
UNIVERSITY OF TARTU
Institute of Computer Science

Software engineering Curriculum

Lasha Tsintsabadze

A Prototype to Analyze Role- and Attribute-
Based Access Control Models

Master’s Thesis (30 ECTS)

Supervisor(s):
Raimundas Matulevicius

Tartu 2017

2

A Prototype to Analyze Role- and Attribute-Based Access Control Mod-
els
Abstract:

The goal of this thesis is to create an access control comparison prototype, where people
will do experiments with security models and analyse reports based on their actions. The
thesis is split into two parts: theoretical and practical. In the theoretical part, we studied how
security models like, Role-Based Access and Attribute-Based Access work, defined the
meta models and explained the security flows. After that, we did the theoretical comparison
between these models and defined the comparison criteria, which later was used in the pro-
totype. Meanwhile, in practical part, we put main points of the theoretical part and defined
requirements and use cases in order to give maximum experience to the users about what is
going underneath the application during the interaction through graphical user interface.
Keywords:

RBAC, ABAC, Security model comparison, Security model comparison prototype, Access
control model
CERCS: T120 Systems engineering, computer technology.

Prototüüp analüüsimaks rolli- ja vahendipõhiseid juurdepääsumudeleid
Lühikokkuvõte:
Käesoleva lõputöö eesmärgiks on luua juurdepääsu kontrolli võrdlemise platvorm või töö-
riist, mille abil kasutajad saavad eksperimenteerida ning luua turvaanalüüse ja -mudeleid.
Lõputöö jaguneb kahte ossa: teoreetiline ja praktiline. Teoreetilises osas uuritakse, kuidas
turvalisusmudelid, nagu näiteks kasutajapõhine juurdepääs ja atribuudipõhine juurdepääs
töötavad, defineeritakse metamudeleid ja selgitatakse turvalisuse voogu. Seejärel
võrreldakse kahte mudelit, fikseerides võrdluskriteeriumid, mida hiljem kasutatakse plat-
vormil. Praktilises osas kasutatakse teoreetilise osa põhipunkte ning defineeritakse va-
jadused ja kasutuslahendid, et anda kasutajatele maksimaalne arusaam rakenduse sees
toimuvast kasutajaliidesega suheldes.

Võtmesõnad:
RBAS, ABAS, turvamudelite võrdlus, turvamudelite võrdluse prototüüp, juurdepääsu
kontrolli mudel
CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia tehnikateadused.

3

Acknowledgment

First of all, I would like to express my deep sense of gratitude to my supervisor Raimundas
Matulevicius, for his patience and guidance during the research. I must appreciate Univer-
sity of Tartu, the Faculty of Software engineering for giving me a chance to get the valuable
education for my successful career path. In the end, I would like to express my profound
gratitude to my family and friends for their tremendous support and continuous encourage-
ment throughout my study. This accomplishment would not have been done without them.
Thank you

4

Table	of	Contents	
1	 Introduction ... 8	
2	 Background Study ... 10	
2.1	 Role Based Access Control .. 10	
2.1.1	 Major description and principals .. 10	
2.1.2	 Meta-Model .. 11	
2.2	 Attribute-based Access Control Model .. 12	
2.2.1	 Major description and principals .. 12	
2.2.2	 Meta-Model .. 14	
2.3	 Summary .. 17	

3	 Comparison of Access Models ... 18	
3.1	 Comparison criteria definition ... 18	
3.2	 Comparison and result presentation ... 20	
3.3	 Summary .. 23	

4	 Prototype ... 24	
4.1	 Requirements specification .. 24	
4.1.1	 Product perspective .. 24	
4.1.2	 Scenario description ... 24	
4.1.3	 Scenario functions .. 25	
4.1.4	 Expectations ... 36	
4.1.5	 System requirements .. 37	
4.1.6	 Authentication .. 37	
4.1.7	 Scenario requirements .. 38	
4.1.8	 Prototype requirements .. 40	
4.2	 Implementation .. 41	
4.2.1	 Scenario and Role-Based Access Control (RBAC) implementation 41	
4.2.2	 Attribute-Based Access Control(ABAC) implementation ... 48	
4.3	 User manual ... 52	
4.4	 Summary .. 58	

5	 Conclusion .. 59	
5.1	 Future work .. 59	

References ... 60	
Appendix ... 62	
I.	 List of Acronyms ... 62	
II.	 License ... 63	

5

List	of	Figures	
Figure 1 SecureUML Metamodel (adapted from [4]). .. 12	
Figure 2 XACML meta-model (Adopted from [5] [6]) .. 15	
Figure 3 XACML architecture (Adopted from [5] [6]) .. 16	
Figure 4 Main types of Extended RBAC model (Adapted from [22]) 20	
Figure 5 Access control comparison system structure .. 24	
Figure 6 Scenario class diagram. .. 25	
Figure 7 Introduction of the prototype use case .. 26	
Figure 8 Analytical comparison of security models use case. .. 26	
Figure 9 Apply security access model use case. ... 26	
Figure 10 List companies in the system use case. .. 27	
Figure 11 Add new company in the system use case .. 27	
Figure 12 Delete company from the system use case. .. 28	
Figure 13 View company detail from company list page use case. 28	
Figure 14 Update specific company use case. .. 29	
Figure 15 List all candidates in the system use case. .. 29	
Figure 16 Add new candidate in the system use case. .. 30	
Figure 17 Delete candidate from the system use case .. 30	
Figure 18 View candidate detail from candidate list page use case. 31	
Figure 19 Update specific candidate use case. .. 31	
Figure 20 List jobs in the system use case. ... 32	
Figure 21 Delete job from the system use case. .. 32	
Figure 22 View job detail from job list page use case. ... 33	
Figure 23 Change job status use case. .. 33	
Figure 24 Add new job in the system use case. .. 34	
Figure 25 Change authority role use case ... 34	
Figure 26 Authorize into the system use case ... 35	
Figure 27 Registration of new user use case. .. 35	
Figure 28 Take a quiz use case ... 36	
Figure 29 Quiz result management use case. .. 36	
Figure 30 Prototype layout. ... 42	
Figure 31 Spring security configuration file ... 43	
Figure 32 Company resource controller with RBAC access model. 44	
Figure 33 Security actions types in HR management system ... 44	
Figure 34 An example of SecureUML model of flat RBAC .. 46	
Figure 35 An example of SecureUML model of hierarchical RBAC 47	
Figure 36 An example of SecureUML for constrained RBAC. .. 48	
Figure 37 Implementation of PermissionEvaluator .. 49	
Figure 38 Implementation of ContextAwarePolicyEnforcement.. 49	
Figure 39 Implementation of PolicyEnforcement component. ... 50	
Figure 40 Log in and registration forms. .. 52	
Figure 41 Dropdown menu for user name and logout. ... 52	
Figure 42 Sidebar menu and introduction page .. 53	
Figure 43 Access control comparison result page. ... 53	
Figure 44 Change user role dropdown menu. ... 54	
Figure 45 Apply access model dropdown menu ... 54	
Figure 46 Company detail view, list view and create view .. 55	
Figure 47 Job detail view; list view; create view; .. 56	
Figure 48 Candidate detail view, list view and create view. .. 57	

6

Figure 49 Quiz result management system. .. 58	

7

List	of	Tables	
Table 1 A comparison of Role-centric access model and Attribute-centric access model

(adapted from [22]) ... 21	
Table 2 System expectations ... 36	
Table 3 Software expectations. ... 37	
Table 4 System requirements for prototype. ... 37	
Table 5 Authentication function requirements for prototype. .. 37	
Table 6 Scenario functional requirements. ... 38	
Table 7 Prototype functional requirements. .. 40	
Table 8 Policy repository .. 51	

8

1 Introduction	
A conspicuous part of security related topic in computer science is access control. Main idea
of access control is protecting sensitive data. It determines whether the user has permission
to access information or not. For a long time, AC world was dominated by discretionary and
mandatory access control models. In late 1990s research community realized that MAC and
DAC cannot cope with a fast-growing IT industry requirements. So, in 1992 RBAC model
was introduced, which dominated AC word for almost a decade. But now it faces a same
problem again, it cannot cope with new challenges. The base problem of MAC, DAC and
RBAC is that, they are created to control access in static environment, where users, re-
sources and permission must be predefined and nothing changes for a set of periods, but
nowadays modern technologies showed that traditional access control should give flexible,
complex and anonymous access control in dynamical environment.

New challenges raised demand for more flexible access models and we have now models
like, Attribute-based, Usage-based, Risk-based, etc. The Motivation of this thesis is to help
people elucidate which model fits their needs. Unfortunately, most of the new models are
conceptual models, which means that there it is not production ready. So, we limited the
scope of this project to only two models: Role-Based and Attribute-Based. The reason be-
hind choosing Attribute-Based model is National Institute of Standards and Technology
(NIST), which already published official paper about the definition and consideration of
ABAC.

Nowadays people can find a lot of papers and materials about analytical comparison of
RBAC and ABAC, which will give a good theoretical idea about which one is better. But
there is nothing that will give practical experience to them before using it in their projects.
The goal of our project is to create a prototype where people will see RBAC and ABAC
models in practice. It is intended to be an educative program for people who doesn't know
much about security models. The aim is to implement a prototype in that way that users will
be able to see what is in the background of the application during their interaction with
graphical user interface. Users should see step by step flow of how RBAC or ABAC is
securing the resource when server receives a request.

In order to implement Access Control Comparison Platform, we need to make several con-
tributions to the thesis:

• Understand how access models work specifically Role-Based access and Attribute-
based access

• Produce empirical comparison and define comparison criteria.
• Based on comparison criteria, create requirements and use cases of platform.
• Platform implementation based on requirements.
• Creation of user manual.

Overall, the structure of this thesis is aligned like this: Chapter 2 presents an overview of
access models such as RBAC and ABAC. We provide a general description and explain
meta-model for each access model. Furthermore, we introduce modelling languages like
secureUML and XACML, that can be used to express each access model. Chapter 3 presents
an analytical comparison of ABAC and RBAC, where we concentrate on defining compar-
ison criteria and also present results using table revealing the conceptual similarities and
differences between these models. Chapter 4 defined the requirements for access model
comparison platform. This chapter is split in three parts. Firstly, we define scenario which

9

our prototype will be based on, then we define requirement specifications and use cases.
Secondly, we describe the implementation of the prototype. We present the technology stack
of the application, the architecture and step by step illustration of how each access model is
implemented. In the end, we will present the user manual of porotype, which explains usage
of each features of platform. We provided step by step instructions and visualized it on
platform GUI. Finally, Chapter 5 concludes this thesis, which includes the limitations of the
prototype and the new recommendations for future work.

