
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Martin Jürgel

Non-Intrusive Load Monitoring in the OpenHAB

smart home framework

Bachelor’s Thesis (9 ECTS)

Supervisor: Jakob Mass, MSc

Tartu 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Elektrienergia disagregeerimine targa kodu raamistikus

OpenHAB

Lühikokkuvõte:

Non-intrusive load monitoring (NILM) on elektrienergia tarbimise jälgimise meetod, milles

rakendatakse masinõppe meetodeid, et automaatselt vooluvõrku ühendatud seadmete

kogutarbest eraldada üksikute seadmete energiatarve. Käesolev bakalaureusetöö kirjeldab

reaalajas töötavat NILM lahendust, mis saab sisendina kasutatavad energiatarbimise andmed

targa kodu automatiseerimise keskkonnast openHAB. Kogu energiatarbimise

disagregeerimiseks kasutatakse vabavaralist tööriista NILMTK, mis võimaldab kogu süsteemi

energiatarbimisest üksikute seadmete tarbimist eraldada. Tuvastatud seadmete hetketarbimised

saadetakse tagasi openHABi keskkonda, kus neid võib kasutada koduautomaatikas.

Arvuiteaduse instituudi värkvõrgu laboris läbi viidud testide tulemused näitavad, et lahendus

suudab täpselt tuvastada stabiilse ja suure energiatarbimisega seadmeid (näiteks soojapuhur),

kuid on ebatäpne selliste seadmete eristamisel, mille energiatarbimine kõigub palju (näiteks

kohvimasin) või moodustab kogutarbimisest vaid väikse osa (näiteks pirn).

Võtmesõnad:

Elektrienergia disagregeerimine, Asjade internet, Tark kodu, Energiatarbimise jälgimine,

openHAB, Masinõpe, NILMTK

CERCS: P175

3

Non-Intrusive Load Monitoring in the OpenHAB smart home

framework

Abstract:

Non-intrusive load monitoring (NILM) is an approach to energy monitoring, where machine

learning techniques are applied to data from a single energy meter to determine the energy

consumption of each appliance connected to the local electric network. This thesis presents a

real-time NILM solution for the smart home that relies on the home automation platform

openHAB for live power readings. NILMTK – an open-source energy disaggregation toolkit –

is used to break down the aggregate live energy consumption data to the appliance level in real

time. The disaggregated power data are then sent back to openHAB, where they can be

displayed to the user and enable further automation. Tests conducted at the University of Tartu

Internet of Things and Smart Solutions laboratory indicate high recognition accuracy for

appliances with a steady high energy demand (e.g. a space heater), while lower accuracy scores

were reported for appliances with a fluctuating power demand (e.g. a coffee maker) and low-

powered appliances that only make up a small proportion of the total energy consumption (e.g.

a light bulb).

Keywords:

Energy disaggregation, Internet of Things, Smart home, Energy monitoring, openHAB,

Machine learning, NILMTK

CERCS: P175

4

Table of Contents
1 Introduction ... 6

1.1 Motivating Scenario ... 6

1.2 Aim of the Thesis ... 7

1.3 Outline ... 7

2 Background ... 9

2.1 Energy Monitoring in the Home ... 9

2.1.1 Open Energy Monitor ... 9

2.2 Machine Learning .. 9

2.2.1 Learning Methods... 10

2.3 NILM... 10

2.3.1 Event Detection .. 10

2.3.2 Feature Extraction .. 11

2.3.3 Classification .. 11

2.4 NILM Datasets and Evaluation Metrics .. 11

2.4.2 Performance Evaluation .. 13

2.5 NILMTK: A Public NILM Toolkit ... 13

2.4.1 NILM Algorithms ... 13

2.4.2 Dataset Structure ... 14

2.6 OpenHAB .. 14

2.6.1 Architecture and Concepts .. 14

2.6.2 REST API .. 15

3 Approach ... 16

3.1 System Architecture ... 16

3.2 Implementation Details .. 17

3.2.1 Measuring Current Consumption .. 18

3.2.2 Data Conversion ... 18

3.2.3 Load Disaggregation .. 19

3.2.4 OpenHAB .. 19

3.3 Activities ... 19

3.3.1 Creating the Dataset ... 19

3.3.2 Configuring openHAB and Disaggregation ... 22

4 Evaluation ... 22

4.1 Accuracy Metrics ... 23

4.2 Data set .. 23

4.3 Factorial Hidden Markov Model Accuracy ... 25

5

4.4 Combinatorial Optimization Accuracy.. 27

4.5 Summary ... 29

5 Conclusions ... 30

5.1 Future Work ... 30

6 References ... 32

7 Appendices .. 36

1 Serial Reader ... 36

2 OpenHAB Item Manager ... 36

3 Live Disaggregator .. 37

4 Script to Save Power Readings ... 37

5 Script to Convert Power Readings to the REDD format .. 37

6 NILM Metadata ... 38

7 Evaluation Script ... 38

8 Litsents .. 39

6

1 Introduction

A smart home integrates a number of interconnected devices such as sensors, controllers,

actuators, etc., all of which are in constant communication with each other. Such networks of

devices – also known as Internet of Things (IoT) networks – can be leveraged to make a

positive impact on the energy efficiency of homes [1]. Intelligent, real-time decision making

based on data from sensors can help lower energy consumption, thereby reducing a home’s

economic footprint and saving expenses.

Historically, residential energy monitoring has mostly been conducted by electricity suppliers

to keep track of consumers’ electricity usage to bill them accordingly. However, with the ever-

growing increase in power demand [2] and the negative effect electricity generation has on the

environment, it is important to find new methods of saving energy. Several countries have

started setting up smart grids to achieve better energy efficiency and distribution automation.

Smart meters are an important component of smart grids. As of September 2018, more than

12.8 million smart meters were operating in homes and small businesses across the United

Kingdom [3]. The widespread use of smart meters that can be integrated into a smart home

network not only makes it more convenient for consumers to get an overview of their total

energy consumption at any given time, but also enables services such as real-time energy

consumption feedback at the appliance level. According to Ehrhardt-Martinez et al. (2010),

such feedback can lead to energy savings of up to 12% [4].

1.1 Motivating Scenario

Consider the following hypothetical scenario: Sam is running late for an important meeting.

While on the bus, Sam realizes that – in his haste – he forgot to check if he unplugged the

clothes iron. Fortunately, Sam’s home is equipped with a real-time energy monitoring system

that can be accessed remotely via his phone or any similar devices.

This energy monitoring system uses a single smart meter that monitors the entire house’s

electricity consumption in real time. The consumption data are sent to a central controller in

Sam’s home, where the data are analyzed and an appliance-level breakdown of the power

consumption data is displayed on his home automation platform. Instead of going back home

to check and risk missing the meeting, Sam can now simply connect to his smart home via his

smartphone and view the appliance-level power consumption data and disable the clothes iron

if found to be active.

