
UNIVERSITY OF TARTU 

Institute of Computer Science 

Computer Science Curriculum 

Kertu Toompea 

Simulations for Training Machine Learning Models 

for Autonomous Vehicles 

Bachelor’s Thesis (9 ECTS) 

Supervisors: 

Raimond-Hendrik Tunnel, MSc 

Tambet Matiisen, MSc 

  

Tartu 2019 



2 

 

Simulations for Training Machine Learning Models for Autonomous Vehicles 

Abstract: 

Training machine learning models for autonomous vehicles requires a lot of data which is 

time consuming and tedious to label manually. Simulated virtual environments help to 

automate this process. In this work these virtual environments are called simulations. The 

goal of this thesis is to survey the most suitable simulations for off-road vehicles (while not 

discarding the urban option). Only the simulations which provide labeled output data, are 

included in this work. The chosen 12 simulations are surveyed based on the information 

found online. The simulations are then analyzed based on the predefined features and 

categorized according to their suitability for training machine learning models for off-road 

vehicles. The results are shown in a table for comparison. The main purpose of this work is 

to map the seemingly large landscape of simulations and give a compact picture of the 

situation.  
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Masinõppe Mudelite Treenimise Simulatsioonid Autonoomsetele Sõidukitele 

Lühikokkuvõte: 

Masinõppe mudelite treenimine autonoomsete sõidukite jaoks nõuab palju andmeid, mille 

käsitsi märgendamine on aeganõudev. Simulatsioonid aitavad seda protsessi 

automatiseerida. Käesolev töö koostab ülevaate 12-st internetiotsingu abil leitud 

simulatsioonist ja analüüsib neid lähtuvalt nende sobivusest maastikul liikuvatele 

sõidukitele (säilitades võimaluse liikuda ka linnakeskkonnas). 

Võtmesõnad: 

Simulatsioonid, keskkonnad, maastik, autonoomsed sõidukid, sensorid, masinõpe, 

automaatne märgendamine, ülevaade 
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1 Introduction 

Development of autonomous vehicles is an active field, binding together the automotive 

industry and computer science. Machine learning (ML) is one of the main computer science 

fields that contributes to the development and testing of autonomous vehicles. However, a 

lot of labeled data is needed to train ML models to achieve the desired driving behavior and 

perception of the environment surrounding the vehicle. 

The amount of data needed for training and testing ML models for autonomous vehicles is 

comparable to hundreds of millions (or even billions) physically driven miles [1]. It is time-

consuming to create and label such an amount of data with a large variety of scenarios in 

the real world. Therefore virtual environments are used to simulate the real world and collect 

automatically labeled data faster (Waymo: 25K virtual cars running 24/7 drive 10M 

simulated miles per day1). In this thesis the virtual environments are called simulations. By 

running a simulation (or several in parallel) non-stop on a modern computer hardware, a lot 

more data can be generated efficiently, than a real vehicle with a driver could during the 

same time. Also dangerous situations in simulations do not result in any actual damage. 

Based on the different vehicles’ simulations found online, it is necessary to clarify that the 

simulations described in this work are for training ML models for autonomous ground 

vehicles’ obstacle detection. The simulations which are for training people to drive, testing 

specific traffic scenarios, controlling actual steering/throttle/brake of a vehicle or simulating 

vehicle dynamics, are not in the scope of this work. 

Besides the amount of data and a ’safe’ environment, the main benefit of using the 

simulations in the scope of this work, is their ability to generate and provide labeled data 

for ML. Without labeling, the simulation can produce a large amount of data (e.g. batches 

of hundreds of thousands images) but which then needs to be labeled manually. Manual 

labeling is a tedious and time consuming work which is possible to avoid. Therefore 

automatic labeling is one of the key value points in the simulations. 

There are many simulations on the market and several interesting details about them (e.g. 

how exactly they are made, which are most suitable for off-road use, to what extent they are 

configurable, what simulation specific details affect the training of ML models for the most, 

etc.). 

                                                 
1 https://youtu.be/Q0nGo2-y0xY?t=1880  

https://youtu.be/Q0nGo2-y0xY?t=1880
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Before diving into those details about every simulation, it is useful to have an overview of 

simulations which are potentially suitable for further investigation. No such overview was 

found which would give answers to the questions introduced in the following paragraph. 

Therefore the survey made in this work maps the seemingly large landscape of simulations 

and gives a compact picture of the situation. The focus is on the availability of sensors, off-

road vs urban environments and the output training labels needed for ML models. The 

results (chapter 5) aim to serve as a guide for anyone choosing a simulation for a use case 

that corresponds to the surveyed parameters. 