10

2 Background	Study	
In this chapter, we will provide an overview of Role-Based and Attribute-based Access
Control models and explain how they work. In Section 2.1 we concentrate on Role-Based
Access Control model, where we describe the main concepts and meta-model of it. Also,
we will present secureUML, the language for modelling RBAC rules in unified modelling
language(UML). We will concentrate on secureUML's major principal description and on
the structure of the language. We will explain the notation and the met model in the next
section. On the other hand, in section 2.1 we will give an overview of Attribute-based Ac-
cess Control model (ABAC). Firstly, we will provide the main concepts of the ABAC, then
we will present XACML modelling language, which is used to express ABAC Policies.

2.1 Role	Based	Access	Control	

2.1.1 Major	description	and	principals	
Role-based access model is an access control method to ensure that only authorized user can
have access to the data in the system. Unlike other access models, in RBAC users are as-
signed to Roles, where roles already have granted permissions. Users can be assigned to
any number of roles based on their job requirements. For example, let's take a user who
should have analyst and developer roles, each role will have permissions that are needed to
access specific objects in the system [1].

The concept of the role-based access model is clear and straightforward. One of the core
advantages of RBAC is significantly less responsibility of system administrator. In RBAC
is no static template for creating security policies, because all organizations have different
requirements. Let's take an example to have a clearer understanding how RBAC works.
Imagine the situation when a user changes the job inside the organization in the non-role-
based environment, the system administrator should update user permissions manually for
different object levels. However, in role-based environment administrator just should
change the role of the user which already have granted set of permissions.

RBAC policy is embodied in various components such as role-permission relationships,
user-role relationships, and role-role relationships. These components determine whether
the user has access to a resource or not in the system. RBAC can modify the policy to meet
the requirements of an organization which is the most significant benefit. RBAC implements
three most important security principals: least privilege, separation of duties and data ab-
straction. Least Privilege is supported because RBAC can be configured, so only those per-
missions required for tasks conducted by members of the role are assigned to the role. Sep-
aration of duties is achieved by ensuring that mutually exclusive roles must be invoked to
complete a sensitive task. Data abstraction is supported using abstract permissions such as
credit and debit for an account.

The family of RBAC consists of four models: flat, hierarchical, Constrained and Symmetric
RBAC. Core RBAC [1][2] is the base model, minimal requirement for any system which is
supporting RBAC. Core RBAC's elements are users, roles, objects, operations, and permis-
sions. The main process of RBAC is that Permissions are assigned to Roles and Roles are
assigned to users. Roles may have one or many Permissions and Roles. It also includes
Sessions, which is the mapping between authorized users and roles assigned to them. Each
session is linked to the specific user, and each session is related to roles. Session_roles and

11

session_users functions can be triggered to return linked roles and user to the session. When
the user gets sessions, he also gets access to his permissions.

Hierarchical RBAC, constrained RBAC and symmetric RBAC is extensions of Core RBAC.
Apart from Core model, the Hierarchical model has role hierarchies’ definition. Role hier-
archies are used to mirror the hierarchical line of authorities and responsibilities in an or-
ganization. It is defined regarding permissions, where senior roles include permissions of
junior roles also. For example, the role r1 is inherited by r2 if r1 permissions are included
in r2 permissions. There are two types of role hierarchies: general and limited role hierar-
chies. The main difference between them is that general role hierarchies have a multiple
inheritances support, which makes possible to inherit user membership from more than two
role sources. On the other hand, limited role hierarchy is restricted to a single immediate
inheritance [1][2].

The constrained RBAC [1][2] Apart from role hierarchy model places a restrictive rule on
the potential inheritance of permission from opposing roles. Hence, it can be used to accom-
plish for appropriate separation of duties by limiting the power of individual user or session.
For example, login account creation and account creation authorization should be allowed
for the same user, it should be separated. Constrained RBAC allows static and dynamic
separation of duty.

The Symmetric RBAC [1][2] includes the requirements of Constrained RBAC. It imple-
ments a permission-role review requirement the same user-role requirement we have in core
RBAC. It gives identification of the permissions to existing roles and vice versa. For ex-
ample, the administrator removes all the user's permissions by identifying permission of
leaving users and then reassigns to other users with a same or different set of permissions.

2.1.2 Meta-Model	

SecureUml	overview		
Integrating security engineering is very important in software development process. It al-
lows developers to integrate security policies into the system at a high level of abstraction
and decrease chances of violating those policies and prevents errors in the future develop-
ment of access control models.

SecureUML is an extension of the standard UML language. It is used to describe the vocab-
ulary to annotate access models in UML environment. SecureUML is oriented on RBAC
model. It defines all components of RBAC such as role, role permission, and user-role as-
signment. Moreover, it also provides support for authorization constraints definition. Be-
cause of its extensibility, secureUML is very easy to use language for business analysis as
well as a designing security model [3].

The main purpose for us to use this language is to demonstrate RBAC capabilities, based on
our scenario, described in Figure 1. SecureUML gives us the opportunity to define different
models with different levels of abstraction, using the same syntax and compatible semantics.
Usual workflow of secureUML model creation is:

§ User identification
§ Role identification
§ Role hierarchy identification
§ User and Role mapping

12

§ Resource identification
§ Action identification
§ Authorization constraint identification

SecureUml	meta-model	
The meta-model defines the abstract syntax of the language, i.e. the structure of a model
representation that is independent of particular notation. As shown in Figure 2 SecureUML
meta-model introduces the new types like user, permission, role as well as relationships
between them. Instead of making separate type for protected resources, secureUML allows
every ModelElement to use the role of it. SecureUML also introduces ResourceSet, which is
set of modelElement defining permissions and authorization constraints. Permission con-
nects role to ModelElement or a ResourceSet, which is defined by ActionType. Every Ac-
tionType contains operations on a specific resource in the system. On another hand, Action-
Types available for a particular meta-model type is defined by a ResourceType. An author-
ization constraint represents access control policy in the model. It checks every precondition
before calling some resource in the system. For example, let's assume that we want to have
access condition for operation editBlog () on class Blog to make sure that only user with
right role will have access to it. To achieve this goal and authorization constraint will check
if the user is the author/owner of the blog. Authorization constraint is attached to the pro-
tected resource(ModelElement) via permission	[3].		

Figure 1 SecureUML Metamodel (adapted from [4]).

2.2 Attribute-based	Access	Control	Model	

2.2.1 Major	description	and	principals	
Unlike its rivals, ABAC is a distinct access model, because it authorizes access to the re-
sources by evaluating policies against the attributes of entities and the environment condi-
tions suitable to the request. It separates authorization and authentication by asking what are
you and not who are you. In other words, ABAC can define permissions not only based on

13

the role but any relevant characteristics(attributes) of the entity. The main elements of
ABAC model are Subject, Object, Operation, Policy, Environment, Rule and Attributes.
Attributes itself are split into three types: Subject Attributes, Object Attributes and Environ-
ment Attributes [7].

The Subject is an individual (e.g. human or NPE1) who sends the request for acting on a
specific resource. Each subject has an identity, which is defined by attributes. For example,
attributes hold subject's name, age, job title, role and so on. In ABAC environment Subject
is a definition of user. The Object is a resource secured by the ABAC, such as files, tables,
programs, devices and so on. Basically, everything that can be managed by the subject per-
forming some actions. Like Subjects, Objects also have attributes. For example, a publica-
tion in newspaper portal can have attributes like owner name, creation date, access permis-
sion and so on. The Environment is a description of the context in which access occurs.
Environment attributes describe operation and technical characteristics like location of the
access request, current date and time, network security level and so on. The Environment is
not related to the subject or object; it is applied to the whole policy. An Operation is the
action subject want to perform on the resource(object) like read, write, delete, execute, up-
date and so on. A Policy is a representation of Rules that decide to permit or reject an in-
coming request for a resource based on values of the subject, object and environment attrib-
ute values. A Rule is a Boolean function which decides if subject can access object environ-
ment [7] [8].

In ABAC control, the object is protected using Access Control Mechanism(ACM). When
the request comes, ACM will collect attributes, evaluate the logic of policy and enforce the
decision to reject or permit access to the object. ACM must be able to manage process of
decision enforcement, also must be able to determine which policy is applicable for the
request, which attributes to get and from where to get it and so on. For this ACM uses
several functional points, like the Policy Enforcement Point (PEP), the Policy Decision
Point (PDP), the Policy Information Point (PIP), and the Policy Administration Point (PAP)
[14].

The Policy Enforcement Point (PEP) functional point has two main duties: to request au-
thorization decision and to enforce the decision. In other words, it is a point which stands
between resource and request. PEP cannot be bypassed to get access to the resource. The
Policy Decision Point(PDP) function point tasks applicable policy, evaluates it and calcu-
lates authorization decision, which is either Permit or Deny. In other words, PDP is a ABAC
control engine. PEP enforces the decision from PDP. PDP and PEP aren’t necessary to be
centralized, they can be distributed throughout the network. PDP component calculates de-
cision using the Policy Information Point (PIP), which provides PDP with necessary data
from attributes to calculate decision. Before enforcing policies, it should be tested to make
sure that they satisfy the requirements. This is handled by the Policy Administration Point
(PAP). PAP manages policy creation, testing, debugging and storing it to policy repository
[2].

1 An entity with a digital identity that acts in cyberspace, but is not a human actor. This can include organiza-
tions, hardware devices and software applications.

14

2.2.2 Meta-Model	

XACML	overview		
In this section, we will discuss various elements found in the eXtensible Access Control
Mark-up Language (XACML), which is presented in Figure 2. XACML is OASIS2 standard
and uses XML3 mark-up language as a syntax. It is used to express ABAC access model
concepts.

XACML model consists from three main elements PolicySet, Policy and Rule. Rule defines
the desired effect returned to Requester, either "Deny", "Permit" and "Not Applicable"
"Deny" means that request was evaluated by all applicable Policies and request is not au-
thorized to provide some actions on the resource. "Permit" means that request was evaluated
by applicable policies and request is authorized to perform some actions on the resource.
And "Not Applicable" means that no applicable policy was found for given request and it
cannot be evaluated [5] [6].

Target element is not only a part of all the core components of XACML. It is a mapping
between Subject, Object and Action to the Policy, PolicySet or Rule. It holds the index of
the Policies, so when XACML engine receives request, it will pull all the policies from
"repository" as an input and use Target element to find which Policy, PolicySet or Rule
applies to the request. Then XACML will compare request attributes and Target attributes
and in case of match applicable Policy, PolicySet or Rule will be evaluated, else XACML
engine will return "NotApplicable" decision to the request. Target element itself contains:
Subjects, Action, Environment and Resources elements. Subjects is a set of Subject elements,
which represents the identification of the entity, who is willing to perform actions on the
resource. Resource element represents the actual resource which subject(user) is trying to
access. Action element defines the action set, like read, write, execute etc, subject can per-
form on the resource after getting permission. Environment element define system attrib-
utes, which lets us define system property check for requester. For example, assume that we
will apply policies only based on domain. We will specify domain name in Environment
element and use it to match with requester domain name [5] [6].

