdoc’,

which was signed by a mobile application) and ‘<ds:DigestValue>’ contains the Base64

encoded digest value. Encoded data embedded in the XML signature of ‘DMM.bdoc’ are

the signer’s ‘X509Certificate’, Certificate Authority’s ‘EncapsulatedX509Certificate’,

OCSP responder’s certificate and OCSP ASN.1 encoded response. From the point of view

of looking for attributive data, XML elements describing the signing process and relevant

34 Introduction to XML, W3Schools.com. https://www.w3schools.com/xml/xml_whatis.asp, retrieved on

23.04.2018.
35 Definition from RFC 1512, 5.2. Base64 Content-Transfer-Encoding. https://www.ietf.org/rfc/rfc1521.txt,

retrieved on 23.04.2018.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html#ref-X509v3
https://www.w3schools.com/xml/xml_whatis.asp
https://www.ietf.org/rfc/rfc1521.txt

29

to a signature’s validity may have a lesser value. ASN.1 encoded elements, on the other

hand, especially the signer’s certificate holding the signer’s name and personal code as well

as time responses, have great value.

As a result of review, the following XML elements are considered the most valuable: ‘Sign-

ingTime’, ‘X509IssuerName’, ‘X509SerialNumber’, ‘SignatureProductionPlace’, ‘City’,

‘StateOrProvince’, ‘PostalCode’, ‘CountryName’, ‘SignerRole’, ‘ClaimedRoles’,

‘ClaimedRole’, ‘ByName’, ‘ProducedAt’.

Internet Explorer v 11 was used to view XML signatures. Relevant elements are depicted in

Annex II.

6.4 Internal (ASN.1 Encoded) Layer

ASN.1 or “Abstract Syntax Notation number One” is defined as a formal notation used for

describing data transmitted by telecommunications protocols, regardless of language imple-

mentation and physical representation of these data, whatever the application, whether com-

plex or very simple36.

As noted above DSD-wise this XML signature holds a number of ASN.1 encoded objects

whose XML elements include ‘X509Certificate’, ‘EncapsulatedX509Certificate’, ‘Encap-

sulatedOCSPValue’ and, when relevant, ‘EncapsulatedTimeStamp’.

According to the explanations included in the standards, ASN.1 encodes quite complex data

types, enabling carrying their messages without concern for their binary representation.

ASN.1 encodes this data with a number of different algorithms such as Basic Encoding

Rules (BER), Packed Encoding Rules (PER), and XML Encoding Rules (XER) [46]. ASN.1

includes OID object identifiers. OID is defined in an earlier standard as a globally unique

value associated with an object to unambiguously identify it [40]. In a later standard, OID

is defined as an ordered list of primary integer values from the root of the international

object identifier tree to a node, which unambiguously identifies that node [46]. In the sample

files’ X.509 embedded certificate, as decoded by the Certutil utility, there are several highly

relevant OIDs, such as ‘2.5.4.5’, holding the value of the author’s personal code.

The embedded ‘X509Certificate’, which is the first ASN.1 object in an XML signature, is

the so-called end entity certificate, defined in the standard as issued to subjects that are not

authorized to issue certificates [41]. A practically useful example of an end entity certificate

is provided on page 140 of RFC528037. In this example, the user’s certificate is signed with

‘sha1withRSAEncryption’ algorithm, as can be seen from the OID of

‘1.2.840.113549.1.1.5’. To compare, the author’s certificate embedded in the signature of

‘DMM.bdoc’ signed with ‘sha256RSA’ has an OID of ‘1.2.840.113549.1.1.11’. Most rele-

vant to the question of attribution posed in this thesis are OIDs like ‘2.5.4.3’ ‘Common

name’ in the example and ‘Sur Name’ ‘2.5.4.4’, ‘Given Name’ ‘2.5.4.42’ and, most likely,

‘Serial Number’ ‘2.5.4.5’ in the author’s signature certificate.

Embedded Certificate Authority and Responder’s certificates do not, in the author’s opinion

have direct attributive information. However, ‘EncapsulatedOCSPValue’ and ‘Encapsulat-

edTimeStamp’ contain useful information concerning the verified time of response, which

may be relevant.

36 Introduction to ASN.1, ITU.int. https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx, retrieved on

23.04.2018.
37 https://tools.ietf.org/html/rfc5280, retrieved on 17.05.2018.

https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspx
https://tools.ietf.org/html/rfc5280

30

As a result of review, ‘UTF8String’, ‘PrintableString’, and ‘UTCTime’ datatype objects,

which hold values of all of the identified OIDs, in ‘X509Certificate’ are considered the most

valuable data, as well as time-responses in ‘EncapsulatedOCSPValue’ and ‘Encapsulated-

TimeStamp’, which can be read directly by decoding Base64.

ASN.1 encoded objects were reviewed using MS Certutil v 10.0.16299.15 and ASN1Editor

v 1.3.10 and the observed results are described in more detail in Annex III.

6.5 Findings

An examination of sample containers contents provides the opportunity to suggest perfected

header signature and improved footer signature, useful in file carving as well as for identi-

fying attributive data and charting out an algorithm for its extraction.

6.5.1 Header and Footer

Based on the above examination, the following container header scheme is devised.

Figure 3. Header scheme

Figure 3 depicts the elements of the header and their corresponding lengths in brackets.

ASCII-hexadecimal representation of corresponding signature’s regular expression in Py-

thonic syntax is provided for each element in blue Italic.

For the sample files, the value used for the variable distance ‘VAR’ was 28. Note that the

element “zipped header (17)” identifies the compressed, or “zipped” part of the header’s

contents, 17 hexes long, identified in Table 3 above.

In this scheme, first, the standard ZIP header of hex ‘50 4B 03 04’ with a length of 4 indi-

cates the beginning of the file, after a distance of 26 there follows filename ‘mimetype’ (‘6D

69 6D 65 74 79 70 65’ in hex) with a length of 8. After the ‘mimetype’ filename entry one

of three options takes place:

a) Uncompressed contents ‘application/vnd.etsi.asic-e+zip’. Hex representation is ‘61

70 70 6C 69 63 61 74 69 6F 6E 2F 76 6E 64 2E 65 74 73 69 2E 61 73 69 63 2D 65

2B 7A 69 70’, length 31. Such a header would correspond well to the standard man-

31

dated IANA registered ‘magic numbers’. Note that in IANA registered ‘magic num-

bers’ an obvious error was made, since the standard requires the word ‘application’

and a slash preceding ‘vnd.etsi.asic-e+zip’, which would also reflect the subjective

hierarchy of media types as provided in the registration entry. While writing regex

syntax for the header following this official ‘magic numbers’ the author compen-

sated this error by adding extra length (see header signature below).

b) Zipped part of ‘mimetype’ file as observed in ‘BDOC-1.0.bdoc’, ‘BDOC2.0.bdoc’,

‘BDOC2.1.bdoc’. The first several hexes of these files have the same value, which

is ‘4B 2C 28 C8 C9 4C 4E 2C C9 CC CF D3 2F CB 4B D1 4B’ with a length of 17.

c) At an unspecified distance, which depends on the length of ‘Extra field’ in Local

File Header, unzipped contents ‘application/vnd.etsi.asic-e+zip’ follows. Hex repre-

sentation is the same as in option “a”, length 31. Observed length of ‘Extra field’ in

the particular sample set is 28.

The maximum length of the header is 55 bytes for cases “a” and “b”. For case “c” distance

can be measured, but for other similar cases remains undetermined as it was only seen in

‘BDOC21-TS.asice’ and because ‘Extra field’ is allowed to be of variable length by speci-

fication.

Based on the above scheme, the following Pythonic (tested with v 3.5) regular expression

enhanced ASCII-hexadecimal representation of header signature is proposed:

‘PK\x03\x04(.|\s){26}mimetype(.|\s){0,28}(application\/vnd\.etsi\.asic\-

e\+zip|K,\(\\\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’

In the signature’s regular expression above note that the distance qualifier from the filename

‘mimetype’ until file contents is set to ‘{0,28}’. This is only true for sample files, however.

Otherwise this distance should be set as a variable, which may be larger.

To compare, the Pythonic representation of IANA registered ‘magic numbers’ with the pre-

viously identified syntax error compensated by the additional distance ‘{12}’ is:

‘PK\x03\x04(.|\s){26}mimetype(.|\s){12}vnd\.etsi\.asic\-e\+zip’

As regards the file footer, some of the observed sample containers have Central Directory

End Record supplemented with ‘Zip file comment’. Because of the comment, the length of

the End Record is 249 bytes for those samples, instead of 22 bytes for the samples with no

comment. Central Directory End Records with comments enabled end with alphanumeric

characters while non-commented Central Directory End Records end in hex ‘00 00 00 00’

for reviewed samples. Based on the referred ZIP specifications, the last two hexes flag the

size of the comment; therefore, it is assumed that for those containers hex ‘00 00’ is present

at offset 20. On those considerations and taking into account End Record’s local header of

hex ‘50 4B 05 06’, the footer follows the logic in the picture below.

32

Figure 4. Footer scheme

Figure 4 depicts the elements of the footer and their corresponding lengths in brackets.

