
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Andrus Lall

Lab Package: Combinatorial Testing

Bachelor’s Thesis (9 ECTS)

Supervisor: Dietmar Pfahl

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lab Package: Combinatorial Testing

Abstract:
The purpose of this thesis is to create lab materials for the University of Tartu’s course
"Software testing (MTAT.03.159)" on the subject of combinatorial testing. The thesis
gives background information on the course and on combinatorial testing, describes
the materials created and their execution, presents the results of the students feedback
questionnaire and its analysis, along with the improvements made. The lab materials
were introduced in the spring semester of 2018.

Keywords:
Software testing, combinatorial testing, lab package

CERCS:
P170 Computer science, numerical analysis, systems, control

Praktikumimaterjal: Kombinatoorne Testimine
Lühikokkuvõte:
Käesoleva bakalaureusetöö eesmärgiks on luua õppematerjali Tartu Ülikooli kursusele
“Tarkvara testimine (MTAT.03.159)” kombinatoorse testimise teemal. Töö kirjeldab
kursuse ja kombinatoorse testimise tausta, koostatud õppematerjali, esitab tudengite
tagasiside tulemused ning nende põhjal tehtud analüüsi ja parandused. Õppematerjal
võeti kasutusele 2018. aasta kevadsemestril.

Võtmesõnad:
Tarkvara testimine, kombinatoorne testimine, praktikumimaterjal

CERCS:
P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

2

Contents
Introduction 4

1 Background 5
1.1 The University of Tartu’s course "Software Testing

(MTAT.03.159)" . 5
1.2 Combinatorial testing . 5

2 Lab Design 8
2.1 Lab Schedule . 8
2.2 Lab Materials . 8

2.2.1 Marriage Checker application 8
2.2.2 Booking application . 10

2.3 Lab Session Tasks . 12
2.4 Homework Tasks . 13
2.5 Grading . 15

3 Lab Execution 16

4 Feedback & Analysis 18
4.1 Feedback collection . 18
4.2 Analysis . 19

4.2.1 Positive Aspects . 19
4.2.2 Negative Aspects & Improvements Made 29

4.3 Future Improvements . 29

5 Conclusion 31

References 32

Appendix 33
I. Questionnaire Feedback . 33
II. Lab Materials . 34
III. Licence . 35

3

Introduction
Software testing is the process of assessing software in order to determine its quality and
whether it meets the needs of the people it concerns. The University of Tartu’s course
“Software Testing (MTAT.03.159)” is designed to teach students the fundamentals of
testing, introduce important testing techniques and much more.

"Software Testing" is a mandatory course for bachelor’s degree programme students
studying informatics. As of 2018, the course has a volume of 3 ECTS points and consists
of 7 labs and lectures. The labs are designed to introduce different testing techniques
while also introducing tools that can be applied to aid the use of these techniques.

The purpose of this thesis is to create materials for the new lab on the subject of combi-
natorial testing. Before this year, the subject has only been taught in the form of lectures,
but there became a need for new labs because the course is expected to increase in volume.
The materials were created for both the lab session and the homework assignment. They
contain instructions for the lab session and homework assignment, two applications,
created as a part of this thesis to be the systems under test (SUT), and a tool called
Automated Combinatorial Testing for Software1 (ACTS) by the National Institute of
Standards and Technology2, that is crucial to testing the two applications created.

Combinatorial testing is a technique used to systematically test combinations of a soft-
ware’s input values. It is mainly used in critical systems with a multitude of different
configurations and parameters, where thoroughness is important due to the possibility of
defects causing harm.

This thesis is composed of five chapters. The first chapter gives an overview of the
software testing course and combinatorial testing. Lab schedule, materials, tasks and
grading is presented in the lab design chapter. The third chapter details the execution of
the lab. Feedback, its analysis and future improvements are presented in chapter four.
The last chapter concludes the thesis by summarizing the materials created and the results
of their implementation.

1https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
2https://www.nist.gov/

4

1 Background
The following subsections give an overview of the course "Software Testing" that this
lab package was created for and the subject of combinatorial testing.