The root elements of XACML language is Policy and PolicySet. PolicySet is an element
which may include other Policy or PolicySet elements, as well as links to other remote Pol-
icy containers. Policy element itself represents a single access control policy which is ex-
pressed using Rule, Target and Obligation elements. Rule element is used for implementing
the authorization logic. The structure of the Rule is split in three main parts: Condition,
Target and Effect. As we already mention Target is used for indexing Rule. Condition ele-
ment is the place where the actual authorization logic is defined and always returns Boolean
result. Based on the outcome of the Condition Effect is evaluated. Effect is an attribute of
the Rule, which specifies the outcome of it. Usually Rule has two types of Effect, "Deny"
and "Permit". If the Condition evaluates to true, the Effect of the Rule will be "Permit", else
"Deny" [5] [6].

2A non-profit, international consortium that creates interoperable industry specifications based on public stand-
ards such as XML and SGML
3 A markup language that defines a set of rules for encoding documents in a format that is both human-readable
and machine-readable.

15

Figure 2 XACML meta-model (Adopted from [5] [6])

PolicySet may contain multiple Policies and Policy may include multiple Rule elements.
Those Rules and Policies can have different access control decision evaluation. In this case,
XACML needs some way to monitor what decision each Rule and Policy makes. This is
done by using Combining algorithms. Those algorithms help XACML to combine multiple
decision in the single decision. XACML implements two types of combining algorithm:
Policy combining algorithm used by PolicySet and the Rule-combining algorithm used by
Policy component. For example, let us take Deny override algorithm, which is one of seven
built in algorithms in XACML. It basically says that if any evaluation will return "Deny",
then the final decision also will be "Deny" [5] [6].

XACML also introduces Obligation concept which is a part of PolicySet and Policy ele-
ments and defines the certain actions that must be carries out before access it permitted. It
is an optional element and may not be implemented in Policy. Attributes in XACML are
named values, which characterize Subject, Resource, Action or Environment in which re-
quest is sent from. For instance, attribute values may include a user's name, user's security
consent, the requested file and so on. The request sent from PEP to PDP is formed using
attributes, where they will be compared to the policy attributes to make access decisions.
For retrieving attribute values out of request XACML implements two mechanisms: At-
tributeDesignator and AttributeSelector. AttributeDesignators allows Policy to look for the
attribute using the name, type or issuer. And AttributeSelector allows Policy to get attributes
using XPath4 query [5] [6].

4 A query language for selecting nodes from an XML document.

16

Figure 3 XACML architecture (Adopted from [5] [6])

Figure 3 provides the overview and the flow of the XACML language. As we see XACML
architecture consists from several key components:

§ PAP (Policy Administration Point) - component is responsible for Policy and Poli-
cySet creation.

§ PDP (Policy Decision Point) - component is responsible for execution on applicable
policy and rendering policy decision.

§ PEP (Policy Enforcement Point) - component is responsible to block access request,
forward it to PDP and act based on the decision received from PDP.

§ PIP (Policy Information Point) - component is responsible for retrieving information
from attribute values, like subject, resource and environment.

§ CH (Context Handler) - component is responsible for converting decision request to
XACML data format.

§ OS (Obligation Service) - component is responsible for handling obligations
Overall the data flow in XACML looks like this - First PAP loads all available policies and
policySets in PDP. When system receives access request, PEP will intercept it and forward
authorization request to CH. CH will change authorization request format to XACML sup-
ported format and will send request notification to PDP. After receiving request notification
PDP will ask CH to send back all available attribute data. CH will request PIP to collect all
data from attribute values. After receiving request PIP will retrieve data from subject attrib-
utes, resource attributes and environment attributes (7c) and send it to CH (8). CH may also
get resource content (9), but this is optional. After collecting attribute values and resource
content, CH will send it back to PDP (10). After receiving necessary data PDP will evaluate
policies and send back to CH (11). CH will decode response from XACML format and
forward it to PEP. Next PEP will process response data and grant access if the decision will

17

be Permit and deny access if decision will be Deny. In case policy has some obligations,
before making deciding access decision PEP will send response to OS (13) to check if ob-
ligations are fulfilled. This step is also optional [6].

2.3 Summary	
In this chapter, we introduced ABAC and RBAC architectures. We detailed the major con-
cepts and how they interact with each other, which showed us how these models make ac-
cess decisions. We also introduced modelling languages such as secureUML and XACML.
We discussed how these languages are compatible with these models. In the next chapter,
we will talk about how these models differ from each other. We will define the requirements
and challenges modern access models face and then examine how these models are dealing
with them.

18

3 Comparison	of	Access	Models	
This chapter gives a comprehensive analysis of two approaches in access control world:
role-centric approach represented by RBAC and attribute-centric approach represented by
ABAC. Our aim is to define the difference between RBAC and ABAC models by identify-
ing their limitations.

3.1 Comparison	criteria	definition	
In order to correctly identify limitations of models we need to dig into the history a little bit
when the AC world was dominated by DAC and MAC models. It will help us to define
inherent characteristics of RBAC, which during time become the limitations against future
needs of AC. Next, we need to determine what kind of requirements the modern AC must
meet. To sum up, this chapter is organized as follows. In section 3 we will write an overview
of old AC-s. In section 3.1 we will identify the criteria of modern AC and finally, in section
3.2 we will illustrate how RBAC and ABAC models meet the requirements defined in 3.1
section.

Around three decades AC world was dominated by discretionary and mandatory access con-
trol models. Discretionary access control, known as DAC is a security model where object's
owner defines an Access Control List (ACL) for specific objects like a database table, file,
etc. It contains entries(ACE) which include user identities and privileges who has access to
the resource. In other words, the owner decides objects privileges. A common example of
DAC is windows file system. On the other hand, Mandatory Access Control (MAC) is
stricter, where only administrators can manage access to programs and files. No other user
can override the policies. This model was used in military systems.

In late 1990s research community realized that MAC and DAC cannot cope with a fast-
growing IT industry requirements. So, in 1992 RBAC model was introduced, described in
section 2.1, which is the most dominated and used access control model nowadays. How-
ever, during these years, the practical use of RBAC model showed that it has some problem.
RBAC is a part of traditional access controls, which was created to control access in static
environment, where users, resources and permission must be predefined and nothing
changes for a set of periods, but nowadays modern technologies showed that traditional
access control should give flexible, complex and anonymous access control in dynamical
environment.

For access model comparison, first we should define the comparison criteria. Nowadays
modern access controls should satisfy several requirements. They should control: static ac-
cess, fine-grained access, context insensitive access, content independent access, on-going
access, user prior identification access, multi-factored access and inflexible access. Let's
break down these requirements and examine how RBAC and ABAC can secure them [22].

Fine-grained access refers to a state where details and precision have a great attention. Un-
fortunately, RBAC is more coarse-grained access than fine-grained, where a state has a lack
of attention to details and provides rough estimation only, which sometimes is leading to
the accidental situations where user gets unauthorized access. For example, in policy user
may have access to one cell in the table, but his permissions can permit him to view the
whole table. Fine-grained access control is crucial for AC flexibility in sense of assigning
different rights to the users [22].

19

The appearance of cloud computing created the need for context insensitive access control.
Context insensitive access can be described as a state where an event or statement is com-
posed of a set of conditions to give a better understanding. The context information may be
different for making access decision, everything is based on usage scenario. Context infor-
mation consist multiple characteristics like location, network type, device type, time, tem-
perature and so on. RBAC doesn't support context insensitive access, because it's access
decisions are based only on user role. So, it is cannot cope the situation where the context
of identity may be based on more than static roles [22] [6].

The need for ongoing access control emerged from e-commerce application usage. Ongoing
access control defines the state where access is controlled continually during the active user
session. RBAC, which is the part of traditional AC-s, only support one-time access control
where access control decision is made once on request time and the granted access will last
until the user session ends. The permission will only re-evaluate after the session termina-
tion. During session, no ongoing permission check is applied [22] [6].

 Content independent access is user-centric approach and can be described as a set of char-
acteristics that are a part of something like a user. Centric means that something has a central
position, so user centric access control will be a control where a user has the greatest im-
portance. Being a role-centric approach, RBAC is not very good at controlling access to the
objects whose authorization is defined by the content. The good example of content inde-
pendent access is health care application, where the doctor can only access the data of his
patients who were treated in last week. To create this kind of policy administrator will need
patient record contents, specifically the date of treatment to the current doctor [22] [6].

Sometimes it is crucial to ensure access control without registering or user provisioning
processes. This type of access called user prior identification access. The example of user
prior identification access is a hotel where users are offered with free internet. RBAC is
identity-based access, meaning that it cannot provide access control without identifying the
user. Next requirement for AC is multi-factored access control. Multi-factored access is
more accurate and reliable then single factored access. Unfortunately, traditional access con-
trols only support single factored access control. RBAC decision factor relies only on user
roles [22] [6].

Inflexible access control means that AC should be able to handle dynamically changed cir-
cumstances. For a big company with a good management, proper hierarchy structure and
user roles along with permissions, RBAC is very useful model. However, for small compa-
nies where people work in agile process, rotating job responsibilities dynamically RBAC is
not the best model to choose, because it wasn't created to handle flexible, dynamically
changes environments. For example, let’s extend hotel scenario where clients are provided
with free Wi-Fi. On the other hand, the employees of the restaurant have a role and corre-
sponding permission to do things. To provide AC for this scenario, the administration
should deploy to kinds of access control model, one for hotel employers and another for
clients. This approach is not ideal, modern access control should be flexible enough to con-
trol identity-based access and identity-less access [22] [6].

20

3.2 Comparison	and	result	presentation	
To solve the limitations of RBAC, researchers have tried to extend existing RBAC model.
In this section, we will see how they overcome the limitations of RBAC and how ABAC
model handles the comparison criteria, defined in above section.

All the proposed solutions for extending RBAC model is aiming to make possible apply
RBAC in the environment where role identification is not enough data to provide authori-
zation. Researches try to extend RBAC with different factors like time, environment, loca-
tion etc. Figure 4 presents main types of Extended RBAC models like context-based, loca-
tion-based, location and time based, temporal and environment based, and miscellaneous.
These types will be presented in Table 1, where we will evaluate them against the compar-
ison criteria [22].

