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Introduction to Post-Quantum Cryptography in scope of NIST's Post-

Quantum Competition 

Abstract: 

Nowadays, information security is essential in many fields, ranging from medicine and 

science to law enforcement and business, but the developments in the area of quantum 

computing have put the security of current internet protocols at risk. Since quantum 

computers will likely be able to break most of our current cryptostandards in trivial time, a 

need for stronger and quantum-resistant encryption algorithms has arisen. During the last 

decades, a lot of research has been conducted on the topic of quantum-resistant 

cryptography, yet none of the post-quantum algorithms have yet been standardized. This 

has encouraged NIST to start a program to select the future post-quantum cryptography 

standards. This thesis gives an overview of different types of quantum-resistant algorithms 

for public key encryption and signature schemes, using the examples from NIST’s post-

quantum cryptography standardization program. The aim of this paper is to compose a 

compact material, which gives a person with computer science background a basic 

understanding of the main aspects of post-quantum cryptography. 

Keywords: 

Post-quantum cryptography, post-quantum cryptography standardization, lattice based 

cryptography, code based cryptography, multivariate polynomials, hashes 

CERCS:  P170 - Computer science, numerical analysis, systems, control 
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Postkvantkrüptograafia alused NISTi standardiseerimisprogrammi  

põhjal 

Lühikokkuvõte: 

Tänapäevases veebipõhises maailmas on andmeturve paljudes valdkondades määrava 

tähtsusega, kuid hiljutised edasijõudmised kvantmehhaanika valdkonnas võivad tänased 

interneti turvaprotokollid ohtu seada. Kuna kvantarvutid on tõenäoliselt võimelised murdma 

meie praeguseid krüptostandardeid, tekib vajadus tugevamate krüpteerimisalgoritmide 

järele. Viimaste kümnendite jooksul on postkvantkrüptograafia saanud palju tähelepanu, 

kuid siiani pole ükski postkvantkrüptograafiline algoritm standardiseeritud ulatuslikuks 

kasutamiseks. Selle tõttu algatas NIST programmi, mille eesmärk on valida uued 

krüptostandardid, mis säilitaks oma turvalisuse ka kvantarvutite vastu. Käesolev lõputöö 

annab ülevaate postkvantkrüptograafia erinevatest valdkondadest kasutades näiteid NISTi 

standardiseerimisprogrammist. Lõputöö eesmärk on koostada ülevaatlik materjal, mis 

annaks informaatika või matemaatika taustaga tudengile laiahaardelised algteadmised 

postkvantkrüptograafia valdkonnast. 

Võtmesõnad: 

Postkvantkrüptograafia, postkvantkrüptograafia standardiseerimine, võrepõhine 

krüptograafia, koodipõhine krüptograafia, räsipõhine krüptograafia 

CERCS:   P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine 
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1. Introduction 

Ever since the research in the field of quantum computing was initiated in the early 1980s, 

it has been an area of great interest for many scientists. Today, it is widely believed that a 

fully functional quantum computer will be built and ready for use in a wide variety of fields 

in the coming decades. Quantum computers can solve problems that are not feasible for 

conventional computers in a reasonable time by using particles that can be in superposition. 

Instead of using binary digits (bits) to encode data, quantum computers use quantum bits 

(qubits) which can take on the binary values 0 or 1 or both simultaneously. [1] 

While quantum computers can be used efficiently in scientific research and many other 

fields to advance the humankind, a large-scale quantum computer will pose many new 

problems, one of them being the security of digital communications. Quantum computers 

will be able to break most of the public-key cryptosystems that are in use today in trivial 

time. Due to that, many scientists have started researching the possibilities of quantum-

resistant cryptography (also called post-quantum cryptography) in order to create 

cryptosystems that would endure attacks from both conventional computers and quantum 

computers.  

In order to create utilizable quantum-secure cryptosystems, scientists need to overcome 

various challenges. For example, it is likely that quantum-resistant algorithms will need to 

have larger key sizes than the algorithms that are in use today, which in return may result in 

the need to change some of the Internet protocols. Due to that, the future standards of post-

quantum cryptography need to go through thorough examination and consideration. [2] 

As the need for stronger cryptography is getting more substantial, different measures are 

taken to address the problem. Even though transitions from smaller key sizes and algorithms 

have already been proposed, they will not be enough to endure attacks by quantum 

computers. Thus, in 2016 NIST (National Institute of Standards and Technology) started a 

competition, which will be referred to as NIST’s Post-Quantum Competition in this paper, 

that aims to find, develop and standardize quantum-resistant cryptosystems that would in 

the future replace our current cryptographic standards. Proposals for quantum-resistant 

public key encryption, digital signature and key exchange algorithms were accepted until 

the submission deadline late in 2017. Those submissions will have to go through three 

rounds of serious examination and testing over the next few years. The final draft standards 

will assumingly be released between 2022-2024. [3] 
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This thesis aims to give an overview of the submissions to the NIST’s post-quantum 

cryptography standardization program. Firstly, an examination of the submissions is 

presented, introducing the generalities of the competition. Then we look into the most 

common types of algorithms used to provide post-quantum security using the examples from 

the NIST’s post-quantum cryptography standardization program submissions. As a result, a 

concise paper is composed, which should give a person with previous knowledge in the 

sphere of computer science or mathematics an overview of the basic principles of post-

quantum cryptography. 
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2. Submissions to NIST’s Post-Quantum Competition 

The current chapter presents an overview of the submissions to the NIST’s post-quantum 

competition and is based on the official information from NIST’s webpage. [4] 

2.1 Round 1 

Due the submission deadline in late 2017 in total 69 ideas were submitted and accepted by 

NIST, including 20 digital signature algorithms and 49 public key encryption or key 

encapsulation schemes. Only two submissions provided all key encapsulation, public key 

encryption and digital signature algorithms together, namely DME and Post-quantum RSA.  