ASCII-hexadecimal representation of corresponding signature’s regular expression in Py-

thonic syntax is provided for each element in blue Italic.

The Pythonic syntax that would catch the end of the container based on the scheme above:

‘PK\x05\x06(.|\s){16}.*?(\x00{2}|.*[\w])’

This footer signature would replace traditional ‘PK\x05\x06’ + distance 18. Note the non-

greedy repetition qualifier ‘*?’.

6.5.2 Attributive Data

As demonstrated by a review of the containers’ ZIP Layer, Central Directory Records may

have their optional ‘File comment’ field filled with information about the system that pro-

duced a particular DSD. Equally, such information may be expected in Central Directory

End Record’s ‘ZIP file comment’. Additional information may also be present in Local

Header’s ‘Extra Fields’. This data is considered attributive, which, by definition is data

helpful in learning more about the signer or their environment.

Observation of plaintext-readable elements in the XML layer suggest ‘SigningTime’ XML

element as attributive. Elements of interest may also include ‘IssuerSerial’, ‘X509Issu-

erName’ and ‘X509SerialNumber’. In the cases where optional information is present as

entered in the course of signing, additional attributive elements found are ‘City’,

‘StateOrProvince’, ‘PostalCode’, ‘CountryName’, ‘ClaimedRole’, ‘ClaimedRole’, ‘By-

Name’ and ‘ProducedAt’. These fields are filled in by the person signing and are not veri-

fied. The XML part of the signature does not have a plaintext readable name and personal

code of the person who signed the document. The embedded X.509 certificate, however,

does.

‘X509Certificate’ or signer’s certificate as observed in the ASN.1 encoded layer contains

valuable attributive information, more precisely the name and the personal code of the signer

stored as ‘UTF8String’, ‘PrintableString’ datatypes with OIDs 2.5.4.3, 2.5.4.4, 2.5.4.42,

2.5.4.5. ‘UTCTime’ datatype holds the time-period of the signing certificate validity. Addi-

tionally, ASN.1 encoded responses in ‘EncapsulatedTimeStamp’ (ASICE) and ‘Encapsu-

latedOCSPValue’ (BDOC) provide timestamps, which, despite being some seconds later

than the actual signing, can arguably be considered more trustworthy than XML’s ‘Signing-

Time’ as they are asserted by a third party. For example, in ‘DMM.bdoc’ XML ‘Signing-

33

Time’ is ‘2018-02-13T09:54:59Z’ (Z stands for UTC + 0), while time recorded in ‘Encap-

sulatedOCSPValue’ is ‘13.02.2018 11:55:09’ as shown by Certutil. This data is stored in

ASN.1 as ‘Generalizedtime’ datatype.

Based on the above, the following algorithm for obtaining this data within the course of

DFE can be proposed:

Step 1. Read data from file-object or recover container using a carving signature

when applicable.

Step 2. Unzip and retrieve signature XML file(s), extract available Extra field of

interest from Local File Header, extract ZIP comments from Central Directory Rec-

ord and Central Directory End Record.

Step 3. Parse XML for data of interest for ‘SigningTime’, ‘IssuerSerial’, ‘X509Issu-

erName’ and ‘X509SerialNumber’ as well as user-inserted ‘SignatureProduction-

Place’, ‘City’, ‘StateOrProvince’, ‘PostalCode’, ‘CountryName’, ‘SignerRole’,

‘ClaimedRoles’, ‘ClaimedRole’, ‘ByName’, ‘ProducedAt’; retrieve ASN.1 objects.

Step 4. Decode Base64 and parse ASN.1 ‘X509Certificate’ for all values of

‘UTF8String’, ‘PrintableString’, ‘UTCTime’ datatypes. Decode Base64 and retrieve

time-related responses from ‘EncapsulatedTimeStamp’ (if present) and ‘Encapsu-

latedOCSPValue’.

Go to Step 1.

34

7 Validation

In this chapter, the author creates images containing deleted sample files supplemented with

similar ZIP archives and MS Office documents, placed in quick-formatted NTFS volumes.

The author tests pin-pointed file carving recovery of the deleted DSDs applying a number

of forensic and non-forensic data recovery tools, as well as the author’s own carving signa-

ture, supported by the author’s file carving script. The author also tests extracting attributive

data, this time from intact files, applying the same mainstream tools and, at a later stage, the

author’s algorithm for data extraction. Finally, the author web-scrapes a large number of

DSDs and tests signature and the algorithm again, to “surgically” file-carve and extract data

from a massive amount of deleted real-life containers, mixed together with very similar

documents of other types.

7.1 Samples-Based Testing

In the previous chapter an examination of 9 samples signed by the author, 2 empty contain-

ers and 4 official sample DSD containers from SK ID Solutions was undertaken. To validate

the results the author added 3 DOCX, 3 XLSX 3 PPTX and 3 random ZIP samples down-

loaded from the Internet. The author also added to the set the unsigned ‘Voli-

tus_firma_esindamiseks_inglise_keeles.pdf’ (see above) converted to DOCX, and another

one zipped as ZIP. In total there were 29 sample files.

The files were placed on an NTFS formatted, uncompressed volume of a size of 2048000

sectors (512 bytes per sector, 8 sectors per cluster) on a regular hard drive (Samsung Barra-

cuda SATA model ST500DM005 s/n S20BJAOCC22298). Raw images as well as E01 (En-

Case evidence format) images were acquired from the sectors of the drive containing the

volume. The files were thereafter deleted using “shift + delete” while the volume was

mounted in Windows 10 Home 64. The volume was quick-formatted, a new volume created

of the same size, and a second set of images was acquired.

EnCase Forensic v 8.03.01 was used to acquire both sets of E01 format images of the sectors

0 – 2050047, which is from the 0 sector of the drive to the end of volume, with EnCase

FastBloc SE acting as write-blocker to protect the media from accidental change. FTK Im-

ager v 3.0.1 was applied to re-acquire the same sectors 0 – 2050047 images in DD format.

For more details on files, drive and images, forensic examination suites and results of vali-

dation, see Annex IV.

Finally, a set of popular data recovery tools as well as mainstream data processing capable

[42] commercial forensic examination tools was selected for the file carving as well as for

keyword search testing. These software tools are the property and/or trademarks of their

respective owners.

Table 4. Tools

Tool Version Role Obtained as

Disk Drill 2.0.0 Recovery Free version

Recuva 1.53 Recovery Free version

MS Windows 10 Home 10.0.16299 Keyword search Licence

EnCase Forensic 8.03.01 Recovery, keyword search Licence dongle

Nuix 7.4.2 Recovery, keyword search Trial dongle

X-Ways Forensics 19.5 Recovery, keyword search Licence dongle

Access Data Forensic Toolkit 6.4.0.70 Recovery, keyword search Trial licence

35

These tools recovered deleted files from the quick-formatted volume as depicted in the fol-

lowing table. The success of file recovery was determined by successful unzipping of file -

candidates, which was tested with an unzipping script for the large result sets. The results

of carving based on an MD5 test are provided in a separate Annex IV.

Table 5. Recovered files by types based on successful unzipping

Type Disk

Drill

Recuva EnCase Nuix X-Ways FTK Files

origi-

nally

DOCX 4 4 2 4 4 4 4

XLSX 3 3 0 3 3 3 3

PPTX 3 3 0 3 3 4 3

ZIP +

BDOC,

ASICE

5 + 0 18 + 0 3 + 0 18 + 0 18 + 0 9 + 0 4 + 15

Other 13 (JAR) 65

Files to-

tal
28 28 7038 2839 28 1940 29

In all cases if a DSD container was recovered, it was assigned an extension by a tool as ZIP

type, except in case of Disk Drill, which assigned the extension ‘.jar’41 to DSD containers.

One ZIP file out of three random samples downloaded by the author from the Internet was

an NTFS resident file. As such, it was not possible to recover this file based on the

header/footer. Therefore, in this scenario a maximum recovery of 28 files was theoretically

possible.

The author then applied the proposed header/footer signatures by creating a Python (v 3.5.3)

script (1)42 taking use of standard ‘os’ and ‘re’ program libraries, capable of reading file-

like objects, including raw (DD) images and “live” drives. This script was structured to

recover the starting sectors and end sectors occupied by data. Applied to a file-like object

and following standard hard-drive storage media geometry and contiguous data, the script

produces two lists, one of starting sectors and another of end sectors, designating the start

and the end of candidate files.