Figure 4 Main types of Extended RBAC model (Adapted from [22])

These types try to make RBAC context-sensitive and dynamic model, but if we look at the
big picture we will see there are several issues that extended RBAC models have. First, they
are unable to address other requirements like on-going access, flexibility, anonymous ac-
cess, multi-factor access and other access controls described in above section. Moreover, if
we look at Table 1, we will see that extended RBAC models are using different RBAC
versions. This may lead to some difficulties if we want to combine them into a single solu-
tion because RBAC concept was changing within each version. The difference between
extended models doesn't end here, they also support different level of RBAC family. Most
of them support flat RBAC, while others can also support hierarchical and constrained
RBAC. For example, while proposed solutions in [9] and [10] support flat and Hierarchical
RBAC, [11] solution only supports flat RBAC. Moreover, all the proposed solutions are
related to some specific target domain. For example, [21] solution proposes Team-based
access control (TMAC), which is the solution only for collaborative environments, may not
work in other domain, like location based services.

21

Table 1 A comparison of Role-centric access model and Attribute-centric access model
(adapted from [22])

Proposed solution C1 C2 C3 C4 C5 C6 C7 C8 Targeted
Domain

Version

Role-centric Access model
Context Aware models

Haibo et al., [9] ü û ü û û û 2 û Web services RBAC
1996

Covington et al.,
[10]

ü û ü û û û 3 û Pervasive
Computing

GRBAC5
2001

Zhang et al., [11] ü û ü û û û 2 û Pervasive Grid RBAC
1996

Location-Based RBAC Models

Hansen et al.,
[[12]

ü û ü û û û 2 û Mobile Sys-
tems

RBAC
1998

Damiani et al.,
[13]

ü û ü û û û 2 û Location-based
services

RBAC
2000

Location and Time-Based RBAC Models

Toahchoodee et
al., [14]

ü û ü û û û 3 û Dengue sup-
port system

STRBAC
6 2007

Ray et al., [15] ü û ü û û û 3 û Pervasive
Computing

STRBAC
2007

Kim et al., [[16] ü û ü û û û 3 û Ubiquitous
Applications

RBAC
1996

Temporal and Environment-Based RBAC Models

Bertino et al.,
[17]

ü û ü û û û 2 û Database Man-
agement Sys-
tems (DBMS)

RBAC
1996,
RBAC
1998

Shafiq et al.,
[18]

ü û ü û û û 2 û Collaborative
Environments

GTRBAC
72005

Miscellaneous Extended RBAC Models

Jin et al., [19] ü ü ü û û û 2 û Health Care
Applications

RBAC
2001

Wang et al., [20] ü ü û û û û 3 û Cooperative
Hypermedia

Environments

RBAC
1997

Thomas et al.,
[21]

û ü ü û û û 2 û Collaborative
Environments

RBAC
1995

Attribute-Centric Access Control

ABAC model ü ü ü û ü ü n ü - -

5 Generalized role-based access control.
6 A spatio-temporal role-based access control model
7 A generalized temporal role-based access control model

22

Table 1 represents a comparison between the abilities of extended RBAC models and attrib-
utes based models. Each row represents the access model, proposed to cover the limitations
of RBAC model. The header of the table consists of four parts: proposed solution, criteria,
targeted domain and version. Proposed solution is the actual access model. Criteria is the
requirements which we defined in section 3.1. We marked each criterion with Ci symbol, so
C1 represents static access, C2- fine-grained access, C3- context insensitive access, C4 -
content independent access, C5 - on-going access, C6 - user prior identification access, C7
- multi-factored access and C8 - inflexible access. The ü symbol represents that the require-
ment is fully covered by the proposed access model and û symbol means that requirement
is not supported in the proposed access model. For measuring multi-factored access control,
we use numbers, where 1 means single factored if access model supports only user role
factor. 2 means bi factored if access model supports role factor and more. The integers may
go up to any number of factors. Targeted domain represents the environment for which the
access model was proposed, in other words, it means that access model satisfies criteria only
in the specific domain, like health care system. Under version column there is information
about with version of RBAC was used to develop proposed solution. For instance, let’s take
[20] from the Miscellaneous extended RBAC model type we will see that it supports static
access control, fine-grained access control and access decisions are based on three factors.
The model was developed for Cooperative Hypermedia Environments and is based on
RBAC 1997 version.

From table 1 it is visible that attribute-centric models are more effectively handling the
modern access model requirements then extended versions of RBAC. Sure a few extended
models can handle some of the requirements, but no one can perform better than ABAC. As
we already know that attribute-centric models are better than role-centric models, let’s ex-
amine in more detail how ABAC is dealing with modern requirements of AC. Attribute-
based access model can be easily deployed in dynamic and context sensitive environment,
because in ABAC relationship between object and subject is not predefined and context
information such as location, time, name and so on can be considered as attributes that de-
scribe subject or object. And if context is irrelevant for either user or resource then it can be
considered as environment attributes, something like domain name [22].

The rising popularity of XML and JSON formats for using to exchange data created the
need for content based access control. Modern access controls should have a possibility to
make the decision based on the content of XML or JSON. Fortunately, ABAC model can
be used to fulfil this requirement, because it supports XACML policy language with is based
on XML and of course it supports XPath [22] [6].

Using attributes ABAC model can support identity-based and anonymous access control.
Let's take a scenario where we want to apply identity-based access control. In this case for
making access decision, we may need individual or unified identification of the user as an
attribute, something like a unique Id of the user or distinct name of the user and so on. On
the other hand, to provide anonymous access control, we don’t need any user provisioning
process, we can use environment attributes for this purpose. Environment variables were
developed to handle situations where access decision is not based on user specific infor-
mation. For example, we can provide clients with free internet if their request will come
from specific location and for this we don't need any specific information (ex: role) about
the client [22] [6].

23

As we see from table 1, all the extended versions of RBAC merely provide support for
decision factors which is maximum three which should be predefined. Thus, in ABAC as
its attributes are categorized in Object, Subject and Environment can provide a large range
of contextual information with the ability to modify any decision factor without changing
the whole access control model. So ABAC is considered as an "n" time decision factor ac-
cess control [22] [6].

The concept of attributes makes ABAC inherently flexible access control. As we already
discussed ABAC can also support identity-based and identity-less access controls. ABAC
has the ability to apply not only RBAC but also DAC and MAC access controls. So how
does ABAC can be policy neutral? To answer this question, we should focus more on the
essence of traditional access models, how they are achieving desired access control. For
instance, the basic aspects of RBAC Policies are to apply the use of role in the system. So,
without digging into many details, we can say that ABAC can apply RBAC model by con-
sidering user role and only must have the attribute in the model. Similarly, ABAC can cover
MAC and DAC models by allowing or restricting data flow using attributes [22].

3.3 Summary	
In this chapter, we did a comprehensive analysis of two different models, RBAC and ABAC.
We defined the list of security requirements that modern access models should satisfy. After
that, we broke down requirements and examined how each model can secure them. In the
end, we took several variations of RBAC and analysed compared them against ABAC using
the requirement list. In the next chapter, we concentrate on defining prototype parts, creating
use cases and requirements. Also, will be illustrated the structure of the prototype and user
manual.

24

4 Prototype	
The purpose of this chapter is to present a description, implementation and user manual of
the prototype. Specifically, in section 4.1, we will focus on defining application scenario,
user characteristics and requirements. The goal is to provide an overview of the whole sys-
tem and explain its scope and functionality. Next, we will outline all the functionality of the
application in use cases, also define the system and software expectations, in other words,
what needs to be true for the requirement to be executed. After that, in section 4.2, we will
present the implementation of prototype. First, we will describe the implementation of sce-
nario and RBAC via Spring Security Framework. Following that, we will describe the im-
plementation of ABAC and at last, we will illustrate how each model is applied to the sce-
nario. In the end, in section 4.3, we will provide step-by-step guidance of prototype usage.

4.1 Requirements	specification	

4.1.1 Product	perspective		
The product is a web based prototype, whose main purpose is to give theoretical and prac-
tical knowledge to the users about security models. Using the prototype users can choose
different security models, like RBAC and ABAC, and apply them to the application and
experience how they work in real life. They will also have a chance to compare their results
for better analysis and also write quiz after the experiment to check their understanding of
how access models work. Figure 5 illustrates overall structure of this product. Apart from
the identified users (Recruiter, Admin, Super Admin), we will have anonymous users who
only can log in to the system or register as a user. In order to manage identified users, test
results, we need super administrator role. The software will be maintained in the host server,
where it will be handled by hosting application. The software is keeping data in the database,
which will be handled by database management system. ACCP is web based application so
it will be used through internet browsers.

Figure 5 Access control comparison system structure

4.1.2 Scenario	description		
Access models can be widely used in distributed environments to manage controlled access
for applications like database management systems, health care systems, resource sharing

25

systems and so on. We are considering taking the recruitment management system as our
scenario to demonstrate pros and cons of each chosen access models. Managing candidates
and positions is crucial for recruiters, where they must deal with many requests. In this kind
of application where users interact with the database, it is required to provide security re-
garding data privacy, data loss and data access.
Recruitment management system is the web application which is broadly categorized into
three entities: Companies, Jobs and Candidates. All the entities have attributes providing
information about them. Companies represent an employer, which has announced position.
Jobs are represented as announced positions and Candidates are assigned to them using po-
sition attribute. Overall the application flow goes like this, the user creates the company who
is looking for a candidate, under a company user creates jobs and assigns candidates to each
job. The entity relations are presented in Figure 6.

Figure 6 Scenario class diagram.

System has two roles: administrator and recruiter. Administrator is a super user, with un-
limited permissions on all available resources in the system. On the other hand, recruiter
role has limited permissions (the role permissions will be explained more thoroughly in
below sections). Each user holds unique username and password which is used to log into
the system to use offered functionality.

4.1.3 Scenario	functions	
1. Use case - Prototype introduction

Brief description: Authorized user reads through the introduction of the prototype.
Step-by-step description: To initiate current use case, authorized user should have Admin
or Recruiter role.

• Authorized user opens application and browses introduction page
• Authorized user reads through scenario description
• Authorized user reads about secured resources in the system
• Authorized user reads about user roles and permissions assigned to the role
• Authorized user reads about which models he/she can apply to the scenario

26

Figure 7 Introduction of the prototype use case

2. Use case - compare security models

Figure 8 Analytical comparison of security models use case.

Brief description: Authorized user opens available security models' description page.
Step-by-step description: To initiate current use case, authorized user should have Admin
or Recruiter role.