7

For systems such as the one described above to work efficiently, accurate load monitoring is

crucial. There are two approaches to monitoring energy consumption in smart homes [5]:

• Intrusive Load Monitoring (ILM), where multiple sub-meters are required to measure

load at the appliance level.

• Non-instrusive Load Monitoring (NILM), where only overall consumption data across

multiple appliances are provided by a single meter. Machine learning techniques are

then applied to estimate the power consumed by each appliance connected to the local

electric network. This process is also referred to as load disaggregation.

While approaches using ILM provide better accuracy since no estimating is required, setting

up meters for individual appliances is impractical and not cost effective for most smart homes.

1.2 Aim of the Thesis

The aim of this thesis is to create a solution that is able to determine the operating states and

estimate the real-time power consumption of appliances connected to the local electric network

in a home environment using real-time data from a single meter. To achieve this, NILM and

data analysis approaches are applied to disaggregate the data provided by the meter. The NILM

output is then forwarded to the open-source smart home platform openHAB, which in addition

to displaying the data, enables rule-based automation and other integration based on the

consumption data (e.g. smart relays to turn devices on and off, occupancy detection, etc.). To

achieve this, the contirbutions of this thesis are:

• First, a dataset consisting of appliance-level electricity consumption data in the test

environment at the Internet of Things and Smart Solutions Lab is created.

• Next, an open-source toolkit that allows the comparison of energy disaggregation

algorithms is used to find the most accurate algorithm on our dataset. This algorithm is

then used to disaggregate power consumption data in real time.

• Finally, the real-time disaggregator is made compatible with openHAB – a home

automation platform. Aggregate power readings are queried from openHAB and the

disaggregated data sent back to openHAB to be displayed to the user in real time.

1.3 Outline

The structure of the thesis is as follows:

• In section 2, background information on the technologies used in this thesis is

presented.

8

• In section 3, the architecture of the solution built as part of this work is presented and

the building process described.

• In section 4, the accuracy of the created solution is evaluated.

• In section 5, a summary of the work is presented and suggestions for future research

given.

9

2 Background

This chapter gives background information on non-intrusive load monitoring, but also

introduces the technologies used in the practical portion of this thesis. Energy monitoring and

machine learning are briefly covered, followed by a more in-depth look at NILM. Next, an

open-source non-intrusive load monitoring toolkit is introduced and finally, an overview is

presented of the home automation platform that is used later in the thesis.

2.1 Energy Monitoring in the Home

Power meters are a key component of any NILM system. There are several factors that need to

be considered when setting up a home energy monitoring system. Different load disaggregation

techniques require different measurement data sampled at different rates. While low-frequency

real power readings provided by smart meters are sufficient for some approaches to NILM

[6,7], other approaches that use features such as transient signal waveforms require data

sampled at a rate of 1.2 kHz or higher [8].

2.1.1 Open Energy Monitor

The Open Energy Monitor project offers a number of open-source energy monitoring tools. It

is targeted at people interested in a DIY approach to energy monitoring and includes a set of

learning materials, which cover concepts like energy monitoring and the basics of AC power

[9], sustainable energy [10], but also more in-depth tutorials such as how to build a breadboard-

based home energy monitor to be used with an Arduino [11]. Also included is a web application

for processing and visualising environmental data [12].

2.2 Machine Learning

The following paragraph is based on [13]. Machine learning is a subfield of computer science,

where systems capable of learning from data without explicit instructions are constructed and

studied. During the learning (training) process, a set of training data is analyzed and patterns

and connections in the data are identified. As a result of this process, a model capable of finding

similar connections in previously unseen data is created.

This is why approaches relying on machine learning are widely used in the field of non-

intrusive load monitoring. Different buildings and appliances have different power signatures

that are hard if not impossible to define by manually creating explicit rules for every possible

scenario. Instead, a machine learning algorithm can be used to learn from prior power

consumption data and automatically build a model that uses connections found in the data that

10

a human might not have even thought of. Machine learning algorithms can be broken down

into two categories: supervised learning algorithms and unsupervised learning algorithms.

2.2.1 Learning Methods

In supervised learning, the training data are organized into pairs, which consist of an input

value and its corresponding expected output value [13]. In the context of non-intrusive load

monitoring, an example of such a labeled data set is a data set consisting of aggregate power

consumption measurements (inputs) and their appliance-level breakdowns (desired outputs). A

learning algorithm analyses the training data and generates a model that labels similar

previously unseen data.

In unsupervised learning, the training data set only consists of example input values and no

desired output values are provided. It is therefore up to the machine learning algorithm used to

find features by which chunks of data in the data set can be grouped together [14].

2.3 NILM

NILM or Non-Intrusive Load Monitoring is an approach to load monitoring where data from a

single energy monitor are disaggregated to determine the appliance-level loads in an electric

network [5]. Several different approaches have been studied to achieve this since Hart (1985)

[15] first described a prototype non-intrusive appliance load monitor. This section aims to

describe the components of a typical NILM algorithm, present an overview of the different

ways NILM approaches are classified, and finally, provide an overview of the methods used in

evaluating the performance of energy disaggregation algorithms.

Makonin [16] defines 4 steps involved in NILM Algorithms: load monitoring, event detection,

feature extraction, and classification. The following subsections explain them in details. Figure

1 visualizes the steps involved in a typical NILM:

Figure 1. Block diagram of a typical NILM algorithm as defined by Makonin [16]

2.3.1 Event Detection

As described by Makonin [16], the first step to identifying appliances from power

measurements is to detect appliance-specific state transition events, such as an appliance being

switched on or off. This is achieved by analyzing changes in power consumption. Strategies

such as edge detection and probabilistic models have been employed to tackle the issue of event

load
monitoring

event
detection

feature
extraction

classification

11

detection. Probabilistic approaches have less complexity compared to edge detection

algorithms and they can be used on data sampled at a lower rate.

2.3.2 Feature Extraction

The following paragraph is based on Makonin [16]. When an event is detected, different

features of the monitored signal must be analyzed. There are two types of power signatures,

from which features are extracted: transient signatures and steady-state signatures. All

appliances are made up of different components, which cause changes in their power signal

and create a unique appliance-specific transient signature, which can be used to identify the

appliance. In order to capture unique transient signals, electricity signals must be sampled at a

high rate. Unlike transient signatures, steady-state signatures do not change rapidly, if at all.

This can make it difficult to detect specific appliances because multiple appliances can have

similar signatures. Furthermore, the signals of low-powered steady-state appliances can be

interpreted as signal noise, which leads to classification errors.

2.3.3 Classification

After the feature extraction stage, the extracted features are processed by machine learning

algorithms to identify individual appliances [16]. These algorithms can be classified as

supervised learning algorithms, which require appliance-level power consumption data in

addition to the total power consumption data for training, and unsupervised learning

algorithms, which only require the latter [17].