1.1 The University of Tartu’s course "Software Testing
(MTAT.03.159)"

As of 2018, "Software Testing (MTAT.03.159)" is a 3 ECTS course which, according to
the course outline [1], covers the fundamental concepts of software testing, introduces
various testing strategies and types of testing, while also giving an overview of different
software defects, software defect management, and organizational aspects of software
testing. It takes place during the spring semester and consists of 7 lectures and labs. The
following is a list of topics for each lab:

1. Debugging

2. Black-Box & White-box Testing

3. Combinatorial Testing

4. Mutation Testing

5. Automated Web-Application Testing

6. Static Code Analysis

7. Document Inspection and Defect Prediction

1.2 Combinatorial testing
Combinatorial testing terminology

• t-way interactions/combinations - each possible value combination between t
parameters is represented at least once

• Covering array - an array of test cases that as a whole covers all t-way interactions

• Interaction strength - the degree of a covering array’s interaction strength, i.e. t

Combinatorial testing is a black box testing technique for systematically testing t-way
interactions of configuration or input parameter values. t-way interactions represent all
possible combinations of values between t different parameters. For example, if one had
3 boolean parameters - A, B and C - all 2-way interactions can be found by finding all

5

possible value combinations between A and B, then A and C, and finally B and C. As
can be seen from figure 1, all of these combinations could be represented in a covering
array containing only 4 test cases. Because there are 3 parameters, 3-way testing would
be exhaustive of all combinations and would require 8 test cases - found by multiplying
the number of values per parameter.

Figure 1. All 2-way interactions between boolean type parameters A, B and C

A higher degree of interaction strength is important, because empirical data has shown
that testing only 1-way interactions (each value used at least once in isolation) will
likely not discover all or in some cases even most of the defects in a system [2]. On
the other hand, exhaustive testing is resource intensive, which is why the interaction
strength is selected based on resources and risks. One study that analyzed 329 error
reports of large distributed systems found that over 95% of failures were triggered by the
interaction of 4 parameters and that no new failures required the interaction of more than
6 parameters [3]. However, increasing the interaction strength amplifies the test oracle
problem of combinatorial testing. As the amount of test cases increases significantly
when interaction strength is increased, the amount of expected outputs one needs to find
for the test cases increases at the same rate. Several solutions to this problem include
crash testing, embedded assertions and model based test generation [4].

Combinatorial testing is typically used to test architecturally complex systems with
many input or configuration parameters, some cases even both. However, it can be useful
for testing any system with a number of input parameters or configurations, e.g. mobile
applications that are required to run on different operating systems and hardware or have
many parameters with several values [5]. It is especially relevant to critical systems, like
for example traffic collision avoidance systems, where software defects can cause harm
and thoroughness is highly valued. As the adoption of more software systems with a
multitude of configurations rises, so does the need for more effective test data sampling.

Automated Combinatorial Testing for Software (ACTS)

While manually creating t-way test cases for a two or three parameters with a few values
may not be a problem, doing this for more complex systems is typically not feasible.
Combinatorial testing with the help of tools like the ACTS (formerly known as FireEye)

6

allow for a fast generation of t-way interaction test cases that one can use to systemati-
cally evaluate a system under test, saving time and minimizing user error.

For this lab package, the ACTS tool was chosen due to its features, but also because it is
free to use, has a graphical user interface and is quite easy to learn. The creators of the
tool have also conducted extensive research to create the algorithms it uses and are one
of the leading researches in the field of combinatorial testing [6][7].

Using the ACTS tool, one can create a combinatorial testing system (CT) system that
reflects the input or configuration parameter values of their software. One then has the
ability to build covering arrays using a desired interaction strength. There also exists a
mixed strength feature, which allows one to specify a higher or lower degree of interac-
tion strength for a chosen subset of parameters. Constraints can also be defined in order
to rule out specific value combinations. The ACTS tool’s general view of the graphical
user interface can be in from figure 2. Defined parameters can be found on the left hand
side under "System View", while the covering array (if one has been created) can be
found on the right, under "Test Result".

Figure 2. Graphical user interface of the ACTS tool

7

2 Lab Design
The following subsections describe what the lab materials consist of and explain the
design choices made when creating them.