It is also important to note, that even though post-quantum RSA scheme was accepted as a 

submission by NIST, it is considered a satirical submission, since for it to be feasible and 

provide reasonable security, the key sizes would have to be too large to use effectively in 

real world. 

Before the start of the second round, five submissions were withdrawn. In addition, two 

submissions – HILA5 and ROUND2 – were merged into a new submission called 

ROUND5. 

With five submission withdrawn and two merged together, 63 proposals remained under 

consideration at the end of the first round. 

Proposed algorithms fall into four main categories based on the type of the algorithm: 

lattice-based, hash-based, code-based and multivariate. The most popular algorithm type in 

the first round submissions was based on lattice-based cryptography with a total of 25 

submissions using lattice-based cryptography, including five digital signature algorithms 

and twenty public key encryption or key encapsulation algorithms. Nineteen submissions 

were using code-based cryptography, out of which only two were digital signature 

algorithms. To the contrary, hash-based algorithms were only used in digital signature 

algorithms. A small part of the algorithms did not belong to any of the aforementioned 

families. The number of submissions of each type is portrayed in Figure 1 below. 
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Figure 1. Round 1 submissions by type. 

 

Based on the submissions to the first round of NIST’s post-quantum competition, lattice-

based and code-based algorithms are the preferred candidates for future cryptostandards. 

2.2 Round 2 

The Round 2 submissions were announced in the end of January 2019. 26 candidates were 

selected out of the 63 candidates from Round 1, including 17 public-key encryption 

algorithms and 9 digital signature schemes.  

Most of the remaining candidates fall under the category of lattice-based cryptography, 

making up 12 out of 26 Round 2 submissions. Just as in the first round, the second most 

common algorithm type is based on coding theory. Multivariate polynomial based systems 

were most favoured for digital signature schemes with four schemes. Other families, such 

as hash-based, elliptic curve and zero knowledge were represented once each. Figure 2 

below depicts Round 2 candidates by algorithm type. 
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Figure 2. Round 2 submissions by type. 

 

In the coming upchapters, the main families of quantum-resistant algorithms are introduced 

in more detail, specifically lattice-, code-, hash- and multivariate polynomial based. 
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3. Lattice-based algorithms 

More than a third of the algorithms proposed to NIST’s post-quantum cryptography 

standardization program were built on lattice-based cryptography. In total, twenty-five 

lattice-based schemes were proposed during Round 1. Lattice-based cryptosystems are 

favoured due to their proof of worst-case hardness security and quantum-resistance. In 

addition, lattice-based systems are often more efficient, because they do not require any 

difficult computations. [5] 

One of the main drawbacks of lattice-based algorithms is their newness, hence the security 

parameters like key length are not well established and understood. This is a relatively small 

problem, since in the past years the number of publications on the topic of lattice-based 

algorithms has grown substantially. [6]  

The following chapters are based on multiple different works on lattice-based cryptography, 

such as a Master’s thesis by F. Bergami [7], multiple papers by O. Regev [8, 9] and other 

works on the topic [10-12]. In the end, an example from NIST’s post-quantum 

standardization program is described briefly, solely based on its documentation [13]. 

3.1 Preliminaries 

A basis of lattice ℒ is an arbitrary set of linearly independent vectors 𝐵 =  {𝑏𝑖
⃗⃗⃗  } such that 

ℒ = {∑𝑎𝑖𝑏𝑖
⃗⃗⃗  ∶ 𝑎𝑖 ∈ ℤ}. In other words, basis is a set of vectors that can be used to reproduce 

any point in the lattice. We denote a lattice ℒ  with basis 𝐵 as ℒ(𝐵), where basis 𝐵 can be 

thought of as an 𝑛 × 𝑛 matrix with columns 𝑏𝑖
⃗⃗⃗  . 

The lattice ℒ generated by basis 𝐵 is the set of all the integer linear combinations of the 

vectors in 𝐵. Intuitively, a lattice can be thought of as a regularly spaced infinite 𝑛-

dimensional grid of points.  

Bases are not unique – multiple bases can generate the same lattice. Two bases 𝐵1 and 𝐵2 

are equivalent if and only if 𝐵1 = 𝐵2𝑈, where 𝑈 is a integer matrix with a determinant of 

±1 (unimodular matrix). 

Figure 3 below depicts a 2-dimensional lattice with basis 𝐵 = {𝑏1
⃗⃗  ⃗, 𝑏2

⃗⃗⃗⃗ }. In practice, the 

dimension 𝑛 has to be rather large to provide reasonable security. 
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Figure 3. Two-dimensional lattice with base vectors 𝑏1 and 𝑏2. 

 

λ1(ℒ) denotes the length of the shortest non-zero vector in ℒ. More generally, λk(ℒ) denotes 

the smallest radius of a sphere containing 𝑘 linearly independent vectors:  

λk(ℒ) ≔ min {𝑟: ℒ contains k linearly independent vectors of length ≤  r} 

The cryptographic systems using lattices are based on various computational problems: 

 Shortest vector problem (SVP) – given a basis 𝐵, find a vector of length λ1(ℒ(𝐵)). 