Supervised methods can be categorized into optimization approaches and pattern recognition

approaches [17]. Optimization approaches compare the extracted features against a number of

previously stored features to determine a combination of appliances whose total power

consumption is closest to the provided aggregate consumption [17]. Pattern recognition

approaches have included the use of artificial neural networks [18] and machine learning

algorithms such as the hidden Markov model (HMM) [17]. HMM as well as different variations

of factorial hidden Markov models (FHMM) used in NILM research are covered in detail in

[16]. Unsupervised methods only have access to the aggregate consumption data. Approaches

like data mining [19] as well as more complex variations of FHMM [20] have been used to

tackle unsupervised NILM.

2.4 NILM Datasets and Evaluation Metrics

Supervised learning algorithms work by analyzing a set of labeled input data and finding

characteristics that are later used to label previously unseen data. The load disaggregation

12

algorithms compared in this thesis are no different: A model is trained on a dataset consisting

of real-world time-series energy consumption data and that model is then used to extract the

operating states and real-time energy consumption of different appliances from the aggregate

consumption data. Therefore, a good dataset is essential. For example, if the training dataset

contains no power consumption data for a given appliance, then it will be difficult for the model

to accurately predict the power consumption of that appliance. Energy disaggregation datasets

generally consist of two types of power measurements [21]:

• Aggregate consumption data – measurements taken from the mains, the total power

consumption of the building or system being monitored. Datasets that only contain

aggregate consumption data can only be used with unsupervised learning algorithms.

• Appliance or plug-level consumption data. These are the values load disaggregation

models aim to predict, given an aggregate value.

In order to objectively compare the accuracy of different disaggregation algorithms, common

benchmark datasets are required to highlight the different characteristics of each algorithm.

Constructing such datasets can be expensive and time consuming. To overcome this, several

open-access datasets of real-world appliance-level household power consumption data have

been published to aid in the development of new load disaggregation algorithms [22]. As event-

based and event-less NILM approaches require data sampled at different frequencies,

disaggregation datasets can be categorized as event-less datasets consisting of low-frequency

data and event-based datasets consisting of high-frequency data [21].

2.4.1.1 Low Frequency Datasets

A 2018 review by Pereira & Nunes [21] lists 21 publicly available low-frequency NILM

datasets. Of the 21, 17 contain both aggregate and appliance or circuit-evel consumption data.

The remaining datasets consist solely of appliance-level consumption data, making it

impossible for them to be used as training and testing data simultaneously [21].

2.4.1.2 High Frequency Datasets

Compared to low-frequency datasets, the availability of public high-frequency disaggregation

datasets that consist of power data sampled at a rate of 1 kHz or higher is scarce. As of May

5th 2019, at least six real-world high frequency energy disaggregation datasets are publicly

available: REDD [23], BLUED [24], UK-DALE [25], PLAID [26], WHITED [27] and HFED

[28].

13

2.4.2 Performance Evaluation

In [29] Makonin presented a unified approach for evaluating the performance of NILM

algorithms. Following their evaluation method, there are two types of accuracy that need to be

taken into account when evaluating the accuracy of an NILM algorithm: classification accuracy

(was the state of the appliance [ON or OFF] predicted correctly?), and estimation accuracy

(how accurately was the power consumption of the appliance predicted?). Finally, overall and

appliance-level scores of both types of accuracy must be reported.

2.5 NILMTK: A Public NILM Toolkit

NILMTK is an open-source toolkit that was designed to allow researchers to reproducibly

analyze load disaggregation algorithms and datasets [30]. Such a platform is important because

accurate comparisons can’t be made between algorithms that were tested using different

datasets and accuracy metrics. NILMTK includes parsers for multiple public real-world power

consumption datasets – some of which are mentioned in section 2.4, preprocessing algorithms,

statistics for describing datasets, accuracy metrics and implementations of four reference

disaggregation algorithms [31].

2.4.1 NILM Algorithms

As of May 5th 2019, the following algorithms are implemented in NILMTK [32]:

• Combinatorial optimization (CO).

• Factorial hidden Markov model (FHMM).

• George Hart’s 1985 disaggregation algorithm [15].

• Maximum likelihood estimation.

Several third-party projects have also been made compatible with NILMTK [32]:

• Neural NILM [33] is a project based on the Neural NILM Prototype software [34],

which was used in Kelly & Knottenbelt (2015) [18], where the performance of deep

neural networks was compared against FHMM and CO using NILMTK.

• Latent Bayesian melding for NILM [35] is a project by Mingjun Zhong, which

implements the algorithm discussed in Zhong et al. (2015) [36].

• Neural Disaggregator [37] is a project by Odysseas Krystalakos that contains

implementations of five disaggregation algorithms that use artificial neural networks.

14

2.4.2 Dataset Structure

NILMTK stores data in an HDF5-based open file format. HDF5 is a binary file format that

allows hierarchical storage of data. The HDF5 data model consists of the following elements

[38,39]:

• Datasets – immutable array-like collections of data. A NILMTK example of this would

be power measurements.

• Groups – containers used to store other groups and datasets. For example, every

building in NILMTK is a group that contains a group of MeterGroup objects, which are

in turn groups and contain a group of ElecMeter objects, which each hold the power

consumption data sampled by that meter.

• Attributes – metadata that can be attached to groups and datasets.

In addition to time-series power consumption data, NILMTK also uses metadata to describe

each dataset as a whole, as well as buildings and appliances individually [40].

Not all energy disaggregation datasets are created with NILMTK in mind. For example,

comma-separated files are used to store data in the REDD dataset To overcome this, NILMTK

includes dataset converters capable of converting data to the HDF5 format supported by

NILMTK. As of May 5th 2019, NILMTK comes with converters for 11 public energy

disaggregation datasets [41].

2.6 OpenHAB

OpenHAB or the open Home Automation Bus is an open-source home automation platform. It

allows users to interact with devices connected to their smart home network, schedule

automated tasks and monitor the states of their devices via customizable web, Android and iOS

interfaces. Although there is no single communications protocol supported by all

manufacturers of home automation devices, openHAB supports a large number of devices by

many different manufacturers. OpenHAB relies on its community of volunteers who have the

ability to add support for new devices to remain vendor-independent. [42]

2.6.1 Architecture and Concepts

OpenHAB’s physical layer is comprised of Things [43]. Physical devices, web services and

other information sources managed by openHAB are represented as Things [43]. Each Thing

provides access to its functionalities through Channels [43]. For instance, a smart energy meter

can have a live consumption Channel used for live power readings and another Channel for the

total amount of energy consumed since the meter was powered on.

15

Serving as a link between the physical and the virtual layer are Bindings [42]. Bindings are

user-installed openHAB add-ons that handle communications between openHAB Things and

their corresponding physical devices [42]. For example, to use a Z-Wave smart meter with

openHAB, a Z-Wave Binding is required.

On the virtual layer, Channels can be linked to Items, which represent a Thing’s capabilities.

When a Channel is linked to an Item, the functions represented by the Item are accessible

through that Channel. Items can be used to display information received from devices as well

as send commands to devices [44].

However, Items do not necessarily have to be tied to physical devices. An Item can also receive

its value from web services, which makes it possible to use Items to represent the live power

consumption of individual appliances connected to the local electric network – even unmetered

devices whose power consumption is calculated from the aggregate power consumption of the

system.

