
UNIVERSITY OF TARTU
Institute of Computer Science
Computer Science Curriculum

Stanislav Mõškovski

A web-based framework for the
evaluation of predictive process

monitoring techniques

Bachelor’s Thesis (9 ECTS)

Supervisor: Ilya Verenich, MSc

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A web-based framework for the evaluation of predictive process mon-
itoring techniques

Abstract:
Business process management (BPM) focuses on optimizations of various activities

within the organization, with respect to key performance indicators (KPI). An important
task among BPM-related activities is process monitoring which aims to make sure that
business processes comply with KPIs. Process monitoring can be performed either offline,
using historical data to analyze process execution in the past or online, i.e. analyzing
event streams in real-time to identify the problems as soon as they arise. Predictive
monitoring is an emerging type of online process monitoring that uses historical data to
construct a predictive model using various machine learning methods and then applies
this model to a live event stream in order to predict the future performance of ongoing
process cases.

Various techniques have been proposed to address typical predictive monitoring
problems, such as whether this ongoing case will finish on time or what activity will be
executed next in the case. Even though many of these techniques have publicly avail-
able software implementations, they typically target one specific predictive monitoring
problem. Furthermore, due to variations in evaluation procedures (different data splits,
different evaluation metrics reported, etc.), users do not have a readily available way
to compare predictive accuracy across multiple techniques. Finally, such solutions are
targeting experienced users and also consume a lot of users hardware resources to run the
simulations. In this thesis, we have built a web application that allows users with various
degrees of expertise in the subject to train, validate and compare models to predict multi-
ple KPIs, using a wide range of predictive monitoring techniques proposed in related
work. Moreover, the models can be exported for further use. This application runs all of
the computations on the server side, thus eliminating the need for the powerful hardware
to construct the models. We compare our solution with existing implementations and
highlight clear distinctions and differences.

Keywords:
Business process management, Process Mining, Predictive Monitoring, Machine Learn-
ing

CERCS:P170 Computer science, numerical analysis, systems, control

2

Veebipõhine raamistik äriprotsesside jälgimise tehnikate hindamiseks

Lühikokkuvõte:
Äriprotsesside juhtimine keskendub ettevõtte siseste tegevuste optimeerimisele pea-

miste tulemuslikkuse näitajate suhtes. Protsesside jälgimine on üks äriprotsesside juhti-
mise osadest, mille eesmärgiks on teha kindlaks, et peamiste tulemuslikkuse näitajate
nõuded oleksid täidetud. Ennustuslik protsesside jälgimine (EPJ) on uus protsesside
jälgimise tüüp, mis tuleneb onlain protsesside jälgimise tehnikast. EPJ kasutab andmeid,
mis kirjeldavad varasemalt toimunud äriprotsesse selleks, et konstrueerida masinõppe
meetodite abil ennustatavat mudelit. Treenitud mudelit rakendatakse reaalajas toimuvate
protsesside voole, selleks et ennustada protsesside käitumist.

EPJ tüüpilisteks ülesanneteks on ennustada, kas antud äriprotsess lõpeb õigeks ajaks
või mitte, või milline on järgmine ülesanne, mida hakatakse protsessi raames täitma. Kui-
gi nende probleemide lahendamiseks on olemas vabavaralisi tarkvara lahendusi, tavaliselt
nad keskenduvad ainult ühele eelmainitud probleemidest. Lisaks, sellised lahendused
keskenduvad kogenud kasutajatele ja tarbivad palju riistvara ressursse simulatsioonide
jooksutamiseks. Antud töö kirjeldab autori poolt loodud veebirakendust, mis lubab eri-
neva kogemustasemega kasutajatel treenida, valideerida ja võrrelda treenitud mudeleid,
ning võimaldab ka mitme tulemuslikkuse näitaja ennustamist, kasutades erinevaid EPJ
tehnikaid, millest räägitakse täpsemalt ’seotud töö’ peatükis. Rakendus jooksutab kõiki
simulatsioone serveris, seega ei pea kasutaja omama võimsat riistvara simulatsioonide
jooksutamiseks. Lisaks, autor võrdleb oma poolt loodud rakendust juba olemasolevate
rakendustega ning toob esile nendevahelisi erinevusi.

Võtmesõnad:
Äriprotsesside juhtimine, Protsessikaeve, Ennustav jälgimine, Masinõpe

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria)

3

Contents
1 Introduction 5

2 Background and related work 6
2.1 Business process monitoring . 6
2.2 Predictive monitoring . 9
2.3 Machine learning . 10
2.4 Similar tools . 11

3 Requirements analysis 13
3.1 Log file analysis . 14
3.2 Automatic data attribute classification 15
3.3 Training modes and prediction types 15
3.4 Result visualization and model deployment 16
3.5 Interoperability . 17

4 Approach and implementation 18
4.1 Architecture . 18
4.2 Technologies used . 19

4.2.1 ZK . 19
4.2.2 Kotlin . 20
4.2.3 Python . 22

4.3 Implementation . 23

5 Running example 29

6 Summary 37

7 Future work 38

References 41

Appendix 42
I. Licence . 42

4

1 Introduction
Business process monitoring plays an important role in business process management.
Business process monitoring relies on workflow management systems (WFMS), which
support the execution of a business process and record activities performed by process
participants as a part of the process. The data from WFMS is serialized into event logs
and event streams that contain data about each execution of a business process, i.e. a
process instance, or a case.

Offline process monitoring is concerned with studying historical event logs in order
to analyze process performance issues and discover their root cause. The discovered
insights can be then used to improve future process performance. In contrast, online
process monitoring is applied to event streams to monitor ongoing cases in order to
allow process workers and stakeholders to react to performance issues as soon as they
arise. Predictive monitoring is a novel type of online process monitoring that uses
historical data of case executions to construct a model that can accurately predict the
future behavior of similar ongoing cases. Such approach allows workers and stakeholders
to react to performance issues before they occur and to prevent them.

Predictive monitoring can be divided into two phases. The first phase is about
extracting the information from the log file and constructing the model based on the
extracted data. The second phase consists of predicting the future behavior of running
cases in an event stream.

In this thesis, the first phase is the main focus. Namely, a web application has been
developed using an existing command line-based predictive engine proposed in [30].
This application allows us to deliver predictive monitoring to end users, by leveraging the
solution as a service model, which allows any user to run simulations in a web browser,
without a need of powerful hardware. Web application fully automates the model training
procedure and requires only a minimal input from the users. In order to improve user
experience and to simplify the process of model evaluation, the application provides
such features as automatic data detection and classification, parallel simulation running,
results visualizations and model/result exporting.

The rest of the thesis is structured as follows. Section 2 introduces the important
concepts that help to understand the topic, such as business process monitoring in general,
what is predictive monitoring and how it is related to machine learning. Moreover,
this section discusses similar software solutions developed for predictive monitoring.
Section 3 introduces functional and non-functional requirements. Furthermore, this
section provides an analysis of the requirements to explain the requirements in more
detail. Section 4 dives into the application architecture, describes the tools that were
used to build the application as well as provides insight into the implementation details.
Section 5 presents an example of a use case for the developed application as well as
some insights of the performance of the application. Section 6 and section 7 describe the
results of the thesis and introduce the points for improving the application.

5

2 Background and related work
This section includes information about the background and related work that has been
done in order to understand the topic.