2.1 Lab Schedule
It is expected that each lab takes approximately 6 hours to complete, not including the
lab session itself. The schedule for the lab session is as follows:

• 70 minutes - Lab session tasks: introduction to combinatorial testing, learning to
use the ACTS tool and its features, testing the Marriage Checker application

• 20 minutes - Overview of the homework tasks and the Booking application, ques-
tions

2.2 Lab Materials
The lab materials created as a part of this thesis, which can be found in Appendix II, are
divided into two parts - lab materials for students and for teaching assistants.

The lab materials for students consist of a PDF file containing the instructions for
the lab session and homework assignment, an application named Marriage Checker,
created to be used as the system under test (SUT) in the lab session, and an application
named Booking, created to be the SUT for the homework assignment. A link to the
ACTS tool is also provided, since it is an essential part of the lab.

The lab materials for teaching assistants consist of a PDF file containing instructions for
the execution of the lab session, expected results for the homework tasks, a more detailed
grading scheme and an example of a correct solution along with the necessary files.

2.2.1 Marriage Checker application

The Marriage Checker application is an application that was created as a part of this
thesis, in order to be used as the SUT during the lab session. Being more comfortable
and having more experience programming in Java than in Python for example, it was
chosen as the language in which both the Marriage Checker and Booking applications
were written.

It is presented to the students as a toy application that is used to check whether two
people are married or not. To make things more interesting, the introduction doesn’t
give the complete test oracle, but it reveals that the application should return that the two

8

people are not married if they are people of the same sex. It is said that this is because
the application uses test data based on a country that doesn’t permit such marriages. An
image of the Marriage Checker application’s user interface can be seen in figure 3.

Figure 3. User interface of the Marriage Checker application

This simple application was created to be used in the lab session, so the students would
be able to familiarize themselves with the ACTS tool and its features, while already
feeling the difference in results between manually creating test cases and the test cases
that the ACTS tool creates systematically.

Two different types of failures have been seeded into the application. The first type of
failure triggers an incorrect result (as in not in accordance with the introduced rules) in
the text area displayed at the bottom of the application. The second type of failure emu-
lates the program crashing by displaying a pop-up window. To help show the importance

9

of systematic testing, the first type of failure requires less specific values to trigger than
the second type of failure, making it highly unlikely that the second type of failure can
be found when entering input values randomly. The exact failure triggering values and
an example of the pop-up window can be found in the teaching assistant instructions, see
Appendix II.

The possible first and last name values for both people are different, but both first
name parameters include two male and two female first names. As such, one could divide
the approaches to test all 1-way interactions (each value is used at least once) by doing
one of the following:

• Choosing all combinations of values chronologically, by executing a test case
containing the first value of each parameter, then the second value etc. This would
be the least thought through approach and would only test for results of one type
(corresponding to same sex combinations).

• Testing male + female and then female + male combinations. This may seem like a
better approach than the previous one, but it too would test for results of only type.

• Equivalence class partitioning - executing test cases that check for both types of
results. This would be the most rational approach.

Since there are four parameters and each parameter has four values, all of the approaches
described above would require only four test cases to test all 1-way interactions. The
values in the application that trigger failures were seeded in such a way, that each
approach would likely trigger at least one, but not most of the failures.

2.2.2 Booking application

The Booking application is a Java application that was created as a part of this thesis in
order to be used as the SUT for the homework tasks. It is introduced as a toy application
that should display the amount of listings corresponding to a search criteria. Three rules
are also given that should make the application display 0 results, if they were to be
broken. An image of the Booking application’s user interface can be seen in figure 4.

10

Figure 4. User interface of the Booking application

11

This application is more complex and contains a combination of parameters and input
values that is more true to life. It has 9 parameters, each containing 2 to 12 different
options to choose from.

It soon became apparent when first developing the application, that manually executing
the test cases generated by the ACTS tool would be unfeasible, because it would be too
time consuming for the tasks in mind. Due to this, the ’Import & Check’ functionality
was implemented to automate the process of executing test cases. This functionality is
something that developers should be able to implement for any application with a set of
input parameters and an output, to increase its testability.