2.6.2 REST API

OpenHAB provides a REST API based on the HTTP protocol that can be used to retrieve data

at the Item, Thing and Binding level [45]. This makes it easy for external applications to interact

with openHAB. Additionally, the API can be used to change Item states and for certain

resources, on-change push notifications are supported [45].

16

3 Approach

This section presents the architecture and the implementation details of the real-time energy

disaggregation solution that was built as part of this thesis. First, the architecture of the real-

time NILM system is described. Next, the implementation details are covered, and finally, an

overview of the steps taken to bring the system online is presented.

3.1 System Architecture

This section aims oto give an overview of the architecture of the real-time energy

disaggregation solution that uses NILMTK for disaggregation and openHAB to visualize data

and enable further integration with external applications. Figure 2 depicts the architecture of a

real-time NILM solution using openHAB and NILMTK.

Figure 2. Architecture of a real-time NILM solution using openHAB and NILMTK

For live energy disaggregation to take place, there must also be a live stream of aggregate

energy consumption data to be disaggregated. The proposed solution uses a current transformer

in conjunction with an Arduino board for live power readings, however, any smart meter that

provides live power readings and can be integrated with openHAB can be used to achieve this.

The next component in this design is the disaggregator, which is based on NILMTK. The

supervised machine learning algorithms included in NILMTK require training data sets

17

consisting of time series power consumption data for each appliance to train a model. There

are several public data sets of real-world consumption data available online, and some of these

are covered in section 2.4. For this thesis, a new data set was created to achieve better accuracy.

Once a model is trained, that model can then be used to predict appliance-level loads from the

aggregate load. OpenHAB’s REST API can be used to retrieve the aggregate consumption data

and send the detected individual loads to openHAB, where, in addition to displaying the results

to the user via the HABPanel user interface, they are also made easily accessible to external

applications via openHAB’s APIs and Bindings.

3.2 Implementation Details

The implementation of the presented real-time NILM solution consists of a current transformer,

an Arduino board, an openHAB instance running on the local area network, and a laptop

running a number of Python scripts that enable communications between the aforementioned

components as well as live energy disaggregation. The current transformer is used to measure

current in the local electric network. It is interfaced with an Arduino board using EmonLib [46]

– a library by OpenEnergyMonitor – to capture live current readings, which are converted to

apparent power. The power readings are then transmitted to the laptop over a serial interface.

Upon receiving a new reading, the reading is forwarded to a Python script (see appendix 2),

which updates the openHAB Item holding the aggregate consumption value using the

openHAB REST API covered in section 2.6.2. At this point, the new measurement is visible to

users via openHAB’s HABPanel graphical interface and accessible to external applications via

the REST API.

Stored on the laptop is a data set consisting of appliance-level time series power consumption

data. These data are loaded in by a Python script (see appendix 3), which uses NILMTK to

train a model based on the provided data. Now, the model can be used to break down aggregate

consumption measurements into individual appliance-level loads. The script fetches new

aggregate consumption readings from openHAB using the item manager script at a rate of once

per second. Every time a new reading is received, the trained model is used to calculate new

appliance-level loads. Next, the item manager script (see appendix 2) is used to update the

states of all openHAB items with their corresponding appliance-level power consumption as

determined by the model. Once the openHAB Items have been updated, the estimated

application-level loads are accessible on openHAB.

18

3.2.1 Measuring Current Consumption

A good real-world dataset is an essential part of any NILM system, since it plays a major role

in how accurate the model used for disaggregation will be. It is therefore important that accurate

measurements collected from real-world scenarios be used in the training data. The YHDC

SCT-013-000 current transformer was used to record consumption data used in the presented

real-time NILM solution. It was chosen because of its current rating of 100 A, and its

compatibility with Arduino boards using OpenEnergyMonitor’s EmonLib library [46,47].

The following circuit, which converts the current signal of the current transformer to a voltage

signal with a burden resistor was built by Jakob Mass – the supervisor of this paper – to

interface the current transformer with an Arduino:

Figure 3. The circuit used to interface the current transformer with an Arduino [47]

3.2.2 Data Conversion

Once the raw data have been acquired for all appliances to be used in training the

disaggregation model, the data must be converted to the HDF5 file format supported by

NILMTK (see section 2.5.2). In addition to the power measurements, NILMTK also requires

that all data sets provide metadata describing the data set in general as well as at the building

and appliance level. Knottenbelt & Kelly (2014) [48] provide a detailed overview of The NILM

metadata schema used in NILMTK.

To convert the data to the correct format, NILMTK provides a number of converters for

existing public datasets (see section 2.5.2). If the power consumption data and metadata are

provided in the correct format for the converter, then these dataset converters can be reused to

convert new datasets to the HDF5 format (more on this in section 3.3). A cleaner alternative

would be to write a new dataset converter tailored to the new data set.

19

3.2.3 Load Disaggregation

NILMTK was used for load disaggregation. Although the algorithms provided by NILMTK

are meant to be used as benchmark algorithms against new disaggregation algorithms, the

creation of such an algorithm is not within the scope of this thesis. In the solution presented in

this thesis, the disaggregation algorithms included in NILMTK by default are used in training

and comparing disaggregation models. NILMTK was chosen as the disaggregation framework

for this thesis, due to it being the largest energy disaggregation toolkit on software development

platform GitHub [49], the only disaggregation toolkit that is, as of May 7th, 2019, in active

development, and it has been used in numerous related works [33,50,51]. NILM-Eval [52] is

an alternative to NILMTK that is covered in more detail and compared to NILMTK in Beckel

et al. (2014) [53]. However, as of May 7th, 2019, the code of that project has not been updated

in nearly four years.

3.2.4 OpenHAB

OpenHAB is used to visualize both the aggregate as well as the appliance-level power

consumption data. OpenHAB was chosen as the home automation platform for this thesis

because it is open-source, has a large community, thorough documentation, and support for

integration with external applications, see section 2.6 for more. The use of openHAB as a

middleware between the power meter providing live readings and the disaggregator using said

readings means the solution is not dependent on a specific type of meter: Different channels

capable of communicating with openHAB can be used as information sources for live power

readings, even web services. Alternatives to openHAB include Home Assistant [54], ioBroker

[55], and PiDome [56].

3.3 Activities

The following section gives an overview of the steps that were taken to make the real-time

disaggregator work. The creation of the data set is detailed and the process of configuring

openHAB to work with appliances from the data set is described.

3.3.1 Creating the Dataset

A data set consisting of a series of power measurements of 4 appliances was created. The

following appliances were recorded: a 40 W light bulb, a television, an electric air heater, and

a coffee maker. The first 3 were chosen because their power consumption does not fluctuate

much, which means they should be easy to detect. The coffee maker was chosen because it was

expected that the constantly changing power demand as it went through different stages (e.g.

20

making the coffee, washing), would make it harder for NILM algorithms to accurately predict

the operating states of both the coffee maker as well as other appliances.

