
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Aghabayli, Aytaj

Software Runtime Data: Visualization and Integra-
tion with Development Data – A Case Study

Master’s Thesis (30 ECTS)

Supervisors: Dietmar Pfahl, PhD

 Silverio Martínez-Fernández, PhD

Tartu 2019

2

Software Runtime Data: Visualization and Integration with Develop-

ment Data – A Case Study

Abstract:

Software quality is one of the key aspects of the software development process. Although

software development and usage (runtime) processes produce a different type of data,

there is little support for companies to obtain insightful and actionable information from

data at the right time. Practitioners face a challenge in identifying software problems dur-

ing the early software development stages. The goal of the master thesis was to provide

actionable real-time information about runtime errors and crashes during the usage of

software systems and explore its integration with development data. This work has been

done within the project Q-Rapids at Fraunhofer IESE. The selected case is the internal

smart village project - Digitale Dörfer (DD). The main contributions of the thesis are: a)

collecting available runtime data from the DD the project; b) creating dashboards to make

decisions during sprint planning; c) applying CRISP-DM method to the integration of

software runtime and development data. The provided connectors and integration scripts

are reusable. Reported challenges and lessons learned from the integration of software

runtime and development data may be used for further research.

Keywords:

Software quality, software runtime data, external quality, software analytics

CERCS: P170, Computer science, numerical analysis, systems, control

Tarkvara käitusaja andmed: arendusteabe visualiseerimine ja

integreerimine - juhtumiuuring

Lühikokkuvõte:

Tarkvara kvaliteet on tarkvaraarenduse protsessi üks peamisi aspekte. Kuigi

tarkvaraarenduse ja kasutuse (käitusaja) protsessid toodavad erinevat tüüpi andmeid, on

ettevõtetel vähe toetust, et saada õigel ajal andmete põhjal arusaadavat ja tegutsema

panevat teavet. Praktikud seisavad silmitsi tarkvaraprobleemide kindlakstegemise

väljakutsega varase tarkvaraarenduse etappide ajal. Magistritöö eesmärk oli pakkuda

reaalajas tegutsevat teavet tarkvarasüsteemide kasutamise ajal esinevate käitusvigade ja

krahhide kohta ning uurida selle integreerimist arendusteabega. See töö on tehtud projekti

Q-Rapids raames Fraunhoferi Eksperimentaalse Tarkvaratehnika Instituudis (IESE).

Valitud juhtum on sise-nutika küla projekt - Digitale Dörfer (DD). Uurimistöö peamisteks

panusteks on: a) DD projektist saadaolevate käitusaja andmete kogumine; b) sprintide

planeerimise käigus otsuste tegemiseks juhtpaneelide loomine; c) CRISP-DM meetodi

rakendamine tarkvara käitusaja ja arendusteabe integreerimiseks. Pakutavad ühendused ja

integratsiooni skriptid on korduvkasutatavad. Edasisteks uuringuteks võib kasutada

kaudseid raskusi ja õppetunde, mis on saadud tarkvara käitusaja ja arendusteabe

integreerimisest.

Võtmesõnad:

Tarkvara kvaliteet, tarkvara käitusaja andmed, väliskvaliteet, tarkvara analüüs

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

(automaatjuhtimisteooria)

3

Table of Contents

1 Introduction ... 5

2 Literature Review .. 8

2.1 Runtime Data to Improve Software Quality ... 8

2.2 Visualizations on Software Engineering Data .. 8

2.3 Approaches to Integrate Runtime and Development Data 9

3 Methodology ... 11

3.1 Context ... 11

3.2 Problem ... 11

3.3 Goal .. 11

3.4 Design ... 11

3.4.1 Runtime Data Visualization Tool ... 12

3.4.2 Tool Evaluation ... 13

3.4.3 CRISP-based Method for Runtime Data Integration .. 14

3.4.4 Implementation of Runtime Data Integration and Analysis 15

4 Runtime Data Visualization Tool .. 17

4.1 Runtime Data .. 17

4.2 Connectors .. 17

4.3 Dashboards ... 17

5 Tool Evaluation ... 21

5.1 Questionnaire Results ... 21

5.2 Open Discussion ... 23

6 CRISP-based Method for Runtime Data Integration .. 25

6.1 Data Understanding .. 25

6.1.1 Relevant Data Sets .. 25

6.1.2 Relevant Features .. 26

6.1.3 Quality of data .. 27

6.2 Data Preparation ... 29

6.2.1 Data Cleaning ... 29

6.2.2 Feature Engineering .. 29

6.3 Modeling ... 29

6.3.1 Integration ... 29

6.3.2 Analysis .. 30

7 Implementation of Runtime Data Integration and Analysis 31

4

7.1 Data Preparation ... 31

7.2 Data Integration .. 32

7.3 Analysis .. 32

8 Discussion ... 34

9 Conclusions and Future Work ... 36

10 References ... 37

Appendix ... 40

I. Source Code ... 40

II. Questionnaire .. 43

III. Notebook .. 47

IV. Code Quality Metrics Measures ... 54

V. Acknowledgments .. 55

VI. License .. 56

5

1 Introduction

Software quality is an important factor in software engineering projects. Practitioners need

to investigate software runtime quality problems during the early software development

stages.

There is a lot of work done on analysis software internal and external factors separately.

Nevertheless, there is a limitation in integrated analysis. This master thesis captures the

topic of software runtime data to improve software quality. In the scope of this research,

we study relevant cause dependencies between development time quality of software (re-

ferred to as internal quality [ISO 25000]) and runtime quality of software (referred to as

external quality or quality in-use [ISO 25000])

This work has been done within the project Q-Rapids1. Q-Rapids is the tool to support

software practitioners in managing software quality in the Agile development process.

The main research goal of the master thesis is to provide actionable real-time infor-

mation about runtime errors and crashes during the usage of software systems, and

explore its integration with development data from repositories.

Based on this research goal we constructed the following three questions:

• Q1. How can we gather runtime data to monitor external quality?

• Q2. How can we visualize quality problems to take actions?

• Q3. How can we integrate runtime data with development data?

In Q1 we explore, from the point of view of practitioners, what runtime data should be

collected, which sources of runtime data are suitable, which data are suitable and have

enough quality to make decisions on sprint planning, and how we can combine runtime

data from different sources.

In Q2 we explore, again from the point of view of practitioners, how to make decisions on

sprint planning based on collected runtime data. Since these kinds of decisions are not

obvious [1], we study possibilities to visualize runtime data. Visualization is supposed to

make it easier to detect quality problems in the software. This, in turn, will help prioritize

tasks and thus help make decisions in the sprint planning process.

In Q3 we explore, from the point of view of researchers, the integration of runtime and

development data. We wonder how useful it will be to integrate software runtime with

development data in order to understand and predict external quality. In other words, what

if problems occurred during the use of the software (external quality) are caused by prob-

lems during the development of the software (internal quality).

To answer the identified questions, we conducted a case study research. We chose a

Fraunhofer IESE internal project, Digitale Dörfer (DD)2, a platform providing several

digital services (such as online shopping, news portal, car sharing services) in smart rural

areas.

The main contributions of this thesis are:

1 Q-Rapids: https://www.q-rapids.eu/
2 Digitale Dörfer: https://www.digitale-doerfer.de/

https://www.q-rapids.eu/
https://www.digitale-doerfer.de/

6

• To answer Q1, we created connectors as an extension to a tool developed in the Q-

Rapids project.

• To answer Q2, based on collected data, we created dashboards to improve the

sprint planning process of software development. These dashboards were evaluated

by members of the DD team.

• To answer Q3, we applied the Cross-Industry Standard Process for Data Mining

(CRISP-DM) process for runtime data integration and provided the necessary Py-

thon scripts.