2.1 Business process monitoring
Business process management is an area of operations management that aims at discover-
ing, modeling, analyzing and optimizing different activities within the organization [10].
For example, the objective of such optimizations can be reducing the cost, execution
times and error rates of various business processes [10]. As seen in figure 1, business
process management consists of a number of lifecycle stages.

Figure 1. Business process management lifecycle [10].

One of such elements in the business process management lifecycle is the business
process monitoring. The core objective of business process monitoring is extracting the
information from different data sources that are generated during process execution and
verifying that the data conforms to the norms and regulations [10].

In general, data sources for process monitoring come from event logs. The content

6

of event logs is defined by extensible event stream (XES)1 format, which is the standard
format used in process mining. An event log consists of various events that have been
performed during the execution of the process, displayed as an entry in the event log.
Each entry in an event log represents a state change of the process, such as start or
completion of the task [10]. The complete structure of XES can be seen in figure 2.

Figure 2. Structure of XES logs [15].

As far as the content entry in event log goes, each entry has the following mandatory
fields that are present in every event log: case identifier, activity column and timestamp
column.

Case identifier represents a unique identifier for the business process which is used to
identify which events belong to a single process in the event log. As mentioned before,
case identifier is unique, which means that its relation to events is 1 to n. This means

1http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf

7

http://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf

that there may be multiple events belonging to the same case but a set of events can only
have a single parent case.

The activity represents a status of the case. This value may vary for different events
in the case, but it is not unique. It is used to represent state change of the case, such as a
task start or completion. Alternatively, the column may be named as event name in some
event logs.

Another entry that is always present in the event log is the timestamp. As defined
by XES, a process can have different states, such as the start of the process execution,
pausing of the process execution, completion of activity and others. The purpose of the
timestamp is to record the point in time when the state change of the process took place.
This entry usually includes both date and time and can be used to restore the sequence of
events to their chronological order.

Finally, an entry which represents resource is often present but is optional. Resource
represents an entity responsible for the execution of the event in a given process. This
entity can be a human, a machine or any other object.

It is also important to mention that an event log may contain other entries in addition
to those mentioned previously. Those are also optional, just like the resource, but those
may be used as features during model construction in order to construct a more accurate
description of the process.

Above we have described the structure of the event log defined by XES. Event streams
are another way to represent the information about the business processes. While event
stream is structured the same way as an event log, they represent a potentially unbounded
set of data. This is because event logs are stored as files on a filesystem, while event
streams act as streams, which are able to consume and produce events in real time.

If event logs contain information about the cases that have already been completed,
the event streams contain information about ongoing processes. The former is mainly
used for historical analysis of the data such as evaluating bottlenecks in the processes,
while the latter is important to provide on-the-fly overview of the performance of the
process. With that in mind, process monitoring techniques can be classified into two
categories: offline process monitoring and online process monitoring [10].

Offline process monitoring deals with already completed process executions [10].
Event logs are used as an input for offline process monitoring. Event logs contain
historical process execution information over a certain period of time, for example, a
month, a quarter or a full year [10]. The main objective of offline process monitoring is
to identify the reasons for poor performance of the process or to find other bottlenecks
that occurred during process execution.

If offline process monitoring focuses on already completed cases, then online process
monitoring is concerned with the evaluation of performance of ongoing processes [10].
In this case, a stream of events is usually used as an input, in order to give a real-time
overview of the performance of the running cases.

8

In this thesis, we mainly focus on predictive process monitoring, which is described
in the next subsection.

2.2 Predictive monitoring
Online process monitoring, described in the previous subsection, is reactive by nature. It
operates on the event streams, consuming the events in real time and detecting issues
when they arise. This approach allows managers and stakeholders to solve problems after
their occurrence, but it does not allow the users to foresee the problems before they arise.

As mentioned in subsection 2.1, offline process monitoring deals with historical
data analysis while the main objective of online process monitoring is the evaluation
of the performance ongoing cases. Approaches used in those two process monitoring
techniques can be combined, resulting in predictive monitoring.

Predictive monitoring acts as a bridge between online and offline monitoring – it uses
data of historical process execution to train machine learning models, which then can
be applied to an incoming stream of events to rate the performance of incoming cases.
The position of predictive process monitoring, relative to offline and online monitoring,
can be seen in figure 3. While online business process monitoring is reactive, predictive
process monitoring is proactive. This means that predictive process monitoring is able
to detect the problems before they arise, thus giving users an ability to react to an event
before it happens, allowing them to either prevent the issue or minimize the losses caused
by it.

Figure 3. Process monitoring and controlling techniques [29].

Not only does such approach allow one to create machine learning models using
different machine learning algorithms, but it also allows construction of specific models
that are focused on predicting an attribute that was selected during training. Furthermore,
large amounts of the training data with a combination of thoroughly selected machine

9

learning algorithms can result in a trained model that produces accurate results once
applied to a real-time stream.

To sum up, our application facilitates predictive process management, by analyzing
historical data provided by the user, in order to train models by using different machine
learning algorithms. Such models can then be used for predictions on a real-time stream
of events by already existing applications, such as one described in [27].

2.3 Machine learning
Machine learning is a field of science, that draws together different fields of science
such as artificial intelligence, probability and statistics, information theory and many
others [23]. Machine learning system is described by the training data and by the learning
algorithm that extracts useful patterns from the data. In today’s world, data is being
collected as a result of various activities. Such data can be used as a direct or indirect
source of training experience for a machine learning model [23].

In this thesis, the source of the training data is an event log file, described in sec-
tion 2.1. The learning algorithm extracts information from the event log, generally as
feature vectors. From such vectors, a decision tree is constructed, which is used to make
predictions.

Decision trees are hierarchical structures, which classify instances by moving from
the root node of the decision to the leaf of the tree [23]. Every node represents an attribute
of the instance, while every edge moving from the node represents one of the possible
values that this attribute can have [23]. So in every node, the attribute of the particular
instance is tested and an appropriate edge is chosen. This process is recursive and repeats
itself until a leaf node of the subtree, chosen in the previous step, is reached. When a leaf
node is reached, this means that an appropriate class has been found for the particular
instance.

Random forest is a learner that can be used for both classification and regression
and is an ensemble of randomly trained decision trees. When the random forest is used,
predictions are made by aggregating the predictions of all of the decision trees in the
forest [21]. This means that majority vote method is used for classification, while for
regression an average of all votes is used.

Gradient tree boosting is another machine learning technique which is based on
decision trees. It is used to solve supervised learning problems and is based on the idea
of functional gradient ascent [9]. The main idea behind gradient tree boosting (as it is
for all boosting techniques [32]) is boosting weak learners (e.g. decision tree, neural
network) into strong ones. In [32], weak learners are defined as component learners that
are slightly better than random predictions, while strong learners are able to do very
accurate predictions.

Extreme gradient boosting (XGBoost) is a machine learning technique based on
gradient tree boosting. One of the core advantages of XGBoost over regular gradient

10

boosting is scalability: XGBoost runs more than ten times faster on a single machine [7].
This is mainly due to innovations introduced with XGBoost. Those innovations include:
handling sparse data (cases where most of the row columns are empty), using parallel
computing and out-of-core data processing [7]. Furthermore, XGBoost uses model
regularization which allows it to avoid over-fitting, giving it better performance [7].

2.4 Similar tools
In order to illustrate what differentiates our solution from already existing tools, let us
compare already existing products with the application implemented in this thesis.