One of the most common variations of SVP is SVP𝛾 – given a basis 𝐵, find a vector 

of length ≤ 𝛾λ1(ℒ(𝐵)); 

 Shortest independent vectors problem (SIVP𝛾) – given a basis 𝐵, find 𝑛 linearly 

independent vectors in ℒ(𝐵) of length ≤ 𝛾λn(ℒ(𝐵)); 

 Closest vector problem (CVP) – given a basis 𝐵 and a randomly chosen point 𝑣, 

find the closest lattice point to 𝑣 in ℒ(𝐵). A less strict version of this is CVP𝛾 – given 

a basis 𝐵 and a point 𝑣, find a lattice point that is at most 𝛾 times farther from 𝑣 than 

the closest lattice point to 𝑣. 

Multiple other variations of these problems are used in practice. One of the most common 

one is GapSVP𝛾 – given a basis 𝐵 and a real 𝑑, decide between λ1(ℒ(𝐵)) ≤ 𝑑 and 

λ1(ℒ(𝐵)) > 𝛾𝑑. 

All of these problems are hard to solve and despite intensive research, no efficient algorithm 

has been found for any of these problems.  

One of the reasons why lattice-based cryptosystems are one of the most promising options 

for future cryptostandards, is their worst-case security guarantee. That means that breaking 

their security is known to be at least as hard as solving the underlying lattice problem in any 

of its instances including the worst one. 
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3.2 Learning With Errors 

In 2005, Regev published a paper, in which a reduction from worst-case lattice problems 

such as GapSVP and SIVP to a certain learning problem was presented. [9] This learning 

problem, called learning with errors (LWE), has become the basis for most modern lattice-

based cryptosystems. 

Fix a size parameter 𝑛 ≥ 1, a modulus 𝑞 ≥ 2 and an error probability distribution 𝜒 on ℤ𝑞. 

The Learning With Errors problem consists of recovering a secret 𝑠 ∈ ℤ𝑞
𝑛 given a 

sequence of approximate random linear equations on 𝑠: 

𝑎1 ← ℤ𝑞
𝑛, 𝑏1 = ⟨𝑠, 𝑎1⟩ + 𝑒1 

𝑎2 ← ℤ𝑞
𝑛, 𝑏2 = ⟨𝑠, 𝑎2⟩ + 𝑒2 

⋮ 

𝑎𝑖 ∈ ℤ𝑞
𝑛 is chosen uniformly at random and 𝑒𝑖 ∈ ℤ𝑞 is chosen according to 𝜒. The error 

distribution 𝜒 is a normal distribution rounded to the nearest integer of standard deviation 

𝛼𝑞 where 𝛼 > 0. 

In order to provide worst-case hardness 𝛼 must satisfy 𝛼𝑞 > √𝑛, as indicated by Regev. [9] 

Let us note, that the problem of recovering secret 𝑠 is equivalent to finding 𝑒, since without 

the noise, the system can be solved using Gaussian elimination. 

The adaptation of LWE presented above is referred to as search-LWE. Another very 

common variation of LWE is decision-LWE. The aim of decision-LWE is to distinguish 

pairs (𝑎𝑖, 𝑏𝑖), where 𝑏𝑖 = ⟨𝑠, 𝑎𝑖⟩ + 𝑒𝑖 from uniform pairs (𝑎𝑖, 𝑏𝑖), where 𝑏𝑖 is chosen 

uniformly at random. 

While the actual reduction from lattice problems such as GapSVP to LWE problem is 

beyond the scope of this work, a more intuitive connection between lattices and LWE is 

given. Having 𝑛 samples of 𝑏𝑖 = ⟨𝑠, 𝑎𝑖⟩ + 𝑒𝑖 from the LWE distribution, we can present the 

associated vector 𝑏 = (𝑏1, … , 𝑏𝑛) as 𝑏 = 𝐴𝑠 + 𝑒, where 𝐴𝑇 = (𝑎1|… | 𝑎𝑛) and 𝑒 =

(𝑒1, … , 𝑒𝑛) is a small noise vector. In that case, we can think of 𝐴𝑠 as a point in the lattice 

ℒ(𝑎1, … , 𝑎𝑛), defined by the coefficients from 𝑠. Since 𝑒 is small, 𝑏 must be quite close to 

this lattice point, thus finding the secret vector 𝑠 corresponds to the closest vector problem 

(CVP), which in term can be translated to SVP problems. 
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3.3 Regev’s cryptosystem 

Using the problem of learning with errors, a simple cryptosystem can be built. This 

cryptosystem is parameterized by the security parameter 𝑛, number of equations 𝑚, modulus 

𝑞 and a real noise parameter 𝛼 > 0. 

Key generation 

The private key is a vector 𝑠 chosen uniformly from ℤ𝑞
𝑛. The public key consists of 𝑚 

samples (𝑎𝑖, 𝑏𝑖) from the LWE distribution, where 𝑏𝑖 = ⟨𝑠, 𝑎𝑖⟩ + 𝑒𝑖, using the secret 𝑠, 

modulus 𝑞 and a noise parameter 𝛼. 

Encryption 

For each bit of the message a random set 𝑆 is uniformly chosen among all 2𝑚 subsets of 

[𝑚]. If the bit is 0, the encryption is (∑ 𝑎𝑖𝑖∈𝑆 , ∑ 𝑏𝑖𝑖∈𝑆 ), otherwise if the bit is 1, the 

encryption of the bit is (∑ 𝑎𝑖𝑖∈𝑆 , ⌊
𝑞

2
⌋ + ∑ 𝑏𝑖𝑖∈𝑆 ). 