This thesis is structured as the following (see Figure 1):

Chapter 2. Literature Review reports the review results on the following topics: relevant

(runtime) data and collection; visualizations to make a decision on sprint planning; and

integration of runtime and development data. Based on identified gaps, we constructed the

research described in Chapter 3. Methodology. Chapter 4. Runtime Data Visualization

Tool captures the implementation of connectors and dashboards to answer Q1 and Q2. We

report results from the evaluation of the implemented tool in Chapter 5. Tool Evaluation

reports evaluation results. We describe, applied CRISP-based method to the integration

process to answer Q3, in Chapter 6; and its implementation and analysis in Chapter 7. In

Chapter 8 we discuss the outcomes, limitations, and lessons learned from the master the-

sis. Chapter 9 makes conclusion remarks and states future work.

7

Figure 1. The master thesis structure.

8

2 Literature Review

In this section, we describe literature review results. We have done research on the follow-

ing topics:

• runtime data to improve software quality

• visualizations to support decisions on agile software development

• analysis work on the integration of external and internal quality aspects

2.1 Runtime Data to Improve Software Quality

This section reviews the literature related to the usage of runtime data in improvements in

software quality.

Many recent papers have focused on the problem of gathering runtime data. Previous stud-

ies have reported software analysis methods using runtime data such as error and activity

logs. One of the challenges is real-time gathering runtime data. Several studies investigat-

ed the collection of server logs data during software run-time and their use in failure pre-

diction [2]. Classification methods (such as support vector machine, rule-based classifier

and the nearest neighbour methods) were applied to failure prediction on log data [2]. In

this study, the main result was that the nearest neighbour method showed better results

than others. A failure prediction clustering algorithm trained on failure and non-failure

error log sequences was proposed in [3].

Metzger et al. investigated two approaches: prediction of external failures based on inter-

nal failures and prediction of internal failures before they were occurred [4].

Different methods of Machine Learning have been applied to system anomaly detection

based on Log data, as described below.

Cao et al. showed anomaly detection by using Decision tree and HMM algorithms in Web-

logs from real industry [5]. Du et al. demonstrate applying deep learning techniques into

the online log anomaly detection system and comparison of PCA, IM, n-gram, DeepLog.

In this paper, log data was analyzed as sentence sequences (NLP) [6].

Fraternali et al. applied log analysis in the tracking of the web path of users, to identify

view, design problems, by analysing which path users take to get in the considering page

(time of each path, etc.). Used input data: application server logs + the WebML runtime

logs [7].

Karim et al. proposed SmartBot framework to runtime execution behaviour analysis with

the six machine learning algorithms (BayesNet, SVM, multilayer perceptron (MLP), sim-

ple logistic regression, J48, and Random Forest) to analyze malware of mobile applica-

tions. Used input data was Trace and Log files [8].

2.2 Visualizations on Software Engineering Data

Nowadays, many companies use real-time visualizations of runtime data to make deci-

sions on sprint planning. We analyzed some examples of the used tools: HockeyApp3 and

AWS CloudWatch4.

3 HockeyApp: https://hockeyapp.net/
4 AWS CloudWatch https://aws.amazon.com/cloudwatch/

https://hockeyapp.net/
https://aws.amazon.com/cloudwatch/

9

Figure 2. Visualization available in HockeyApp: “The number of application crashes per

day”.

Figure 2 shows visualization available in HokceyApp tool. This graph shows the number

of crashes occurred each day. This helps practitioners to see the overall picture of crashes,

but it has limitations in showing information about crashed code class. What leads to not

having enough information to take actions in sprint planning.

Figure 3. Visualization available in AWS CloudWatch.

AWS CloudWatch platform is commonly used for gathering log data. Figure 3 shows the

example of visualization in AWS CloudWatch. From the figure we can see only time and

number of errors, it is hard to distinguish for example: the most occurred log.

Overall, there are limitations in visualizing data coming from heterogeneous data sources

to support taking decisions during agile activities (e.g., sprint planning).

2.3 Approaches to Integrate Runtime and Development Data

There have been few empiric investigations into the integration of software runtime and

system and process data. So, far there was not found a single set of correlated metrics for

all projects [9]. Nagappan et al. reported the prediction of component failure based on

mining metrics. Five different software systems of Microsoft were analyzed. Spearman

correlation method was applied to identify a set of complexity metrics which are correlat-

ed with post-release defects [10].

F. Lautenschlager et al. studied the cloud software system. Authors produced the root

cause identification of runtime data collected from different parts of the software and ar-

gue that it is important to be data integrated into one tool [11]. In analysis tools such as

Zipkin, Prometheus, Grafana, fluentid, Elasticsearch5 and Kibana6 (exploring log files)

were used. There were indicated that it is not easy to integrate runtime software data col-

lected from different sources, as there is a need to have a common component (e.g. nam-

5 Elasticsearch: https://www.elastic.co/
6 Kibana: https://www.elastic.co/products/kibana/

https://www.elastic.co/
https://www.elastic.co/products/kibana

10

ing, log structure or sharing timeline). As a result, they have created a chatbot, where all

runtime data collection, storing and analysing tools were combined.

Most of the previous studies have focused on the usage of software quality data either on

runtime or development time. Mostly, researchers produced an analysis of non-on-going

projects, which makes the data preparation process easier. Therefore, there is a need for

further research on the integration of real project runtime and development data and its

analysis.

11

3 Methodology

In this chapter, we describe problem, goal and constructed research design to answer the

defined questions.

3.1 Context

The software development process produces various type of data such as source code, bug

reports, check-in histories, and test cases. The data sets not only include millions of data

points produced per second about the usage of the software (e.g., Facebook or eBay eco-

systems), but also data from the development (e.g., GitHub with over 14 million projects)

[12].

3.2 Problem

As discussed in Sections 2.2 and 2.3, there is little support for companies to obtain insight-

ful and actionable information from data at the right time (e.g., to anticipate quality prob-

lems before they occur).

To take actions on external quality aspects, practitioners need tool support during sprint

planning. For instance, how can practitioners use runtime data to improve the external

quality of their software systems? The difficulties are that the software quality data are

collected from different tools and it is heterogeneous. To identify the dependency of ex-

ternal quality aspect with runtime data, there is a need to integrate them.

3.3 Goal

The main goal of this master thesis is the following:

To provide actionable real-time information about runtime errors and crashes

during the usage of software systems, and explore its integration with development

data from repositories.

This research goal is divided into three questions:

• Q1. How can we gather runtime data to monitor external quality?

• Q2. How can we visualize quality problems to take actions?

• Q3. How can we integrate runtime data with development data?

3.4 Design

To answer the questions above, we envisaged a case study methodology [13]. This ap-

proach was chosen to gain a detailed understanding of software quality data, its usefulness,

and integration possibilities. Initially, we selected a case (i.e., project) where we learned

the different data sources and conducted preliminary data analysis work. However, the

quality of the data in this project from a runtime perspective was insufficient.

Due to the inability to gather the data in an external project, we decided to select a project

in-house where we could ingest the runtime data in the required format and suitable quali-

ty. The project is called Digitale Dörfer (Digital Villages). Digitale Dörfer is a technical

platform, which provides solutions and services for smart rural areas in Germany [14].

12

The major advantages of the selected case were: (a) having access to runtime data sources

of the software; and, (b) possibility to easily communicate with team members working on

the project.

Figure 4. Approach overview.

After the selection of the case, we identified two main actions to address our aforemen-

tioned questions (Figure 4):

1. Gathering runtime data, creating dashboards based on the collected data and evalu-

ating the tool (Q1 and Q2).

a. Runtime Data Visualization Tool

b. Tool Evaluation

2. Applying CRISP-DM methodology on runtime data integration and analysis (Q3).

a. CRISP-based Method for Runtime Data Integration

b. Implementation of Runtime Data Integration and Analysis

The first action captures answers to questions the first two and intended to be used by

practitioners. When the second action is focused on the third question and convenient to be

used by researchers. This is explained in the following subsections.

3.4.1 Runtime Data Visualization Tool

In this section, we describe the structure of implemented work to create the runtime data

visualization tool.