Firstly, let us discuss solution implemented in [11]. This application represents a
client-side solution that uses XES files as an input. One of the core differences of the
application described in [11] and the application described in this thesis is that [11] is
executed completely on the client-side, while we propose a solution as a service (SaaS).
This means that our application is accessible with any modern web browser and the client
does not have to have to install any additional dependencies or have a powerful machine
in order to receive the output of the application. Moreover, in [11] neural networks are
trained to output prediction result, while our solution uses mostly trees-based approach.

Secondly, an extension for ProM has been developed by Federici et al. [12]. This
plugin gives the user an ability to select both remaining time for the case completion
and case outcome (whether or not the case will meet the required deadline). In this
application, two of the following encoding methods are provided: frequency based and
sequence based. Furthermore, Weka random forest implementation is used as a learner
algorithm. In our proposed application, a more fine-grained choice of training parameters
and prediction targets are provided. By default, in [12] user has to provide a configuration
for every training process, which might cause issues for users that are inexperienced
in machine learning, while in we propose a set of default parameters that can be used
by default. On a final note, this application is a hybrid solution, which means that
predictions are made on the web server, while the user still is required to use a desktop
application, where one has to provide the IP address of the web server as well as port
where the predictive engine is running, while we propose a solution that is accessible via
web browser.

In addition to the plugin developed in [12], another extension for the ProM framework
has been developed by de Leoni et al. [8]. This plugin extends the functionality of already
existing framework, by providing alternative prediction targets such as next activity in the
trace, workload per resource, total workload and others. The plugin uses only decision
trees. As mentioned before, this is an extension of a framework, not an end to end
solution that we propose in this thesis.

Finally, let us mention an application developed by Kerwin Jorbina in [20]. As
indicated before, all of the implemented solutions are either client-side solutions, where
the user must use own CPU or GPU resources in order to produce an output, or hybrid

11

solutions where the user is required to download a third-party desktop application in
order to use the functionality. However, this solution is implemented as a server-side
application, so no third-party applications are required to use this service. The main
difference between application developed in [20] and our proposed solution is that our
application uses more mature predictive monitoring technology, that gives the user much
more control over the training parameters. The model output in [20] is isolated and
incompatible with third-party components, while our framework provides an integration
with one of the popular process mining platforms, Apromore.2 One of the reasons of
why this integration is important is that the models that were trained in the training
application could be deployed into the runtime component developed in [27], which
would allow the models to make predictions in real time on using an incoming stream of
events as an input. Not only are the technologies incompatible, but the trained models
that are produced as an output of the application are also incompatible with the runtime
component that was developed in [27]. In order to fix this, we developed an application
that is using technologies that are fully compatible with Apromore and made sure that the
models produced in our application were completely compatible with runtime component
developed in [27].

2http://apromore.org/

12

http://apromore.org/

3 Requirements analysis
The following section of this paper moves on to describe in greater detail the functional
and non-functional requirements which were implemented during the application devel-
opment. In addition, a reasoning is provided on why such functional and non-functional
requirements were chosen.

A functional requirement is a requirement to the project which describes a function
that a system or component must be able to perform [1]. In order to provide a clear
overview of functional requirements, we have been grouped into independent sections:

• Log uploading

1. The system must accept logs in a comma-separated values (CSV) format

• Automatic data attribute categorization

1. The system must automatically categorize the data attributes in each column
of the event log.

2. The system must give user a possibility change the type of each column
manually.

• Training parameter selection

1. The system must give the user a possibility to regenerate dataset configuration
file.

2. The system must provide a possibility for the user to switch into ‘advanced
mode’.

• Prediction types

1. The system must allow remaining time prediction.

2. The system must support next activity prediction.

3. The system must allow prediction of case outcome (fast/slow case).

• Advanced mode requirements

1. The system must allow manual selection of various sequence encoding and
sequence bucketing algorithms as summarized in [30].

2. The system must allow the user to manually select learners that will be used
for predictions.

3. The system must provide tooltips which user can read to acquire additional
information about given algorithm.

13

• Results visualization

1. The system must provide a visualization of accuracy achieved at different
stages of a lifetime of a case.

(a) The system must allow the user to select an evaluation metric.
(b) The system must give the user a possibility to compare relevant models

(relevant models - trained with the same log and predicted the same
outcome).

2. The system must provide a visualization of feature importance for a given
model configuration.

• Interoperability

1. The system must be able to output trained models in a common format (e.g.
as a serialized Pickle object) so that they can potentially be reused by other
application, for example, to make predictions at runtime using these models.

Non-functional requirement definition, however, is very broad compared to the
functional requirement. In this project, we consider a non-functional requirement an
improvement to the user experience.

Below one can see the list of non-functional requirements:

1. The system should provide reasonable default parameters for starting the simula-
tion.

2. The system should provide the user with a way to track simulation progress.

3. The system should be responsive – respond in less than 10 seconds and if an action
requires more time, the user should be notified about it.

3.1 Log file analysis
Before proceeding to examine the main functionality of the application, it is important
to mention log file uploading. Although XES file format has been designed in order
to interchange event data between various information systems [2], it was decided the
application described in this project would use CSV as an input file format. The reasoning
behind such choice is the tools used in the predictive engine are designed to operate
using CSV file format as well as tools offering XES to CSV file conversion being widely
available, one of them being Fluxicon Disco3. This is due to event logs coming in a
variety of different formats such as csv, xes, mxml, and others. From the aforementioned

3https://fluxicon.com/disco/

14

https://fluxicon.com/disco/

file formats, CSV is the most common one and there are various converters available that
allow conversion between different formats. Moreover, we aimed for a universal solution
that is not locked into a specific file type.

3.2 Automatic data attribute classification
Moving on, the second step after log uploading is the automatic categorization of data
attributes in each column. In order for a machine learning algorithm to accept the learning
data, it has to be classified beforehand. To improve the user experience when using this
application, the following process is automated, but the user is allowed to override the
categories proposed by the system.

Every entry in the log file represents an event that took place during a case that
is present in the log. Knowing this, we can define the minimum required amount of
information as following columns: a case identifier (a unique identifier that is same for
every event in the same case), activity (an action that has been performed during an
event) and a timestamp (when the action has taken place).

As far as other remaining attributes are concerned, they can be categorized into the
case and event attributes, which, in turn, can be also categorized into categorical and
numerical values.

An attribute is considered to be case attribute when a value of this attribute is the
same for all events that belong to a given case. If an attribute has multiple values across
different events in a single case, this means that the attribute is considered to be an event
attribute.

Next, a case or an event attribute can be classified as a numerical or a categorical
attribute. Numerical and categorical attributes can be also named as quantitative and
qualitative attributes of an event or case. Quantitative attributes are represented by
integers or continuous numbers [28]. Categorical or qualitative attributes are just different
nominal values that are used to distinguish one object from another [28]. Such values can
be also represented as numbers and in such cases, they should be treated as symbols [28].

3.3 Training modes and prediction types
When gathering the requirements for the application, a lot of emphases was put on the
fact that the application should be as simple as possible, while satisfying the needs
of both basic and advanced users. With that in mind, in addition to the basic mode,
which offers preselected algorithms for the user, an advanced mode has been developed
which offers the user a wide variety of machine learning algorithms. In this mode, the
user can manually select encoding, bucketing and learner for a single model as well as
hyperparameters that will be used when training the model (e.g. maximum depth of a
tree when using gradient boosting as a learner). Moreover, this model allows the user to
train multiple models in parallel, each with a different configuration.