The ACTS tool enables users to export their covering arrays as a CSV (comma separated
values) file. The ’Import & Check’ button can then be used to choose the file exported by
the ACTS tool, after which it will run each test case one by one, generating the result of
each test into a new CSV file. The result is added at the end of the corresponding test
case, so the final file can be opened in a spreadsheet program (e.g. Excel) and analyzed.

This import functionality is flexible in that it doesn’t matter in which order the pa-
rameters were added, when the corresponding combinatorial testing (CT) system in the
ACTS tool was created. It is also case insensitive. However, it does require that each test
case contains values from all parameters and that all values are written as they are in the
application itself.

2.3 Lab Session Tasks
The aims of the lab session:

• To reiterate the combinatorial testing technique principles and begin applying them
on the Marriage Checker application

• To introduce the ACTS tool and let the students become familiar with it

• To give an overview of the homework assignment and the Booking application

The lab assistants begin the lab by once again introducing the combinatorial testing
technique. Students are then instructed to download the Marriage Checker application
from the course webpage [8]. This application is then used as a SUT for the lab session
tasks in the instructions.

After the students have downloaded the application, they learn how to find the amount
of test cases in order to test all 1-way interactions. The students then execute test cases

12

to cover all 1-way interactions and note any failures. Next, it is demonstrated how to
find the upper and lower bound for the amount of test cases required in order to test all
possible combinations, followed by 2-way and 3-way interactions.

Afterwards, students are instructed to download the ACTS tool and used it to create a CT
system, which would contain the parameters and respective values of the SUT. Using
the system they had just created, they would then learn how to build the covering arrays
that would contain test cases which systematically cover all t-way interactions. They can
compare the amount of test cases the ACTS tool generates to the amounts they found
earlier.

Students then execute the created test cases which cover all 2-way interactions and
observe the results. They should find more bugs, compared to the test cases they had
executed earlier.

The Mixed Strength feature of the ACTS tool is then introduced. It is explained how to
determine the parameters that should be covered with an increased interaction strength.
Students need to build the covering array using mixed interaction strength and compare
their results with the results from their previous tests. They also have to analyze how
the feature affected their covering array - how much more efficient or effective it is and
whether it is something that they could always use successfully.

2.4 Homework Tasks
The homework assignment has several aims for the students:

• To become proficient at and realize the importance of using the ACTS tool

• To learn how to apply combinatorial testing wisely - e.g. how to determine what
subset of parameters should be assigned a higher interaction strength, so to increase
the failure detection power

• To give the students a chance to be creative in their approach to solving the test
oracle problem

• To realize that there is no silver bullet to finding more failures, but that combinato-
rial testing can be used in order to become more effective, efficient and methodical
at testing

The homework assignment contains three tasks. Because of the test oracle problem of
combinatorial testing, tasks 1 and 2 revolve around failures that are easy to spot - error
messages in the output of the Booking application. However, task 3 gives the students a

13

chance to solve the oracle problem how they see fit.

Task 1 requires the students to create a CT system in the ACTS tool that reflects the
parameters and possible values that the Booking application has. Then, using the ACTS
tool, they need to build and export all covering arrays from interaction strength 1 to 9.
This is required for both the major optimization algorithms the ACTS tool offers - IPOG
and IPOG-F. They are then required to fill a table with their results and construct a graph
in order to visualize the difference between the cumulative amount of unique failures
found at each interaction strength for both algorithms used.

Looking at the table they filled or the graph, it should become apparent that 1-way
or 2-way interaction testing would have not found even a quarter of the failures seeded
into the program. No new failures are found at interaction strengths higher than 6. These
tables and graphs can also help them in task 2, so they can see which algorithm was more
or less effective at each interaction strength.

The aim of task 1 is to further hammer home the importance of testing more than
1-way or 2-way interactions, as they can see from the graphs and tables that it wouldn’t
have been enough to fully uncover all the different failures. It was also created so that
the students have all of the necessary files for the rest of the tasks.

Task 2 makes things more interesting - it presents a realistic limit on the amount of
test cases the students can execute, further increasing the proficiency of the students in
using the ACTS tool. They are required to use only the ACTS tool’s features in order to
create as effective of a covering array as they can, all the while staying inside this set
limit, forcing the students to more wisely use combinatorial testing. It is mentioned that
the students should recall the features introduced in the lab session to solve this task.