We had an initial meeting with the architect of the DD project, to investigate data collec-

tion possibilities and currently used tools in analysing runtime data. There were investigat-

ed two types of collected runtime data: application crashes and backend log data. Applica-

13

tion crashes are stored in HockeyApp, backend log data in Amazon CloudWatch platform.

As each data type was kept in different tools, we decided to implement two connectors for

gathering each type of runtime data.

First, we gathered data in the Elasticsearch storage, which is a real-time scalable search

platform. In this platform, we can easily store our data, filter, search and visualize on its

plugin. The visualization plugin of Elasticsearch is called Kibana, which is an open source

service. Then, we created four dashboards, based on the DD project architect interests, on

Kibana. One of the dashboards presents application crashes data, the other three – HTTP

log data. The overall architecture of the implemented work is depicted in Figure 5

The connectors 1 and 2 were implemented in Python 3. For the implementation of the

connector 2, we additionally used the third component of Elastic Stack7- Logstash8. This

plugin makes easier continuous streaming of the logs to the Elasticsearch.

Figure 5. The architecture of the runtime data visualization tool implementation.

To sum up, the purpose of implementing connectors, which send runtime data from initial

storages to Elasticsearch, was to get an answer to the Q1: “How can we gather runtime

data to monitor external qualities?”. The dashboards, created based on collected runtime

data, demonstrate answers to the Q2: “How can we visualize quality problems to take ac-

tions?”. Details on this activity are reported in Chapter 4.

3.4.2 Tool Evaluation

To evaluate the dashboards, we conducted a meeting with the relevant team members of

the project. We selected four candidates by the advice of the DD team leader. Participants

had more than 2 years’ experience and carried roles of a software architect, backend de-

veloper, mobile developer and organizing a mobile team. Table 1 shows roles and experi-

ence in years of the participants.

The benefit of questioning a small number of people was the familiarity of the participants

with the data sets. Therefore, they could provide precise feedback. On the other hand, it is

hard to generalize the results of the questionnaire and open discussion based on the opin-

ions of a small group of practitioners.

7 Elastic Stack: https://www.elastic.co/products/
8 Logstash: https://www.elastic.co/products/logstash/

https://www.elastic.co/products/
https://www.elastic.co/products/logstash

14

Table 1. Questionnaire participants role and experience.

Participants Role Experience (Years)

P1 Software architect 4-6

P2 Backend developer 2-4

P3 Mobile developer 2-4

P4 Organizing mobile team 2-4

First, the dashboards were presented to the team members. During the presentation, we

had exploring session where participants could get familiar with the tool and found out

answers to the given small tasks.

After the presentation, we asked members to fill out the online questionnaire. The ques-

tionnaire was constructed based on Technology Acceptance Model 3 (TAM3) [15].

To evaluate the tool and presented data we selected the following constructs:

1. Perceived Usefulness (PU)

2. Perceived Ease of Use (PEOU)

3. Relevance to Job (REL)

4. Output quality (OUT)

5. Behavioral Intention (BI)

By output quality, we have identified the correctness of visualized data. Job relevance

helped us to understand how the tool is relevant to the job of participants. Perceived use-

fulness was chosen to evaluate to what extent the dashboards are useful in the improve-

ment of software quality. In what degree the dashboards user-friendly and interactive was

evaluated by perceived ease of use. By item behavioral intention we have clarified how

practitioners are interested in using the created dashboards. Each statement was evaluated

in 7 degrees (1 - strongly disagree, 2 - mostly disagree, 3 - slightly disagree, 4 – neither

disagree nor agree, 5 – slightly agree, 6 – mostly agree, 7 - strongly agree). The question-

naire itself can be found in Appendix II.

After filling the questionnaire, we had an open discussion session, where participants

shared their opinions about the strengths and weaknesses of the tool.

Details on the outcomes of this activity are reported in Chapter 5.

3.4.3 CRISP-based Method for Runtime Data Integration

To integrate runtime data with development data, we followed the CRISP-DM process

method (Figure 6). CRISP-DM is the cross-industry process for data mining [16]. The

CRISP methodology is widely used in data analysis problems. It provides a well-defined

structure for planning data-driven projects.

15

Figure 6. CRISP-DM Process Method.

CRISP-DM process includes the following steps:

1. Business Understanding

2. Data Understanding

3. Data Preparation

4. Modeling

5. Evaluation

6. Deployment

In the scope of the master thesis, we covered from data understanding (step 2) to model-

ing/analysis (step 4) the CRISP-DM.

Details on this activity are reported in Chapter 6.

3.4.4 Implementation of Runtime Data Integration and Analysis

In this thesis work, we report the implementation of only successfully integrated data sets.

All three steps of CRISP-DM were implemented in Python 3 and demonstrated on Jupyter

notebook (Appendix III). The notebook contains the following sections:

• Data Preparation

• Data Integration

• Data Analysis

16

The default format of the data in the Elasticsearch tool is JSON. Due to that, we gathered

the data in JSON format, then by additional script formatted to CSV (see Appendix I). In

the notebook, we used data in CSV format.

Details on this activity are reported in Chapter 7.

17

4 Runtime Data Visualization Tool

In this chapter, we report implementation and description of the dashboards. Section 4.2

describes the collected software runtime data. Section 4.2 shows the architecture of con-

nectors. The purpose of connectors is to collect runtime data from sources and send to the

needed destination. Section 4.3 depicts created dashboards.

4.1 Runtime Data

There were investigated two types of DD project runtime data: application crashes and

backend log data. Application crashes were stored in HockeyApp, server log data in Ama-

zon CloudWatch platform. Server log data contains access and error logs. Due to the lack

of server error logs in the production environment of the product, we do not report work

done on it in this section.

4.2 Connectors

Implemented connectors are the extensions to the Q-Rapids project. The purpose is to

gather runtime data of the project in the unit platform. As each data type was kept in dif-

ferent tools, we required in creating two separate connectors. The design of the implemen-

tation is shown in Section 3.4.1.

The connectors are implemented in Python 3. For parsing application crashes, we used the

HockeyApp API [17]. Code is reported in Appendix I.

For parsing HTTP access logs, we used Amazon CloudWatch API to collect data and the

third component of Elastic Stack – Logstash to parse to the Elasticsearch [18]. This plugin

makes easier continuous streaming of the logs to the Elasticsearch. Code is reported in

Appendix I.

4.3 Dashboards

The main purpose of the dashboards is to improve the decisions making process in soft-

ware development sprint planning meetings.

We created dashboards in Kibana, which is an open source visualization plugin of Elas-

ticsearch. The tool provides an interactive and user-friendly interface and helps easily to

track data.

We built up the following four dashboards based on the discussion with Digitale Dörfer

stakeholders:

1. Prioritized crash reasons per version

2. Prioritized 4xx HTTP access errors

3. Prioritized 5xx HTTP access errors

4. Prioritized requests with success status code 2xx

The first dashboard presents application crashes data, the other three – HTTP access logs.

Due to confidentiality reason, we covered some parts of the dashboards.

18

Figure 7. Dashboard 1: “Prioritized crash reasons per version”.

Figure 7 presents a dashboard of the most occurred crashes during the selected time peri-

od. The dashboard consists of four parts.

The visualization on the upper left corner shows how many crashes had each version of

the software. Additionally, it depicts the status of the crashes (solved or unsolved). The pie

chart in the middle shows the ratio of solved and unsolved crashes. Filtering of the data

can be done by selecting elements from graphs. For example, John is a project manager.

John sees that in the version 1.3.4 number of crashes is noticeably higher than in version

1.3.3. John is interested to know why the previous version was more stable. He selects the

version 1.3.4 and status ‘unsolved’ and sees on the bar chart on the bottom the most oc-

curred crash. John can find on the right corner of the dashboard entire crash reasons and

timestamp when the crash appeared. He identifies that the crashes reasons indicate mostly

the newly added feature. John decides to spend more time on the development of this fea-

ture during the next sprint.

The dashboard (Figure 7) can help practitioners to understand the progress of solving ap-

plication crashes and decide the needed time to spend on it during the next sprint.