• Authorized user opens security models' description page
• Authorized user chooses button "Compare models"
• Authorized user is redirected to security models' comparison page
• Authorized user reads through the analytical comparison of ABAC and RBAC

3.	Use	case	-	Apply	access	model	to	the	scenario.	

Figure 9 Apply security access model use case.

Brief description: Authorized user applies chosen security access model to the scenario
application.

27

Step-by-step description: To initiate current use case, authorized user should have Admin
or Recruiter role.

• Authorized user clicks on “Apply Access model” dropdown menu
• Authorized user picks desired security model from list.
• Authorized user presses the button "Apply model"

4.	Use	case	-	List	companies	in	the	system	

Figure 10 List companies in the system use case.

Brief description: Authorized user gets the list of companies.
Step-by-step description: To initiate current use case, authorized user should have Admin
or Recruiter role.

• Authorized user browses company list page.
• System queries all the companies in the system.
• Companies page is opened and all found items are displayed.
• Additional functionality is shown for the authorized user via buttons "Create new

company", "Delete company", "View company detail"

5.	Use	case	-	Create	new	company	

Figure 11 Add new company in the system use case

Brief description: Authorized user creates a new company.
Step-by-step description: To initiate current use case, authorized user should have an Ad-
min role and companies page should be opened.

• Authorized user chooses button "Create new company"
• New form is opened with setting for new company like "Company name", "Ad-

dress", etc.

28

• Authorized user fills form fields.
• Authorized user presses button "Submit".
• The system saves new company in database.
• Authorized user is redirected to company list page.

6.	Use	case	-	delete	company	

Figure 12 Delete company from the system use case.

Brief description: Authorized user removes a company from list.
Step-by-step description: Before executing this use case authorized user should have an
Admin role and a company has to exist in the database.

• Authorized user selects specific company from the company’s collection.
• Authorized user presses the button "Remove company".
• Authorized user is asked for confirmation "Are you sure to delete {company

name}?"
• Authorized user confirms his/her choice.
• System checks if current company has any active job
• System removes the company from the database and updates company list page with

new results.

7.	Use	case	-	View	company	details.	

Figure 13 View company detail from company list page use case.

Brief description: Authorized user views a company detail page from the list
Step-by-step description: Before initialization of this use case, Authorized user should
have as an Admin or Recruiter role and a company should exist in the database.

• Authorized user clicks on a specific company from the collection
• Authorized user is redirected to the company details page
• Authorized user views company details, like "Company name", "address" etc.
• Authorized user browses the list of the jobs issued by this company.

29

• Additional functionality via button "Edit company" is show to the authorized user in
case he/she wants to edit company information.

8.	Use	case	-		Update	company	

Figure 14 Update specific company use case.

Brief description: Authorized user updates a company from company detail view.
Step-by-step description: Before executing this use case authorized user should have an
Admin role and a company should exist in the database.

• Authorized user selects specific company from the company’s collection.
• Authorized user is redirected to the company details page
• Authorized user press button "Update company"
• Authorized user alters the company fields.
• Authorized user clicks button "Save changes"
• System updates current company information in the database

9.	Use	case	-		List	candidates	in	the	system	

Figure 15 List all candidates in the system use case.

Brief description: Authorized user gets the list of candidates.
Step-by-step description: To initiate current use case, authorized user should have an Ad-
min or Recruiter role.

• Authorized user browses candidate list page.
• System queries all the candidates in the system.
• Candidates page is opened and items are displayed.
• Additional functionality is shown for authorized user via buttons "Create new Can-

didate", "Delete candidate", "View candidate detail"

30

10.	Use	case	-	create	new	candidate	

Figure 16 Add new candidate in the system use case.

Brief description: Authorized user creates a new company.
Step-by-step description: To initiate current use case, authorized user should have an Ad-
min or Recruiter role and jobs page should be opened.

• Authorized user chooses button "Create new candidate"
• New form is opened with setting for new candidate like "Name", "Address", etc.
• Authorized user fills form fields.
• Authorized user assigns job to the candidate
• Authorized user presses button "Submit".
• The system saves new candidate in database.
• Authorized user is redirected to candidates list page.

11.	Use	case	-	delete	candidate	

Figure 17 Delete candidate from the system use case

Brief description: Authorized user removes a candidate from list.
Step-by-step description: Before executing this use case authorized user have an Admin
or Recruiter role and a candidate has to exist in the database.

• Authorized user selects specific candidate from the candidate's collection.
• Authorized user presses the button "Remove candidate".
• Authorized user is asked for confirmation "Are you sure to delete {candidate

name}?"
• Authorized user confirms his/her choice.
• System removes the candidate from the database and updates candidate list page

with new results.

31

12.	User	case	-	view	candidate	details.		

Figure 18 View candidate detail from candidate list page use case.

Brief description: Authorized user views a candidate detail page from the collection
Step-by-step description: Before initialization of this use case, authorized user should have
an Admin or Recruiter role and a candidate should exist in the database.

• Authorized user clicks on a specific candidate from the collection
• Authorized user is redirected to the candidate details page
• Authorized user views candidate details, like "Name", "address" etc.
• Authorized user browses the list of the jobs assigned to the candidate.
• Additional functionality via button "Edit candidate" is show to the person in case

he/she wants to edit candidate information.

13.	Use	case	-	Update	candidate		

Figure 19 Update specific candidate use case.

Brief description: Authorized user updates a candidate from candidate detail view.
Step-by-step description: Before executing this use case authorized user should have an
Admin or Recruiter role and a candidate should exist in the database.

• Authorized user selects specific candidate from the candidate’s collection.
• Authorized user is redirected to the candidate details page
• Authorized user presses button "Update candidate"
• Authorized user alters the candidate fields.
• Authorized user clicks button "Save changes"
• System updates current candidate information in the database

32

14.	Use	case	-	List	Jobs	in	the	system	

Figure 20 List jobs in the system use case.

Brief description: Authorized user gets the list of jobs.
Step-by-step description: To initiate current use case, Authorized user should be signed in
the application as Admin or Recruiter role.

• Authorized user browses candidate list page.
• System queries all the jobs in the system.
• Jobs page is opened and items are displayed.
• Additional functionality is shown for the authorized user via buttons "Create new

job", "Delete job", "View job details"

15.	Use	case	-	Delete	job		

Figure 21 Delete job from the system use case.

Brief description: Authorized user removes a job from list.
Step-by-step description: Before executing this use case authorized user should have an
Admin role and a job should exist in the database.

• Authorized user selects specific job from the job's collection.
• Authorized user press the button "Remove job".
• Authorized user is asked for confirmation "Are you sure to delete {job name}?"
• Authorized user confirms his/her choice.
• System removes the job from the database and refreshes job list page with updated

results.

33

16.	Use	case	-	View	Job	details	

Figure 22 View job detail from job list page use case.

Brief description: Authorized user views a job detail page from the collection
Step-by-step description: Before initialization of this use case, authorized user should have
an Admin or Recruiter role and a job should exist in the database.

• Authorized user clicks on a specific job from the collection
• Authorized user is redirected to the job details page
• Authorized user views job details, like "Title", etc.
• Authorized user browses the list of the candidates assigned to the current job.
• Authorized user browses issuer company
• Additional functionality via button "Edit job status" is shown to authorized user in

case he/she wants to change job status.

17.	Use	case	-	Update	job	status	

Figure 23 Change job status use case.

Brief description: Authorized user updates a job status from job detail view.
Step-by-step description: Before executing this use case Authorized user should have an
Admin or Recruiter role and a job should exist in the database.

• Authorized user selects specific job from the job's collection.
• Authorized user is redirected to the job details page
• Authorized user presses button "Update job status"
• Authorized user alters job status field.
• Authorized user clicks button "Save changes"
• System updates current job's status in the database

34

18.	Use	case	-	Create	Job	

Figure 24 Add new job in the system use case.

Brief description: Authorized user creates a new job.
Step-by-step description: To initiate current use case, authorized user should have an Ad-
min or Recruiter role and job page should be opened.

• Authorized user chooses button "Create new job"
• New form is opened with setting for new candidate like "Title", "Description", etc.
• Authorized user fills form fields.
• Authorized user assigns job to the company
• Authorized user presses button "Submit".
• The system saves new job in database.
• Authorized user is redirected to jobs list page.

19.	Use	case	-	change	authority	role	

Figure 25 Change authority role use case

Brief description: Authorized user changes the role of logged in user.
Step-by-step description: To initiate current use case, Authorized user should have an Ad-
min or Recruiter role.

• Authorized user presses the link "Update user "
• Authorized user is redirected to the user details page.
• Authorized user press button "Update user role"
• Authorized user alters user role field.
• Authorized user clicks button "Save changes"
• System updates current user's authority in the database

35

20.	Use	case	–	Authorization	

Figure 26 Authorize into the system use case

Brief description: Anonymous user authorizes into the ACCP system.
Step-by-step description:

• Anonymous user opens application
• Anonymous user enters username and password.
• Anonymous user clicks on “Log in”
• Anonymous user logs into the system.
• Anonymous user sees error message if username or password is wrong

21.	Use	case	–	Registration	

Figure 27 Registration of new user use case.

Brief description: Anonymous user registers new user into the ACCP system.
Step-by-step description:

• Anonymous user opens application
• Anonymous user clicks on registration tab
• Anonymous user enters username, first name, last name and password
• Anonymous user clicks on the button “Register now”
• Anonymous user is redirected to Log in form.

22.	Use	case	–	Quiz	
Brief description: Authorized user takes a quiz.
Step-by-step description: To initiate current use case, Authorized user should have an
Admin or Recruiter role

• Authorized user opens quiz page
• Authorized user clicks on the button “Start quiz” to start the quiz
• Authorized user answers to the questions
• Authorized user submits the quiz
• Authorized user sees the score.

36

Figure 28 Take a quiz use case

23.	Use	case	–	Quiz	result	management	
Brief description: Authorized user manages quiz results.
Step-by-step description: To initiate current use case, Authorized user should have an Su-
per Admin role.

• Authorized user loads the results of the users who have taken quiz.
• Authorized user filters user list using search
• Authorized user resets result list.

Figure 29 Quiz result management use case.

4.1.4 Expectations	
Table 2 defines system expectations and Table 3 defines software expectations for the pro-
totype

Table 2 System expectations

ID Statement Description Source
SE_1 User enters the webpage For using analyse prototype user mast

open web application using browser.

SE_2 Job shouldn’t contain
any assigned candidates
before removal

Assumption that job cannot be removed
if it contains active candidates. other-
wise the link between candidate and as-
signed job will be disappeared.

#15 Use
case- Delete
job

SE_3 Only administrator can
remove Job from system

Assumption that system should check
user authority before deleting Job re-
source.