Decryption 

The decryption of a pair (𝑎, 𝑏) is 0 if 𝑏 − ⟨𝑎, 𝑠⟩ is closer to 0 than to ⌊
𝑞

2
⌋ modulo 𝑞, and 1 

otherwise. 

 

Let us note, that without the error 𝑒, the system could be easily solved with Gaussian 

elimination and 𝑏 − ⟨𝑎, 𝑠⟩ would always be either 0 or ⌊
𝑞

2
⌋. Thus, the decryption error occurs 

only if the sum of the errors over chosen set is greater than  
𝑞

4
, which does not happen due 

to the chosen error distribution. In order to better understand Regev’s cryptosystem, an 

example with small parameters is presented.  

Example 

Parameters used in this example are 𝑞 = 3, 𝑚 = 4 and 𝑛 = 3. Let us assume that Alice 

wants to send Bob an encrypted message. Bob’s secret key 𝑠 = (2 0 1)𝑇 is chosen uniformly 

at random. Public key consists of the pair (𝐴, 𝑏), where 𝐴 is a 4 × 3 matrix 

𝐴 = (

1 2 2
1 2 0
0 1 0
2 0 1

) 
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and 𝑏 = (1 2 0 2) is a vector. 

If Alice wants to send a message to Bob, she chooses a random subset of rows from 𝐴, in 

this case she has chosen rows 1 and 3. She then has to calculate the encryption of her 

message, based on the bit that needs to be encrypted. If the bit is 0, its encryption is 

(∑ 𝑎𝑖𝑖∈𝑆 , ∑ 𝑏𝑖𝑖∈𝑆 ) = ((1 0 2), 1), while if the bit is 1, the encryption is (∑ 𝑎𝑖𝑖∈𝑆 , ⌊
𝑞

2
⌋ +

∑ 𝑏𝑖𝑖∈𝑆 ) = ((1 0 2), 2). When Bob receives the message, he needs to compute 𝑏 − ⟨𝑎, 𝑠⟩. 

In the first case (if the encrypted bit was 0), the result is 𝑏 − ⟨𝑎, 𝑠⟩ = 1 − 4 = 0. Since it is 

closer to 0 than to ⌊
𝑞

2
⌋  𝑚𝑜𝑑 𝑞, he can be sure that the original bit was 0. In the other case, 

where the encrypted bit was 1, he calculates 𝑏 − ⟨𝑎, 𝑠⟩ = 2 − 4 = 1, which in term is closer 

to ⌊
𝑞

2
⌋ = 1. 

A possible choice of parameters proposed by Regev that guarantee both security and 

correctness is the following:  

 𝑞 is a prime between 𝑛2 and 2𝑛2 

 𝑚 =  1.1 · 𝑛 log 𝑞 

 𝛼 = 1/(√𝑛 log2 𝑛) 

Even though the cryptosystem proposed above is rather inefficient, it gives good insight into 

the field of lattice-based cryptography based on the problem on LWE. The idea of using 

LWE problem as a basis of the cryptosystem has been very popular since, which has led to 

a big amount of follow-up work and multiple improvements.  

One of the most researched variants of LWE is ring-LWE or more correctly learning with 

errors over rings. RLWE is more efficient than the regular LWE problem, but it also requires 

the use of lattices that possess extra algebraic structure – ideal lattices, the description of 

which is beyond the scope of this work. 

Ring-LWE offers multiple improvements over the classical LWE. The size of the public key 

is substantially smaller than in the LWE based cryptosystem and it is also at least as secure 

as LWE. It is proven, that just as LWE, ring-LWE using ideal lattices reduces to worst-case 

lattice problems like SVP. Despite considerable effort, no significant progress in attacking 

these problems has been made. 
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3.4 FrodoKEM 

One of the many lattice-based cryptosystems proposed to NIST’s post-quantum 

standardization program was FrodoKEM. The core of FrodoKEM is an LWE public-key 

encryption scheme called FrodoPKE, which is based on the original Regev’s cryptosystem. 

Unlike most of the algorithms proposed to NIST’s program, FrodoKEM does not use ring-

LWE as its basis, but holds to the original LWE problem.  

FrodoKEM does require moderately longer running times than the submissions based on 

ring-LWE, but in return, FrodoKEM offers simplicity and compactness, reducing the 

potential for errors. For example, the base code given in the specification can be used for 

different LWE security levels, without making major changes to the code solely by changing 

compile-time constants. FrodoKEM imposes very few requirements on its parameters, 

which makes it possible to meet almost any desired security target in an automated way. 
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4. Code-based algorithms 

Code-based cryptography has been widely researched ever since Robert McEliece published 

his groundbreaking research in 1978. McEliece cryptosystem is the first fully functioning 

code-based cryptosystem and even though McEliece cryptosystem with original parameters 

has been broken, it is still very expensive to attack. Breaking it becomes nearly impossible 

with larger key sizes. Furthermore, decryption and encryption process is faster than, for 

example, in RSA. The main disadvantage of McEliece is its already large key size. [14] 

McEliece cryptosystem is a potential alternative to current cryptography standards in the 

post-quantum world on account of the algorithm being based on the NP-hard problem of 

decoding a general linear code. Its quantum-security and speed encouraged multiple 

submissions to the NIST’s post-quantum competition, that are directly based on the classic 

McEliece cryptosystem, providing various improvements for decreasing key sizes and 

improving security.  

Other submissions based on code-based cryptography exploit the advantages of various 

codes, including different quasi–cyclic codes, Goppa codes and multiple newly introduced 

codes, which will not be explained in detail in this thesis. In this report, a cryptosystem 

based on classic McEliece system is presented.  