19

Figure 8. Dashboard 2: “Prioritized 4xx HTTP access errors”.

Figure 8 shows the dashboard of prioritized 4xx errors, which help to identify occurred

problems in the software requests. The dashboard shows the number of the most occurred

20 requests with 4xx responses and their error codes. In our case, the most appeared errors

had codes ‘401’ (Unauthorized error) and ‘403’ (Forbidden error). ‘403’ has a more signif-

icant role, as the reason for Forbidden errors can be misleading in the software implemen-

tation.

By using this dashboard project members can identify problems in the software and priori-

tize improvements during agile meetings.

Figure 9. Dashboard 3: “Prioritized 5xx HTTP access errors”.

Figure 9 depicts prioritized requests with 5xx server errors as a response.

20

From the vertical bar chart (upper) we can see the most occurred requests and their error

code. In our case, there were two types of errors ‘502’ and ‘503’. The most occurred error

was ‘503’ and all from the request ‘manage/health’. The table (bottom) shows the method

(GET/POST) and timestamp of the requests. The dashboard helps to identify server prob-

lems faster and intended to be an indicator to pay attention to this part of the software in

the next sprint planning.

Figure 10. Dashboard 4: “Prioritized requests with success status code 2xx”.

Figure 10 represents the dashboard of prioritized requests with status code 2xx. The bar

chart (upper) shows the most frequent called GET and POST requests with a success re-

sponse code - ‘200’.

This dashboard was created by the request of the project application architect. By using

the dashboard team members can identify the most used part of the software. It will help in

feature prioritization of the product during sprint planning.

21

5 Tool Evaluation

In this chapter, we show and summarize the tool questionnaire results (Section 5.1) and

open discussion outcomes (Section 5.2).

The following shows selected five TAM3 constructs and questions [19]:

1. Perceived Usefulness (PU)

1.1. Using the system would improve my performance in my job.

1.2. Using the system in my job would increase my productivity.

1.3. Using the system would enhance my effectiveness in my job.

1.4. I find the system to be useful in my job.

2. Perceived Ease of Use (PEOU)

2.1. My interaction with the system is clear and understandable.

2.2. Interacting with the system does not require a lot of my mental effort.

2.3. I find the system to be easy to use.

2.4. I find it easy to get the system to do what I want it to do.

3. Relevance to Job (REL)

3.1. In my job, usage of the system is important.

3.2. In my job, usage of the system is relevant.

3.3. The use of the system is pertinent to my various job-related tasks.

4. Output quality (OUT)

4.1. The quality of the output I get from the system is high.

4.2. I have no problem with the quality of the system’s output.

4.3. I rate the results from the system to be excellent.

5. Behavior Intention to Use (BI)

5.1. Assuming I had access to the system, I intend to use it.

5.2. Given that I had access to the system, I predict that I would use it.

5.3. I plan to use the system in the next <n> months.

The questionnaire itself you can find in Appendix II.

5.1 Questionnaire Results

Initial questionnaire answers were scaled from one to seven. To analyze results easier, we

moved to scale from minus three to three (-3, -2, -1, 0, 1, 2, 3).

Table 2 summarizes the questionnaire results. Each row corresponds to one of the five

constructs of the TAM. The columns labeled ‘P1’ to ‘P4’ show the means of the answers

of each participant with regards to each construct. ‘N’ indicates the number of questions in

the construct. The following three columns display statistics, such as minimum (‘Min’),

maximum (‘Max’) and rounded average (‘AVG’) of the ‘P1’-’P4’ per each construct.

Table 2. Statistics on the questionnaire results.

 P1 P2 P3 P4 N Min Max AVG

Perceived Usefulness 1.25 2 -0.75 0.75 4 -0.75 2 0.81

22

(PU)

Perceived Ease of Use

(PEOU)

0.25 -0.75 -0.75 2 4 -0.75 2 0.19

Relevance to Job

(REL)

2 2 1.67 1 3 1 2 1.67

Output Quality

(OUT)

2.33 1.67 -0.33 1.33 3 -0.33 2.33 1.25

Behavioral Intention

(BI)

3 2 2 2 3 2 3 2.25

To see an overall picture we visualized results on the box plot (Figure 11). The graph in-

cludes minimum (bottom line), maximum (upper line), average (middle dash line) and

median (middle straight line) values of the constructs with regards to averaged answers of

each participant.

Figure 11. Box plot of constructs with regards to averaged answers of each participant (-3

- strongly disagree, -2 - mostly disagree, -1 - slightly disagree, 0 – neither disagree nor

agree, 1 – slightly agree, 2 – mostly agree, 3 - strongly agree).

23

From the results, we can see that averages per all constructs are above zero (positively

evaluated).

The opinions of the participants about the usefulness of the dashboards were slightly dif-

ferent from each other. Overall average of the Perceived Usefulness responses was posi-

tive (0.81).

The results of Perceived Ease of Use show that participants found the tool neither easy nor

hard to use. The average of the construct responses was close to zero (0.19).

All participants considered the dashboards to be related to their job. The average of the

construct Relevance to Job was close to ‘mostly agree’ (1.67).

The average of the Output Quality construct was between ‘slightly agree’ and ‘mostly

agree’ (1.25).

The construct Behavioral Intention is the most positively voted construct, which has an

average is equaled to 2.25. What can be interpreted as “All participants show high interest

to use the tool in future”.

During the evaluation of the results, there were noticed some unclear questions. For exam-

ple, when answering to item ‘I plan to use the system in the next <n> months’ of construct

‘Behavioral Intention’, some participants answered ‘yes’ or ‘no’ instead of providing a

number for variable n.

5.2 Open Discussion

During the open discussion session, we have discussed the strengths and weaknesses of

the tool. In Figure 12 strengths and weaknesses are depicted respectively in green and or-

ange cards.

Figure 12. Open discussion results.

24

We made categorization and grouped open discussion responses.

The identified strengths of the dashboards were the following:

• Ability to show an overview of the system problems occurring during runtime;

• Ability to analyze exceptions;

• Ability to make the crashes that occurred over time visible.

There were two types of weaknesses of the dashboards identified:

• Problems related to existing features that need improvement;

• Missing features.

Suggestions were: to include more hyperlinks that relate one dashboard with the other, add

the possibility to customize the dashboards easily and aggregation of requests with defined

“warning” threshold.

The defined weakness of the dashboards was including query parameters when differenti-

ating between request. The suggestion was aggregating access logs based on queries.

Overall, the evaluation showed satisfactoriness about the dashboards and considered the

tool to be useful in problem identifying.

25

6 CRISP-based Method for Runtime Data Integration

This chapter describes the three intermediate steps of CRISP-DM (Figure 6) followed in

the runtime data integration process [16]. We applied this approach to have a clear

overview of the software quality data of the DD project, understand data sets and identify

possibilities to integrate fields of the internal and external quality measures.

The structure of this chapter is the following:

1. Data Understanding

2. Data Preparation

3. Modeling and Analysis

6.1 Data Understanding

In this section, we describe relevant data sets of Digitale Dörfer project (0), features need-

ed to integrate (6.1.2) and data quality (6.1.3).

6.1.1 Relevant Data Sets

In this subsection, we report available data sets of the DD project potentially relevant to

integrate. Data sets cannot be made public due to confidentiality reason.

Table 3 shows relevant runtime and development data (the second column) and their ori-

gins (the third column).

Table 3. Relevant runtime and development data sets of the DD project and their origins.

 Relevant Data Sets Origin

Runtime

(external quality)

Access logs HTTP access logs (CloudWatch)

Error logs HTTP error logs (CloudWatch)

Crashes Application crashes (HockeyApp)

Sprint issues Issue tracking system (JIRA)

Development

(internal quality)

Code quality measures Static code analysis tool (SonarQube)

Quality rue violations Static code analysis tool (SonarQube)

Commits Version control system (Git)

In our case, runtime data sets include access and error logs; crashes; and sprint issues:

1. Access logs data set contains all HTTP server access requests of the project. These

data were collected from the Amazon CloudWatch platform.