While carving data based on sectors can be considered sufficient, more efforts are required

to achieve complete matches of carved files to the originals. Algorithms published in various

sources [4, 47] are carving ZIP files with increased precision by jumping between local files

38 Out of 1862 files in total carved by EnCase, 70 files, which passed the unzipping test, were considered

candidates. Of those files EnCase assigned extensions ‘.docx’ and ‘.xlsx’ to 5 files. The reason why EnCase

recovered so many files seems to be in EnCase’s use of apparently every Local File Header inside the ZIP

archive as the proper file header. The resulting files are, for the candidates which passed the unzip test, func-

tional ZIP files, but many of them are only partial compared to the originals.
39 Out of 545 files in total carved by Nuix, 28 files, which passed the unzipping test, were considered candi-

dates.
40 Out of 269 files and 7 folders carved by FTK, 19 files, which passed the unzipping test, were considered

candidates. All these files were assigned ‘.zip’ extension, however they were also categorised differently as

documents, spreadsheets, presentations and archives.
41 Review of a sample JAR file reveals that, similar to DSD containers, the sample file has a ‘META-INF’

folder containing the file ‘MANIFEST.MF’, while DSDs have the same named folder containing the file ‘man-

ifest.xml’.
42 https://github.com/raul-nugis/bdoc_carver, 18.03.2018.

https://github.com/raul-nugis/bdoc_carver

36

in ZIP archives. These algorithms rely on movements between Local File Headers inside

ZIP file. At the end, those algorithms analyse the length of the ‘ZIP file comment’ field, if

present. It is noted that algorithms like these are to a great extent more efficient than the one

used by a tool called Foremost, which is relying on the unzipping of each included individual

file [47]. The author’s approach relies, on the other hand, on improving the signature repre-

senting the footer to retrieve the end of the whole archive, including the critical notion ob-

served in samples that if ‘ZIP file comment’ exists, it consists of alphanumeric data. In other

cases the trailer ends with an empty flag of hex ‘00’. Based on the above, the author’s ap-

proach does not require file-to-file jumps inside the ZIP archive and calculating the end-

length. The author’s improved footer’s logic is exportable to applications using signatures

for file carving, in similar environments.

A drawback of the author’s approach could theoretically appear when the end of a file fits a

cluster exactly, laying at cluster’s boundary, or when the end of a file borders non-zero slack

in the same cluster. A heavily slacked environment could potentially cause an incorrect in-

crease in the length of the file-trailer. The author performed some additional tests by filling

volumes in NTFS v 3.1 with small (4096 bytes) files and writing new variable-size files to

the volumes, without wiping first. In these circumstances, the slack of the sector appeared

to be filled with hex ‘00’. It is believed that sector-slack does not exist in recent versions of

MS Windows and the empty space at the end of sector is filled with hexes ‘00’ [52, 53].

Therefore, for NTFS volumes the described drawback is unlikely to be encountered in prac-

tice. However, if an incorrect increase in the length of the trailer takes place, in the author’s

opinion it would not lead to the carved file failing the ZIP test (or to invalidation of signa-

ture), but an MD5 test would fail.

This script (1) recovers the data of files residing in contiguous clusters and has the following

workflow:

37

Figure 543. Maximum file-size assisted header/footer based recovery of start and end sec-

tors

Note that the workflow in Figure 5 is based on the header/footer carving technique discussed

above and also relies on a maximum length fail-safe, administratively set to 10000 clusters.

For testing purposes, the script (1) also entails the option of calculating the size of the trailer

based on the ‘Zip file comment’ length value stored in Central Directory End Record’s flag.

The script is thereafter applied to the raw image described above. The image in question

has, in a deleted but recoverable state, 15 DSD-like containers (2 empty) and 14 other ZIP

43 Assisted by Code2flow graphic engine, https://code2flow.com/app, retrieved on 31.03.2018.

https://code2flow.com/app

38

containers, namely MS Office documents and ZIP archives. Of those files, 28 can be recov-

ered by carving. The signatures applied are the following, provided here in Pythonic syntax

for ‘bytes’ literal, an ASCII-hexadecimal regular expression friendly representation, with

hexadecimal numbers designated by the prefix ‘\x’:

1. Header standard ZIP, signature ‘^PK\x03\x04’ [1, 48].

2. Header improved DSD-like container, signature ‘^PK\x03\x04(.|\s){26}mimetype’.

This is a simplification of IANA registered ‘magic numbers’.

3. Header official IANA DSD, signature ‘^PK\x03\x04(.|\s){26}mime-

type(.|\s){12}vnd\.etsi\.asic\-e\+zip’ [15]. Note that even though IANA mandates

only ‘PK’ and leaves unspecified that the following bytes should be ‘\x03\x04’, for

practical readability the author includes these hexes in the signature. Hexes

‘\x03\x04’ are also mandated by ZIP specifications [1, sec. 4.3.7] regarding Local

File Header and can therefore be assumed to be present in actual archives. Also note

the adjustment made in the syntax of the official header.

4. Header perfected DSD, signature ‘^PK\x03\x04(.|\s){26}mimetype(.|\s){0,28}(ap-

plication\/vnd\.etsi\.asic\-e\+zip|K,\(\\\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’.

5. Footer standard ZIP, signature ‘PK\x05\x06(.|\s){18}’ [1, 48].

6. Footer improved ZIP, signature ‘PK\x05\x06(.|\s){16}.*?(\x00{2}|.*[\w])’.

Note non-greedy repetition qualifier ‘*?’ for the improved footer (6).

Table 6. Custom signature based script file carving start/end sectors recovery results for 15

sample DSDs and 13 recoverable other containers

Container type Standard ZIP

header

Improved

DSD header

IANA header Perfected

DSD header

Non-DSD containers

start/end sector pairs

captured

13 0 0 0

DSD containers

start/end sector pairs

captured

15 15 11 15

As results above suggest the so-called “perfected DSD header” as well as “improved DSD

header” signatures enable separating DSD containers from other ZIP like containers, in this

particular case ZIP archives and MS Office documents, while ensuring carving of all DSD

files.

To produce exact carved files the data needs to be extracted from the listed sectors with the

end of the data matching the footer pattern. Footer signature selection bore no difference on

the results in this particular case, if unzipping was applied to verify results. However, if an

MD5 match was applied to compare the carved files with the originals, the improved footer

signature provided for MD5 matches. The results of carving with the standard ZIP footer

and with the improved footer measured in MD5 matches are depicted below.

39

Table 7. File carving with MD5 match results for 15 sample deleted DSDs

Test Based on Script

(1)

Recuva Disk

Drill

EnCase Nuix X-Ways FTK

Stand-

ard

ZIP

footer

Im-

proved

footer

MD5

match
11/15 15/15 15/15 15/15 0/15 0/15 15/15 6/15

Validation done at a later stage over larger set of samples will generally confirm the im-

proved footer’s capabilities and after further improvements, achieves complete MD5 match-

ing. If only the standard ZIP header/footer is applied, a mix of different container types will

be successfully carved with no satisfactory MD5 matching because of the wrong length of

the trailer.

The same header and footer schemes as depicted in Figures 3 and 4 can be applied with

forensic examination suites as well, sometimes requiring adjustments in the syntax com-

pared to the one used in Python. For the header signature, the following expressions were

tested:

EnCase 8:

‘PK\x03\x04.{26,26}mimetype.{0,28}(application\/vnd\.etsi\.asic\-

e\+zip)|(\x4B\x2C\x28\xC8\xC9\x4C\x4E\x2C\xC9\xCC\xCF\xD3\x2F\xCB\x4B\

xD1\x4B)’

X-Ways 19.5 and FTK Imager 3.4:

‘PK\x03\x04.{26}mimetype.{0,28}(application/vnd\.etsi\.asic\-

e\+zip|K,\(\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’

For the footer signature, the following expressions were successful in correctly identifying

the end of the file:

 EnCase 8:

 ‘PK\x05\x06.{16,16}(\x00{2,2}|.{2,2}[-~]*)’

 X-Ways 19.5:

‘PK\x05\x06.{16}(\x00{2}|.{2}[-_0-9a-zA-Z]{0,512})’

 FTK Imager 3.4:

 ‘PK\x05\x06.{16}(\x00{2}|.{2}.*?[-~]+)’

Note that in case of X-Ways the author administratively set the maximum distance of the

footer to ‘512’. In some cases, the character class identified as alphanumeric ‘\w’ in Python

was replaced with a custom character class ‘[-~]’, the meaning of which is better explained

later in this thesis.

The author tested the regular expressions with the tools listed above in manual search mode

for EnCase and FTK Imager and they produced the correct headers and footers for 15 DSD

files in the set of 28 deleted but recoverable files. For X-Ways, the expressions were tested

40

in the automatic carving mode resulting in 15 files carved with MD5 matches. The condi-

tions and the results of testing with the relevant tools are summarised in the table below.

Table 8. Detection of sample DSDs with certain tools based on the perfected DSD header

and improved footer

Type EnCase X-Ways FTK Imager

Testing method Manual, “Raw Search

All”
Automatic Manual, “Find”

Options
GREP See notes below

ANSI, Regular Ex-

pression

Header and

footer pairs cor-

rectly detected

15 15 15

To test the header and footer signatures in X-Ways automated search and carving mode, a

custom ‘DSD Archive’ file-type was created in the X-Ways’ configuration file ‘File Type

Signatures Search.txt’ with the above header and footer expressions and with the new ex-

tension of ‘.bdoc’. To account for the sector/cluster ratio of the media “Search all at sector

boundaries” carving option was enabled44. As result, X-Ways produced 15 ‘.bdoc’ files with

matching MD5 hashes. Note that as the results summarized in Table 5 suggest, X-Ways

should be perfectly capable of producing precise matches with its own algorithm no. 14 for

the detection of the correct length of the file footer. The author thereafter tested file carving

in X-Ways with the author’s proposed header signature and with the X-Ways’ proprietary

footer algorithm no. 14. This test also resulted in successful recovery of 15 DSD containers,

which matched the originals’ MD5 hashes. This could suggest that to enable pin-pointed

carving of DSD file-type with this particular tool, it is sufficient to add the custom, author’s

proposed header alone and retain the use of the proprietary footer algorithm. However, later

tests performed over larger set of deleted files suggest that the author’s footer signature is

preferable to the algorithm in question.