15

Based on the XES format definitions, following prediction outcomes can be evaluated
for every event log: case remaining time, next activity and case outcome (fast/slow case).
Those problems are generic and do not require any additional entries and can be evaluated
based on the data that is contained in the event log by default.

Remaining time a regression problem. For this prediction target, remaining time until
case completion is calculated based on the information about already finished events.

Next activity is a classification problem. The objective of this prediction is to output
the next event that will take place in a given case.

Case outcome is a classification problem. This prediction evaluates whether or not
the case will meet the expected deadline (is it a fast or a slow case).

All of the aforementioned predictions are applied to all of the cases present in the
event log. In addition to those values, event log specific values can also be used as
prediction targets due to the nature of machine learning. This is because machine
learning algorithms only require data to be in a specific format, in order to be able to
search for patterns in the data, and is not interested in the contents of the data.

3.4 Result visualization and model deployment
Result visualization plays an important role in the application. It is essential that result
representation the user is informative as well as eye pleasing. Since the output produced
by the predictive engine is in form of CSV files, it is crucial to transform the output into
more easier to understand format. To do this, in this project validation results should be
represented as charts. As there are various ways to measure the accuracy of the model,
below the ways used in this application are presented.

Firstly, visualization of model accuracy prediction accuracy must be provided. Based
on this visualization user can make a decision whether the model is predicting accurately
or the model is overfitting the data. Since this metric is different for classification and
regression methods, then the visualization methods for those should differ.

Secondly, one should see how the predictive power of a model changes across case
lifetime, i.e. as more events get exectuted and more data become available. By using
different evaluation metrics, such as mean absolute error, one can see how close the
predictions are to the correct values. In this section, it is also important to provide a
possibility for a user to compare the models so that one can see which of the trained
models makes more accurate predictions.

Finally, the user should be provided with a visualization of how important features
were during the prediction. The purpose of this is to give the user an idea how much
of an impact a given feature had on prediction, so in the next simulation one could, for
instance, exclude a feature from predictions or, on the contrary, include some of the
excluded features into predictions.

16

3.5 Interoperability
In addition to validation results in form of CSV files, the predictive engine also produces
a model based on the simulation parameters. Both of those outputs are in open data
format and thus can be analyzed by external third-party applications. This allows users,
for instance, to export the trained model and used in any other application that is able to
process pickle (pkl) files. Moreover, models exported from the application can be used
for predictions on event streams. One of such examples would be the deployment of the
trained model into the Nirdizati Runtime component, which is described in [27].

Not only can user export the pickle file of the trained model, but the user is also able
to export the result files that are generated for the model accuracy report. This allows the
user to create own visualizations if for some reason ones provided by our application are
not suitable.

In other words, all of the output produced by the application is in open data format
and can be consumed by other developers, applications or users without any specific
tools provided by our application.

17

4 Approach and implementation
Purpose of this section is to provide a high-level overview of the architecture of the
solution and to give an insight into technologies that were used to complete the project.
The solution architecture was designed to support multitenancy. Such approach allows
every user to have an own instance of the apllication. Furthermore, instances of the
application can be configured individually to suit the needs of different users.

4.1 Architecture
In order to conceive the solution architecture, let us illustrate the flow of the data through
the application. Visualization of the data flow can be seen in figure 4.

Figure 4. High-level overview of the data flow in the system (adapted from [31])

Before starting operations on the log, it is crucial to extract the required data from it.
This is done by the front-end application, as it may require user input in order to verify
that the data classification and detection have been done correctly.

Firstly, it is important to verify that the required columns, defined in subsection 3.2,
are present in the log file. This inspection is done automatically in order to save users
time as well as improve the user experience. If at any point user feels that the values
chosen by the system do not correspond to his expectations, one can override the values
manually.

After the presence of the minimum required set of data has been verified, attributes
of each case are automatically extracted from the log and categorized into case or event
attributes and then into numerical and categorical values correspondingly. Just as the
previous process, this procedure is fully automated, because if done manually, this

18

process can be time-consuming. Manual overrides are also allowed here because the user
might want to exclude some attributes during predictions to improve prediction accuracy
or, in some cases, the attribute might contain ‘future values’ – values that are currently
not known, but might be evaluated during prediction process.

Based on the data gathered in previous procedures, a data set descriptor is generated,
which will be used during the prediction process. The descriptor contains the main
information about the attributes of the log: names of the required attributes and categories
of the remaining attributes. Descriptor also contains information about the columns that
will be ignored during prediction as well as ‘future values’.

After the data set descriptor has been generated, a simulation process can be triggered
by the user in the front-end application. When the process has been triggered, the
front-end application generates a simulation process descriptor for the predictive engine.
Simulation process descriptor contains information about the hyperparameters for the
learning algorithms. The descriptor may also contain the information required by other
training parameters, such as a number of clusters to bucket the data into. For example,
if a simulation process is triggered with a decision tree as a learner, then the number of
maximum features and the maximum depth of the tree are passed into the descriptor.

During the next steps, actions are performed by the prediction engine. Internally, the
log is split into the training and validation sets (80% for training and 20% for validation).
After the log has been split into the training and validation sets, the features are encoded
using the method which was provided by the training descriptor and then, if the bucketing
method was provided, collected into buckets. Next, the data is passed to the predictor,
which learns on the data and evaluates the results. As an output, the predictive engine
generates a model in the pickle format and the accuracy report of the model. Both model
and the reports are accessible via the front-end of the application. Furthermore, report
results can be visualized in the front-end or exported for further analysis outside the
application. The export feature is also available for the model, trained by the engine.

4.2 Technologies used
In this section, an overview of different technologies that were used to develop this
application. End-product can be divided into two parts: presentation layer written
in Kotlin programming language and predictive engine in a form of Python scripts.
Furthermore, ZK framework was used to develop user interface of the application.

4.2.1 ZK

ZK is enterprise AJAX framework designed to build desktop-like applications for the web.
ZK is owned and developed by Potix, a Taiwanese company which has been founded in
1998 [22].

19

Since the project is open-source and licensed under LGPL 3.04 it was eligible for free
ZK EE license, which allowed us to use some of the components that are not available in
the free version. ZK EE version 8 was used for the development of the application.

One of the core advantages of ZK is that it is server-centric framework, thus no
business logic is ever exposed to the client. Moreover, all of the requests are handled by
the framework, which means that user interface can be written in pure Java. This might
appear as a limitation, but in fact, ZK also supports client-side programming if needed.
The framework uses component-based event-driven architecture to handle the state of the
application [26]. This allows developers to create content-rich single page applications.

Component-based means that all of the elements of the application can be divided
into independent modules, which communicate with each other using provided interfaces.
The benefit of this approach is that it allows containing complexity inside of independent
components, allows parallel development of different components as well as improves
quality of the product [5].

On the other hand, event-driven means that events are used to change the state of the
application. An example of this of this would be a user interaction with the application.
On user input, a component emits an event, which can be consumed by other components
that are subscribed to the events emitted by a given component.

Another feature provided by ZK is an XML-formatted language ZUL which is
an extension to the XUL language [25]. ZUL allows creating different user interface
components declaratively without writing any Java code. Figure 5 illustrates declarative
user interface composition using ZUL. Not only does it allow to create components, but
ZUL also allows attaching listeners, styles and other various component attributes.