2. Error logs data set contains all HTTP server errors of the project. These data were

collected from the Amazon CloudWatch platform.

26

3. Crashes data set contains android application crashes occurred runtime. These data

were collected from the HockeyApp platform.

4. Sprint issues data set contains all reported bugs, tasks and change requests. These

data were collected from the tool Jira9.

Development data sets include code quality measures; quality rule violations; and com-

mits:

1. Code quality measures data set contains metric evaluations for either each file, di-

rectory, or module. These data were collected from the SonarQube10 tool.

2. Quality rule violations data set contains each rule violation for either each file, di-

rectory, or module. These data were collected from the SonarQube tool.

3. Commits data set contains source code changes in files. These data were collected

from the version control system (Git11).

6.1.2 Relevant Features

This subchapter describes relevant features from runtime and development data sets to

integrate. Identifying potentially relevant features for quality modeling: (1) identifiers re-

quired for data integration and (2) features capturing potentially relevant quality aspects.

Here, we report the minimum features needed to integrate the data sets.

Runtime data:

Table 4 shows relevant runtime data sets and features.

We extracted from each data set ‘timestamp’, as this is a key artifact for the runtime data.

From access logs, we extracted ‘request’ (HTTP request) and ‘response code’. As people

from DD needed to know how the software was accessed. This can be distinguished by

request name and response code. The ‘request’ is a key factor in possible integrations. The

initial idea was to integrate access logs with development data sets by ‘request’.

From the data set error logs, we selected ‘error type’, this field is the only granularity fac-

tor in the data set. This field has a description of the occurred errors.

From data set crashes ‘crash reason’, ‘status’ and ‘class’ were considered as a relevant

feature. The ‘crash reason’ filed shows the full description of the classes and reason for the

failed crashes. We consider this feature important to be able to connect the data set with

development data.

Relevant features of data set sprint issues are ‘issueid’ and ‘issuetype’. We extracted the

field ‘issueid’, as it is a key factor in the integration of this data set with commits. We

needed the feature ‘issuetype’ to be able to distinguish bugs from stories, tasks, and

change requests.

9 Jira: https://www.atlassian.com/software/jira
10 SonarQube: https://www.sonarqube.org/
11 Git: https://git-scm.com/

https://www.atlassian.com/software/jira
https://www.sonarqube.org/
https://git-scm.com/

27

Table 4. Relevant features in runtime data sets.

Relevant Features

Access logs timestamp, request, response code

Error logs timestamp, error type

Crashes timestamp, crash reason, status, class (if exists)

Sprint issues timestamp, issueid, issuetype

Development data:

Table 5 shows the relevant development data sets and features.

From each development data set we have selected ‘timestamp’ and ‘path’ (path to the file

or class), as these factors present granularity of the data sets.

In data set code quality measures, the relevant features are ‘metric’ and ‘value’. ‘Metric’

indicates quality measure type, ‘value’ - the quantitative measure of the metric.

Extracted feature from the quality rule violations data set was ‘rule’. This field gives us

information about rule violation distinguished by the static code analysis tool.

From commits data set, we extracted the field ‘issues’, which is the list of the solved is-

sues by each code change. This factor is needed to be able to integrate the data set with

sprint issues.

Table 5. Relevant features in development data sets.

Relevant Features

Code quality measures timestamp, path, metric, value

Quality rule violations timestamp, path, rule

Commits timestamp, path, issues

6.1.3 Quality of data

In this subsection, we report the quality of the integrated data sets and issues made integra-

tion not possible.

28

The number of samples (rows) in the integrated data sets is the following:

• Sprint issues – 9,925

• Code quality measures – 2,245,945

• Quality rule violations – 156,548

• Commits - 22,907

More details about the data quality of integrated data sets can be found in Appendix III.

In the collected data, we had the following quality issues, which impede some integration

among data sets:

• Incomplete information - data sets contain missing data. For example, some

crashes have class name others do not.

• Data inconsistency - in different data sets the field ‘path’ is constructed different-

ly.

• Inaccurate data - not all data sets correspond to the same software version and

part.

We report solving incomplete information and data inconsistency problems in Chapter 6.2.

Due to data inconsistency and inaccurate data quality problems, we could not integrate

access logs, error logs and crashes with development data (external quality) (Figure 13).

Figure 13. Failed integration approaches.

We failed in the integration of crashes with development data, as available commits data

set did not contain changes to the application source code repositories.

Access and error log data sets do not have a direct link with the development data granu-

larity factors. This fact made the integration inapplicable.

29

6.2 Data Preparation

This section gives an overview of the data cleaning approach and feature engineering for

individual data sets, independently from one another. And, describes how the data-set-

specific quality problems identified during the data understanding step were handled.

6.2.1 Data Cleaning

This subsection describes the cleaning process of the relevant data sets.

First, we filtered data sets from non-used features and kept only relevant ones. Then, we

cleaned data sets from missing values and duplications. We removed missing values to

solve incomplete information issue.

We extracted the following rows:

• From sprint issues data set - reported bugs

• From commits data set - commits, which solved an issue

The common ‘timestamp’ period was taken for all data sets.

After data cleaning, we produced the feature engineering process described in the follow-

ing subsection.

6.2.2 Feature Engineering

These subsection reports feature engineering produced to integrate data sets.

To solve data inconsistency quality problem, we constructed new identical ‘path’ structure

for all data sets.

Code quality measures were constructed in the following way: first, for each metric, we

created a new column and calculated the average of the metric values per each file during

the identified period.

Code violation rules were grouped by common ‘path’ and calculated new field - ‘number

of violations’ in each path.

In the commits data set, we reconstructed the field ‘issues’ and put each issue in a separate

row.

In sprint issues, we have done feature engineering after integration with commits (de-

scribed in Section 6.3.1). We created a new field ‘number of bugs’ and per each file, we

calculated an overall number of occurred bugs. Integrated files which had no bugs were

considered as having ‘zero’ bugs.

6.3 Modeling

In this section, we describe the process of data integration and analysis approach.

6.3.1 Integration

Figure 14 shows the structure of the integration approach.

We could easily integrate bugs with commits by issue id. What we can not say for other

development data sets. Due to the absence of file (class) path in sprint issues, direct inte-

gration of it with code quality measures and quality rule violations was impossible. We

used an indirect approach to integrate bugs with development data.

30

After integration of commits with bugs, we have integrated code quality measures and

quality rule violations by a file (class) path with the commits. In that way, we indirectly

integrate bugs with static code quality measures and rule violations.

Figure 14. Integration of the number of bugs with software development quality factors.

As a conclusion, we integrated bugs directly with commits and indirectly with static code

quality measures and rule violations.

6.3.2 Analysis

After the integration of the bugs with code quality measures, quality rule violations and

commits, we performed analysis on the integrated data. The purpose was to analyze to

what extent we can use development data in the identification of software runtime quality

problems.

The constructed hypotheses were the following:

1. The number of bugs occurred in the file is positively correlated with the code qual-

ity measures of the file.

2. The number of bugs occurred in the file is positively correlated with the number of

violation rules founded in this file.

Considering data quality aspects to identify dependencies between data sets we decided to

apply correlation analysis. We calculated the Spearman correlation coefficients for inte-

grated data sets. Results are reported in Section 7.3.

31

7 Implementation of Runtime Data Integration and Analysis

This chapter shows the implemented work based on the CRISP-DM methodology and

analysis. The implementation process was divided into two sections: Data Preparation

(Section 7.1) and Data Integration (Section 7.2). The work is implemented in Python 3 and

reported on Jupyter notebook (see Appendix III).

7.1 Data Preparation

In this section, we provide important parts of the code.

First, we have loaded relevant data sets from the respective repositories. Data were col-

lected in JSON format, then parsed to CSV using the script in Appendix I. Then, we ex-

tracted relevant features, produced cleaning and data engineering processes.

To follow the instruction, check the comments.