For a second planned test, keyword searches were performed. Keyword searches were con-

ducted over files in folders (for MS Windows) and over a forensic image containing intact

files and an intact volume. For this purpose, the following keywords were selected (in table

below).

Table 9. Keywords

Keyword Original containers (number) and

explanation

Layer

UUKKIVI DSD (2) - signer’s name ASN.1 (X.509 certificate

in signatures1.xml)

37501110300 DSD (9) - signer’s personal code ASN.1 (X.509 certificate

in signatures0.xml)

Signator DSD (5) - signer-added field XML in signatures0.xml

Tuttavad DSD (11) – document to be signed

ZIP (1), DOCX (1)

ZIP

Outage Sample DOCX (1) from the Internet ZIP

prohibitively Sample ZIP (1) from the Internet ZIP

44 Instructions provided in ‘README.md’ at https://github.com/raul-nugis/bdoc_carver, 19.05.2018.

https://github.com/raul-nugis/bdoc_carver

41

Unlike the file carving exercise, keyword searches in forensic examination suites and MS

Windows were run over the files or over an image of the media with the files intact. In this

way the results were not dependent on the file recovery capabilities of a particular tool. Note

that compound file mounting / expanding was enabled in all tools’ search or indexing op-

tions, if available, to ensure that the tools would fully access zipped data. Searches were

conducted over the whole image, not only over the selected files, with the exception of MS

Windows where it was over files in a folder. The keywords selected and the results of the

searches with different tools are depicted in a table below.

Table 10. Search results

Keyword Layer Found (one per file) by a tool / present in original file

X-Ways EnCase Nuix FTK
MS

Win10

UUKKIVI ASN.1 0/2 0/2 0/2 0/2 0/2

37501110300 ASN.1 0/9 0/9 0/9 0/9 0/9

Signator XML 5/5 5/5 3/5 5/5 5/5

Tuttavad ZIP 13/13 13/13 13/13 13/13 13/13

Outage ZIP 1/1 1/1 1/1 1/1 1/1

prohibitively ZIP 1/1 1/1 1/1 1/1 1/1

The author then created a script (2)45 based on an algorithm for retrieval of the attributive

data described above. This script also incorporates the carving-based recovery already de-

scribed and implemented in script (1). Applied to a forensic image as in the current case,

this script (2) remains agnostic to the file state, reading data from both deleted and non-

deleted files. If the signature based on the ZIP file header is applied, the script (2) is capable

of reading classic ZIP files, even though no DSD specific contents can be recovered. If the

signature based on the standard ZIP footer is substituted with the “improved footer” as de-

scribed above, the script (2) should carve with MD5 matches of the original files. For file-

like objects matching DSD-specific headers, the script (2) will also extract attributive data.

The script makes use of existent Python libraries listed in the figure below, capable of pars-

ing ZIP, XML and Base64-ASN.1 encoded X.509 certificate data.

45 https://github.com/raul-nugis/bdoc_finder, 18.03.2018.

https://github.com/raul-nugis/bdoc_finder

42

Figure 6. Extraction of attributive data from DSD combined with file carving

Note that in Figure 6 the script (1) for header/footer based carving with a maximum file-

size limit as depicted in Figure 5 is applied in the first stage, i.e. in the rectangular box with

the process description of “LIST (1), (2) making a ‘pair’ of sectors”. Script (2) uses addi-

tional validation of data being carved based on the structure of DSD at the stage of unzipping

of the contents.

43

This workflow produces attributive data identified in the observational stage, including ex-

tra and comment fields from the ZIP layer as well as meaningful XML data about the signer

and signing time. Finally, names and personal codes of persons who signed the documents,

as well as time-responses are retrieved from ASN.1 encoded data. This script does not re-

cover data of the signed documents, of which all tested forensic tools as well as MS Win-

dows indexing features proved to be fully capable. As applied to the test image containing

deleted sample containers, this script was able to recover all of the keyword related data

from the ASN.1 layer of the DSD containers and recover all containers with MD5 matches.

Table 11. Occurrences of search keywords in data extracted from the image with 15 de-

leted DSD files using script (2)

Keyword Script (2),

occurrences

found / occur-

rences known

to exist

Container (recovered)

UUKKIVI 2/2 32080_32144_Deleted and formatted volume.001.bdoc

32144_32208_Deleted and formatted volume.001.bdoc

37501110300 9/9 32232_32304_Deleted and formatted volume.001.bdoc

32304_32376_Deleted and formatted volume.001.bdoc

32376_32448_Deleted and formatted volume.001.bdoc

32448_32520_Deleted and formatted volume.001.bdoc

32520_32592_Deleted and formatted volume.001.bdoc

32592_32664_Deleted and formatted volume.001.bdoc

32776_32841_Deleted and formatted volume.001.bdoc

32848_32913_Deleted and formatted volume.001.bdoc

32920_32985_Deleted and formatted volume.001.bdoc

The script has 804 lines and 630 SLOC according to GitHub stats (21.05.2018).

7.2 Large-Scale Testing

An examination of sample containers demonstrated a variety of approaches purposely or

unknowingly undertaken by developers of signing applications, with seemingly little con-

sideration towards the standards’ part regarding Local File Header. This makes the first ex-

ercise of this thesis, which is searching for a surgically precise file carving signature, more

complicated. It is also reasonable to assume that the workflow proposed for retrieval of

forensically valuable attributive data as based on the few available samples could benefit

from further testing. Based on these considerations it would be suitable to test findings on a

larger scale over many DSD files.

For this purpose, a number of different DSDs will need to be obtained. As noted above, SK

ID Solutions provides only 4 test ID cards, setting certain limitations on their use. A number

of additional samples can be obtained from a public registry of a government body in Esto-

nia. Download can be facilitated with Web Browser automation. For these purposes the

author created a web-scraping script based on the ‘Selenium’ library46 v 3.1.0 for Python,

in tandem with Firefox v 56.0 and Geckodriver v 0.19.0. The Selenium library was chosen

because, in the author’s experience, public document registries tend to rely on Web pages

46 For details see http://selenium-python.readthedocs.io, retrieved on 19.03.2018.

http://selenium-python.readthedocs.io/

44

with dynamically generated content, so is the case for this particular body’s open registry.

The registry in question is http://dokumendihaldus.terviseamet.ee/default.aspx.

The script is multi-stage. In the first stage the script loads the Web page, enters the search

word ‘bdoc’ and presses the “Otsi” (Estonian for “Search”) button. Thereafter the script,

after a new search result page is successfully loaded, presses the “Järgmine leht” (Estonian

for “Next page”) button. The script collects links to possible BDOC documents by looping

while the size of the search result page remains above a certain threshold, while at the same

time changing the current search result state numeration at each page load.

After creating a list of links to possible files, a separate script downloads the files from the

links collected in the first stage. This next stage script uses ‘requests’ v 2.13.0 and ‘bs4’ v

0.0.1 Python libraries, which are capable of the recovery of contents and files from static

Web pages. The ‘bs4’ library is applied to collect various registry entries about files while

‘requests’ is applied to download files. The process of scraping links and downloading doc-

ument files, including meaningful registry entries about these documents, is extensively

documented in CSV files and Pandas v 0.19.2 DataFrames. The scripts have 1110 lines and

832 SLOC (23.04.2018).

4099 links to document registration pages from between 2015 and 2018 containing ‘bdoc’

with possible attached DSDs were extracted and documented. Scraped registry entries sug-

gested that these documents arrived into the registry on 2986 occasions via e-mail, 753 times

a document management system delivered the document, in 341 cases snail mail was en-

trusted with this task and there were 9 cases of hand delivery.

As result of web-scraping for BDOC, ASICE, ZIP, DOCX, XLSX, PPTX, ODF and ODT

containers, the following actual files were downloaded: 3862 BDOC, 11 ASICE, 0 ZIP, 160

DOCX, 26 XLSX, 0 PPTX, 0 ODF, 32 ODT. The document registry did not contain acces-

sible EPUB files. The following files were added, after being obtained randomly from the

Internet: 10 EPUB47 files, 5 ODF and 5 ODT documents to give a total set of 4111 files. As

described above, EPUB and ODF/ODT files are considered, structurally, the closest con-

tainers to DSD containers, according to the referred ETSI standard.

The files were placed on the same hard drive (wiped) on a small NTFS volume of 409600

sectors and forensic images were acquired. As result of the application of the script (2) based

on a perfected DSD header and improved footer (see remarks below) signatures 3873 DSD-

like files were recovered, of which 4 DSD-like files were unsigned BDOC containers. 32

DSDs in the set also appeared to have 40 other DSDs, stored inside. Out of 3873 recovered

containers, 3873 matched the originals based on an MD5 match. No other ZIP or document

was recovered thus satisfying the objectives of pin-point recovery of DSD only.