In this thesis, both layout generation approaches were used: declaration with ZUL
and programmatic layout generation.

Figure 5. Layout declaration using ZUL.

4.2.2 Kotlin

The main language for the user interface development of the project was chosen to
be Kotlin. Although it was mentioned that ZK is a Java framework, Kotlin is 100%

4https://www.gnu.org/licenses/lgpl-3.0.en.html

20

https://www.gnu.org/licenses/lgpl-3.0.en.html

interoperable with Java and is compiled to the Java virtual machine bytecode [19]. This
allows developers to use rich collection of Java libraries and frameworks with Kotlin
without any compatibility issues. Furthermore, Kotlin and Java can be used in the same
project, thus allowing you to call Kotlin from Java code and vice versa.

Kotlin is an open-source statically typed programming language that targets different
platforms one of which is JVM (Java virtual machine) [19]. Kotlin is developed by the
company named JetBrains with headquarters in Prague, Czech Republic [16]. First stable
release for the language was launched in February of 2016 [4]. This indicates that Kotlin
is a rather young language but nonetheless is it developed very actively and currently
it is at version 1.2.30. The aforementioned version was used to develop the application
described in this thesis.

One of the traits of this language is that it combines both object-oriented and func-
tional paradigms. On one hand, Kotlin has extensive support for object-oriented program-
ming by not only using regular classes like Java but, by going a step further, it introduces
data classes, sealed classes and objects. For instance, sealed classes can be used to
represent strict class hierarchies and act as an extension to enum classes in Java [18].
On the other hand, higher-order functions is a crucial concept introduced by functional
programming and Kotlin provides comprehensive support for it. In Kotlin, one can pass
higher-order functions or blocks of code as function parameters which in turn allows the
language to have such concepts as function composition and coroutines5.

The second advantage of Kotlin is that it avoids the problem of nullability by pro-
viding a strong type system. In Java, a null value is used to represent the absence of
value [14]. However, due to Kotlin’s strong type system, references that can contain null
have to explicitly be marked as nullable [17]. Such type system minimizes the number
of null references in the code because in order to access nullable type one should use
!! operator in order to assert that a value is non-null or use safe function calls using ?
operator.

Finally, Kotlin is more concise by cutting the number of lines of codes by approxi-
mately 40% compared to Java [19]. In this case, having less code means that the code
is easier to read and debug. This is achieved, for example, by eliminating redundant
type declarations that are mandatory in Java as those can be evaluated by the compiler.
Figure 6 shows the difference between variable declaration in Java and Kotlin.

Additionally, Kotlin allows you to reduce the number of variables in the code by
introducing higher-order functions such as also, apply, let and run. Figure 7 demonstrates
how apply function can be applied and its Java equivalent.

Such approach drastically reduces the number of variable declarations thus reducing
the risk of having unused variables and may prevent several code smells, such as reusing
variables that are used as method parameters.

Finally, it should be mentioned that running a simulation process is completely

5https://kotlinlang.org/docs/reference/coroutines.html

21

https://kotlinlang.org/docs/reference/coroutines.html

Figure 6. Variable declaration comparison with Java on the left and Kotlin on the right.

Figure 7. Demonstration of apply function application with its Java equivalent.

asynchronous. Kotlin provides various opportunities to execute code asynchronously but
since we need a control over how many jobs are executed in parallel by the server, we
decided to stick to a Java solution – a thread pool. This allows us to have a fixed number
of threads that execute the simulation processes submitted by the users. If the amount of
queued jobs is greater than the available thread count, the jobs are queued and executed
as soon as a free thread is available. Such approach allows us to reduce the load on the
server or, if the server has a lot of resources available, we can expand the thread pool to
allow more concurrent jobs by editing a parameter in the configuration of the application.

4.2.3 Python

The core of the system is a predictive engine which relies on different machine learning
techniques in order to provide an output for the end-user. For this task Python was the
language of choice since it is often used for different scientific calculations due to ease
of use and its vast variety of data processing libraries.

Python is an interpreted, object-oriented oriented programming language that com-
bines remarkable power with clear and simple syntax [13]. It provides interfaces to
different system calls as well as various window systems [13]. Since Python is an inter-

22

preted language, it is run by the interpreter and not compiled into bytecode or machine
code by the compiler. One of the strengths of Python that it allows you to run code as
soon as it is written, without waiting for the compile time.

Furthermore, Python uses high-level dynamic data types [13]. Having dynamic
types means that variable type checking is only done to see that the type in the file
matches the type of the receiving variable [3]. This allows programmers to write code
faster, due to type declarations being redundant. However, this also means that errors
are mainly discovered at runtime, as opposed to compile time for statically typed lan-
guages [3]. In order to solve this problem, Python introduced a module that adds support
for type hints [13]. The aforementioned module gives programmers a possibility to detect
type errors even before running the code if, for instance, they are using an integrated
development environment.

As mentioned before, Python grants access to various libraries used for scientific
calculations. Due to the project being heavily reliable on machine learning, the library
named scikit-learn was used. Scikit-learn grants access to simple and efficient tools
for data mining and data analysis [24]. In this project scikit-learn was mainly used
as a provider for machine learning algorithms (for both classification and regression)
such as random forest, gradient boosting and decision tree. Moreover, as scikit-learn
presents various possibilities for data analysis and transformation, it was used as a tool
to transform user data into a suitable format for machine learning algorithms.

4.3 Implementation
Primarily, there are two techniques used for delivering web content to the user. The first
one, which is not so popular anymore, is delivering content to the user via web-pages.
After clicking on a link another page is loaded and so on. The advantage of such approach
is that the initial download may be smaller when accessing the web-page but this comes
at the cost that every interaction requires a page reload.

The second way, the one that we used to develop our application, is a single page
application (SPA). SPA might have a larger initial download size, but as the name suggests,
interacting with a page does not cause the page reload. On user interaction, browser
rerenders parts of the page, without requiring a page reload. Such approach improves
user experience by providing responsive design and provides experience identical to
the one when using a desktop application. In SPA, communication with the server is
done via AJAX, which allows the server to respond to the events on the client side of the
application.

Our application is built using the model-view-controller (MVC) approach. In such
approach, model representation, user inputs and visualization part of the application are
separated from each other and each task by different objects. The general approach is
that by interacting with the controller (keyboard/mouse) user modifies the model which
updates its representation in the view.

23

The model represents the data that is handled by the application. The model manages
the behaviour of data, informs other components about its state and responds to the
instructions to update its state [6].

The view is a graphical interface of the application, that handles state changes of the
model and updates itself accordingly. Application usually have multiple views, even in
SPA, which comes in a form of a single page but may have multiple views.

The controller interacts with the model by handling inputs from the user, usually
from the keyboard or mouse, and commands the model the model the change its state
and/or update the view to represent the new state of the model [6].

Now that we have discussed the general approach of the implementation, we can go
into more detail and review how different parts of the application itself were implemented.
It is important to note that the application is tightly connected to its configuration. Most
of the parameters of the application can be changed through configuration and, in most
cases, changes in configuration do not require the restart of the application, which means
that the settings can be changed at runtime.

One of the main aspects of the application is to hide the complexity from the inexpe-
rienced users while still providing the advanced possibilities for those with a good grasp
in machine learning and predictive process monitoring. With this in mind, we designed a
control flow, displayed in figure 8.