Choosing the parameters which have a higher degree of interaction can be deducted
from the business rules given in the introduction of the Booking application. Since the
parameters mentioned imply having more back-end logic, it is likely that choosing them
would net more failures. They can also view the graph constructed as a result of task 1
and deduct that the IPOG-F algorithm found more failures between interaction strengths
2 and 3, meaning they should prefer this algorithm.

Students who have built a covering array that triggers more than the required amount of
failures earn can earn a bonus point. This can be achieved by analyzing the results of the
covering arrays of task 1 to find out which values might be the cause of errors triggering.
One can then use the Constraints feature in the ACTS tool and constrain the ACTS to
generate certain combinations of values. Thus, the aim of this bonus task is to compel

14

the more curious students to try out features of the ACTS tool that were not introduced
in the lab.

Task 3 requires the students to search for new sorts of failures. When in task 1 and 2 they
were looking at failures easy to spot, they now have to analyze the largest output file of
the SUT and figure out if it violates any of its business rules. They are also required to
present the test cases that triggered these rule violations in a separate file. Due to this and
the fact that the number of test cases in the largest output file, which contains all possible
input combinations, is far too high to manually analyze, they need to figure out a way to
automate the process of checking for incorrect output, solving the test oracle problem.

This task was designed to be more lax in terms of how the students solve it, in or-
der to give them a chance to be creative in their approach. It is more akin to a real
world testing task in that they don’t have to check for system crashes or obvious faults,
but instead are concerned with failures against the specification (business rules) of the
application.

2.5 Grading
Students can get a total of 10 points plus one bonus point for this lab. The marks are
divided in the following way:

• 1 point for participating in the lab

• Up to 4 points for Task 1

• Up to 3 points for Task 2, plus 1 bonus point

• Up to 2 points for Task 3

A more detailed grading scheme can be found in the student lab instructions, see Ap-
pendix II.

15

3 Lab Execution
In the spring semester of 2018, the "Software Testing" course had a total of 7 labs, with
the combinatorial testing lab being the 3rd. There were 5 lab groups, so a total of 5
sessions were held for this lab, taking place on the 20th and 21st of March.

The subject of combinatorial testing was also covered in the lecture, so students who
had attended were already familiar with it before the lab session. For this thesis, one
lab session was observed to determine time consumption and to quickly react to any
unexpected issues or questions that might arise.

However, the observed lab session went quite smoothly and according to the teach-
ing assistants, so did the other labs sessions. The tasks took a bit longer than an hour and
were completed without issues. Due to this, only one lab session was examined.

The lab assistants then began to give an overview of the homework tasks, describ-
ing the general workflow and various presentables that students were required to submit.
There was some confusion regarding some column labels in the table for homework task
1, namely "Set of unique failures" and "Cumulative no. of unique failures up to strength
t". Examples were then added to the instructions in order to resolve this.

The lab session lasted about 80 minutes in total, leaving time for questions from the
students.

Figure 5 below shows the frequency distribution of the marks that students received for
the lab. For comparison, this year’s Black-box & White-box testing lab and last year’s
Static Code Analysis lab marks have been included as well, because both of them have
been used for more than 2 years.

16

Figure 5. Frequency distribution of homework marks

The graph rounds points up, e.g. when a student received a mark between 7.0 (exclusive)
and 7.5 (inclusive) points, it is accounted in the graph as 7.5. Both labs that are displayed
for comparison had an upper limit of 10 points, while for the combinatorial testing lab
students could receive 1 bonus point as well.

Overall, the distribution is similar to the other two labs. Although the amount of students
who received 10 or more points is higher than the other two labs, the amount of students
who got maximum points (10 points + 1 bonus point) is lower. This indicates that it was
easier to score high points, but more difficult to score maximum points. However, this
was discussed with the supervisor beforehand and was to be expected.

17

4 Feedback & Analysis
The following subsections describe the way feedback was collected and the results of
the analysis of said feedback. It also states improvements already made based on the
collected feedback and suggests future improvements.

A total of 91 students participated in the lab, 15 of whom answered the online feedback
questionnaire.