The data set was recorded at the Internet of Things and Smart Solutions lab. Due to time

constraints, each appliance was only recorded for an hour. An exception is the coffee maker,

which was recorded for 10 minutes. As a result, the data had to be artificially replicated to

make testing possible. Additionally, as only a single energy monitor was used in making the

data set, testing data were generated by adding up the individual loads at all time points in the

data set. This is also suboptimal, since no noise caused by other devices connected to the

electric network is recorded, which is rarely the case in real world scenarios.

Live power readings are provided by the current sensor covered in section 3.2.1 at a rate of 3

Hz. An Arduino script (depicted in figure 4) handles the live inputs from the sensor on an

Arduino board.

Figure 4. Arduino script in charge of communicating with the CT sensor

The live current readings are converted to apparent power, assuming that the voltage has a

constant value of 238 V, which was measured at the test environment from a wall outlet with

a multimeter. The setup used in creating the dataset can be seen in figure 5.

21

Figure 5. Power consumption of the electric air heater being measured

The data are transmitted to a Windows laptop over USB, where they are read by a Python script

(see appendix 4), which uses pySerial [57] for serial communications. Each appliance has its

own dedicated text file of power consumption data. Every time a new reading is received, a

line consisting of a UNIX timestamp – time elapsed since midnight January 1st, 1970 (UTC)

in seconds – and the power reading, separated by a comma, are written into the file.

After recording and saving the initial power consumption data for all appliances, another

Python script (see appendix 5) is used to further manipulate the data. Since NILMTK does not

support sampling rates higher than 1 Hz for low-frequency NILM and the recorded power data

were sampled at a higher frequency, the timestamps are modified to be a second apart in each

file. This is not ideal, since the power signatures of the appliances in the training and testing

data are different compared to power readings received from openHAB in real time, since those

power readings are not manipulated in this way. Next, the appliance-level data are saved in the

same format as the data in the REDD dataset: text files, where each row consists of a UNIX

timestamp, a whitespace character and a power consumption value.

As the data are saved in the same format as the data in the REDD dataset (see section 2.4.1.1),

the REDD dataset converter included in NILMTK was used to convert the data to the format

supported by NILMTK. For this, some changes had to be made in NILMTK metadata files

concerning the built-in REDD dataset converter (see appendix 6), after which, the data could

be converted using the REDD dataset converter and loaded into NILMTK to be used as training

and testing data.

22

3.3.2 Configuring openHAB and Disaggregation

The next step in setting up the real-time disaggregator is to create an openHAB Item (see

section 2.6.1) for each appliance. The name of each openHAB Item must match the label

assigned to the appliance in the metadata. OpenHAB’s HABPanel interface [58] can then be

configured to show the values of the newly created items (figure 6).

Figure 6. User interface displaying real-time power consumption information

Next, the Arduino setup mentioned in section 3.3.1 can be used in conjunction with a Python

script (see appendix 1) to read the total consumption of all appliances connected to the local

electric network and update the aggregate load value in openHAB.

Once the live load monitoring system is in place, the disaggregator script (see appendix 3) can

be started. First, a model is trained using a training dataset. Next, aggregate power consumption

values are read from openHAB in real time using the REST API. Every time an aggregate

consumption value is received from openHAB, it is given to the trained model as input. The

resulting appliance-level loads are further filtered by using previously defined minimum

power-on threshold values for each appliance in NILMTK metadata and ignoring results, where

a power consumption value greater than zero but lower than the minimum power-on threshold

value for that appliance was received from the model to help reduce classification errors. Such

classification errors can occur as a result of noise in the training data. All openHAB Items are

updated with the new appliance-level power consumption values over the REST API and a new

aggregate consumption value is fetched to start the disaggregation process again.

4 Evaluation

The aim of this chapter is to evaluate the accuracy of the presented real-time NILM solution.

Evaluations are done in the context of the data set described in section 3.3.1. NILMTK

implementations of two algorithms – a combinatorial optimization algorithm and FHMM – are

23

tested. Two aspects are compared: The classification accuracy and the estimation accuracy. All

evaluations are done using a dedicated Python script (see appendix 7).

4.1 Accuracy Metrics

To evaluate the classification accuracy of the disaggregator models, F-score is used. It is

defined in [29] as the harmonic mean of precision and recall, where precision represents the

ratio of correctly predicted positive values and all predicted positive values, and recall is the

number of correctly predicted positive values over all positive values:

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
,

where tp represents true-positives, meaning it was correctly predicted that the appliance was

on, fp represents false-positives, meaning it was incorrectly predicted that the appliance was

on, and fn represents false-negatives, meaning it was incorrectly predicted that the appliance

was off. An F-score value of 1 indicates perfect accuracy, and 0, the lowest possible accuracy.

To evaluate the estimation accuracy of the models, root-mean-squared error (RMSE) is used –

the lower the result, the closer the predicted power consumption value is to the actual

consumption value.

4.2 Data set

A data set consisting of power measurements of four appliances – a television, an electric air

heater, a 40W light bulb, and a coffee maker – is used for evaluation. The data set consists of

3 hours of individual load consumption data for each appliance. The making of this data set is

described in detail in section 3.3.1. The data set – visualized in figure 7 – features recordings

of all possible operating states of the appliances whose data are used in training the

disaggregation models.

24

Figure 7. Visualization of the data set

In all tests, the data set was split into two: A training data set, which consists of the first 90

percent of the data, and a test data set, which consists of the remaining 10%. The idea behind

this is that a model should not be evaluated on the same data that were used in training to avoid

overly optimistic results. An exception to this is the coffee maker, which was only recorded for

a short period of time and the consumption data were artificially replicated to fill the 3 hour

time period. Therefore, the recordings concerning the coffee maker are identical in both data

sets. Figures 8 and 9 depict the training data set and the test data set, respectively.

Figure 8. Training data

Figure 9. Test data

25

4.3 Factorial Hidden Markov Model Accuracy

In this section, the accuracy of disaggregation models trained using the FHMM algorithm is

evaluated. The accuracy of the algorithm is evaluated in two scenarios: with the coffee maker

and without the coffee maker. This is done because the data recorded for the coffee maker are

of lower quality than the data recorded for other appliances, since it was recorded for a shorter

period of time than other appliances in the data set and the data were artificially replicated to

fill 3 hours. Additionally, the coffee maker has more operating states compared to the other

appliances tested. Figure 10 visualizes the ground truth or expected power consumption values,

while figures 11 and 12 depict the predictions of models trained without the coffee maker and

with the coffee maker, respectively.

Figure 10. Actual power consumption at the appliance level

26

Figure 11. Predictions without the coffee

maker

Figure 12. Predictions with the coffee

maker

In both scenarios, the models managed to accurately predict the operating states of the electric

air heater, though the addition of the coffee maker did have a slight negative effect on the

accuracy. The television and the 40 W light bulb were classified correctly until the heat was

turned up on the electric air heater and the power consumption doubled. After this, the models

struggled to differentiate between the television and the light bulb. It is possible that this was

caused by the relatively small data set that was used and that accuracy could be improved by

gathering more training data. Classification and estimation accuracy results are presented in

table 1.