This chapter is mostly founded on two papers: the original report by Robert McEliece [15] 

and the Classic McEliece submission to NIST’s post-quantum standardization program [16], 

while also building upon ideas brought up in a study written in the University of Tartu [17]. 

4.1 Preliminaries 

A [𝑛, 𝑘]-linear code 𝐶 is a 𝑘-dimensional linear subspace of a finite field 𝔽 
𝑛  of size 𝑛. We 

say that code 𝐶 has a length 𝑛 and dimension 𝑘. In the McEliece cryptosystem we only work 

with binary linear codes over the field 𝔽2
 . Codewords will be expressed as bit vectors. 

The Hamming weight of codeword 𝑥 ∈ 𝔽2
𝑛, denoted 𝑤𝑡(𝑥) is defined as the number of 

coordinates that are not equal to zero. That is equal to its distance from the zero-vector: 

𝑤𝑡(𝑥) = 𝑑(𝑥, 0). 
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The Hamming distance of two codewords 𝑥 = 𝑥1, … , 𝑥𝑛 and 𝑦 = 𝑦1, … , 𝑦𝑛 is defined as 

𝑑(𝑥, 𝑦) = ∑𝑑(𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1

 

where (𝑥𝑖, 𝑦𝑖) = {
1, 𝑥𝑖 ≠ 𝑦𝑖

0, 𝑥𝑖 = 𝑦𝑖
 . 

The distance of code 𝐶 is defined as the minimum Hamming distance of any two distinct 

codewords of 𝐶:  

𝑑(𝐶) = min
𝑥,𝑦∈𝐶
𝑥≠𝑦

𝑑(𝑥, 𝑦) 

If 𝐶 is an [𝑛, 𝑘]-linear code with distance 𝑑, then 𝐶 is called an [𝑛, 𝑘, 𝑑]-linear code. 

Generator matrix 𝐺 of a [𝑛, 𝑘]-linear code 𝐶 is a 𝑘 × 𝑛 matrix whose rows form a basis of 

the code 𝐶. Let us note that the generator matrix for a linear code is generally not unique, 

since every basis of 𝐶 gives a different, but equivalent generator matrix for 𝐶. 

Let 𝐶 be an [𝑛, 𝑘, 𝑑]-linear code with generator matrix 𝐺. We say that code 𝐶 can correct up 

to 𝑡 errors, if there exists a decoding algorithm 𝐷𝑒𝑐 ∶ 𝔽 
𝑛 → 𝐶 such that for every 𝑢 ∈ 𝔽 

𝑘 

and every vector 𝑒 ∈ 𝔽 
𝑛 with weight 𝑤𝑡(𝑒) ≤ 𝑡, the word 𝑦 = 𝑢𝐺 + 𝑒 is always correctly 

decoded as 𝐷𝑒𝑐(𝑦) = 𝑢. Code C is then an error-correcting code. 

A permutation matrix 𝑃 is a binary matrix, whose every row and every column each 

consist of a single 1, while all other values are 0. That means, that multiplying any matrix 

with a permutation matrix 𝑃 results in a matrix contains all the same columns as the original 

matrix, but in permuted order. 

4.2 Construction of McEliece Cryptosystem 

Let 𝐶 be a random code, such that 𝐶 = [𝑛, 𝑘, 𝑑] for which there is an efficient algorithm 

𝐷𝑒𝑐𝐶, that can decode any codeword with up to 𝑡 = ⌊
𝑑−1

2
⌋ errors. 

Let 𝐺 be a 𝑘 × 𝑛 generator matrix of code 𝐶, let 𝑆 be a random non-singular 𝑘 × 𝑘 matrix 

and let 𝑃 be a random 𝑛 × 𝑛 permutation matrix.  

McEliece’s system is constructed as follows. 
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Key generation: 

 Pick a random 𝑘 × 𝑛 generator matrix 𝐺 of code 𝐶. Generate a random non-singular 

𝑘 × 𝑘 matrix 𝑆 and a random 𝑛 × 𝑛 permutation matrix 𝑃.  

 Public key: 𝑆𝐺𝑃 = 𝐺′ 

 Private key: (𝑆, 𝐺, 𝑃) 

Encryption: 

 Let 𝑚 be a 𝑘-bit message 

 Let 𝑒 be an random 𝑛-bit vector such that 𝑤𝑡(𝑒) = 𝑡 

 Then 𝑐 = 𝑚 · 𝐺′ + 𝑒 is the ciphertext 

Decryption: 

 The recipient uses his private key to compute 𝑃−1, the inverse of 𝑃 

 The recipient computes 𝑐′ = 𝑐𝑃−1  

 The recipient uses the decoding algorithm 𝐷𝑒𝑐𝐶 to decode 𝑐′ to 𝑚’ 

 Then 𝑚 = 𝑚’𝑆−1 is the original message 

 

Let us note that 𝑐′ = 𝑐𝑃−1 = 𝑚𝐺′𝑃−1 + 𝑒𝑃−1 = 𝑚𝑆𝐺 + 𝑒𝑃−1. Since 𝑃 is a permutation 

matrix, the weight of 𝑒𝑃−1 is equal to 𝑡. Seeing that 𝐷𝑒𝑐𝐶 can correct up to 𝑡 errors and 

𝑚𝑆𝐺 can be at a distance up to 𝑡 from 𝑐𝑃−1, the correct codeword 𝑚’ = 𝑚𝑆 will be obtained. 

Now the original message can be obtained easily by multiplying the codeword with the 

inverse of 𝑆: 𝑚 = 𝑚′𝑆−1 = 𝑚𝑆𝑆−1. 