During file carving the initially proposed file header signature was further changed to

‘^PK\x03\x04(.|\s){26}mimetype(.|\s){0,36}(application\/vnd\.etsi\.asic\-

e\+zip|K,\(\\\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’ with the change highlighted in

colour. This is because of the varying length of ‘Extra field’ in Local File Header. The length

of this optional field is set to a two-byte long flag [1, 36]. It is reasonable to assume that this

field can be even longer because the highest possible value of two bytes is ‘FF FF’, which

equals decimal 65535. In such cases, the highlighted number in the proposed perfected DSD

header signature must be further increased.

During file carving the initially proposed signature for improved footer (look for option (6)

in the corresponding section) was further changed to

47 Freely given e-books from https://www.epubbooks.com, retrieved on 19.03.2018.

https://www.epubbooks.com/

45

‘PK\x05\x06\x00\x00(.|\s){14}.*?(\x00{2}|.*[\w:])’ with changes highlighted in colour.

The initially proposed footer signature would fail in producing correct MD5 matches in 9

containers out of 3873. Apart from failing the MD5 test this did not render those carved

containers unusable in any other way. Adding white-space and a colon enabled full MD5

matching. In the author’s view it is reasonable to assume that the footer can in fact end not

only with alphanumeric, but with any printable character, which means custom class ‘[-~]’

can be used in the footer, instead of ‘[\w:]’. This custom class ‘[-~]’ corresponds to all

printable characters in the ASCII character table starting with space (hex ‘20’) and ending

with tilde (hex ‘7E’).

Supplementing two hex-zero pairs after the standard-specified Central Directory End Rec-

ord’s header as highlighted above was warranted because in one case a DSD contained a

byte sequence matching the improved footer but present inside the zipped data and not at

the end of file, thus generating a false positive and an invalid file-object. The footer could

be improved in this fashion because, based on the referred ZIP specifications’ [1] paragraph

4.3.16, the first 3 pairs of bytes (6 bytes) are flags indicating placement of the ZIP archive

over multiple disks. For a typical archive not placed on several disks and even more so for

a DSD container, the footer’s beginning can be changed even further into

‘PK\x05\x06\x00\x00\x00\x00\x00\x00’.

Table 12. Results of large scale testing of DSD carving signatures

 Standard ZIP

header and im-

proved footer

Improved DSD

header and im-

proved footer

IANA

header and

improved

footer

Perfected

DSD header

and im-

proved footer

Total containers recov-

ered
4111 3925 1453 3873

DSD containers recov-

ered
3873 3873 1453 3873

Containers recovered

ZIP test
4111 3925 1453 3873

DSD containers recov-

ered MD5 match
3873 3873 1453 3873

The results depicted in Table 12 show that the perfected DSD header and improved footer

signatures are successfully carving out the DSD files, separating them from the other con-

tainers present in the set. The signature for the header based on the IANA registered ‘magic

numbers’, even with the previously identified syntax error compensated by the author, can-

not satisfactorily recover the containers. The results also suggest that the standard ZIP

header does not suit too well for pin-pointed recovery of DSDs, because of its broad scope

related to generic ZIP. While the standard header signature indiscriminately carves out all

ZIP containers including that of DOCX and XLSX, the improved header signature, even

though eliminating MS Office Documents from the results, generates false positives by rec-

ognizing ODT, ODF and EPUB files (52 files in the set) as the same type of file with DSD

containers. As described in the relevant chapter, the ASiC standard itself [14] points out that

the corresponding file types are especially closely related to ASICE containers.

Additionally, the perfected DSD header and improved footer were tested in X-Ways v 19.5

automatic carving mode. The X-Ways friendly syntax for the header and footer described

46

in 7.1 was reinforced in the same way as the Python syntax described above. This resulted

in the following expressions:

Header signature for X-Ways:

‘PK\x03\x04.{26}mimetype.{0,36}(application/vnd\.etsi\.asic\-

e\+zip|K,\(\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’

Footer signature for X-Ways:

 ‘PK\x05\x06\x00\x00.{14}(\x00{2}|.{2}[-_0-9a-zA-Z]{0,512})’

The results of automated carving of the DSD files in X-Ways are depicted in the Table 13

below. This table describes the results of two tests. In the first test the author replaced the

standard ZIP header with the author’s perfected DSD header in X-Ways configuration file’s

‘Header’ column. The value of the ‘Footer’ column was not replaced, which means that X-

Ways’ proprietary algorithm no. 14 was used. In the second test the values in both ‘Header’

and ‘Footer’ columns were adopted for the use of the author’s signatures.

Table 13. Carving with X-Ways Forensics over large set of deleted files

 Perfected DSD header, X-

Ways algorithm no. 14

Perfected DSD header, im-

proved footer

DSD containers re-

covered
3873 3873

DSD containers re-

covered MD5 match
3868 3873

The results summarized in Table 13 indicate that X-Ways’ proprietary algorithm, which is

meant for correct identification of the location and of the length of a ZIP file’s footer, has

not achieved MD5 matches in 5 cases. Hex editor review reveals that 5 files in question

have proper headers but appear to be “cut” well before the beginning of their ZIP Central

Directory, amidst the data belonging to the embedded documents (DOCX, PDF), rendering

the resulting carved containers practically unusable. Hex editor review undertaken by the

author did not produce any obvious reason for this outcome.

In addition to carving, the script (2) also extracts all identified meaningful attributive data,

including ASN.1 encoded data, from all recovered containers. During extraction, a single

case appeared where the name of the person who signed a document was in ‘BMPString’

datatype and encoded in hex. Therefore, in the script extracting the data, decoding of ‘BMP-

String’ datatype was added.

Table 14. Extracted meaningful data

Extracted ZIP layer XML layer ASN.1 layer

Records 15658 30492 63395

From files 3745 3869 3869

3745 of the containers appeared to have ZIP comment fields (‘ZIP file comment’ and/or

‘File comment’) or ‘Extra field’ filled. 1358 containers had 1409 unique file comments and

2478 containers had 2632 unique extra fields. ZIP file comments were filled in 118 contain-

ers. Containers were observed having several different comments or extra fields inserted.

For example, in one case comment fields showed two of the three persons who signed a

47

document were using qdigidocclient v 3.13.4.1515 and Windows 8.1 (64 bit) and Windows

10 (64 bit) respectively while the third person was using Windows 10 (64 bit) with qdigi-

docclient v 3.13.3.1512, which means 3 different setups to sign a document.

‘ZIP file comment’ and ‘File comment’ suggest usage of different operating systems and

applications.

Table 15. Central Directory comments’ contents regarding operating systems and applica-

tions

Operating Systems

or Application

Occurrences

File comment
ZIP file com-

ment

Windows NT 26 0

Windows 7 496 0

Windows 8 99 0

Windows 10 310 0

Windows Server 73 14

Linux 305 106

Android 2 0

Mac OS 43 0

qdigidocclient 960 0

JDigiDoc 245 120

testtool 26 0

Amphora 40 0

‘Extra field’ suggests the most common flag is ‘NTFS (Win9x/WinNT FileTimes)’. How-

ever, ‘Extra field’ values were extracted but not decoded.

The XML layer included 4442 signing times, indicating the recovered DSDs were signed

between 2015-01-30 and 2018-03-13. The Signer’s role related elements were filled on 2418

occasions.

Table 16. Selection of optional elements in XML signatures

Role
Occur-

rences
City

Occur-

rences
Province

Occur-

rences
direktor 1842 Tallinn 64 Ida-Virumaa 23

inspektor 230 Narva 8 Harjumaa 20

juht 216 Avinurme 8 Lääne-Virumaa 9

juhatus 118 Tartu 6 Valgamaa 6

vanem 100 Tõrva 6 Tartumaa 3

juhataja 79 Võsu 5 Raplamaa 1

minister 52 Kohtla-Järve 4 Pärnumaa 1

esimees 42 Pärnu 2 Jõgevamaa 1

linnapea 37

spetsialist 14

agent 1

48

Note that in the table above, the number of individual occurrences for signer’s roles exceeds

the total number of occurrences of signer’s roles. This is because multiple roles are possible.

For example, there are 175 occurrences of “juhtivinspektor direktori ülesannetes”, which

combines “direktor” and “inspektor” in one role.

The results described in Table 15 and Table 16 make possible diverse types of findings

relevant to the forensic field, and more.

For example, data extracted from the collected DSDs reveals that the Estonian Govern-

ment’s cabinet ministers, 8 of whom are present in the tested set of DSDs, make use of

different setups for document signing. Among these setups, a certain version of an operating

system’s Kernel is extensively used. Because the use of this particular operating system is

uncharacteristic for a typical office employee, and because the samples generated by the

author using a web application also point to this operating system, it is possible that this

practice of document signing relies on a document managing environment having a web-

based platform and maintained in a unified fashion across many branches of the government.

Findings like these can possibly be enhanced further by analysing time-stamps indicating

prevalence of some systems during working hours.