Appliance F-Score without

coffee maker

F-score with

coffee maker

RMSE without

coffee maker (W)

RMSE with

coffee maker (W)

Electric air

heater

0.999 0.998 35.139 88.9

Light 0.949 0.879 9.953 15.456

Television 0.961 0.919 24.961 35.503

Coffee maker - 0.907 - 95.019

Mean 0.97 0.926 23.351 58.72

Table 1. FHMM accuracy

Classification accuracy scores are high: a mean of 0.97 across all appliances without the coffee

maker and 0.926 with the coffee maker. The electric air heater was almost always classified

correctly in both scenarios: an F-score of 0.999 without the coffee maker and 0.998 with the

27

coffee maker. Classification accuracy of the 40 W light bulb suffered the most with the addition

of the coffee maker: a drop of 7.4 %.

Estimation accuracy is high for the electric air heater, but low for the low-powered appliances.

Since the electric air heater has a load demand of roughly 1 kW or 2 kW depending on the

operating state, an RMSE score of 35.139 W means an error of 3.5% or less. For a 40 W bulb,

however, an RMSE score of 9.953 W is a significant miss at 25%. The addition of the coffee

maker had a severe negative impact on the estimation accuracy for all appliances: the RMSE

values increased by at least 29% across the board.

4.4 Combinatorial Optimization Accuracy

In this section, the accuracy of the disaggregation models trained using the NILMTK

implementation of a combinatorial optimization algorithm is evaluated. The accuracy of the

algorithm is again evaluated in two scenarios: first on a model trained with the coffee maker

and then on a model trained without the coffee maker for the reasons mentioned in section 4.3.

Figure 13 visualizes the ground truth or expected power consumption values, while figures 14

and 15 depict the predictions of models trained without the coffee maker and with the coffee

maker, respectively.

Figure 13. Actual power consumption at the appliance level

28

Figure 14. Predictions without the coffee

maker

Figure 15. Predictions with the coffee maker

As can be seen from figures 12 and 13, the combinatorial optimization algorithm also manages

to accurately determine the operating states of the electric air heater, though, similarly to the

FHMM results, the introduction of the coffee maker does have a slight negative impact on

accuracy. The model struggles to classify the television and the 40 W light bulb even when the

heater is not turned all the way up. Classification and estimation accuracy results are presented

in table 2.

Appliance F-Score without

coffee maker

F-score with

coffee maker

RMSE without

coffee maker (W)

RMSE with

coffee maker (W)

Electric air

heater

0.999 0.998 14.131 77.236

Light 0.391 0.867 28.051 18.848

Television 0.963 0.943 46.755 33.132

Coffee maker - 0.760 - 83.649

Mean 0.784 0.892 29.646 53.216

Table 2. CO accuracy

The classification accuracy of the electric air heater and the television are high, with the F-

scores staying above 0.94 in spite of the coffee maker. The same can’t be said for the 40 W

bulb, however: an F-score of 0.391 without the coffee maker and 0.867 with the coffee maker.

This is interesting because in all other cases, the inclusion of the coffee maker in the data set

29

has had a negative impact on the classification accuracy of other appliances. The classification

accuracy of the coffee maker is also fairly low: an F-score of 0.76.

The estimation accuracy of the electric air heater is once again high, with an error of 14.131 W

without the coffee maker and 77.236 W with the coffee maker. The estimation accuracy was

much lower for the 40 W bulb and the television. With the average load demand of the 40 W

bulb being 40 W, the reported RMSE score of 28.051 W translates to an error of 70.1%. RMSE

scores improved for both the television as well as the light bulb when the coffee maker was

also considered, but worsened for the electric air heater.

4.5 Summary

The FHMM approach consistently outperformed the combinatorial optimization algorithm in

both classification as well as load estimation. Overall, the classification results of the FHMM

models – average F-scores of 0.926 or higher – mean that such models can be used to accurately

determine the operating states of different appliances from a single energy meter’s readings.

Errors in load estimation were fairly low for the electric air heater. However, the models

performed much worse at estimating the load consumption of lower-powered appliances like

the television and the 40 W light bulb.

These tests were conducted in a controlled test environment and with quite limited data. On the

one hand, this means that the results can be overly optimistic, since no noise in the form of

other unmetered appliances was present in the data set. On the other hand, the small data set

size means that the models might not have fully learned the operating states of some appliances,

and therefore, accuracy was reduced. For a more accurate evaluation of these models, a larger

data set consisting of power measurements from real-world scenarios should be used.

30

5 Conclusions

In this work, an openHAB-compatible real-time NILM solution was proposed. It provides the

user access to appliance-level energy consumption data using only a single energy meter. To

achieve this, a data set consisting of power consumption data was created. Next, a machine

learning model was trained to break down aggregate energy measurements into appliance-level

energy consumption data using NILMTK. Finally, an openHAB environment was set up to

visualise the data and allow further integration with other applications. Since openHAB was

used as the source for real-time aggregate power measurements, no modifications are required

to use the real-time disaggregator with a different energy monitor.

The solution was tested with 4 appliances – a 40 W light bulb, a television, an electric air heater,

and a coffee maker. It was found that both disaggregation algorithms used in testing – FHMM

and a combinatorial optimization algorithm – are capable of recognizing larger loads, however,

struggle to identify appliances whose individual loads only make up a small portion of the total

power consumption. The small data set used in these tests likely plays a role in this.

The electric air heater’s operating state was almost always predicted correctly. This is

evidenced by its nearly perfect F-score of 0.998 – 0.999 across all test scenarios. The light bulb,

however, was often confused with the television when larger loads were introduced, resulting

in an F-score of 0.391 in one scenario. The FHMM approach consistently outperformed the

combinatorial optimization algorithm, achieiving average F-scores higher than 0.92 in both test

scenarios. However, both algorithms struggled to accurately estimate the load consumption of

the television and the 40 W light bulb. These results mean that in practice, while this approach

can be counted on to determine which appliances are operating, it can’t be relied on to

accurately estimate the power consumption of the detected appliances – especially those whose

power consumption only makes up an insignificant amount of the total power consumption.

5.1 Future Work

A shortcoming of the practical portion of this work is the data set: it contains too few samples

of power measurements to properly train models and it is artificially modified. Additionally,

since power measurements were taken over a short period of time and in a dedicated test

environment as opposed to someone’s home, additional information like correlation of usage

with other appliances cannot be leveraged. Therefore, a larger data set should be created to

31

improve accuracy, but also enable the use of disaggregation algorithms making use of neural

networks. Furthermore, unsupervised approaches should be investigated, since no appliance-

level power measurements are required when training models, which makes setup much easier.

32

6 References

1. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision,

architectural elements, and future directions. Future generation computer systems. 2013

Sep 1;29(7):1645-60.