#15 Use
case- Delete
job

SE_4 Company mustn't con-
tain any active jobs

Assumption that company cannot be re-
moved if it contains active jobs. other-
wise the link between company and an-
nounced job will be disappeared.

#6 Use
case-Delete
Company

37

SE_5 Only administrator can
remove Company from
system

Assumption that system should check
user authority before deleting Company
resource.

#6 Use
case-Delete
Company

SE_6 Only administrator can
create Company from
system

Assumption that system should check
user authority before creating Job re-
source.

#5 Use
case- Create
Company

SE_7 Only administrator can
update Company data

Assumption that Recruiter users can
only issue a new job or finish current
one. Administrator users can do all.

#8 Use case
- update
company

Table 3 Software expectations.

ID Statement Description Source
SWE_1 User should be regis-

tered
As ACCP have quiz function-
ality we need to register each
user to store their perfor-
mance.

SWE_2 User must be logged in For all actions in the prototype
the user must be logged in.

#3 Use case - Apply
access model to the
scenario

4.1.5 System	requirements	
Table 4 System requirements for prototype.

ID Statement Description
SR_1 Server internet connec-

tion must be active.
As the prototype is hosted through remote server, user
should have an access over internet to use the prototype.

SR_2 Prototype should be
held in cloud based
service.

for security and easy accessibility prototype should be
hosted by cloud services such as Heroku

4.1.6 Authentication	
Table 5 Authentication function requirements for prototype.

ID Statement Description Traceability

AR_1 Identified "Recruiter"
type users can access
the system, using login
page.

All visitors can authorize into the system
after choosing desired security model.
Users who are identified as "Recruiter"
should have access to issues jobs from
the company and candidates assigned to
them.

SWE_1

AR_2 Identified "Adminis-
trator" type users can
access the system, us-
ing login page.

All visitors can authorize into the system
after choosing desired security model.
Users who are identified as " Adminis-
trator " should have an unlimited access
to issued jobs from the company and
candidates assigned to them. No other
user type can delete resources from sys-
tem.

SWE_1

38

AR_3 Users can log out. User can log out from system to end ses-
sion.

AR_4 Anonymous users can
register

All visitors can register new user if they
don’t’ have one.

4.1.7 Scenario	requirements	
Table 6 Scenario functional requirements.

ID Statement Description Source Trace-
ability

SFR_1 Application Should
enable to create new
company

• User can add new com-
pany in the system.

• When adding new com-
pany user should enter fol-
lowing required fields:
name, city, country, email,
phone, address.

#5 Use case-
Create Com-
pany

SE_6

SFR_2 Application should
enable to remove
company from list.

• User can delete company
if all conditions are satis-
fied

#6 Use case-
Delete Com-
pany

SE_5,
SE_4

SFR_3 Application should
enable access to
companies list

• Users can see companies
list in the system.

• In the list view each com-
pany item has following
fields: company name and
delete button.

• Each company item
should be linked to its de-
tails page.

#4 Use case -
List available
companies in
the system

SFR_4 Application should
enable access to
company details.

• Users can see the details of
the company.

• Administrator and re-
cruiter users should see
which jobs where an-
nounced by current com-
pany.

#7 Use case -
View com-
pany details

SFR_5 Application should
enable updating
company details.

• User can change company
information

• user can issue new job or
finish current one.

#8 Use case -
Update com-
pany

SE_7

SFR_6 Application Should
enable to create new
candidate

• User can add new candi-
date in the system.

#10 Use case
- create new
candidate

39

• when adding new candi-
date should enter follow-
ing fields: first name, last
name, country, city, ad-
dress, email.

• User should assign job po-
sition to the current candi-
date.

SFR_7 Application should
enable to remove
candidate from list.

• User can delete candidate
from the system.

#11 Use case
- delete can-
didate

SER_8 Application should
enable access to can-
didates list

• Administrator and re-
cruiter users can see avail-
able candidates list in the
system.

• In the list view each candi-
date should have follow-
ing fields: candidate first
name and last name, delete
button.

• Each candidate should be
linked to its details view.

#9 Use case-
List all avail-
able candi-
dates in the
system.

SER_9 Application should
enable access to can-
didate details.

• User can view the details
of candidate.

• User should see which
jobs are assigned to the
candidate

#12 use case -
view candi-
date details

SER_10 Application should
enable updating can-
didate details.

• User can update candidate
information.

• User should have possibil-
ity to change candidate
status.

#13 Use case
- update can-
didate

SER_11 Application Should
enable to create new
job

• user can add new job in the
system.

• when adding new candi-
date should enter follow-
ing fields: title and de-
scription.

• User should assign issuer
company to the current
job.

#18 use case -
create job

SER_12 Application should
enable to remove job
from list.

• User can delete job from
the system.

#15 Use case
- delete job

SE_3,
SE_2

40

SER_13 Application should
enable access to jobs
list

• User can see jobs list in the
system.

• In the list view each candi-
date should have follow-
ing fields: job title, delete
button.

• Each candidate should be
linked to its details view.

#14 Use case
- List availa-
ble Jobs in
the system

SER_14 Application should
enable updating job
details.

• User can update job infor-
mation.

• User should have possibil-
ity to change job status.

#17 Use case
- update job
status

4.1.8 Prototype	requirements		
Table 7 Prototype functional requirements.

ID Statement Description Source
ACR_1 Prototype intro-

duction page
should be accessi-
ble

Introduction page is meant to provide
information about:

• what types of security model visitors
can compare using this prototype,

• what type of user roles have the sys-
tem,

• what kind of permissions have each
type of role in the system,

• what kind of secured resources are in
the system,

• description of the system, what is
does this system do, what is the pur-
pose of this system and how to use it.

#1 Use case -
Platform intro-
duction

ACR_2 user can apply ac-
cess models to the
system.

• Users can choose desired security
model and apply to the system.

#3 Use case -
Apply access
model to the
scenario.

ACR_3 Page visitor can
select access mod-
els to compare.

• Anonymous and authorized users can
choose access models they want and
see the analytical comparison of the
chosen access models via compari-
son page.

#3 Use case -
compare secu-
rity models

ACR_3 User can change
own authority to
"Administrator"

• All actions for candidate resource
should be enabled

• Delete operation should be enabled
for Job resource, which means that
delete button should be enabled.

#19 Use case -
change author-
ity role

41

ACR_4 User can change
own authority to
"Recruiter"

• All actions for candidate resource
should be enabled

• Delete operation should be disabled
for Job resource, which means that
delete button should be disabled.

#19 Use case -
change author-
ity role

ACR_5 Prototype should
log every step of
security actions in
the browser

• Prototype should log step-by-step ac-
tions about how it secures resource
and authorizes user.

ACR_6 Authorized user
can take a quiz for
measuring his/her
knowledge.

• Prototype should have a page where
users can take a quiz and see the score
of their performance.

22. Use case -
Quiz

ACR_7 Super user should
have a separate
page where he will
see the results of
quiz.

• Prototype should have a admin panel
for managing quiz scores.

• User should be able to see the name
and score

• User should be able to reset scores.

23. Use case –
Quiz result
management

4.2 Implementation	

4.2.1 Scenario	and	Role-Based	Access	Control	(RBAC)	implementation	
For implementing scenario, we have used spring MVC framework. Which means that our
scenario application consists of three major layers: Web layer, Service layer and Repository
access layer. The overall layout of our scenario is demonstrated in Figure 29. Web layer is
the top layer of our web application. Its main responsibility is to process user's request and
return a correct response.

Since web layer is the entry point of our application, it should provide exception handling
thrown by other layers and take care of unauthorized requests. The service layer is located
under Web layer. It plays the role of the transactional barrier and contains application and
infrastructure services. It is responsible for authorization and communication with external
resources (in our case it may be remote policy repository). Repository layer which provides
necessary methods to provide action on the Domain layer. Domain layer is the lowest layer
of the application, contains the list of the entities which is operated by other layers.

42

Figure 30 Prototype layout.

Spring MVC framework provides us with annotation to define each layer in the system.
Web layer is annotated as @RestController, Service layer is annotated as @Service, Repos-
itory layer is annotated as @Repository and Domain layer is annotated as @Entity annota-
tion.

Since we have explained each layer of our application, now it is time to implement role
based access model and apply it to our controllers. Figure 30 presents the configuration class
where security access settings are defined. With this configuration, we are saying that all
http requests received by the server should be authorized, specifically it provides two types
of configuration. First configuration controls that only admin users can send http endpoint
that matches with "/admin/**" pattern to a server. Second configuration permits anonymous
users to log in page and so on. Moreover, it checks that any other requests to the server
should be from authorized users and they should have either "Admin" or "Recruiter" role.

43

Figure 31 Spring security configuration file

Now that we defined security configuration file for access models let's illustrate how RBAC
is applied to our application controllers, specifically company resource controller, presented
in Figure 31.

We marked CompanyControllerRBAC with @RestController (line 18) annotation, which
means that Spring framework will perceive this class as a controller. Next, we injected com-
pany service class (line 24), which provides our controller with methods for interfering with
company repository. Each method in this controller represents rest endpoint, which means
that when server receives a http request these methods will be executed and response will
be returned to the user. From the scenario requirements section (4.1.5) we know that only
Admin users can create and delete company resource, so these rest endpoints are marked
with @Secured annotation (line 29 and 49), which demonstrates the method level security
feature of Spring. It is applied for role ‘ROLE_ADMIN’. These methods will be only mapped
to the request matching "/admin/**" pattern.

44

Figure 32 Company resource controller with RBAC access model.

RBAC	policies	
For sake of illustrating secureUML with different levels of RBAC model, we will use an
example of web application of Recruitment management system described in 4.1.2 section
(Figure 6), which has different access constraints, roles, and activities. With our example,
we will define the model and visualize the implementation of the project using RBAC mech-
anism. To demonstrate different types of RBAC requirements, the conditions for access
control will escalate from simple to complex model. So first let's identify possible Action-
Types over resources in the application.

Figure 33 Security actions types in HR management system

45

As shown in Figure 32 we have four possible actions on each abstract resource: CREATE,
READ, UPDATE, and DELETE. Now let's define the hierarchy of application's users. We
will have two roles, administrator, and recruiter. Administrators will oversee managing re-
cruiters, candidates, companies and jobs. On the other hand, recruiters will oversee manag-
ing their own data, candidates, companies and jobs.