Upon the first connection to the application, the user can choose whether a new log
file should be uploaded or to continue with an already uploaded one. If the former is
chosen, one has to follow the log uploading process, while if the latter is chosen, one is
able to skip the upload process and continue with model training or model visualization
if required model has already been trained before.

After the user has provided the system with the log file, the system analyzes the file
in order to automatically detect case id, activity, timestamp and resource columns. Case
id, activity and resource columns are detected by the name of the column. Names of
the columns to look for are described in the configuration of the application and the
options for the column names can be easily expanded. To find the timestamp column, the
second row of the log file is read in addition to the log header. Then we try to parse each
value with a date format specified in the configuration and if any of the parsing attempts
succeeds, then the column is chosen to be the timestamp column.

When the previous step is completed, the user has to confirm that the system has
classified the columns correctly or, if the system could not find the required columns,
correct the selections and confirm the selection. Next, the system classifies the events
into case and event attributes, which are also classified into categorical or numerical
values.

An attribute is considered to be case attribute when its value does not change during
the duration of a single case. On the other hand, an attribute is considered to be an event
attribute, if its value changes over the case duration. Next, attributes can be classified into

24

Figure 8. Control flow diagram for Nirdizati Training.

qualitative (categorical) or quantitative (numeric) attributes. An attribute is considered
to be numeric if all of its values can be interpreted as an integer or a float and the
amount of unique values is over a certain threshold. If contents of the attribute cannot
be interpreted as a number of the number of unique numerical values is too small, an

25

attribute is considered be a categorical attribute.
After the classification is complete, the user has to confirm the classification. Once

again user has an option to manually override the classification attributes selected by
the system. This also includes the possibility to exclude an attribute from prediction, in
which case the attribute will be ignored during the training process, or mark an attribute as
an attribute that contains future values. Such attribute will be ignored during predictions,
but the user is able to specify this attribute as a custom prediction target, in which case
values for this attribute will be predicted. After the classification process is completed,
the results are stored in the dataset descriptor file and written to disk. An example of a
dataset descriptor file can be seen in figure 9.

Figure 9. Example of a data set parameter file.

As a next step, the user is redirected to the training view, where he can trigger the
training process. There are two training modes: basic, which is made to support the
users not familiar with machine learning, and advanced mode, which allows manual
construction of models.

The basic mode includes a set of predefined training parameters that will be used
for prediction regardless of outcome target. Basic mode parameters are defined in the
configuration of the application and can be changed on the runtime. It is also important
to mention if a log file has optimized dataset parameters generated then those will be
used for prediction, overriding the basic mode configuration.

If in the basic mode the only customizable thing is the prediction target, then advanced
mode allows users to manually select machine learning algorithms that will be used in
the prediction. In this mode, the user can manually select an encoding, bucketing and
learner algorithms. Moreover, the user is able to specify hyperparameters that will be
passed to the learner algorithm. A default value is provided for all hyperparameters but
the user can override them manually to achieve better results.

26

<Node I d e n t i f i e r =" n _ e s t i m a t o r s ">
<Value I d e n t i f i e r =" c o n t r o l "> org . z k o s s . z u l . I n t b o x < / Value >
<Value I d e n t i f i e r ="max">400< / Value >
<Value I d e n t i f i e r =" min ">1< / Value >
<Value I d e n t i f i e r =" d e f a u l t ">300< / Value >

< / Node>

Figure 10. Property definition with a default value, maximum and minimum bounds.

Since hyperparameters are defined as properties of an algorithm in the configuration,
it is possible to specify upper and lower bounds for the hyperparameters, which prevents
the user from entering absurd values or creating simulations that would take too much
time to complete. Figure 10 shows a definition of a property in a configuration file.

After the user has chosen the correct training parameters and specified hyperparame-
ters, one can trigger the training process. When a simulation process is triggered, the job
deployment process is started. Firstly, we have to generate an identifier for the job that
user has submitted, so it does not interfere with the jobs submitted by other users. An id
is generated using the MD5 hashing algorithm, which guarantees that the generated id
will be unique for this job. Next, the job is deployed into a separate thread and submitted
to the thread pool for the execution. From this step, execution of the job is asynchronous,
which means that user can freely interact with the UI since this operation is non-blocking.
When the thread is scheduled for execution, a training configuration file is generated
based on the configuration chosen by the user. An example of such file can be seen in
figure 11. Finally, the identifier of the job file is passed to the predictive engine, which
then reads the parameters from the training configuration file, dataset descriptor file and
based on those, trains a model.

Figure 11. Example of a training parameter file.

27

On training model completion, the user can navigate to the validation view of the
model. Here, the user can see different visualizations of various model performance
metrics. This allows the user to validate the accuracy of the model. If the user is satisfied
with the trained model, the model can be downloaded as a pickle file. Furthermore,
the user can also export the results files that are used for the visualization, that were
generated by the predictive engine. The user can export a single file or export all result
files as a zip archive. However, if the user is not satisfied with the outcome, one can train
a new model using different algorithms and/or hyperparameter values.

28

5 Running example
In this section, a walkthrough for the application is presented from a point of view of a
user who is a first-time visitor to the application.

Firstly, a user has to connect to the application via a modern browser that is compatible
JavaScript and ZK framework6. After the connection has been established, the user is
presented with two choices, shown in figure 12, to either upload a new log or to continue
with existing one. The former option exists for the users that have already been through
the upload process. From here, the user clicks ’upload new log’ button and thus, is
redirected to the log upload page.

Figure 12. Nirdizati Training landing page.

Figure 13 depicts the view that is opened to the user after being redirected to the
upload page. Here the user has two possibilities to upload a log. Firstly, the log can be
dragged and dropped into the grey container from the users’ filesystem. The drag and
drop functionality is also supported for the file upload.

Once the user has chosen the file from the filesystem, it is analyzed by the server.
If the extension of the file is found to be suitable (e.g. CSV extension) then file name
appears in the grey container to indicate the user that the file is with the correct extension
and that the user can proceed with the next action (figure 13). However, if the user tries
to upload file with an extension that different from the allowed one, then the container
turns red and user is notified with an error message, shown in figure 14.

6https://www.zkoss.org/whyzk/Features#note

29

https://www.zkoss.org/whyzk/Features#note

Figure 13. Nirdizati Training upload page showing that file with correct file extensions
has been selected.

Figure 14. File with incorrect extension is uploaded.

The next step is to generate dataset parameters for the log. In order to achieve this,
the user has to click the ’create dataset parameters’ button. After the user has clicked
the button, server parses the uploaded file in order to automatically identify the required
columns from the users’ file such as case identifier, activity column, resource column and
the timestamp column. When the classification of columns has been completed, the user
is presented with a window shown in figure 15. In this window, one can see automatically
categorized columns and, if the system has classified the columns incorrectly, the user
is allowed to select the correct value for aforementioned columns. When the user is

30

satisfied with the result, ’OK’ button should be clicked in order to continue the process.
At any time during this process user can click the ’cancel’ button in order to stop the
generation process. If the user decides to do so, the log file will not be saved to the server.

Figure 15. The window showing automatically detected case id, activity, resource and
timestamp columns.

Next, all the other data columns that are contained in the log should be classified as
case and event attributes, which in turn are divided into numerical or categorical values.
When the server is done with categorization, the user is shown a window similar to the
one in figure 15, which displays column name on the left and its category on the right.
Once again user can correct the system if categorization was faulty. Finally, the user has
to click the ’OK’ button to finish dataset parameter generation or cancel the process by
clicking the ’cancel’ button.