2. 2019. Global Energy & CO2 Status Report. https://www.iea.org/geco/electricity/ [cited May

10 2019]

3. Smart metering implementation programme: Progress Report for 2018 [Internet]. Department

for Business, Energy & Industrial Strategy; 2018 [cited May 10 2019]. Available from:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/

file/767128/smart-meter-progress-report-2018.pdf

4. Ehrhardt-Martinez et al. Advanced Metering Initiatives and Residential Feedback Programs: A

Meta-Review for Household Electricity-Saving Opportunities [Internet]. American Council for

an Energy-Efficient Economy; 2010 [cited May 10 2019]. Available from:

https://www.smartgrid.gov/files/ami_initiatives_aceee.pdf

5. Herrero JR, Murciego ÁL, Barriuso AL, de La Iglesia DH, González GV, Rodríguez

JM, Carreira R. Non intrusive load monitoring (NILM): A state of the art. In

International Conference on Practical Applications of Agents and Multi-Agent Systems

2017 Jun 21 (pp. 125-138). Springer, Cham

6. Kelly J, Knottenbelt W. Neural NILM: Deep neural networks applied to energy disaggregation. In

Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built

Environments 2015 Nov 4 (pp. 55-64). ACM

7. Dinesh C, Nettasinghe BW, Godaliyadda RI, Ekanayake MP, Ekanayake J, Wijayakulasooriya

JV. Residential appliance identification based on spectral information of low frequency smart

meter measurements. IEEE Transactions on smart grid. 2016 Nov;7(6):2781-92.

8. Zeifman M, Roth K. Nonintrusive appliance load monitoring: Review and outlook. IEEE

transactions on Consumer Electronics. 2011 Feb;57(1):76-84

9. An Introduction to AC Power [Internet]. OpenEnergyMonitor. [cited May 10 2019]. Available

from: https://learn.openenergymonitor.org/electricity-monitoring/ac-power-

theory/introduction

10. Understanding the Zero Carbon Energy System [Internet]. OpenEnergyMonitor. 2017 [cited

May 10 2019]. Available from: https://learn.openenergymonitor.org/sustainable-

energy/energy/introduction

11. How to Build an Arduino Energy Monitor – Measuring Mains Current Only [Internet].

OpenEnergyMonitor. [cited May 10 2019]. https://learn.openenergymonitor.org/electricity-

monitoring/ct-sensors/how-to-build-an-arduino-energy-monitor-measuring-current-only

12. Emoncms [Internet]. Emoncms. [cited May 10 2019]. Available from: https://emoncms.org/

https://learn.openenergymonitor.org/electricity-monitoring/ac-power-theory/introduction
https://learn.openenergymonitor.org/electricity-monitoring/ac-power-theory/introduction
https://learn.openenergymonitor.org/sustainable-energy/energy/introduction
https://learn.openenergymonitor.org/sustainable-energy/energy/introduction
https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/how-to-build-an-arduino-energy-monitor-measuring-current-only?redirected=true
https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/how-to-build-an-arduino-energy-monitor-measuring-current-only?redirected=true
https://emoncms.org/

33

13. Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C, Motte F, Fouilloy A. Machine learning

methods for solar radiation forecasting: A review. Renewable Energy. 2017 May 1;105:569-

82.

14. Lison P. An introduction to machine learning [Internet]. 2012 [cited May 10 2019]. Available

from: http://folk.uio.no/plison/pdfs/talks/machinelearning.pdf

15. Hart GW. Prototype nonintrusive appliance load monitor. In MIT Energy Laboratory Technical

Report, and Electric Power Research Institute Technical Report 1985 Sep.

16. Makonin S. Approaches to non-intrusive load monitoring (nilm) in the home. 2012 Oct 24.

17. Zoha A, Gluhak A, Imran M, Rajasegarar S. Non-intrusive load monitoring approaches for

disaggregated energy sensing: A survey. Sensors. 2012 Dec;12(12):16838-66

18. Kelly J, Knottenbelt W. Neural NILM: Deep neural networks applied to energy disaggregation. In

Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built

Environments 2015 Nov 4 (pp. 55-64). ACM

19. Shao H, Marwah M, Ramakrishnan N. A temporal motif mining approach to unsupervised

energy disaggregation: Applications to residential and commercial buildings. In Twenty-

Seventh AAAI Conference on Artificial Intelligence 2013 Jun 29.

20. Kim H, Marwah M, Arlitt M, Lyon G, Han J. Unsupervised disaggregation of low frequency

power measurements. In Proceedings of the 2011 SIAM international conference on data

mining 2011 Apr 28 (pp. 747-758). Society for Industrial and Applied Mathematics.

21. Pereira L, Nunes N. Performance evaluation in non‐intrusive load monitoring: Datasets,

metrics, and tools—A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery. 2018 Nov;8(6):e1265

22. ILM datasets [Internet]. NILM wiki. [cited May 10 2019]. Available:

http://wiki.nilm.eu/datasets.html

23. Kolter JZ, Johnson MJ. REDD: A public data set for energy disaggregation research. In Workshop on

Data Mining Applications in Sustainability (SIGKDD), San Diego, CA 2011 Aug 21 (Vol. 25, No.

Citeseer, pp. 59-62).

24. Anderson K, Ocneanu A, Benitez D, Carlson D, Rowe A, Berges M. BLUED: A fully labeled

public dataset for event-based non-intrusive load monitoring research. In Proceedings of the

2nd KDD workshop on data mining applications in sustainability (SustKDD) 2012 Aug 12 (pp.

1-5).

25. Kelly J, Knottenbelt W. The UK-DALE dataset, domestic appliance-level electricity demand

and whole-house demand from five UK homes. Scientific data. 2015 Mar 31;2:150007.

26. Gao J, Giri S, Kara EC, Bergés M. Plaid: a public dataset of high-resoultion electrical appliance

measurements for load identification research: demo abstract. In proceedings of the 1st ACM

Conference on Embedded Systems for Energy-Efficient Buildings 2014 Nov 3 (pp. 198-199).

ACM.

http://wiki.nilm.eu/datasets.html

34

27. Kahl M, Haq AU, Kriechbaumer T, Jacobsen HA. Whited-a worldwide household and industry

transient energy data set. In 3rd International Workshop on Non-Intrusive Load Monitoring

2016.

28. Gulati M, Ram SS, Singh A. An in depth study into using EMI signatures for appliance

identification. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-

efficient Buildings 2014 Nov 3 (pp. 70-79). ACM

29. Makonin S, Popowich F. Nonintrusive load monitoring (NILM) performance evaluation.

Energy Efficiency. 2015 Jul 1;8(4):809-14.

30. Batra N, Kelly J, Parson O, Dutta H, Knottenbelt W, Rogers A, Singh A, Srivastava M.

NILMTK: an open source toolkit for non-intrusive load monitoring. In Proceedings of the 5th

international conference on Future energy systems 2014 Jun 11 (pp. 265-276). ACM.