Flat	RBAC	
In Figure 33 we present relations and access dependencies between roles and resources in
flat RBAC. First, we should define multiple users of the system: Saba, Natia, and Giorgi.
Then we should define roles, we will have two roles: Administrator and Recruiter. Both
roles represent the role inside the organization with required authorization. This means that
Saba, Natia, and Giorgi will be assigned to their roles after successful authorization proce-
dure. As resources, we have candidates, companies, recruiters, and jobs with their attributes
and operations. Recruiter and Administrator have similar access (CRUD operations) on can-
didates and jobs, but for recruiter resource recruiter role has only read and update access
only for own account data. And for company resource only create and update access. On the
other hand, the administrator has full access to company and recruiter resources.

Hierarchical	RBAC	
Hierarchical RBAC includes all principals of flat RBAC and gives us advantages of using
role hierarchy. AS it is illustrated in Figure 34 Administrator role inherits recruiter role.
Thus, the administrator role doesn't require having a separate definition of CRUD actions
for candidates and jobs. And read, create, update actions for companies. In our case Re-
cruiter resource is an exception, even though both roles have update permission, adminis-
trator role still doesn't inherit it from recruiter role, because recruiter can only update own
data.

Constrained	RBAC	
The constrained RBAC not only extends the principals of hierarchical RBAC but introduces
the concept of duty separation. From Figure 35 we can see that both roles have precondition
check to manipulate recruiter resource. Recruiter role needs recruiter ownership constraint
check, which checks if the user is the owner of the account before updating recruiter re-
source and administrator role needs Recruiter status constraint check, which checks if se-
lected recruiter is not active before deleting the resource. Other constraints are on company
resource. To delete a resource, administrator role should fulfil Company status constraint
check, which checks if company contains any active jobs. Finally, there is one more con-
straint on job resource for both roles. The functionality requirement behind Job status con-
stant is that recruiter or cannot delete the resource if job contains any number candidates.

46

Figure 34 An example of SecureUML model of flat RBAC

47

Figure 35 An example of SecureUML model of hierarchical RBAC

48

Figure 36 An example of SecureUML for constrained RBAC.

4.2.2 Attribute-Based	Access	Control(ABAC)	implementation	

Spring	Expression	Language(SpEL)	and	Spring	Security	
For implementing ABAC we used spring security framework and its expression language
SpEL. Spring security framework is very useful when developers want to inject their access
control logic in centralized component and enforce it in various places of the application,
like before or after REST API call and methods which provide all necessary data for access
control logic to work like parameters or objects. On the other hand, SpEL is an expression
language which is used by spring framework. It supports querying and manipulating an ob-
ject on runtime. It is like Java EL8, which is used in JSP9 and JSF10.

Key	Components	
Our approach is based on the following ideas: we have defined a central repository, a JSON
file, which contains the access rules. Each access rule uses Boolean SpEL expression to

8 The EL allows page authors to use simple expressions to dynamically access data from JavaBeans compo-
nents.
9 A technology that helps software developers create dynamically generated web pages based on HTML, XML,
or other document types.
10 Java specification for building component-based user interfaces for web applications and was formalized as
a standard through the Java Community Process being part of the Java Platform, Enterprise Edition.

49

defile rules (e.g. subject.id == object.owner.id). Created centralised component which loads
the rules from repository, wraps the access context and evaluates rule expressions to grand
the access. For enforcing access rules, we have used Spring annotations like @PostAuthor-
ize and @PreAuthorize. These annotations are used to apply method security and support
SpEL expression evaluation. @PreAuthorize is suitable for applying security measures be-
fore entering method and @PostAuthorize check authorization after executing method.
Now let’s define the key components of the ABAC implementation. The entry point for
ABAC logic is PermissionEvaluator component. This component delegates all decisions
made by spring security annotations like @PostAuthorize and @PreAuthorize. Figure 37
represents a custom implementation of PermissionEvaluator. Main functionality of this
code is to the access decision to PolicyEnforcement component.

Figure 37 Implementation of PermissionEvaluator

Next key component is ContextAwarePolicyEnforcement, which is related to PolicyEvalu-
ator component, with one major difference, it can be called at any point in the code and it
will be filled with authenticated user information. Main use of this component is when the
data is needed for making decision when @PostAuthorize and @PreAuthorize is not avail-
able. Figure 38 presents the implementation of ContextAwarePolicyEnforcement compo-
nent. At line 12 we are getting authenticated user object, which means that whenever you
use ContextAwarePolicyEnforcement component you will always have user data at hand.

Figure 38 Implementation of ContextAwarePolicyEnforcement..

Next key component is PolicyEnforcement. This is the place where access decision compu-
tation is taking place. The enforcement is done by loading all policis using PolicyDefinition

50

component, then filtering applicable policies where target expression is true and finally eval-
uating existing policies' conditions. If any of them evaluates to true access is granted.

Figure 39 Implementation of PolicyEnforcement component.

Figure 39 presents implementation of PolicyEnforcement component. In enforce method we
get all policy rules (line 26), wrap the security context (line 27), filter rules by checking
target of the rule (line 28) and finally check if context satisfy any of the filtered rules (line
29). PolicyDefinition is an interface representing the repository of the policy. It has method
getPolicyRules, which retrieves all policies from the repository. The purpose behind imple-
menting PolicyDefinition interface was to hide the type of the repository from user, in our
case it is JSON file. Policy class is the element which needs to be evaluated. It contains two
main properties target and condition which both represent SpEL expression. If target is true
then rule is applicable and if condition is true then access is granted. Both properties have
access to the ABAC elements subject, object, resource, action and environment. AccessCon-
text is a wrapper class for ABAC elements. When access decision needs to be taken Policy-
Enforcement creates the instance of this class and fills it with corresponding data.

Policy	repository	
For storing policies, we have used in-memory and static JSON file. Below is the list of
access rules represented in JSON format. Each rule consists of name, description, target and
condition. The first rule says that, unless the user is enabled and the user has "ADMIN"

51

authority he can do everything in the system. The second policy defines the access of re-
cruiters for company resource. It says that unless the user is enabled and the user only has
"RECRUITER" authority user will have access to two actions: get the list of companies and
get the detail of single company. The third policy defines permissions of the recruiter for
job resource. It says that unless the user is enabled and if the user only has "RECRUITER"
authority user will have access to four actions: get the list of jobs and get the detail of single
job, update the details of the job and create a new job. Last policy defines permissions of
the recruiter for candidate resource. It says that unless the user is enabled and if the user
only has "RECRUITER" authority user will have access to all available actions for candi-
date resource.

Table 8 Policy repository

1. [
2. {
3. "name": "Admin",
4. "description": "Admin can do all.",
5. "target": "subject.authorities.contains(SimpleGrantedAuthor-

ity('ROLE_ADMIN'))",
6. "condition": "subject.enabled == true"
7. },
8.
9. {
10. "name": "Recruiter company permission",
11. "description": "Recruiter can only list availabke compa-

nies in the system or view single company detail page",
12. "target": "subject.authorities.contains(SimpleGrantedAuthor-

ity('ROLE_RECRUITER')) && {'COMPANIES_GET','COMPANY_GET'}.con-
tains(action)",

13. "condition": "subject.enabled == true"
14. }, {
15. "name": "Recruiter job permission",
16. "description": "Recruiter can only get jobs or job, cre-

ate job, assign candidates and update job status",
17. "target": "subject.authorities.contains(SimpleGrantedAuthor-

ity('ROLE_RECRUITER')) && {'JOBS_GET','JOB_GET', 'JOB_UP-
DATE', JOB_CREATE}.contains(action)",

18. "condition": "subject.enabled == true"
19. },
20. {
21. "name": "Recruiter candidate permission",
22. "description": "Recruiter can do all operations against candi-

date resource",
23. "target": "subject.authorities.contains(SimpleGrantedAuthor-

ity('ROLE_RECRUITER')) && {'CANDIDATES_GET','CANDIDATE_GET', 'CAN-
DIDATE_UPDATE', CANDIDATE_CREATE, CANDIDATE_DELETE}.contains(ac-
tion)",

24. "condition": "subject.enabled == true"
25. }
26.]

52

4.3 User	manual	

Login/Logout		
Before comparing access models, the user needs to login to his/her account or create new
one (figure 40)
Step one: Enter the username, password and click on “LOG IN” button (1) or click on Reg-
ister (2) for a new user. For registration enter username, first name, last name, password and
click on “REGISTER NOW” button (3)
Step two: Verify that your username is visible in the top bar (figure 41). Click on the photo
on the right side of the top bar (1), drop down menu will appear where user will see his/her
username (2) and “Log out” button (3) to end the session.

Figure 40 Log in and registration forms.

Figure 41 Dropdown menu for user name and logout.

Sidebar	menu	
Navigation in the system is done from sidebar menu (figure 42). User can toggle menu using
(1). From this menu user can browse several pages like introduction page (2), Comparison
Results (3), Quiz (4), and Scenario (5).

Introduction	page		
Introduction (figure 43) page is a first page user will see after logging into the system. In
this page, he/she can read small summery of the prototype (6), also description of the sce-
nario (7) and description of supported access models (8).

53

Figure 42 Sidebar menu and introduction page

Comparison	results	
The following steps describe how to make comparison analysis based on results (figure 43).
Step one: For making comparison, user clicks on Comparison results (1) menu item from
sidebar menu.
Step two: A comparison page is opened, containing two tabs: Analytical comparison (2)
and Comparison result analyse (3). Analytical comparison tab is opened by default. User
can read theoretical comparison analysis of RBAC and ABAC.
Step three: User clicks on Comparison result analyse (3).

Figure 43 Access control comparison result page.

Change	user	role	
By default, when user is created in the system it has Recruiter role so, changing user role
and get new permissions is very important feature of the prototype. Following steps explain
how to change roles in the system (figure 44).
Step 1: click on the photo on the right side of the top bar (1)
Step 2: A dropdown menu will appear where user will see “change role to Admin” (2) and
“change role to Recruiter” (3).
Step 3: clicking on each item will change roles accordingly.

54

Figure 44 Change user role dropdown menu.

Apply	access	model	
At any point of prototype execution user can apply model. Which means that chosen model
will process request in the server. The specific steps are presented below (figure 45).
Step 1: Click on the “Apply access model” button in the top bar (1).
Step 2: A dropdown menu will appear where user will see “Apply RBAC” (2) and “Apply
ABAC” (3) menu items.
Step 3: Click on each item will apply models accordingly.

Figure 45 Apply access model dropdown menu

Scenario-companies	
Clicking on the “Companies” menu item from sidebar menu will get company list (1). Each
company item (2) has a link to its details, “Delete” button (3) and “Create new” button (4).
Click on the “Delete” button will remove company from the list. Clicking on “Create new”
button will open new company creation form (5). For creating new company user will enter
name, address, city, country, email address, phone and press “Submit” button (6). Clicking
on the company item will open company details page. Where user will see company details
(7), update button (8) and assigned job list (9). Click on the update button will make com-
pany detail fields editable. (Figure 46).