4.3 Security of McEliece Cryptosystem 

McEliece cryptosystem is a one-way cryptosystem – that means that an attacker without any 

knowledge of the target plaintext cannot reconstruct the randomly chosen codeword from a 

ciphertext and public key. 

If an attacker got hold of an encrypted message 𝑐, he would have two possibilities in order 

to retrieve the original message 𝑚:  

1. Find out 𝐺 knowing 𝐺’; 
2. Decode 𝑐 without knowing an efficient decoding algorithm. 
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Attacks of the first type are called structural attacks, while attacks of the second type are 

called decoding attacks. The security of the McEliece cryptosystem is suggested by the 𝑁𝑃-

hard general decoding problem. 

General decoding problem of linear codes. Give an [𝑛, 𝑘]-linear code 𝐶 and a codeword 

𝑦 ∈ 𝔽 
𝑛, find a codeword 𝑐 ∈ 𝐶 such that the distance 𝑑(𝑦, 𝑐) is minimal. 

Information-set decoding attack proposed by McEliece in his original paper solves the 𝑁𝑃-

hard general decoding problem, but the attack runs in exponential time. However, the same 

basic idea is used to construct attacks that are more efficient. Classic McEliece submission 

to NIST’s post-quantum program has addressed this threat as well as other possible attacks 

by choosing proper parameters and adding other various improvements. 
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5. Hash-based algorithms 

Hash-based algorithms are quite different from the other potential post-quantum schemes. 

So far, hash-based cryptography is limited to digital signatures schemes and is not used for 

key encapsulation or public key encryption. First hash-based signature schemes date back 

to late 1970s and thus their security is well understood, even against quantum attacks. [2]  

Hash-based functions rely completely on the security of the underling hash function. That 

makes hash-functions very adjustable and resistant against quantum attacks. If a hash 

function becomes insecure, it can be replaced by another, making the signature scheme safe 

to use once again. Hash-based algorithms are also very fast, because the only calculations 

required are the computations of the underlying hash function. [18] 

The main disadvantage of hash-based schemes is that they can be used for a limited number 

of signatures only. The number of signatures can be increased, but only at the expense of 

signature size. [2] 

In order for a hash function 𝐻(𝑋) to be suitable for creating secure signature schemes, it 

must possess certain properties. For example, cryptographic hash function must be a one-

way function – given a random output 𝑌 = 𝐻(𝑋) it should be hard to find an input 𝑋, which 

would satisfy 𝐻(𝑋) = 𝑌. This property is also called pre-image resistance. A similar 

property required of cryptographic hash functions is second-preimage resistance – given 

a random input 𝑋, it should be difficult to find a different input 𝑋’ that would produce the 

same hash (such that 𝐻(𝑋) = 𝐻(𝑋’)). [19] 

One of the most important properties of cryptographic hash functions is collision resistance. 

It is quite similar to second-preimage resistance, in fact second-preimage resistance is often 

called weak collision resistance. Collision resistance insures that it is computationally 

infeasible to find two different inputs that produce the same output. Collision resistance is 

important because collisions pose a serious security risk. For example, if an attacker found 

a message that produces the same hash as another authentic digitally signed message (a 

collision), they could easily exchange the original message with the fake one, while still 

keeping the same signature value. It would be impossible to distinguish them when verifying 

the signature. [20] 

The following chapters are based on multiple works by Daniel J. Bernstein et al. [21, 22] 

and an article by Matthew Green [19]. 
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5.1 Hash-based signatures 

First hash-based signature scheme was introduced by Leslie Lamport in 1979.  

Given a 256-bit cryptographic hash function and a secure random bit generator, the Lamport 

signature scheme can be used as described below. 

 Key pair generation. In order to create a private key, Alice needs to generate two 

sets of 256 random 256-bit bit strings (i.e. random numbers). These 512 values are 

her private key. To create her public key, she needs to hash all 512 values from her 

secret key. These two sets of 256 hashes (512 hashes in total) form her public key. 

 Signing a message. If Alice wants to sign a message, she first needs to hash the 

message to a 256-bit hash. Then, for each bit in the hash, Alice picks one number 

from the corresponding set of random numbers that make up her private key, based 

on the value of the bit. For example, if the bit is 0, she chooses the corresponding 

random number from the first set, and if the bit is 1, she needs to choose the 

corresponding number from the second set. 

 Verifying the signature. When Bob needs to verify Alice’s signature on a message 

he received, he also first has to hash the message to a 256-bit hash sum. Then he 

picks 256 hashes from Alice’s public key based on the hash sum, exactly in the same 

manner that Alice picked numbers for her signature – if the bit from the message is 

0, he needs to pick the hash from the first set of the public key, and if the bit is 1, he 

picks the hash from the second set of the public key. 

In order to verify Alice’s signature, Bob hashes all of the numbers in Alice’s 

signature. If every hash out of these 256 hashes match all the 256 hashes he picked 

from the public key earlier, then he can be sure that the signature is valid. 

These are the main principles of Lamport signature scheme. Evidently, the main downside 

of this scheme is that one can only use the generated key pair once, which is why it is called 

a one-time signature scheme (OTS). If we were to use the same private key twice, we would 

reveal both secret key values for some of the positions. An attacker could use this knowledge 

to forge our signature. In addition, the keys and signatures in Lamport signature scheme are 

quite large in size. 