After the user confirms the parameters, a notification is displayed in the bottom left
corner, indicating that the process was successfully finished and that the user will be
redirected to the basic training view. Figure 16 displays the training view that user is
redirected to. From here, the user can select the prediction target by selecting a value in
the combo box. If user selects case duration as the prediction target, then the threshold
can also be modified by the user. To start the simulation process, one should click the
’train model’ button.

When the simulation process is started, on the right-hand side a new component is
added to the user interface. The purpose of the component shown in figure 17, is to help
the user to track the started simulations. From here the user can see the name of the log
file, prediction target, the status of the simulation (whether it is running, failed, completed
or waiting to be started in the queue), as well as model parameters and hyperparameters
that were chosen for the simulation.

Finally, one has to wait for the simulation completion, but since the simulations are

31

Figure 16. Nirdizati Training training view.

Figure 17. The component that helps the user to track started simulations.

non-blocking operations, the user can start more simulations with different prediction
targets or even upload a different log file.

In order to notify the user of process completion, a notification is shown in the left
bottom corner of the screen. Furthermore, the user can now click the ’validate’ button in
the tracker component in order to be redirected to the model validation view. Please note
that clicking the ’validate’ button in the tracker component is equivalent to pressing the
’Validation’ tab in the header and then selecting the same job in the table.

This gives one access to the next step, validation view. In this view, the user can see
meta data that is associated with the simulation as well as review model accuracy by
visualizing different aspects of the model.

Firstly, the user can view the model accuracy by comparing actual values in the log
versus the values that the model has predicted. This is done in the ’Actual vs predicted’

32

tab. For the regression model, the chart is shown as a scatter plot (figure 18). However,
for classification models given chart is represented as a confusion matrix (figure 19).

Figure 18. Scatter plot: actual (x-axis) vs predicted (y-axis) shown for regression.

Figure 19. Confusion matrix: actual (x-axis) vs predicted (y-axis) shown for classifica-
tion.

Secondly, on the ’Accuracy vs prefix length’ tab, one can check the model accuracy
using a range of evaluation metrics depending on whether it is a regression or a clas-
sification problem. Since we validate the model after each executed event, each point
on the chart shows average accuracy after each executed event for given prefix length.
For example, if on the x-axis the number of events is 2, then predictions for all ongoing
prefixes with length 2 have been made. On the y-axis, an average accuracy for all prefixes
with length 2 is displayed.

33

As depicted in figure 20, all charts are represented as line charts on this page. Not
only can one evaluate the accuracy of a single model on this page, but the user can also
compare given models accuracy with other relevant models. The relevant model can be
defined as a model that has been trained using the same log file and predicted the same
outcome target. Comparison of two different models can be seen in figure 21.

Figure 20. Line chart: number of events (x-axis) versus normalized mean absolute error
(y-axis)

Figure 21. Accuracy comparison between two models (normalized mean absolute error)

Lastly, in the last tab, named ’Feature importance’, one can see the weight of each
feature for given model configuration as a bar chart (figure 22). Feature importance is
evaluated in terms of mean decrease impurity available in sklearn. In simple words,
feature importance shows how much the accuracy of a given model decreases if we drop
or assign random values to this feature.

Execution Times All test cases were conducted using Kotlin version 1.2.31 on a
desktop machine with 3,3GHz Intel i5-6500 processor and 16GB of DDR4-2333MHz

34

Figure 22. Feature importance chart: feature weight (x-axis) vs feature name (y-axis).

RAM. For the test cases, event log named ’repairExample2_ENG.csv’ which is provided
as an attachment to the thesis. The log contains 1048576 events and 10 columns. Time
was measured before entering the function that is responsible for providing the required
information and after the aforementioned function has provided the result. The difference
of those timestamps shows us the time required for the task completion.

Table 1 shows average time required to automatically detect the case identifier,
activity, resource and timestamp columns.

Table 1. Column auto detection times for ’repairExample2_ENG.csv’ log.

Try n Time to parse (ms)
1 3
2 0
3 1
4 3
5 0
6 1
7 0
8 4
9 1

10 1
Average: 1.4

Table 2 shows average time required to classify the data attributes in each column in
the log into categorical and numerical case or event attributes.

35

Table 2. Column classification times for ’repairExample2_ENG.csv’ log.

Try n Time to parse (ms)
1 601
2 582
3 516
4 504
5 499
6 566
7 510
8 497
9 494

10 527
Average: 529.6

Table 3 shows the time required to parse the result files provided by the predictive
engine, in order to provide the visualizations to the user. In practice, result parsing is
done only once for each model, since the parsed results are cached. This means that
when reopening the view for an already cached model, we do not need to perform any
IO operations.

Table 3. Times to parse the evaluation results for ’repairExample2_ENG.csv’ log.

Try n Time to parse (ms)
1 19
2 15
3 17
4 20
5 13
6 18
7 4
8 14
9 4

10 4
Average: 12.8

36

6 Summary
In this thesis, we have developed a web application that makes it easier for the end
users to train, evaluate and compare predictive models for the online business process
monitoring. The application allows users to quickly upload their event log, construct
the model by providing a set of baseline parameters, which provide the most accurate
result in most cases, and then export the model to use it for live predictions on an event
stream or to analyze the model further using third-party applications. Moreover, more
experienced users can use the application in the advanced mode, which allows users to
fine-tune many settings, such as the choice of a machine learning algorithm and its core
hyperparameters that will be used for learning.

As a result, we have developed a SaaS solution for predictive process monitoring. All
of the computations are done on the server side and the application allows users simple
access via web browser. This means that user does not need powerful hardware to train
the models and analyze the data. Furthermore, user models and result files are stored on
the server, thus allowing easy access at any time if the internet connection is present.

The developed application is very configurable, which means that most of the settings
can be changed without recompiling the application. Furthermore, as the configuration is
read from the external file, a lot of the application settings can be changed at runtime of
the application, without requiring a restart. Compiled web application comes in a web
application archive (WAR) format, which allows it to run in any Java container, such as
Tomcat or Jetty. Such approach does not enforce any platform limitations or hardware
requirements.

The source code has been released as an open source software at https://github.
com/zukkari/nirdizati-training-ui. The developed engine has been deployed to
the server and can be accessed at http://training.nirdizati.com.

37

https://github.com/zukkari/nirdizati-training-ui
https://github.com/zukkari/nirdizati-training-ui
http://training.nirdizati.com

7 Future work
There are some clear points of improvement for developed software. Firstly, XES support
should be added. As mentioned in subsection 2.1, this format is widely used in process
mining and was designed to describe business processes. This would allow users to
upload the log directly to the application without the need of using an external converter.

Secondly, a database integration could be added. Currently, all of the data is stored
on the disk, which requires a lot of manual IO operations, such as looking for the correct
files in the correct folders. A database integration would allow easier data manipulation
and also add a possibility where the data could be stored remotely (e.g. on the different
machine from the one where the UI instance is running on.)

Furthermore, database integration would allow to implement better user authenti-
cation and therefore authorization. Currently, no authentication mechanism is imple-
mented and users are distinguished via cookies. Database would allow us to implement
username/password authentication and thus expose some features that would be only
accessible by authorized users. One of such features is hyperparameter optimization,
which is a very CPU intensive task.

38

References
[1] IEEE standard glossary of software engineering terminology. IEEE Std 610.12-

1990, pages 1–84, Dec 1990.