55

Figure 46 Company detail view, list view and create view

Scenario-Jobs	
Clicking on the “Jobs” menu item from sidebar menu will get job list (1). Each job item (2)
has a link to its own details, “Delete” (3) and “Create new” button (4). Click on the “Delete”

56

button will remove job from the list. Clicking on “Create new” button will open new job
creation form (5). For creating new job user will enter title, issuer company, which he/she
will choose from existing companies via dropdown list, description and press “Submit” but-
ton (6). Clicking on the job item will open job details page. Where user will see job details
(7), update button (8) assigned candidate list (9) and issuer company (10). Click on the up-
date button will make company detail fields editable. (Figure 47).

Figure 47 Job detail view; list view; create view;

Scenario-Candidates	
Clicking on the “Candidates” menu item from sidebar menu will get candidate list (1). Each
candidate item (2) has a link to its own details, “Delete” (3) and “Create new” button (4).
Click on the “Delete” button will remove job from the list. Clicking on “Create new” button
will open new candidate creation form (5). For creating new candidate user will enter first

57

name, last name, address, city, country email, position, which he/she will choose from ex-
isting jobs via dropdown menu, phone and press “Submit” button (6). Clicking on the can-
didate item will open candidate details page (7). Where user will see candidate detail, up-
date button (8) and job list when candidate is assigned on (9). Click on the update button
will make company detail fields editable. (Figure 48).

Figure 48 Candidate detail view, list view and create view.

Manage	user	quiz	results	
For the actions presented in this feature, the user must be logged in, and he/she must have
super admin rights. Super admin only has one view, where he/she can see the list of people
(1) who took a test and their test results. Each row of table contains person’s name, last
name and the test result. User can filter list by person’s first name and last name using search

58

input (1). At any point of application execution user can reset the list of quiz results and start
over by clicking “Reset results” button (3). (figure 49)

Figure 49 Quiz result management system.

4.4 Summary	
In this chapter, we concentrated on defining a description, implementation and user manual
of the prototype. First, we introduce the perspective of the application and described sce-
nario. After that we started defining possible use cases and based on this outcome we created
the requirements. Next step was to illustrate the implementation of the prototype, where we
presented RBAC and ABAC policies and explained codebase. In the end, we provided step-
by-step user manual. In the next chapter, we will conclude our thesis.

59

5 Conclusion	
In this paper, we developed prototype application for analyzing Role-Based and Attribute-
Based Access Control models. We divided the prototype creation process in five steps. First
step was to define the access control policies for each model. In order to accomplish this,
we had to understand how these models work. thus, we provided an overview of Role-Based
and Attribute-based Access Control models, where we described the main concepts and
meta-model of each model. As a next step was analytical comparison of ABAC and RBAC.
We defined the requirements that should be satisfied by that modern access control models
and analyzed how each model applies security in each case. Only After that we started de-
fining prototype. First of all, we described overall structure, then we continued with defining
use cases and features of this product which gave us a picture of how prototype should look
like. Next, we started implementing those features and illustrated the architecture of the
prototype. In the end, after finishing prototype we created a user manual of it where is illus-
trated the GUI of the application and explained how it functions with step by step descrip-
tion.

There is not yet a research which addresses the same problem in this field. This means that
we created use cases and requirements based on our vision of the problem. On our point of
view, the biggest limitation of the prototype is the lack of user input regarding the features
and GUI.

Despite the lack of enhancements, this prototype should be served as a starting point for
further deeper investigation and creating similar tools.

5.1 Future	work	
For a future improvement, we would like to make this prototype more dynamic. In current
solution, we made static policies. In future releases, we think would be great if we give users
possibility to dynamically change the policies and apply them to the scenario. Another great
improvement for this prototype is adding more access models like Usage-Based access con-
trol. This would make prototype even more challenging and interesting for experiments, as
Usage-Based Access Control has a completely different approach compared to RBAC and
ABAC

60

References	

[1] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information and
System Security 4(3), 224–274 (2001)

[2] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Con-
trol Models. IEEE Computer 29(2), 38–47 (1996)

[3] Araujo R. and Gupta S., Design Authorization Systems Using SecureUML, Found-
stone Professional Services, 2005.

[4] Lodderstedt T., Basin D. and Doser J., "SecureUML: A UML-Based Modeling Lan-
guage for Model-Driven Security," in UML '02 Proceedings of the 5th International
Conference on The Unified Modeling Language, Dresden, 2002.

[5] Goyal V., Pandey O., Sahai A., Waters B., "Attribute-based encryption for fine-
grained access control of encrypted data", Proc. 13th ACM Conf. Comput. Com-
mun. Security, pp. 89-98, 2006.

[6] "Best Practices in Enterprise Authorization: The RBAC/ABAC Hybrid Approach",
white paper EmpowerID, 2013, [online] Available: http://blog.empowerid.com/Por-
tals/174819/docs/EmpowerID-WhitePaper-RBAC-ABAC-Hybrid-Model.pdf.

[7] Yuan, E., Tong, J.: Attributed based access control (ABAC) for Web services.
ICWS 2005 IEEE International Conference on Web Services (2005)

[8] V.C. Hu et al., Guide to Attribute Based Access Control (ABAC) Definition and
Considerations, NIST Special Publication 800-162, Nat’l Institute of Standards and
Technology, Jan. 2014; http://nvlpubs.nist.gov/nistpubs /specialpublica
tions/NIST.sp.800 -162.pdf.

[9] Haibo S, Fan H. A context-aware role-based access control model for web services.
E-Business Engineering, 2005. ICEBE 2005. IEEE International Conference on,
IEEE: Beijing, China, 2005; 220–223.

[10] Covington MJ, Fogla P, Zhan Z, Ahamad M. A context-aware security architecture
for emerging applications. Computer Security Applications Conference, 2002. Pro-
ceedings. 18th Annual, IEEE: Las Vegas, NV, USA, 2002; 249–258.

[11] Zhang G, Parashar M. Dynamic context-aware access control for grid applications.
Proceedings of the Fourth International Workshop on Grid Computing, 2003, IEEE:
Phoenix, AZ, USA, 2003; 101–108.

[12] Hansen F, Oleshchuk V. Srbac: a spatial role-based access control model for mobile
systems. Proceedings of the 7th Nordic Workshop on Secure it Systems
(NORDSEC03), Citeseer: Gjovik, Norway, 2003; 129–141.

[13] Damiani ML, Bertino E, Catania B, Perlasca P. Geo-rbac: a spatially aware rbac.
ACM Transactions on Information and System Security (TISSEC) 2007; 10(1): 2.
CrossRef | Web of Science® Times Cited: 30.

[14] Toahchoodee M, Ray I, Anastasakis K, Georg G, Bordbar B. Ensuring spatio-tem-
poral access control for real-world applications. Proceedings of the 14th ACM Sym-
posium on Access Control Models and Technologies, ACM: Stresa, Italy, 2009; 13–
22.

[15] Ray I, Toahchoodee M. 2008. A spatio-temporal access control model supporting
delegation for pervasive computing applications. In Trust, Privacy and Security in
Digital BusinessSpringer: Turin, Italy; 48–58.

61

[16] Kim YG, Mon CJ, Jeong D, Lee JO, Song CY, Baik DK. 2005. Context-aware ac-
cess control mechanism for ubiquitous applications. In Advances in Web Intelli-
genceSpringer: Lodz, Poland; 236–242.

[17] Bertino E, Bonatti PA, Ferrari E. TRBAC: A temporal role-based access control
model. ACM Transactions on Information and System Security (TISSEC) 2001;
4(3): 191–233.

[18] Shafiq B, Samuel A, Ghafoor H. A gtrbac based system for dynamic workflow com-
position and management. Object-Oriented Real-Time Distributed Computing,
2005. ISORC 2005. Eighth IEEE International Symposium on, IEEE: Seattle, WA,
USA, 2005; 284–290.

[19] Jin X, Sandhu R, Krishnan R.Rabac: role-centric attribute-based access control. In
Computer Network Security Springer: Petersburg, Russia 2012; 84–96.

[20]

[21]

Wang W. Team-and-role-based organizational context and access control for coop-
erative hypermedia environments. Proceedings of the Tenth ACM Conference on
Hypertext and Hypermedia: Returning to our Diverse Roots: Returning to our Di-
verse Roots, ACM: Darmstadt, Germany, 1999; 37–46.
Thomas RK. Team-based access control (TMAC): a primitive for applying role-
based access controls in collaborative environments. Proceedings of the Second
ACM Workshop on Role-Based Access Control, ACM: Virginia, USA, 1997; 13–
19.

[22] Fatima A., Ghazi Y. Towards Attribute-Centric Access Control: an ABAC versus
RBAC argument. 6 July 2016.
http://onlinelbrary.wiley.com/doi/10.1002/sec.1520/full

62

Appendix	

I. List	of	Acronyms	
ACM Access Control Mechanism

ABAC Attribute-Based Access Model
ACCP Access Control Comparison Prototype
AMF Assurance Management Framework
AC Access Control
ACL Access Control List
ACE Access Control Entries
API Application program interface
CRUD Create, Read, Update, Delete
CH Context Handler
DAC Discretionary Access Control
XACML eXtensible Access Control Mark-up

Language
UML Unified Modelling Language
GUI Graphical User Interface
OCL Object Constraint Language
NPE Non-Person Entity
PEP Policy Enforcement Mechanism
PDP Policy Decision Point
PIP Policy Information Point
PAP Policy Administration Point
XML eXtensible Mark-up Language
RBAC Role-Based Access Model
RB-RBAC Rule-Based RBAC
MAC Mandatory Access Control
TBAC Team-Based Access Model
JSON JavaScript Object Notation
MVC Model–View–Controller
REST Representational State Transfer
JAVA EL Expression Language
JSP Java Server Pages
JSF Java Server Faces
SpEL Spring Expression Language

63

II. License	
Non-exclusive licence to reproduce thesis and make thesis public

I, Lasha Tsintsabadze,
(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:
1.1. reproduce, for the purpose of preservation and making available to the public,

including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2. make available to the public via the web environment of the University of Tartu,
including via the DSpace digital archives until expiry of the term of validity of the
copyright,

of my thesis
A Prototype to Analyze Role- and Attribute-Based Access Control Models,

(title of thesis)
supervised by Raimundas Matulevicius,

(supervisor’s name)
2. I am aware of the fact that the author retains these rights.
3. I certify that granting the non-exclusive license does not infringe the intellectual property
rights or rights arising from the Personal Data Protection Act.

Tartu, 14.08.2017

	