Sprint issues

1. #List of relevant feature names
2. relevant_features = ['created', 'issuekey', 'issuetype']
3.
4. #Extracting relevant features
5. jira_bugs = jira_bugs[relevant_features]
6.
7. #Filtering only issues which are 'Bug's
8. jira_bugs = jira_bugs[(jira_bugs.issuetype == 'Bug')]

Commits data

1. #List of relevant feature names
2. relevant_features = ['date', 'filename', 'issues']
3.
4. #Extracting only changes which solved an issue and needed features
5. git_issue_solved = git_data[git_data.issues != '[]'][relevant_features]
6.
7. #Changing format of column 'issues' from 'str' to 'list'
8. git_issue_solved = git_issue_solved.assign(issues = git_issue_solved.issues.apply

(lambda x: eval(x)))
9.
10. #Splitting commits which solved several issues
11. git_issue_solved = git_issue_solved.issues.apply(pd.Series).merge(git_issue_solve

d, left_index=True, right_index=True).drop('issues', axis = 1).melt(id_vars = ['d
ate', 'filename'], value_name = 'issue').dropna().drop('variable', axis = 1)

Code quality measures

1. #Creating field which contains only date
2. sq_m_data = sonarqube_m_data.assign(date = sq_m_data['snapshotDate'].apply(lambda

 x: pd.to_datetime(x).date()))
3.
4. #Filtering only measures per "file"s and averaging values per each metric
5. sq_metric = pd.DataFrame(sq_m_data[(sqe_m_data.qualifier == 'FIL')].groupby(['key

', 'metric']).floatvalue.mean().unstack().reset_index())

32

6.
7. #Structuring filename feature
8. sq_metric = sq_metric.assign(filename = sq_metric.key.apply(lambda x: (re.sub('.*

:', '', x)))).drop('key', axis=1)

Code quality rule violations

1. #Grouping by file and calculating the number of rule violations per each
2. sq_issues = pd.DataFrame(sq_issue_data.groupby(['component']).rule.count().reset_

index())
3.
4. #Structuring filename feature
5. sq_issues = sq_issues.assign(filename = sq_issues.key.apply(lambda x: (re.sub('.*

:', '', x)))).drop('key', axis=1)

7.2 Data Integration

In this section, we report the part of the code related to the integration.

Integration of Bugs with Commits

Here, we integrate the number of bugs with commits.

1. #Merging by issue code
2. merged_git_and_jira = pd.merge(git_issue_solved,jira_bugs, left_on='issue', right

_on='issuekey')
3.
4. #Grouping bugs
5. merged_git_and_jira_grouped = merged_git_and_jira.groupby(["filename"]).agg({'iss

ue': 'count'}).reset_index()

Integration of Bugs with Code Quality Measures

Here, we integrate the number of bugs with code quality measures.

1. #Merging by file name, considering files where metric values exist
2. integrated_bugs_metrics =
3. pd.merge(merged_git_and_jira_grouped, s_metric, left_on='filename',
4. right_on = 'filename', how = 'right').fillna({'number_of_bugs':0}).dropna()

Integration of Bugs with Code Quality Rule Violations

Here, we integrate the number of bugs with code quality rule violations.

1. #Merging by file name
2. integrated_bugs_violations =
3. pd.merge(merged_git_and_jira_grouped, sq_violations, left_on='filename',
4. right_on = 'filename', how = 'right').fillna({'number_of_bugs':0}).dropna()

7.3 Analysis

To check the hypotheses, we calculated Spearman correlation coefficients based on inte-

grated data sets.

Figure 15 represents the correlation coefficients between number of occurred bugs and

code quality measures of the files.

33

The row shows the number of bugs occurred in the file; each column corresponds to the

one code quality metric (see an explanation of metrics in Appendix IV).

The results show only weak correlations between the items. We can see that the number of

bugs has a weak positive correlation with the number of functions, lines, and code lines in

the files. There are very weak correlations with other metrics.

Figure 15. Spearman correlation coefficients between the number of bugs and code quality

measures.

Figure 16 represents the correlation coefficients between number of occurred bugs and

number of violations. The row shows the number of bugs occurred in the file; the column

corresponds to the number of violations.

Figure 16. Spearman correlation between number of bugs and number of violations.

Surprisingly, the result shows the moderate negative correlation between the data sets,

which is contradictory to our hypothesis. Further research is needed to identify the reason.

34

8 Discussion

This chapter reports the limitations and lessons learned from the research.

As a result of this master thesis, we fully answered constructed Q1 and Q2:

• Q1. How can we gather runtime data to monitor external quality?

• Q2. How can we visualize quality problems to take actions?

We have created an extension to Q-Rapids connectors to gather software runtime data into

one tool. Based on the collected data we have created the dashboards to help to make a

decision on sprint planning. The created dashboards were evaluated by the DD team.

We conducted a tool evaluation session with the DD project members. The majority of

respondents felt that the tool is useful for their work and would help to investigate prob-

lems in the software. There were some limitations on easiness in using the tool, the rea-

sons for what can be lack of provided tutorials and a short period of time to explore the

tool. In our opinion, this approach could be used by practitioners in identifying problems

of software.

We partially answer Q3:

• How can we integrate runtime data with development data?

Based on the integration with the development data sets (commits, code quality measures,

violation rules), we have grouped relevant runtime data sets into the following three

groups (see Figure 17):

• Integrated – data sets which are integrated with this thesis work;

• Possible – data sets which are realistic to integrate, after solving some issues;

• Not possible – data sets which currently we do not see to be possible to integrate.

Figure 17. Three groups of relevant runtime data sets

In this thesis, we reported the integration of solved bugs with development data sets (in-

ternal quality aspects). One of the challenges was that first, we integrated bugs with com-

mits, where we lost non-solved bugs. Then we could integrate the data set with code quali-

ty measures and violation rules. Currently, we do not see possibilities in the integration of

non-solved bugs.

In the integration of application crashes with development data, we faced the problem of

having data from different parts of the software. The code quality measures and rule viola-

tions of the application source code were not available yet. We believe by solving this is-

sue we can integrate these data sets.

Integrated

• Solved bugs

• Solved bugs

Possible

• Application crashes

• Access logs

Not possible

• Non-solved bugs

• Error logs

35

Access logs data set has entire request queries, which possibly can be integrated with in-

ternal quality aspects, by considering the class handled this request in the source code. We

did not have access to a particular part of the source code.

Error logs contained only a general description of the issues. We could not find any direct

or indirect connection with development data. In our case, there were no clear integration

possibilities.

Only limited data sets of the available data were possible to integrate. We have integrated

reported bugs with development data. Based on the integration we produced correlation

analysis to test two hypotheses.

The constructed hypotheses were the following:

1. The number of bugs occurred in the file is positively correlated with the code

quality measures of the file.

2. The number of bugs occurred in the file is positively correlated with the number

of violation rules founded in this file.

Unfortunately, the results of the analysis were not encouraged. For hypothesis 1 we could

identify a weak positive correlation of the number of bugs, with the number of lines, code

lines, and functions. For hypothesis 2 we obtained the contradictory results, that the num-

ber of bugs has a moderate negative correlation with the number of violation rules. The

reason for that needs to be investigated in further research.

Based on the research on Q3, we report the following challenges and lessons learned to

consider in future research:

• Data access problems. As an example, during the research, we did not have ac-

cess to the DD project android application source code.

• Data quality problems:

o Data inconsistency: In different data sets, the artifacts had a different

structure. Data preparation process would be easier if the data sets were

constructed in a similar way. For example, the path to the files had a

different pattern in each data set.

o Data correctness: We faced the problem of having data sets correspond-

ed to different time periods. We spent a lot of time on finding the cor-

rect data sets from the static code analysis tool. It is important to collect

the data sets in the correct way beforehand.

o Incomplete information: For example, only a few crashes contained

code class name field, which would be useful in the integration.

Although the performance was not ideal, we believe that the lessons learned and imple-

mented work can be reused in future research.

36

9 Conclusions and Future Work

This chapter reports a summary of the main contributions and future research.