4.1 Feedback collection
Students were asked to fill in a feedback questionnaire using SurveyMonkey3, which is
an online survey tool. The questionnaire had two parts: a set of statements, which could
be rated on a fixed choice Likert scale [9], and two optional questions. There were a total
of nine statements:

1. "The goals of the lab were clearly defined and communicated"

2. "The tasks of the lab were clearly defined and communicated"

3. "The materials of the lab were appropriate and useful"

4. "The ACTS tool was interesting to learn"

5. "If I have the choice, I will use the ACTS tool again"

6. "The "Booking" application was interesting and useful to test"

7. "The support received from the lab instructors was appropriate"

8. "The grading scheme was transparent and appropriate"

9. "Overall the lab was useful in the context of this course"

3https://www.surveymonkey.com/

18

For each statement, the students had to choose from five different options to reflect their
agreement with the respective statement. The five options were:

1. "Completely disagree"

2. "Somewhat disagree"

3. "Neutral"

4. "Somewhat agree"

5. "Completely agree"

After the statements, the students were asked the following qualitative question: "What
did you like or not like about the lab? Please try to be constructive."
The third and last question asked the students to provide any additional feedback they
thought would be useful.

4.2 Analysis
A majority of the students answered positively to the statements 1-9. Seven out of
fifteen students also answered the first qualitative question, each providing positive
feedback on the lab, while two students also described some confusing aspects concerning
the instructions. Only three respondents gave additional feedback regarding the final
question.

4.2.1 Positive Aspects

Over 73% of respondents concurred that both the goals and the tasks of the lab were
clearly defined and communicated. More than 93% also found the lab materials appro-
priate and useful. A majority of the students thought the ACTS tool was interesting
to learn and, if they had the choice, would use the tool again. About two-thirds of
the students found the Booking application interesting and useful to test, although the
subset of respondents who somewhat agreed was more than twice in size of those who
completely agreed. A large majority agreed that the grading scheme was transparent and
appropriate, with none of the respondents disagreeing with the statement. Finally, over
86% of students found the lab useful in the context of this course. Figures 6-14 show the
frequency distribution of the results corresponding to each statement. For a summary of
all of the statistics regarding statements 1-9, see Appendix I.

All qualitative feedback received for the question "What did you like or not like about
the lab?" included positive feedback. Students mentioned that they were happy to be able
to try out and learn the ACTS tool. The automation aspect of the lab and the ability to
write scripts in order to optimize work was also praised.

19

Figure 6. Statistics of "The goals of the lab were clearly defined and communicated"

20

Figure 7. Statistics of "The tasks of the lab were clearly defined and communicated"

21

Figure 8. Statistics of "The materials of the lab were appropriate and useful"

22

Figure 9. Statistics of "The ACTS tool was interesting to learn"

23

Figure 10. Statistics of "If I have the choice, I will use the ACTS tool again"

24

Figure 11. Statistics of "The "Booking" application was interesting and useful to test"

25

Figure 12. Statistics of "The support received from the lab instructors was appropriate"

26

Figure 13. Statistics of "The grading scheme was transparent and appropriate"

27

Figure 14. Statistics of "Overall the lab was useful in the context of this course"

28

4.2.2 Negative Aspects & Improvements Made

Feedback from the online questionnaire and the lab session itself revealed that some
students were confused by the terms "set of unique failures" and "cumulative no. of
unique failures up to strength t". Examples for both terms have since been included in
the student lab instructions.

There was some confusion regarding task 3 of the homework assignment, after which
some additional functionality was implemented in the Booking application that more
explicitly reflects the business rules of the application. The original version of the appli-
cation was not fully consistent with the third business rule of hotels offering service by
default. The updated version now ticks the Service checkbox by default, should the user
choose "Hotel room" as the Accommodation type.

A student mentioned having trouble fitting the booking application on their univer-
sity laptop’s screen. Although the application was tested to be suitable on university
laptops with a recommended screen size of 1600 by 900 pixels, the height of the applica-
tion has been reduced, so as to fit on screens even smaller than common laptop screens
(1366 by 768 pixels).

It was also reported by one student that the workload was somewhat lower than for
the previous two labs, saying that it didn’t take them the whole day to finish.