Reviewing the ASN.1 layer script (2) produces 4442 signer’s personal codes and 4440

names of signers as well as 2 names of corporate signatories and 8908 time-responses, ag-

gregated in Table 17. The difference between the number of signatures and the number of

time-responses in the analysed DSDs can be explained in the following fashion. An XML

signature of a BDOC file contains an ASN.1 encoded ‘EncapsulatedOCSPValue’ object,

which holds two time stamps with the same value. An XML signature of an ASICE file, on

the other hand, additionally contains an ‘EncapsulatedTimeStamp’ ASN.1 encoded object,

which adds two more time stamps with the total number of time stamps per signature double

that of a BDOC.

Table 17. Some characteristics of data extracted from ASN.1 encoded objects

Role
Occur-

rences

Digital signatures 4440

Corporate signatures 2

Personal codes 4442

Time responses objects 8908

Signature missing 4

1 Signature per container 3339

2 Signatures per container 491

3 Signatures per container 30

4 Signatures per container 6

5 Signatures per container 1

Recursive48 signature containers 40

The findings, on which Table 17 and Table 15 are based, likely point to possibilities of

diverse types of analyses using the data extractable from DSDs and DSD-containing ar-

chives.

48 Digitally signed document container included in other digitally signed document container.

49

For example, as shown in Table 17, four out of 3873 DSDs (roughly 0.1%) in the document

registry from which the documents were initially scraped, are, format-wise, BDOC contain-

ers, but hold no signature. Combining this finding with the data about applications and op-

erating systems aggregated in Table 15, the author suggests that in one case a certain person

prepared a document for signing in MS Windows 7 Service Pack 1 (64 bit) using the qdigi-

docclient v 3.12.0.1448 application. It is difficult to ascertain how the document was not

signed, but a possibility remains that the user just closed the application leaving an unsigned

BDOC container. Based on web-scraped records and on the collected DSDs, the author can

certainly suggest that the unsigned document was sent to the public authority by e-mail. The

receiver of the document not only likely believed that the document was genuine, but also

performed the tasks requested and subsequently issued their own document, briefly summa-

rising the activities performed by the public body and the conclusions reached.

7.3 Results of Validation and Overall Findings

File carving exercises on both smaller and larger scales proved that a carving signature based

on the header scheme depicted in Figure 3, having Pythonic regex representation

‘^PK\x03\x04(.|\s){26}mimetype(.|\s){0,36}(application\/vnd\.etsi\.asic\-

e\+zip|K,\(\\\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’ and applied at the beginning of a

data unit on clustered media detects DSDs with high precision and separates them from any

other tested container. The author believes that the header signature following the same logic

can be better represented as ‘^PK\x03\x04(.|\s){26}mimetype(.|\s){0,VAR}(applica-

tion\/vnd\.etsi\.asic\-e\+zip|K,\(\\\xc8\xc9LN,\xc9\xcc\xcf\xd3\/\xcbK\xd1K)’ with variable

‘VAR’ at least 36. The length of ‘Extra field’ present in Local File Header may be larger

than 36 and, in such cases, VAR must be increased.

Carving tests also suggested that the signature based on the footer scheme depicted in Figure

4 having Pythonic regex representation

‘PK\x05\x06\x00\x00(.|\s){14}.*?(\x00{2}|.*[\w:])’ is capable of carving out the true

length of a file in zero-slacked media. The author believes that a footer following the same

logic can be better represented as ‘PK\x05\x06\x00\x00(.|\s){14}.*?(\x00{2}|.*[-~])’.

Extraction of attributive data based on the algorithm proposed by the author proved success-

ful in both smaller and larger scale tests. This included extraction of crucial ASN.1 encoded

data from the embedded certificates and time-responses. Additional attributive data about

the signers was extracted from the signature’s XML elements. Detailed descriptions of op-

erating systems and applications were frequently obtained from the containers’ ZIP layer.

50

8 Conclusions

This thesis looked at digitally signed documents of the type most common in Estonia

through the prism of a digital forensic examiner trying to unlock better ways to carve these

files from raw data, as well as to learn what information they may possess, useful for inves-

tigating a wide range of crimes and infringements. These tasks were made easier by the

existence of comprehensive documentation explaining the structure of digitally signed doc-

uments. These tasks were equally made harder because this documentation was created for

different purposes, because the real-life occurrences of digitally signed documents did not

always follow the standard, and because not one single mainstream forensic tool tested was

able to separate DSDs from other ZIP containers, or penetrate all of their intricate layers.

As a result of the observation of sample documents, the author came up with a signature

significantly more capable of pin-pointed carving of digitally signed documents than any

other tested signature. The author mapped out data contained within digitally signed docu-

ments, which in the author’s view possesses attributive properties, in other words helpful in

identifying who signed the document and learning a little more about their environment.

The author proposed an algorithm helpful in extracting such data.

Finally, this thesis put the author’s ideas to the test, applying the carving signature and the

algorithm to thousands of deleted real-life documents, collected through up-to-date web-

scraping techniques. Within the environments used in the tests these ideas proved viable.

The signature proposed in this thesis is capable of the pin-pointed recovery of virtually all

containers, even when indiscriminately mixed together with structurally very close alterna-

tives. Developed into a script, the algorithm for recovery of attributive data was capable of

extracting this valuable information from every single document.

The author is hopeful that this thesis can be helpful to an examiner who does not have ex-

perience with digitally signed documents and wants a quick way of getting acquainted with

this puzzling phenomenon.

51

References

[1] APPNOTE.TXT - .ZIP File Format Specification. Version 6.3.4, 2014.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT (14.03.2018)

[2] Road Map for Digital Forensic Research. The Digital Forensic Research Confer-

ence Technical Report, 2001, p. 16. http://dfrws.org/sites/default/files/session-

files/a_road_map_for_digital_forensic_research.pdf (15.03.2018)

[3] Garfinkel S. L. Carving contiguous and fragmented files with fast object validation.

Digital Investigation, 2007, vol. 4, pp. 2-12.

[4] Digambar P.; Bhadran V.K.. Forensic Data Carving. International Conference on

Digital Forensics and Cyber Crime. ICDF2C 2010: Digital Forensics and Cyber

Crime, 2010, pp. 137-148.

[5] Ubelaker D. H. Forensic Science. John Wiley & Sons 2013, p. 224.

[6] Sepp O.; Priisalu J.; Suik K.. Eesti ID kaardi tehnoloogia. Lähteuuring. Küberneet-

ika AS, 1998, pp. 2, 116. https://web.ar-

chive.org/web/20000823133250/http:/id.ee:80/idkaart/cyberaruanne.pdf

(13.01.2018)

[7] Ansper A.; Buldas A.; Heiberg S.; Oit M.; Oone K.; Sepp O.; Villemson J.. Digi-

taalallkirja juurutamine riigiasutustes. Strateegiline plaan. 2001, pp. 20, 52.

https://cyber.ee/uploads/2013/05/Digiallkiri_strat-plan-final.pdf (13.01.2018)

[8] Elektrondokumendi komisjoni seisukohad. https://web.ar-

chive.org/web/20010119123500/http://www.eik.ee:80/turve/eldok/skoht.htm

(13.01.2018)

[9] Heinsoo E. Digitaalallkirja kasutamine kogub populaarsust. Raamatupidaja.ee,

2006. http://www.raamatupidaja.ee/uudised/2006/03/30/digitaalallkirja-kasutamine-

kogub-populaarsust (29.01.2018)

[10] Priilinn K. Digiallkiri tavalise allkirjaga samaväärne. Raamatupidaja.ee, 2006.

http://www.raamatupidaja.ee/uudised/2006/08/14/digiallkiri-tavalise-allkirjaga-sa-

mavaarne (20.01.2018)

[11] Report from the Commission to the European Parliament and the Council - Report

on the operation of Directive 1999/93/EC on a Community framework for elec-

tronic signatures. EUR-LEX, 2006. http://eur-lex.europa.eu/legal-con-

tent/EN/TXT/?uri=celex:52006DC0120 (20.01.2018)

[12]
Digitaalset allkirja kasutavate tööealiste (15-64-aastased) Euroopa liidu elanike osa-

kaalu määramine 2015.aastal. Ministry of Economic Affairs and Communications,

2015. https://mkm.ee/sites/default/files/digitaalse_allkirja_kasutamise_osa-

kaalu_uuringu_aruanne_printimiseks.pdf (23.02.2018)

[13] Mitašiūnas A.; Bykovskij A.. Lithuanian National Platform of Electronic Docu-

ments: Towards Cross-Border Interoperability. eChallenges e-2015 Conference

Proceedings, 2015, p. 4.