The main contributions of the thesis were:

1. Created an extension to Q-Rapids connectors to collect available runtime data

from the DD the project;

2. Creating dashboards to make decisions during sprint planning;

3. Applying the CRISP-DM method to the integration of software runtime and

development data.

The provided connectors and integration scripts are reusable. However, the results of the

integration were not very encouraging, we reported challenges from the integration of

software runtime and development data can be used for further research.

Future work will be based on solving challenges in the integration of application crashes

and access logs with development data sets (internal quality). We will conduct research on

improving the quality of the data sets.

37

10 References

[1] S. Martinez-Fernandez, A. Jedlitschka, L. Guzman and A. M. Vollmer, “A Quality

Model for Actionable Analytics in Rapid Software Development,” 2018 44th

Euromicro Conference on Software Engineering and Advanced Applications (SEAA),

no. 732253, pp. 370-377, 2018.

[2] Y. Liang, Y. Zhang, H. Xiong and R. Sahoo, “Failure prediction in IBM BlueGene/L

event logs,” Proceedings - IEEE International Conference on Data Mining, ICDM,

pp. 583-588, 2007.

[3] F. Salfner and S. Tschirpke, Error Log Processing for Accurate Failure Prediction,

2008, p. .

[4] A. Metzger, E. Schmieders, O. Sammodi and K. Pohl, “Verification and testing at

run-time for online quality prediction,” 2012 1st International Workshop on

European Software Services and Systems Research - Results and Challenges, S-Cube

2012 - Proceedings, pp. 49-50, 2012.

[5] Q. Cao, Y. Qiao and Z. Lyu, “Machine learning to detect anomalies in web log

analysis,” 2017 3rd IEEE International Conference on Computer and

Communications, ICCC 2017, Vols. 2018-Janua, pp. 519-523, 2018.

[6] M. Du, F. Li, G. Zheng and V. Srikumar, “DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning,” ACM SIGSAC Ccs'17, pp.

1285-1298, 2017.

[7] P. Fraternali, M. Matera and A. Maurino, “Conceptual-level log analysis for the

evaluation of Web application quality,” Proceedings - 1st Latin American Web

Congress: Empowering our Web, LA-WEB 2003, pp. 46-57, 2003.

[8] A. Karim, R. Salleh and M. K. Khan, “SMARTbot: A behavioral analysis framework

augmented with machine learning to identify mobile botnet applications,” PLoS ONE,

vol. 11, no. 3, pp. 1-35, 2016.

[9] C. Couto, C. Silva, M. T. Valente, R. Bigonha and N. Anquetil, “Uncovering Causal

Relationships between Software Metrics and Bugs,” in 2012 16th European

Conference on Software Maintenance and Reengineering, 2012.

[10] N. Nagappan, T. Ball and A. Zeller, Mining metrics to predict component failures,

vol. 2006, 2006, pp. 452-461.

[11] F. Lautenschlager and M. Ciolkowski, “Making Runtime Data Useful for Incident

Diagnosis: An Experience Report: 19th International Conference, PROFES 2018,

Wolfsburg, Germany, November 28–30, 2018, Proceedings,” 2018, pp. 422-430.

[12] S. Martínez-Fernández, P. Jovanovic, X. Franch and A. Jedlitschka, Towards

Automated Data Integration in Software Analytics, 2018, p. .

[13] M. Runeson Per and Höst, “Guidelines for conducting and reporting case study

research in software engineering,” Empirical Software Engineering, vol. 14, no. 2, p.

131, 12 2008.

[14] F. Elberzhager, M. Koch and B. Weitzel, “Towards a Digital Ecosystem for Rural

Areas: Experiences from Three Years of Development: 19th International

Conference, PROFES 2018, Wolfsburg, Germany, November 28–30, 2018,

Proceedings,” 2018, pp. 98-105.

38

[15] A. Mockus and D. Weiss, “Interval Quality: Relating Customer-Perceived Quality to

Process Quality,” in 2008 ACM/IEEE 30th International Conference on Software

Engineering, 2008.

[16] C. Shearer, The CRISP-DM model: the new blueprint for data mining, vol. 5, 2000,

pp. 13-22.

[17] “HockeyApp API,” [Online]. Available: https://support.hockeyapp.net/kb/api/api-

crashes.

[18] “Amazon Cloudwatch API,” [Online]. Available:

https://www.logicmonitor.com/monitoring/amazon-cloudwatch/.

[19] V. Venkatesh and H. Bala, Technology Acceptance Model 3 and a Research Agenda

on Interventions, vol. 39, 2008, pp. 273-315.

[20] K. Petersen, S. Vakkalanka and L. Kuzniarz, “Guidelines for conducting systematic

mapping studies in software engineering: An update,” Information and Software

Technology, vol. 64, pp. 1-18, 2015.

[21] X. Franch, C. Ayala, L. Lopez, S. Martínez-Fernández, P. Rodríguez, C. Gómez, A.

Jedlitschka, M. Oivo, J. Partanen, T. Räty and V. Rytivaara, Data-Driven

Requirements Engineering in Agile Projects: The Q-Rapids Approach, 2017, p. .

[22] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou and S. Pasupathy, “SherLog: error

diagnosis by connecting clues from run-time logs,” International Conference on

Architectural Support for Programming Languages and Operating Systems (APLO),

pp. 143-154, 2010.

[23] M. Wen, R. Wu and S.-C. Cheung, “Locus: locating bugs from software changes,”

Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering - ASE 2016, pp. 262-273, 2016.

[24] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona, K. Lochmann, A. Mayr,

R. Plösch, A. Seidl, J. Streit and A. Trendowicz, “Operationalised product quality

models and assessment: The Quamoco approach,” Information and Software

Technology, vol. 62, no. 1, pp. 101-123, 2015.

[25] P. E. Strandberg, W. Afzal and D. Sundmark, “Decision Making and Visualizations

Based on Test Results,” in Proceedings of the 12th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, New York, NY,

USA, 2018.

[26] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams and A. E. Hassan, “Understanding

the Impact of Code and Process Metrics on Post-release Defects: A Case Study on the

Eclipse Project,” in Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement, New York, NY, USA, 2010.

[27] B. Russo, G. Succi and W. Pedrycz, “Mining system logs to learn error predictors: a

case study of a telemetry system,” Empirical Software Engineering, vol. 20, no. 4, pp.

879-927, 2015.

[28] Meiliana, S. Karim, H. L. H. S. Warnars, F. L. Gaol, E. Abdurachman and B.

Soewito, “Software metrics for fault prediction using machine learning approaches: A

literature review with PROMISE repository dataset,” in 2017 IEEE International

Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 2017.

[29] L. Mariani, “Behavior capture and test for verifying evolving component-based

systems,” Proceedings. 26th International Conference on Software Engineering, no.

October, pp. 78-80, 2004.

[30] C. Ioannou, A. Burattin and B. Weber, “Advanced Information Systems

39

Engineering,” vol. 3084, 2004.

[31] H. Huijgens, D. Spadini, D. Stevens, N. Visser and A. van Deursen, “Software

Analytics in Continuous Delivery: A Case Study on Success Factors,” in Proceedings

of the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, New York, NY, USA, 2018.

[32] S. He, J. Zhu, P. He and M. R. Lyu, “Experience Report: System Log Analysis for

Anomaly Detection,” Proceedings - International Symposium on Software Reliability

Engineering, ISSRE, pp. 207-218, 2016.

[33] J. Ge, “Comparative Study on Defect Prediction Algorithms of Supervised Learning

Software Based on Imbalanced Classification Data Sets,” 2018 19th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD), pp. 399-406, 2018.

[34] D. Gadler, M. Mairegger, A. Janes and B. Russo, “Mining Logs to Model the Use of

a System,” International Symposium on Empirical Software Engineering and

Measurement, Vols. 2017-Novem, pp. 334-343, 2017.

[35] A. Filieri, C. Ghezzi and G. Tamburrelli, “Run-time efficient probabilistic model

checking,” Proceedings of the 33rd International Conference on Software

Engineering, no. May, pp. 341-350, 2011.