Two teaching assistants gave oral feedback regarding the teaching assistant instruc-
tions. They found their lab session instructions lacking in some detail, namely how
the upper and lower bounds for the amount of t-way combinations are found and how
to present this to the students. The document was then improved with more detailed
calculations and instructions, for example how to find the upper and lower bound for the
amount of test cases needed to cover all t-way interactions.

4.3 Future Improvements
As seen in figures 9 and 10, a fifth of the students remained neutral towards statements
4 and 5. This indicates that some tweaks to the lab session instructions could make
the introduction and learning of the ACTS tool’s features more interesting, while also
increasing its usefulness in the eyes of the students.

The neutrality towards statement 6 is also quite high at over 26%, indicating that some
changes to the existing homework tasks or adding one or two additional tasks could make
the testing of the Booking application more interesting and useful. For example, a new
task could be created that revolves around solving the test oracle problem by introducing

29

model-based test oracles. D.R. Kuhn, R. Kacker and Y. Lei have provided a thorough
example of how to do this in their paper titled "Practical Combinatorial Testing" [10]
using an application called NuSMV4.

As standard screen sizes of university laptops might increase in the future, the text
size of the Booking application might also need to be increased in order to be legible.

The potential distribution of the files which are required from students for the grading
process should also be considered. To discourage or maybe even catch such academi-
cally dishonest behaviour, it is suggested that the exact values which trigger failures in
homework tasks 1-3 should be changed every couple of years.

4http://nusmv.fbk.eu/

30

5 Conclusion
The purpose of this thesis is to create lab materials, to be used in the new combinatorial
testing lab, for The University of Tartu’s course "Software Testing (MTAT.03.159)".
Combinatorial testing is a software testing technique for systematically testing t-way
interactions of configuration or input parameter values.

As a result of this thesis, lab materials were created and implemented in the 2018
spring semester lab on combinatorial testing. The lab materials consist of instructions
for the students and for teaching assistants. Two applications were also created to be the
systems under test for the lab session and homework tasks. Feedback was also collected
in the form of an online questionnaire.

Although the feedback was mostly positive, there was feedback due to which some
improvements have already been made, but future improvements are suggested as well.
Some of these suggested improvements combat issues that haven’t manifested yet, but
could in the future. For example how to prevent or catch academic dishonesty, should
the files required for submission in this lab become distributed and reused by students
that have not actually done the work themselves. Other improvements are suggested to
make the homework tasks more interesting and useful, for example the introduction of a
model-based test oracle.

31

References
[1] Software Testing course outline. URL: https://courses.cs.ut.ee/MTAT.03.

159/2018_spring/uploads/Main/swt2018-outline-v1.pdf. (08.03.2018).

[2] D.R. Kuhn; R. Kacker; Y. Lei; J. Hunter. “Combinatorial Software Testing”. In:
Computer (Aug. 2009), pp. 94–96. DOI: 10.1109/MC.2009.253.

[3] D.R. Kuhn; D.R. Wallace; A.M. Gallo. “Software fault interactions and implica-
tions for software testing”. In: IEEE Transactions on Software Engineering (Aug.
2004), pp. 418–421. DOI: 10.1109/TSE.2004.24.

[4] D.R. Kuhn; R. Kacker; Y. Lei. “Practical Combinatorial Testing”. In: NIST Special
Publication (Oct. 2010), pp. 9–10. URL: https://courses.cs.ut.ee/MTAT.03.
159/2018_spring/uploads/Main/SWT_comb-report.pdf. (14.04.2018).

[5] D.R. Kuhn; R. Kacker; Y. Lei. “Practical Combinatorial Testing”. In: NIST Special
Publication (Oct. 2010), pp. 13–15. URL: https://courses.cs.ut.ee/MTAT.
03.159/2018_spring/uploads/Main/SWT_comb-report.pdf. (14.04.2018).

[6] Y. Lei; R. Kacker; D. Kuhn; V. Okun; J. Lawrence. “IPOG: A General Strategy
for T-Way Software Testing”. In: 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS’07) (Mar.
2007), pp. 549–556. DOI: 10.1109/ECBS.2007.47.