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
http://dfrws.org/sites/default/files/session-files/a_road_map_for_digital_forensic_research.pdf
http://dfrws.org/sites/default/files/session-files/a_road_map_for_digital_forensic_research.pdf
https://web.archive.org/web/20000823133250/http:/id.ee:80/idkaart/cyberaruanne.pdf
https://web.archive.org/web/20000823133250/http:/id.ee:80/idkaart/cyberaruanne.pdf
https://web.archive.org/web/20000823133250/http:/id.ee:80/idkaart/cyberaruanne.pdf
https://cyber.ee/uploads/2013/05/Digiallkiri_strat-plan-final.pdf
https://web.archive.org/web/20010119123500/http:/www.eik.ee:80/turve/eldok/skoht.htm
https://web.archive.org/web/20010119123500/http:/www.eik.ee:80/turve/eldok/skoht.htm
https://web.archive.org/web/20010119123500/http:/www.eik.ee:80/turve/eldok/skoht.htm
http://www.raamatupidaja.ee/uudised/2006/03/30/digitaalallkirja-kasutamine-kogub-populaarsust
http://www.raamatupidaja.ee/uudised/2006/03/30/digitaalallkirja-kasutamine-kogub-populaarsust
http://www.raamatupidaja.ee/uudised/2006/08/14/digiallkiri-tavalise-allkirjaga-samavaarne
http://www.raamatupidaja.ee/uudised/2006/08/14/digiallkiri-tavalise-allkirjaga-samavaarne
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52006DC0120
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52006DC0120
https://mkm.ee/sites/default/files/digitaalse_allkirja_kasutamise_osakaalu_uuringu_aruanne_printimiseks.pdf
https://mkm.ee/sites/default/files/digitaalse_allkirja_kasutamise_osakaalu_uuringu_aruanne_printimiseks.pdf

52

[14] Electronic Signatures and Infrastructures (ESI); Associated Signature Containers

(ASiC). European Telecommunications Standards Institute, 2013, ETSI TS 102 918

V1.3.1 (2013-06), pp. 6, 8-10, 14-15, 20. http://www.etsi.org/de-

liver/etsi_ts/102900_102999/102918/01.03.01_60/ts_102918v010301p.pdf

(14.03.2018)

[15] Ortega M. A. R. IANA registration for "vnd.etsi.asic-e+zip". IANA, 2013.

https://www.iana.org/assignments/media-types/application/vnd.etsi.asic-e+zip

(14.03.2018)

[16] Electronic Signatures and Infrastructures (ESI); Associated Signature Containers

(ASiC); Part 1: Building blocks and ASiC baseline containers. European Telecom-

munications Standards Institute, 2016, ETSI EN 319 162-1 V1.1.1 (2016-04), pp.

16, 25. http://www.etsi.org/de-

liver/etsi_en/319100_319199/31916201/01.01.01_60/en_31916201v010101p.pdf

(15.03.2018)

[17] BDOC – FORMAT FOR DIGITAL SIGNATURES. BDOC2.1:2014, pp. 2-3, 11-

12, 17. https://www.id.ee/public/bdoc-spec21-est.pdf (15.03.2018)

[18] BDOC – DIGITAALALLKIRJA VORMING. 2.1:2014. https://www.id.ee/pub-

lic/bdoc-spec212-est.pdf (23.02.2018)

[19] Electronic Signatures and Infrastructures (ESI); XML Advanced Electronic Signa-

tures (XAdES). European Telecommunications Standards Institute, 2010, ETSI TS

101 903 V1.4.2 (2012-10), pp. 10-15, 35, 43. http://www.etsi.org/de-

liver/etsi_ts%5C101900_101999%5C101903%5C01.04.02_60%5Cts_101903v010

402p.pdf (15.03.2018)

[20] BDOC – FORMAT FOR DIGITAL SIGNATURES. BDOC 2.1:2013, p. 17.

https://www.id.ee/public/bdoc-spec21.pdf (15.03.2018)

[21] BDOC – FORMAT FOR DIGITAL SIGNATURES. BDOC 2.0:2013, p. 17.

https://www.sk.ee/repository/bdoc-spec20.pdf (15.03.2018)

[22] Libdigidocpp Programmer's Guide. http://open-eid.github.io/libdigidocpp/man-

ual.html (15.03.2018)

[23] Volonino L. Electronic Evidence And Computer Forensics. Communications of the

Association for Information Systems, 2003, vol. 12, art. 27, pp. 457-468.

http://aisel.aisnet.org/cgi/viewcontent.cgi?article=3193&context=cais (15.03.2018)

[24] Chaski C. E. Who’s At The Keyboard? Authorship Attribution in Digital Evidence

Investigations. International Journal of Digital Evidence, 2005, vol. 4, iss. 1.

http://www.flrchina.com/en/images/001/chaski_spring_05.pdf (15.03.2018)

[25] Cohen F. Digital Forensic Evidence Examination. Fred Cohen & Associates out of

Livermore, 2013, pp. 34, 36.

[26] Buldas A.; Heero K.; Laud P.; Talviste R.; Willemson J.; Kullman K.; Seeba M..

Cryptographic algorithms lifecycle report 2016. Estonian Information System Au-

thority, 2016. https://www.ria.ee/public/RIA/Cryptographic_Algorithms_Lifecy-

cle_Report_2016.pdf (15.03.2018)

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.03.01_60/ts_102918v010301p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.03.01_60/ts_102918v010301p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.03.01_60/ts_102918v010301p.pdf
https://www.iana.org/assignments/media-types/application/vnd.etsi.asic-e+zip
https://www.iana.org/assignments/media-types/application/vnd.etsi.asic-e+zip
http://www.etsi.org/deliver/etsi_en/319100_319199/31916201/01.01.01_60/en_31916201v010101p.pdf
http://www.etsi.org/deliver/etsi_en/319100_319199/31916201/01.01.01_60/en_31916201v010101p.pdf
http://www.etsi.org/deliver/etsi_en/319100_319199/31916201/01.01.01_60/en_31916201v010101p.pdf
https://www.id.ee/public/bdoc-spec21-est.pdf
https://www.id.ee/public/bdoc-spec212-est.pdf
https://www.id.ee/public/bdoc-spec212-est.pdf
http://www.etsi.org/deliver/etsi_ts%5C101900_101999%5C101903%5C01.04.02_60%5Cts_101903v010402p.pdf
http://www.etsi.org/deliver/etsi_ts%5C101900_101999%5C101903%5C01.04.02_60%5Cts_101903v010402p.pdf
http://www.etsi.org/deliver/etsi_ts%5C101900_101999%5C101903%5C01.04.02_60%5Cts_101903v010402p.pdf
https://www.id.ee/public/bdoc-spec21.pdf
https://www.sk.ee/repository/bdoc-spec20.pdf
http://open-eid.github.io/libdigidocpp/manual.html
http://open-eid.github.io/libdigidocpp/manual.html
http://aisel.aisnet.org/cgi/viewcontent.cgi?article=3193&context=cais
https://www.ria.ee/public/RIA/Cryptographic_Algorithms_Lifecycle_Report_2016.pdf
https://www.ria.ee/public/RIA/Cryptographic_Algorithms_Lifecycle_Report_2016.pdf

53

[27] Ansper A.; Buldas A.; Willemson J.; Seeba M.; Virunurm K.; Krüptograafiliste al-

goritmide elutsükli uuring 2017. Riigi Infosüsteemi Amet, 2018, pp. 9 - 12.

https://www.ria.ee/public/RIA/kruptograafiliste_algorit-

mide_elutsukli_uuring_2017.pdf (15.03.2018)

[28] Kund O. ID-card tip from Czech scientists. Postimees, 07.09. 2017.

https://news.postimees.ee/4236857/id-card-tip-from-czech-scientists (23.02.2018)

[29] Vines T. What Companies need to consider for e-Discovery. How Information Se-

curity Can Help the Organization Succeed. SANS Institute InfoSec Reading Room,

2015. https://www.sans.org/reading-room/whitepapers/legal/companies-e-discov-

ery-36197 (15.03.2018)

[30] Bradford A. Empirical Evidence: A Definition. Livescience.com, 2017.

https://www.livescience.com/21456-empirical-evidence-a-definition.html

(07.03.2018)

[31] Marcus R. Only Yesterday: Reflections on Rulemaking Responses to E-Discovery.

Fordham Law Review, 2004, vol. 73, iss. 1, p. 12.

[32] Väling K. Riigiprokuratuuri soovitused maksukuritegude kriminaalmenetluse läbiv-

iimiseks. http://www.prokuratuur.ee/sites/www.prokuratuur.ee/files/elfinder/Mak-

sukuritegude menetle mise soovitused.pdf (14.11.2017)

[33] Polley R. Digital Evidence Gathering in Dawn Raids – a Risk for the Company’s

Rights of Defence and Fundamental Rights. 20th St.Gallen International Competi-

tion Law Forum ICF, 2013, pp. 1,7,10.

[34] Garfinkel S. L.; Migletz J. J.. New Xml-based files implications for forensics. IEEE

Security & Privacy, vol. 7, iss. 2.

[35] Zhangjie F.; Xingming S.; Yuling L.; Li B.. Forensic investigation of OOXML for-

mat documents. Digital Investigation, 2011, vol. 8, iss. 1, pp. 48-55.

[36] Buchholz F. The structure of a PKZip file. https://users.cs.jmu.edu/buchhofp/foren-

sics/formats/pkzip.html (08.03.2018)

[37] JDigiDoc Programmer’s Guide, v 3.12. AS Sertifitseerimiskeskus, 2016, p. 74.

https://www.id.ee/public/SK-JDD-PRG-GUIDE.pdf (12.03.2018)

[38] Tallinn District Court 15.04.2016 ruling in case no. 1-15-509, pp. 3, 6-7, 14-15.

https://www.riigiteataja.ee/kohtulahendid/detailid.html?id=180104716 (31.03.2018)

[39] XML-Signature Syntax and Processing. W3C Recommendation 12 February 2002.