[36] T. Dey and A. Mockus, “Modeling Relationship Between Post-Release Faults and

Usage in Mobile Software,” in Proceedings of the 14th International Conference on

Predictive Models and Data Analytics in Software Engineering, New York, NY,

USA, 2018.

[37] A. R. Contreras and K. Mahbub, “MORPED: Monitor rules for proactive error

detection based on run-time and historical data,” 5th International Conference on the

Applications of Digital Information and Web Technologies, ICADIWT 2014, pp. 28-

35, 2014.

[38] J. Cito, “Developer targeted analytics: supporting software development decisions

with runtime information,” in Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering - ASE 2016, 2016.

[39] J. Cito, F. Oliveira, P. Leitner, P. Nagpurkar and H. C. Gall, “Context-based

Analytics: Establishing Explicit Links Between Runtime Traces and Source Code,” in

Proceedings of the 39th International Conference on Software Engineering: Software

Engineering in Practice Track, Piscataway, NJ, USA, 2017.

40

Appendix

I. Source Code

Code to parse from JSON to CSV format

1. #This code parse from json format to csv
2. ###
3. #Import libraries
4. import json
5. import pandas as pd
6. from os import listdir
7.
8. #Assign pathes to directories
9. input_dir = "../data/JSON/DD_last/"
10. output_dir = "../data/CSV/DD_last/"
11.
12.
13. def json_to_csv(input_path, output_path):
14. data = []
15. with open(input_path, 'r', encoding="utf-8") as input_file:
16. for line in input_file:
17. da-

ta.append(json.loads(line.encode('ascii', 'ignore'),)['_source'])
18. data_df = pd.DataFrame(data)
19.
20. with open(output_path, 'w') as output_file:
21. data_df.to_csv(output_file, index=False)
22. return data_df
23.
24.
25. if __name__ == "__main__":
26. filenames = listdir(input_dir)
27.
28. for file in filenames:
29. if file.replace("json", "csv") not in listdir(output_dir):
30. print(file + " - started")
31. json_to_csv(input_dir + file, output_dir + file.replace("json", "csv"

))
32. print("Done")

Connector to collect logs from Amazon CloudWatch

1. import os
2. import subprocess
3. import re
4. import io
5.
6. a = os.system('aws logs describe-log-groups')
7. result = subprocess.check_output('aws logs describe-log-groups', shell=True)
8. log_group_names = re.findall(r'(?<=log-group:)(.*)(?=:)', result)
9. log_stream_names = dict()
10. for group in log_group_names:
11. try:
12. result = subprocess.check_output('aws logs describe-log-streams --log-

group-name ' + group, shell=True)
13. log_stream_names[group] = list(set(re.findall(r'i-\w+', result)))
14. except e as Exception:
15. print(e)
16.

41

17.
18. for group in log_group_names:
19. dir_name = 'log_data' + re.sub("/", "_.", group)
20. if not os.path.exists(dir_name):
21. os.mkdir(dir_name)
22. for stream in log_stream_names[group]:
23. try:
24. result = subprocess.check_output('aws logs get-log-events --log-

group-name {0} --log-stream-name {1}'.format(group, stream), shell=True)
25. #print(result)
26. with open(dir_name + '/' + stream + '.log', 'a+') as out_file:
27. out_file.write(result)
28. print stream
29. except Exception as e:
30. print e

Connector to collect crashes from HockeyApp

1. #Import libraries
2. import os
3. import subprocess
4. import re
5. import json
6. import requests
7. from elasticsearch import Elasticsearch
8. import time
9.
10. #Configure the elasticsearch host ip and port
11. try:
12. es = Elasticsearch([{'host': ‘ip’, 'port': port}])
13. except Exception as e:
14. print(e)
15.
16. crash_groups_id_list=list()
17. crash_reasons = json.loads(subprocess.check_output('curl -H "X-

HockeyAppToken: key
" https://rink.hockeyapp.net/api/2/apps/applicationkey/crash_reasons', shell=True
))

18. for i in range(1,crash_reasons['total_pages']+1):
19. crash_reasons = json.loads(subprocess.check_output('curl -H "X-

HockeyAppToken: key
" https://rink.hockeyapp.net/api/2/apps/applicationkey/crash_reasons?page={0}'.fo
rmat(i), shell=True))

20. crash_groups_id_list = crash_groups_id_list + [crash_group['id'] for crash_gr
oup in crash_reasons['crash_reasons']]

21. crash_list = list()
22.
23.
24. i = 0
25. for _id in crash_groups_id_list:
26. try:
27. for crashes in json.loads(subprocess.check_output('curl -H "X-

HockeyAppToken: key " https://rink.hockeyapp.net/api/2/apps/ applicationkey
/crash_reasons/{0}?per_page=100'.format(_id), shell=True))['crashes']:

28. try:
29. es.index(index='hockeyapp1', doc_type='log', id=i, body=json.load

s(subprocess.check_output('curl -H "X-HockeyAppToken: key of the project
" https://rink.hockeyapp.net/api/2/apps/applicationkey/crashes/{0}?format=json'.f
ormat(crashes['id']), shell=True)))

30. i+=1
31. time.sleep(3)
32. except Exception as e:
33. print(e)

42

34. except Exception as e:
35. print(e)

Logstash configuration file

1. input {
2. file{
3. path => ["pathtologfiles/*.log"]
4. start_position => "beginning"
5. }
6. }
7.
8. filter {
9. grok{
10. match => { "message" => "%{COMBINEDAPACHELOG}"}
11. }
12.
13. date{
14.
15. match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]
16. }
17. }
18.
19. output {
20. elasticsearch {hosts => ["host"]
21. index => "name"
22. }
23.
24. stdout { codec => rubydebug}
25. }

43

II. Questionnaire

44

45

46

47

III. Notebook

48

49

50

51

52

53

54

IV. Code Quality Metrics Measures

Metric name Explanation

classes number of classes (including nested classes, inter-
faces, enums and annotations)

ncloc number of physical lines which contains at least
one character (no comment)

lines number of all physical lines

functions number of functions

comment_lines number of lines containing either comment or
commented-out code

comment_lines_density comment_lines / (ncloc + comment_lines) * 100

duplicated_lines_density duplicated_lines / lines * 100

duplicated_lines number of lines involved in duplications

complexity cyclomatic complexity calculate based on the
number of paths through the code

function_complexity complexity average by function

violations total number of issues

Source: https://docs.sonarqube.org/7.4/user-guide/metric-definitions/

https://docs.sonarqube.org/7.4/user-guide/metric-definitions/

55

V. Acknowledgments

This research was made partially possible by Erasmus+ traineeship grant.

I would like to express my deepest appreciation to my supervisors Silverio Martínez-

Fernández and Dietmar Pfahl for their help, time, ideas and encourage.

I am thankful to Andreas Jedlitschka to making possible carrying my master thesis at the

Fraunhofer IESE Data Engineering department and his support. Special thanks to Adam

Trendowicz for his competent guidance to my master thesis and Axel Wickenkamp for

help in gathering data for my research.

I would like to express my thanks to Balthasar Weitzel and all Digitale Dörfer team for

providing me access to their data, active participation in the evaluation process and useful

comments.

I am extremely grateful to my family for their understanding, love and endless support.

56

VI. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Aytaj Aghabayli

 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital ar-

chives until the expiry of the term of copyright,

Software Runtime Data: Visualization and Integration with Development Data – A

Case Study,

 (title of thesis)

supervised by Dr. Dietmar Pfahl and Dr. Silverio Martínez-Fernández.

 (supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the

DSpace digital archives, under the Creative Commons licence CC BY NC ND 3.0,

which allows, by giving appropriate credit to the author, to reproduce, distribute the

work and communicate it to the public, and prohibits the creation of derivative works

and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intel-

lectual property rights or rights arising from the personal data protection legislation.

Aytaj Aghabayli

20/05/2019