[2] IEEE standard for extensible event stream (xes) for achieving interoperability in
event logs and event streams. IEEE Std 1849-2016, pages 1–50, Nov 2016.

[3] M. Abadi, L. Cardelli, B. C. Pierce, and G. D. Plotkin. Dynamic typing in a
statically typed language. ACM Trans. Program. Lang. Syst., 13(2):237–268, 1991.

[4] A. Breslav. Kotlin 1.0 released: Pragmatic language for jvm
and android. https://blog.jetbrains.com/kotlin/2016/02/
kotlin-1-0-released-pragmatic-language-for-jvm-and-android/,
Feb. 2016. Accessed: 11.03.2018.

[5] A. W. Brown. Trends in Software Engineering, volume 54. Academic Press, 1
edition, 2001. Page: 4.

[6] S. Burbeck. Applications programming in smalltalk-80(tm): How to use model-
view-controller (mvc), 1987.

[7] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In B. Krishna-
puram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi, editors,
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, August 13-17, 2016, pages 785–794. ACM, 2016.

[8] M. de Leoni, W. M. P. van der Aalst, and M. Dees. A general framework for
correlating business process characteristics. In S. W. Sadiq, P. Soffer, and H. Völzer,
editors, Business Process Management - 12th International Conference, BPM 2014,
September 7-11, 2014. Proceedings, volume 8659 of Lecture Notes in Computer
Science, pages 250–266. Springer, 2014.

[9] T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields
via gradient tree boosting. In C. E. Brodley, editor, Machine Learning, Proceedings
of the Twenty-first International Conference (ICML 2004), volume 69 of ACM
International Conference Proceeding Series. ACM, 2004.

[10] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business
Process Management, Second Edition. Springer, 2018.

[11] J. Evermann, J. Rehse, and P. Fettke. XES tensorflow - process prediction using
the tensorflow deep-learning framework. In X. Franch, J. Ralyté, R. Matulevicius,
C. Salinesi, and R. Wieringa, editors, Proceedings of the Forum and Doctoral

39

 https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android/
 https://blog.jetbrains.com/kotlin/2016/02/kotlin-1-0-released-pragmatic-language-for-jvm-and-android/

Consortium Papers Presented at the 29th International Conference on Advanced
Information Systems Engineering, CAiSE 2017, volume 1848 of CEUR Workshop
Proceedings, pages 41–48. CEUR-WS.org, 2017.

[12] M. Federici, W. Rizzi, C. D. Francescomarino, M. Dumas, C. Ghidini, F. M. Maggi,
and I. Teinemaa. A ProM operational support provider for predictive monitoring
of business processes. In F. Daniel and S. Zugal, editors, Proceedings of the BPM
Demo Session 2015 Co-located with the 13th International Conference on Business
Process Management (BPM 2015), volume 1418 of CEUR Workshop Proceedings,
pages 1–5. CEUR-WS.org, 2015.

[13] P. S. Foundation. Python 3.6.5rc1 documentation. https://docs.python.org/
3/index.html, Mar. 2018. Accessed: 17.03.2018.

[14] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language
Specification. Java se 8 edition edition, Feb. 2015. Chapter 4. Types, Values and
Variables.

[15] C. W. Günther and E. Verbeek. XES Standard Definition. 2014.

[16] JetBrains. Company - jetbrains. https://www.jetbrains.com/company/
?fromMenu. Accessed: 11.03.2018.

[17] JetBrains. Null safety - kotlin programming language. https://kotlinlang.
org/docs/reference/null-safety.html. Accessed: 11.03.2018.

[18] JetBrains. Sealed classes - kotlin programming language. https://kotlinlang.
org/docs/reference/sealed-classes.html. Accessed: 11.03.2018.

[19] JetBrains. Faq - kotlin programming language. https://kotlinlang.org/docs/
reference/faq.html, June 2017. Accessed: 11.03.2018.

[20] K. Jorbina. A web-based tool for predictive process analytics. Master’s thesis,
University of Tartu, 2017.

[21] A. Liaw and M. Wiener. Classification and regression by randomforest. 23, 11
2001.

[22] B. L.P. Potix corporation: Private company information - bloomberg.
https://www.bloomberg.com/research/stocks/private/snapshot.asp?
privcapId=30517079. Accessed: 10.03.2018.

[23] T. M. Mitchell. Machine learning. McGraw Hill series in computer science.
McGraw-Hill, 1997.

40

 https://docs.python.org/3/index.html
 https://docs.python.org/3/index.html
 https://www.jetbrains.com/company/?fromMenu
 https://www.jetbrains.com/company/?fromMenu
 https://kotlinlang.org/docs/reference/null-safety.html
 https://kotlinlang.org/docs/reference/null-safety.html
 https://kotlinlang.org/docs/reference/sealed-classes.html
 https://kotlinlang.org/docs/reference/sealed-classes.html
 https://kotlinlang.org/docs/reference/faq.html
 https://kotlinlang.org/docs/reference/faq.html
 https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=30517079
 https://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=30517079

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
CoRR, abs/1201.0490, 2012.

[25] Potix. Zk - zuml reference/zuml/languages/zul - documentation. https:
//www.zkoss.org/wiki/ZUML%20Reference/ZUML/Languages/ZUL. Accessed:
10.03.2017.

[26] Potix. Zk framework. https://www.zkoss.org/product/zk. Accessed:
10.03.2018.

[27] A. Rozumnyi. A dashboard-based predictive process monitoring engine. Master’s
thesis, University of Tartu, 2017.

[28] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-Wesley,
2005.

[29] I. Verenich. A general framework for predictive business process monitoring. In
O. Pastor, S. Rinderle-Ma, R. Wieringa, S. Nurcan, B. Pernici, and H. Weigand,
editors, Proceedings of CAiSE 2016 Doctoral Consortium co-located with 28th
International Conference on Advanced Information Systems Engineering (CAiSE
2016), volume 1603 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[30] I. Verenich, M. Dumas, M. L. Rosa, F. M. Maggi, and I. Teinemaa. Survey and
cross-benchmark comparison of remaining time prediction methods in the context of
business process monitoring. Preprint available at https://arxiv.org/abs/1805.02896,
2018.

[31] I. Verenich, S. Mõškovski, S. Raboczi, M. Dumas, M. L. Rosa, and F. M. Maggi.
Predictive process monitoring in Apromore . 2018. Accessed: 30.03.2018.

[32] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. Chapman &
Hall/CRC, 1st edition, 2012.

41

 https://www.zkoss.org/wiki/ZUML%20Reference/ZUML/Languages/ZUL
 https://www.zkoss.org/wiki/ZUML%20Reference/ZUML/Languages/ZUL
 https://www.zkoss.org/product/zk

Appendix

I. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Stanislav Mõškovski,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

A web-based framework for the evaluation of predictive process monitoring
techniques
supervised by Ilya Verenich

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 12.05.2018

42

	Introduction
	Background and related work
	Business process monitoring
	Predictive monitoring
	Machine learning
	Similar tools

	Requirements analysis
	Log file analysis
	Automatic data attribute classification
	Training modes and prediction types
	Result visualization and model deployment
	Interoperability

	Approach and implementation
	Architecture
	Technologies used
	ZK
	Kotlin
	Python

	Implementation

	Running example
	Summary
	Future work
	References
	Appendix
	I. Licence