The Internet Society and W3C, 2002. http://www.w3.org/TR/2002/REC-xmldsig-

core-20020212/Overview.html (16.03.2018)

[40] Recommendation ITU-T X.660. Information technology – Procedures for the opera-

tion of object identifier registration authorities: General procedures and top arcs of

the international object identifier tree. ITU, 2011, pp. 2-4, 8.

https://www.itu.int/rec/T-REC-X.660-201107-I/en (31.03.2018)

https://www.ria.ee/public/RIA/kruptograafiliste_algoritmide_elutsukli_uuring_2017.pdf
https://www.ria.ee/public/RIA/kruptograafiliste_algoritmide_elutsukli_uuring_2017.pdf
https://news.postimees.ee/4236857/id-card-tip-from-czech-scientists
https://www.sans.org/reading-room/whitepapers/legal/companies-e-discovery-36197
https://www.sans.org/reading-room/whitepapers/legal/companies-e-discovery-36197
https://www.livescience.com/21456-empirical-evidence-a-definition.html
https://www.livescience.com/21456-empirical-evidence-a-definition.html
https://users.cs.jmu.edu/buchhofp/forensics/formats/pkzip.html
https://users.cs.jmu.edu/buchhofp/forensics/formats/pkzip.html
https://www.id.ee/public/SK-JDD-PRG-GUIDE.pdf
https://www.riigiteataja.ee/kohtulahendid/detailid.html?id=180104716
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/Overview.html
https://www.itu.int/rec/T-REC-X.660-201107-I/en

54

[41] Cooper D.; Santesson S.; Farell S.; Boeyen S.; Housley R.; Polk W.. Internet X.509

Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

Network Working Group, Request for Comments: 5280, pp. 13, 140.

https://tools.ietf.org/html/rfc5280 (17.03.2018)

[42] Kröger K.; Creutzburg R.. A practical overview and comparison of certain commer-

cial forensic software tools for processing large-scale digital investigations. Proceed-

ings of SPIE. The International Society for Optical Engineering, 2013.

https://www.researchgate.net/publication/258332973_A_practical_over-

view_and_comparison_of_certain_commercial_forensic_software_tools_for_pro-

cessing_large-scale_digital_investigations (31.03.2018)

[43] Hernandez-Ardieta J. L.; Gonzales-Tablas A. I.; Fuentes J. M.; Ramos B.. A Taxon-

omy and Survey of Attacks on Digital Signature. Computers & Security, 2013, vol.

34, pp. 67-112.

[44] Viru District Court's Narva Courthouse's ruling in criminal case 1-18-825/5, p. 3.

https://www.riigiteataja.ee/kohtulahendid/detailid.html?id=222662812 (22.03.2018)

[45] Veldre A. Turvanõrkus, oht, risk… RIA blog, 29.09.2017. https://blog.ria.ee/tur-

vanorkus-oht-risk (22.03.2018)

[46] Recommendation ITU-T X.680. Information technology – Abstract Syntax Notation

One (ASN.1): Specification of basic notation. ITU-T. X.680 (07/2002), pp. vii, 5.

[47] Mikus A. N. An analysis of disc carving techniques. Calhoun: The NPS Institutional

Archive DSpace Repository, 2005, pp. 1-4, 7-11, 33-36.

[48] Kessler G. C. File Signatures Table. https://www.garykessler.net/li-

brary/file_sigs.html (10.03.2018)

[49] Electronic Record. Society of American Archivists. https://www2.archi-

vists.org/glossary/terms/e/electronic-record (23.02.2018)

[50] NIST. AU-10 Non-Repudiation. NIST Special Publication 800-53 (Rev. 4).

https://nvd.nist.gov/800-53/Rev4/control/AU-10 (14.03.2018)

[51] Mulazzani M.; Neuner S.; Kieseberg P.; Huber M.; Schrittwieser S.; Weippl E..

Quantifying Windows File Slack Size and Stability. 9th International Conference on

Digital Forensics (DF), IFIP Advances in Information and Communication Technol-

ogy, Springer 2013, pp.183-193. https://hal.inria.fr/hal-01460605/document

(08.04.2018)

[52] Forensics: What is RAM Slack? https://whereismydata.word-

press.com/2009/04/26/forensics-what-is-ram-slack/ (08.04.2018)

[53] Larson S. P. Concerning File Slack. ADFSL Conference on Digital Forensics, Secu-

rity and Law, 2009, p. 105. http://proceedings.adfsl.org/index.php/CDFSL/ar-

ticle/viewFile/113/110 (08.04.2018)

[54] Harichandran V. S.; Walnycky D.; Baggili I.; Breitinger F.. CuFA: A More Formal

Definition for Digital Forensic Artifacts. Digital Investigations, 2016 vol. 18, pp.

125-137.

https://tools.ietf.org/html/rfc5280
https://www.researchgate.net/publication/258332973_A_practical_overview_and_comparison_of_certain_commercial_forensic_software_tools_for_processing_large-scale_digital_investigations
https://www.researchgate.net/publication/258332973_A_practical_overview_and_comparison_of_certain_commercial_forensic_software_tools_for_processing_large-scale_digital_investigations
https://www.researchgate.net/publication/258332973_A_practical_overview_and_comparison_of_certain_commercial_forensic_software_tools_for_processing_large-scale_digital_investigations
https://www.riigiteataja.ee/kohtulahendid/detailid.html?id=222662812
https://blog.ria.ee/turvanorkus-oht-risk
https://blog.ria.ee/turvanorkus-oht-risk
https://www.garykessler.net/library/file_sigs.html
https://www.garykessler.net/library/file_sigs.html
https://www2.archivists.org/glossary/terms/e/electronic-record
https://www2.archivists.org/glossary/terms/e/electronic-record
https://nvd.nist.gov/800-53/Rev4/control/AU-10
https://hal.inria.fr/hal-01460605/document
https://hal.inria.fr/hal-01460605/document
http://proceedings.adfsl.org/index.php/CDFSL/article/viewFile/113/110
http://proceedings.adfsl.org/index.php/CDFSL/article/viewFile/113/110

55

[55] Tamm M. ID-kaart murti lahti. RIA tõestas, et kära ID-kaardi turvanõrkuse pärast

polnud asjata. Eesti Päevaleht, 19.04.2018. http://epl.delfi.ee/news/eesti/id-kaart-

murti-lahti-ria-toestas-et-kara-id-kaardi-turvanorkuse-parast-polnud-as-

jata?id=81807683 (19.04.2018)

[56] Freed N.; Klensin J.. Media Type Specifications and Registration Procedures. Re-

quest for Comments: 4288. https://tools.ietf.org/html/rfc4288 (31.03.2018)

[57] Gül M.; Kugu E.. A Survey On Anti-Forensics Techniques. Artificial Intelligence

and Data Processing Symposium (IDAP), 2017.

[58] Character Classes and Bracket Expressions. GNU.org. https://www.gnu.org/soft-

ware/grep/manual/html_node/Character-Classes-and-Bracket-Expressions.html

(14.05.2018)

http://epl.delfi.ee/news/eesti/id-kaart-murti-lahti-ria-toestas-et-kara-id-kaardi-turvanorkuse-parast-polnud-asjata?id=81807683
http://epl.delfi.ee/news/eesti/id-kaart-murti-lahti-ria-toestas-et-kara-id-kaardi-turvanorkuse-parast-polnud-asjata?id=81807683
http://epl.delfi.ee/news/eesti/id-kaart-murti-lahti-ria-toestas-et-kara-id-kaardi-turvanorkuse-parast-polnud-asjata?id=81807683
https://tools.ietf.org/html/rfc4288#section-4.11
https://www.gnu.org/software/grep/manual/html_node/Character-Classes-and-Bracket-Expressions.html
https://www.gnu.org/software/grep/manual/html_node/Character-Classes-and-Bracket-Expressions.html
https://www.gnu.org/software/grep/manual/html_node/Character-Classes-and-Bracket-Expressions.html

56

I. List of Annexes

1. Annex I. ZIP Structure and Hex Editor Based Review of Sample Containers

‘DMM.bdoc’ and ‘Bdoc21-TS.asice’

2. Annex II. Attributive XML Elements in Signature Part of Sample DSD Containers

3. Annex III. Attributive Data in ASN.1 Encoded Objects in DSD Sample Signatures

4. Annex IV. Carving, Keyword Searching, Extraction of Attributes of Sample Con-

tainers and Web-Scraped Containers

5. Annex V. Glossary

57

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Raul Nugis,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of

validity of the copyright, and

1.2. make available to the public via the Web environment of the University of Tartu,

including via the DSpace digital archives until expiry of the term of validity of the

copyright,

of my thesis

Forensic Data Properties of Digital Signature BDOC and ASiC-E Files on Classic Disk

Drives,

supervised by Pavel Laptev, Raimundas Matulevičius

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property

rights or rights arising from the Personal Data Protection Act.

Tartu, 21.05.2018