The one-time signature scheme was later extended by Ralph Merkle who combined it with 

hash trees and thus made it possible to use one Lamport key to sign multiple messages. 
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Merkle starts with a one-time signature scheme like the Lamport signature scheme and then 

uses a binary tree of height ℎ (called a Merkle tree) to authenticate 2ℎ one-time signature 

key pairs. He places the public keys of the Lamport signature schemes into the leaves of the 

tree. All the other non-leaf nodes are hash values of the concatenation of its children, thus 

the root of the tree becomes the public key for all of the signatures and one-time signature 

secret keys become the secret key of the new scheme. Using this scheme allows to sign 2ℎ 

messages. The signer has to retain all of the Lamport secret keys for signing.  

To sign a message, the signer selects an unused public key from the tree and signs the 

message using the corresponding Lamport secret key. In addition to the Lamport signature, 

the signature in Merkle’s scheme also holds the corresponding Lamport public key and 

something called a Merkle proof. Merkle proof ensures, that the specific Lamport public 

key belongs to the tree identified by the root. 

Merkle proof is a way of making sure that the given data belongs to a Merkle tree, without 

having to provide the full tree. Since all the non-leaf nodes are just hashes of their children 

nodes, we only need to provide the siblings of the nodes that belong to the path from the 

chosen leaf to the root. 

This results in a few-time signature scheme (FTS), which can be used to generate a small 

amount of signatures. A few-time signature schemes can be extended to increase the number 

of signatures, creating many-time signature schemes (MTS). 

Merkle’s idea has since been used in many signature schemes. After more than 40 years of 

research, eXtended Merkle Signature Scheme (XMSS) was introduced. It has many strong 

points, but the main downside is that it is stateful. That means that signing with XMSS 

requires keeping state of the used one-time keys in order to make sure they are never used 

again. Unfortunately, being stateless is one of the requirements for the signature schemes 

proposed to NIST’s post-quantum cryptography standardization program. 

In 2015 a stateless signature scheme was proposed – SPHINCS. SPHINCS has become a 

baseline for modern hash-based signature schemes. As an important addition, SPHINCS 

uses randomized index selection – the index of the Merkle tree leaf containing an OTS key 

pair is chosen randomly, instead of applying a hash function to the message to determine 

the index. 

The hash-based digital signature schemes submitted to NIST’s post-quantum cryptography 

standardization program are both based on SPHINCS, offering various improvements in 
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security and speed. In this paper, one of two hash-based signature schemes is introduced in 

more detail – SPHINCS+. 

5.2 SPHINCS+ 

SPHINCS+ works similarly to SPHINCS. The main idea remains the same – SPHINCS+ 

authenticates a big number of few-time signature (FTS) key pairs using a so-called 

hypertree. To sign a message, a random FTS key pair is chosen. The resulting signature 

consists of the authentication information for that FTS key pair and the FTS signature. 

A hypertree consists of hash-based many-time signatures (MTS), which allow a key pair to 

sign a fixed number of 𝑁 messages, where 𝑁 is a power of 2. The many-time signature key 

pairs are held in a 𝑑-layer 𝑁-ary tree. The top layer holds a single many-time signature key 

pair which is used to sign the public keys of 𝑁 many-time signature key pairs from the next 

layer, which are in order used to sign MTS public keys from the next layer. The 𝑁𝑑−1 key 

pairs from the bottom layer are used to sign 𝑁 FTS public keys, resulting in a total of 𝑁𝑑 

authenticated FTS key pairs.  

As a result, the authentication information for an FTS key pair consists of the 𝑑 MTS 

signatures that build a path from the FTS key pair to the top MTS tree. The OTS and FTS 

secret keys together fully determine the whole virtual structure of an SPHINCS+ key pair. 

An MTS signature used in SPHINCS+ is just a classical Merkle-tree signature consisting of 

a one-time signature (OTS) plus the authentication path in the binary hash-tree. 

The structure of the SPHINCS+ key pair is fully determined by the secret keys of its OTS 

and FTS. 

A more detailed description of SPHINCS and SPHINCS+ is beyond the scope of this work. 
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6. Multivariate polynomial based algorithms 

While a number of multivariate encryption schemes have been proposed to NIST’s post-

quantum standardization program, multivariate cryptography has historically been more 

successful in signature schemes. Out of the 19 submitted signature schemes, multivariate 

algorithms take up the biggest part with seven multivariate signature schemes, four of which 

were selected for further examination and proceeded to Round 2. 

The main downside of multivariate polynomial cryptosystem is their newness. Most of the 

research during the inception of multivariate cryptography was conducted in Japan and thus 

most of the earlier publications are only available in Japanese. The amount of research of 

multivariate cryptography has grown since, but much more time is needed to prove its 

security. [23] 

This chapter is based on a paper by Jintai Ding and Bo-Yin Yang [23] and multiple 

submissions to NIST’s post-quantum standardization problem, such as HIMQ-3 [24] and 

Rainbow [25]. 