31. NILMTK: Non-Intrusive Load Monitoring Toolkit. Github [Internet]. [cited May 10 2019].

Available from: https://github.com/nilmtk/nilmtk

32. NILM Algorithms. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/nilmtk/nilmtk/wiki/NILM-Algorithms

33. Neuralnilm. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/JackKelly/neuralnilm

34. Neural NILM Prototype. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/JackKelly/neuralnilm_prototype

35. Latent Bayesian melding for non-intrusive load monitoring (energy disaggregation). Github

[Internet]. [cited May 10 2019]. Available from:

https://github.com/MingjunZhong/LatentBayesianMelding

36. Zhong M, Goddard N, Sutton C. Latent Bayesian melding for integrating individual and population

models. In Advances in neural information processing systems 2015 (pp. 3618-3626).

37. Code for NILM experiments using Neural Networks. Github [Internet]. [cited May 10 2019].

Available from: https://github.com/OdysseasKr/neural-disaggregator

38. Collette A. Python and HDF5: Unlocking Scientific Data. " O'Reilly Media, Inc."; 2013 Oct 21.

39. Datasets. H5py [Internet]. [cited May 10 2019]. Available from:

http://docs.h5py.org/en/stable/high/dataset.html

40. NILM METADATA. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/nilmtk/nilm_metadata

41. Dataset converters. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/nilmtk/nilmtk/tree/master/nilmtk/dataset_converters

42. Documentation. OpenHAB [Internet]. [cited May 10 2019]. Available from:

https://www.openhab.org/docs/

43. Things. OpenHAB [Internet]. [cited May 10 2019]. Available from:

https://www.openhab.org/v2.3/docs/configuration/things.html

https://github.com/nilmtk/nilmtk
https://github.com/nilmtk/nilmtk/wiki/NILM-Algorithms
https://github.com/JackKelly/neuralnilm
https://github.com/JackKelly/neuralnilm_prototype
https://github.com/MingjunZhong/LatentBayesianMelding
https://github.com/OdysseasKr/neural-disaggregator
http://docs.h5py.org/en/stable/high/dataset.html
https://github.com/nilmtk/nilm_metadata
https://github.com/nilmtk/nilmtk/tree/master/nilmtk/dataset_converters
https://www.openhab.org/docs/
https://www.openhab.org/v2.3/docs/configuration/things.html

35

44. Items. OpenHAB [Internet]. [cited May 10 2019]. Available from:

https://www.openhab.org/docs/configuration/items.html

45. openHAB REST API. OpenHAB [Internet]. [cited May 10 2019]. Available from:

https://www.openhab.org/docs/configuration/restdocs.html

46. emonLib. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/openenergymonitor/EmonLib

47. CT Sensors – Interfacting with an Arduino. OpenEnergyMonitor [Internet]. [cited May 10

2019]. Available from: https://learn.openenergymonitor.org/electricity-monitoring/ct-

sensors/interface-with-arduino

48. Kelly J, Knottenbelt W. Metadata for energy disaggregation. In 2014 IEEE 38th International

Computer Software and Applications Conference Workshops 2014 Jul 21 (pp. 578-583). IEEE.

49. Github. Github [Internet]. [cited May 10 2019]. Available from: https://github.com/

50. Arjunan P, Singh A, Singh P. 2018. Middleware systems and analytics for energy management

in buildings (Doctoral dissertation, IIIT-Delhi).

51. Buneeva N, Reinhardt A. AMBAL: Realistic load signature generation for load disaggregation

performance evaluation. In 2017 IEEE International Conference on Smart Grid Communications

(SmartGridComm) 2017 Oct 23 (pp. 443-448). IEEE.

52. NILM-Eval. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/beckel/nilm-eval

53. Beckel C, Kleiminger W, Cicchetti R, Staake T, Santini S. The ECO data set and the performance of

non-intrusive load monitoring algorithms. In Proceedings of the 1st ACM Conference on Embedded

Systems for Energy-Efficient Buildings 2014 Nov 3 (pp. 80-89). ACM.

54. Home Assistant. Home Assistant [Internet]. [cited May 10 2019]. Available from:

https://www.home-assistant.io/

55. ioBroker. ioBroker [Internet]. [cited May 10 2019]. Available from: http://www.iobroker.net/

56. PiDome - Home Automation. PiDome [Internet]. [cited May 10 2019]. Available from:

https://pidome.org/

57. pySerial. Github [Internet]. [cited May 10 2019]. Available from:

https://github.com/pyserial/pyserial

58. Designing dashboard interfaces with HABPanel. OpenHAB [Internet]. Available from:

https://www.openhab.org/docs/configuration/habpanel.html

https://www.openhab.org/docs/configuration/items.html
https://www.openhab.org/docs/configuration/restdocs.html
https://github.com/openenergymonitor/EmonLib
https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/interface-with-arduino
https://learn.openenergymonitor.org/electricity-monitoring/ct-sensors/interface-with-arduino
https://github.com/
https://github.com/beckel/nilm-eval
https://github.com/beckel/nilm-eval
https://www.home-assistant.io/
http://www.iobroker.net/
https://pidome.org/
https://www.openhab.org/docs/configuration/habpanel.html

36

7 Appendices

1 Serial Reader

2 OpenHAB Item Manager

37

3 Live Disaggregator

The Python script used for real time disaggregation can be found in the included ZIP archive

as live_disaggregator.py.

4 Script to Save Power Readings

5 Script to Convert Power Readings to the REDD format

38

6 NILM Metadata

7 Evaluation Script

The script used for evaluating the accuracy of different NILM algorithms can be found in the

included ZIP archive as evaluation.py.

39

8 Litsents

Lihtlitsents lõputöö reprodutseerimiseks ja üldsusele kättesaadavaks tegemiseks

Mina, Martin Jürgel,

 (autori nimi)

1. annan Tartu Ülikoolile tasuta loa (lihtlitsentsi) minu loodud teose Non-Intrusive Load

Monitoring in the OpenHAB smart home framework,

 (lõputöö pealkiri)

mille juhendaja on Jakob Mass,

 (juhendaja nimi)

reprodutseerimiseks eesmärgiga seda säilitada, sealhulgas lisada digitaalarhiivi DSpace

kuni autoriõiguse kehtivuse lõppemiseni.

2. Annan Tartu Ülikoolile loa teha punktis 1 nimetatud teos üldsusele kättesaadavaks

Tartu Ülikooli veebikeskkonna, sealhulgas digitaalarhiivi DSpace kaudu Creative

Commonsi litsentsiga CC BY NC ND 3.0, mis lubab autorile viidates teost

reprodutseerida, levitada ja üldsusele suunata ning keelab luua tuletatud teost ja

kasutada teost ärieesmärgil, kuni autoriõiguse kehtivuse lõppemiseni.

3. Olen teadlik, et punktides 1 ja 2 nimetatud õigused jäävad alles ka autorile.

4. Kinnitan, et lihtlitsentsi andmisega ei riku ma teiste isikute intellektuaalomandi ega

isikuandmete kaitse õigusaktidest tulenevaid õigusi.

Martin Jürgel

10.05.2019