[7] Y. Lei; R. Kacker; D. Kuhn; V. Okun; J. Lawrence. “IPOG/IPOG-D: efficient test
generation for multi-way combinatorial testing”. In: Software Testing, Verification,
and Reliability (Sept. 2008), pp. 125–148. DOI: 10.1002/stvr.381.

[8] Course webpage. URL: https://courses.cs.ut.ee/2018/SWT2018/spring/.
(08.03.2018).

[9] Rob Johns. Likert items and scales. 2010. URL: https://www.ukdataservice.
ac.uk/media/262829/discover_likertfactsheet.pdf. (11.04.2018).

[10] D.R. Kuhn; R. Kacker; Y. Lei. “Practical Combinatorial Testing”. In: NIST Special
Publication (Oct. 2010), pp. 46–54. URL: https://courses.cs.ut.ee/MTAT.
03.159/2018_spring/uploads/Main/SWT_comb-report.pdf. (14.04.2018).

32

https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/swt2018-outline-v1.pdf
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/swt2018-outline-v1.pdf
https://doi.org/10.1109/MC.2009.253
https://doi.org/10.1109/TSE.2004.24
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/SWT_comb-report.pdf
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/SWT_comb-report.pdf
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/SWT_comb-report.pdf
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/SWT_comb-report.pdf
https://doi.org/10.1109/ECBS.2007.47
https://doi.org/10.1002/stvr.381
https://courses.cs.ut.ee/2018/SWT2018/spring/
https://www.ukdataservice.ac.uk/media/262829/discover_likertfactsheet.pdf
https://www.ukdataservice.ac.uk/media/262829/discover_likertfactsheet.pdf
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/SWT_comb-report.pdf
https://courses.cs.ut.ee/MTAT.03.159/2018_spring/uploads/Main/SWT_comb-report.pdf

Appendix

I. Feedback Questionnaire

33

II. Lab Materials

Student Lab Instructions
A1.1 "Lab instructions - Combinatorial Testing Lab Material by Andrus Lall", PDF file
https://courses.cs.ut.ee/2018/SWT2018/spring/uploads/Main/SWT2018-lab03v8.pdf

A1.2 "Marriage Checker application", ZIP file
https://courses.cs.ut.ee/2018/SWT2018/spring/uploads/Main/SWT2018-lab3-MarriageChecker.zip

A1.3 "Booking application", ZIP file
https://courses.cs.ut.ee/2018/SWT2018/spring/uploads/Main/SWT2018-lab3-Booking.zip

Teaching Assistant Instructions
A1.4 "TA Instructions - Combinatorial Testing Lab Material by Andrus Lall", PDF file

A1.5 "Solution files", ZIP file

For confidentiality reasons, teaching assistant materials are not made available in the
thesis, but will be made available on request.

Source code for applications
A1.6 "Marriage Checker project", ZIP file containing Intellij5 project files for the Mar-
riage Checker application

A1.7 "Booking project", ZIP file containing Intellij project files for the Booking ap-
plication

For confidentiality reasons, source code for the applications created as a part of this
thesis are only made available upon request.

5https://www.jetbrains.com/idea/

34

https://courses.cs.ut.ee/2018/SWT2018/spring/uploads/Main/SWT2018-lab03v8.pdf
https://courses.cs.ut.ee/2018/SWT2018/spring/uploads/Main/SWT2018-lab3-MarriageChecker.zip
https://courses.cs.ut.ee/2018/SWT2018/spring/uploads/Main/SWT2018-lab3-Booking.zip

III. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Andrus Lall,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Lab Package: Combinatorial Testing
supervised by Dietmar Pfahl

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 14.05.2018

35

	Introduction
	Background
	The University of Tartu's course "Software Testing(MTAT.03.159)"
	Combinatorial testing

	Lab Design
	Lab Schedule
	Lab Materials
	Marriage Checker application
	Booking application

	Lab Session Tasks
	Homework Tasks
	Grading

	Lab Execution
	Feedback & Analysis
	Feedback collection
	Analysis
	Positive Aspects
	Negative Aspects & Improvements Made

	Future Improvements

	Conclusion
	References
	Appendix
	I. Questionnaire Feedback
	II. Lab Materials
	III. Licence