6.1 Multivariate quadratic polynomials 

Multivariate polynomial cryptography relies on the difficulty of solving systems of 

multivariate polynomials over finite fields. Most of the multivariate cryptosystems use 

quadratic polynomials and rely on the NP-hard ℳ𝒬 problem. ℳ𝒬 problem consist of 

solving a multivariate quadratic equation system over a finite field – given coefficients 𝑦𝑘, 

𝑎𝑖𝑗
(𝑘)

, 𝑏𝑖
(𝑘)

 and 𝑐 
(𝑘) find a solution (𝑥1, … , 𝑥𝑛) for 

𝑓1(𝑥1, … , 𝑥𝑛) = 𝑦1 = ∑∑𝑎𝑖𝑗
(1)

𝑥𝑖𝑥𝑗 +

𝑛

𝑗=1

𝑛

𝑖=1

∑𝑏𝑖
(1)

𝑥𝑖

𝑛

𝑖=1

+ 𝑐 
(1) 

⋮ 

𝑓1(𝑥1, … , 𝑥𝑛) = 𝑦𝑚 = ∑∑𝑎𝑖𝑗
(𝑚)

𝑥𝑖𝑥𝑗 +

𝑛

𝑗=1

𝑛

𝑖=1

∑𝑏𝑖
(𝑚)

𝑥𝑖

𝑛

𝑖=1

+ 𝑐 
(𝑚) 

where 𝑛 is the number of variables, 𝑚 is the number of equations, 𝑘 is in range 1…𝑚 and 

coefficients are all elements in finite field 𝔽 
 . 
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6.2 Construction of the Rainbow scheme 

In this paper, the multivariate quadratic (MQ) signature scheme Rainbow is introduced. The 

general structure of Rainbow over 𝔽q
  is as follows. 

Let us define a system 𝒫 = (𝑃(1), … ,  𝑃(𝑚)) of multivariate quadratic polynomials of 𝑚 

equations and 𝑛 variables by 

𝒫(𝑘)(𝑥1, … , 𝑥𝑛) = ∑∑𝑝𝑖𝑗
(𝑘)

𝑥𝑖𝑥𝑗 +

𝑛

𝑗=1

𝑛

𝑖=1

∑𝑝𝑖
(𝑘)

𝑥𝑖

𝑛

𝑖=1

+ 𝑝0
(𝑘)

 

For 𝑘 = 1,… ,𝑚 and 𝑝𝑖𝑗
(𝑘)

, 𝑝𝑖
(𝑘)

, 𝑝0
(𝑘)

∈𝑅 𝔽q
 . 

The main idea for key generation in a MQ-signature scheme is to choose a central map  

ℱ = (ℱ(1), … ,  ℱ(𝑚)) ∶  𝔽q
𝑛 → 𝔽q

𝑚 of multivariate quadratic polynomials, which can be 

easily inverted. After that two affine or linear invertible maps 𝑆 ∶  𝔽q
𝑚 → 𝔽q

𝑚 and 𝑇 ∶  𝔽q
𝑛 →

𝔽q
𝑛 are chosen, in order to hide the structure of the central map in a public key. 

A public key is the composed quadratic map  𝒫 = 𝑆 ∘ ℱ ∘ 𝑇 which is supposedly hardly 

distinguishable from a random system and therefore difficult to invert. 

A secret key consists of (𝑆, ℱ, 𝑇) which allows to invert 𝒫. 

Generating a signature 

In order to sign a document 𝑑 a hash function ℋ: {0,1} →  𝔽 
𝑚 is used to compute the hash 

value ℎ = ℋ(𝑑) ∈ 𝔽 
𝑚. The signature 𝑧 is generated as follows. 

 𝑥 = 𝑆−1(ℎ) ∈ 𝔽 
𝑚 is computed. 

 A pre-image of 𝑥 is computed under the central map ℱ, resulting in 𝑦. This pre-

image is computed using a special algorithm, which takes 𝑥 and the central map ℱ 

as arguments and returns a vector 𝑦 ∈ 𝔽 
𝑛 which satisfies ℱ(𝑦) = 𝑥. 

 Signature 𝑧 ∈ 𝔽 
𝑛 is then computed: 𝑧 = 𝑇−1(𝑦) 

 

Verifying a signature 

Given a document 𝑑 and signature 𝑧, in order to verify the signature, the hash value of the 

document has to be computed first: ℎ = ℋ(𝑑) ∈ 𝔽 
𝑚. Then ℎ′ = 𝒫(𝑧) ∈ 𝔽 

𝑚 is computed. 

If ℎ′ = ℎ holds, the signature 𝑧 is valid. 
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The figure 4 below illustrates the process of generating and verifying a signature. 

 

  

Figure 4. The process of generating and verifying a signature using the MQ-signature 

scheme. 

The Rainbow scheme includes some improvements to the basic algorithm introduced above, 

in order to increase security and speed. For example, to facilitate computations, some of the 

𝑝𝑖𝑗
(𝑘)

 coefficients chosen at random can be set to zero. 

6.3 Security of the Rainbow scheme 

Security analysis of multivariate schemes such as Rainbow is rather difficult, since no direct 

reduction from a NP-hard problem exists. Since there is no proof of the practical security 

for Rainbow, the parameter choice is crucial. In the Rainbow documentation, parameters 

are chosen in a way that the complexities of known attacks are beyond the levels of security 

required by NIST. 

Since the multivariate signature schemes are rather new, a lot of research is needed to prove 

their security. Many of the earlier multivariate algorithms have been broken. Still, due to 

their small signature sizes and fast signature verification, multivariate cryptosystems remain 

as very strong competitors for the potential quantum-resistant digital signature standards. 
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7. Conclusion 

All of the four main families have their merits and deficits. It is hard to predict which family 

of quantum-resistant algorithms will prove to be the most efficient in the future. While 

lattice-based cryptosystems have been subject to most research, code-based algorithms 

remain a solid choice for the future cryptographic standards, whilst both hash-based and 

multivariate algorithms provide secure signature schemes. Based on the number of 

submissions, lattice-based algorithms seem to be favoured the most. 

The NIST’s post-quantum standardization program gives a good overview of the field and 

presents us a variety of options for the future cryptostandards, leaving NIST with a difficult 

task of examining and testing all of the submissions to find the most efficient and secure 

algorithms. 
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