This work finds answers to the following questions: 

 How many of the available simulations come with built-in urban and off-road 

environments? 

 How many have dynamic objects (e.g. humans, vehicles) in their environments? 

 How many provide specific sensors (e.g. cameras, lidar, radar)? 

 How many output specific training labels (e.g. semantic segmentation, bounding 

boxes) for ML? 

 How many have a free-to-use licence? 

 How many offer online documentation (i.e. installation and user guides)? 

 How many are built on widely known game engines (i.e. Unreal Engine and Unity)? 

 What are their constraints considering the above questions? 

Related work found about existing simulations in the scope of this work was limited. A few 

articles were found which describe a certain simulation product (e.g. CARLA [2], AirSim 

[5,6]). Other found articles related to simulations and training ML models with synthetic 

data, mostly described a method [4,7], approach [16,22] or a use case [11,10]. One publicly 

available overview of simulations was found by Transport Systems Catapult from 2018 [12], 

but it was too broad and focused on automated driving systems (ADS), not training ML 

models for fully autonomous vehicles. One more overview report was found but it was not 

freely available2. Another seemingly promising article about different simulation platforms 

was found [13] but it did not include any details about actual simulations and states that 

many simulations were not yet available at the time of its writing. Finally, one overview of 

simulations was found as part of a wider review about perception systems and simulators 

                                                 
2 https://www.strategyanalytics.com/access-services/automotive/autonomous-vehicles/reports/report-

detail/simulation-for-autonomous-vehicles  

https://www.strategyanalytics.com/access-services/automotive/autonomous-vehicles/reports/report-detail/simulation-for-autonomous-vehicles
https://www.strategyanalytics.com/access-services/automotive/autonomous-vehicles/reports/report-detail/simulation-for-autonomous-vehicles
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for autonomous vehicles [14]. In chapter 5 of this work, different types of simulation 

platforms are introduced, partly including the simulations interesting for this work here. 

As a result, a fresh overview of simulations in the focus of this work was needed. This need 

is mainly driven by a personal interest in creating a new simulation which is suitable for 

both urban and off-road vehicles, with the main focus on the off-road. 

This work is divided into 6 chapters. The first one here is the Introduction that guided the 

reader into the world of targeted simulations and described the purpose of this work. The 

2nd chapter, Aspects of Simulations, introduces what are the main interest points of the 

surveyed simulations. The 3rd chapter, Methodology and Features, describes what exactly 

is surveyed in the simulations and how the information was collected. The 4th chapter, 

Simulations, holds brief descriptions of each surveyed simulation and presents its collected 

information about the features. The 5th chapter, Results, shows the gathered information as 

a whole and draws an interpretation from the results. The 6th and the final chapter, 

Conclusion, briefly visits the key results of this work. 

The reader of this work is expected to be familiar with ML at an introductory level and 

understand the terminology which is specified in the Glossary. 
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2 Aspects of Simulations 

Before describing the methodology and features of this survey, the main aspects of 

simulations in the scope of this work are introduced. This chapter gives a better 

understanding why certain features were selected for surveying and what is their role in the 

simulation. The aspects cover the environments, sensors and output training labels in a 

simulation. 

2.1 Environments 

The word ‘environment’ in a simulation usually refers to either a driving environment (e.g. 

urban, off-road) or a weather conditions (e.g. sunny, cloudy, rain). While it is important to 

have different weather conditions in a simulation, in this work the main focus is on the 

driving environments. 

The driving environment in a simulation defines for which kind of physical environments 

and vehicles the simulation can be used. For example, if an ML model is trained on the data 

retrieved from an urban city, it will not perform well if tested in a forest. The training and 

testing data are too different. 

Many simulations are built using game engines. The ones most often used are Unreal 

Engine3 (UE) and Unity4. This enables game environments to be used also in simulations. 

Still, attention to physics-based fidelity is required which is important for a realistic driving 

environment but not necessarily for a game. While it is possible to create new game 

environments (as game assets5), it is not trivial and requires dedicated skills. When using 

the existing high-fidelity environments available in asset stores, it can be time consuming 

to find the right ones, they can cost extra or there may be a technical barrier to overcome 

before they can be used. Regardless of the reasons behind mentioned constraints, in this 

work the surveyed driving environments are the ones that are already included with the 

simulation and can be used out of the box for both urban and off-road driving.  

The most commonly provided simulation environments are urban (see chapter 5 – Results). 

They can vary from a short fixed size road track to large cities generated from real world 

maps with a variety of roads, buildings and traffic intersections. Less common are the off-

                                                 
3 https://www.unrealengine.com 
4 https://unity.com/ 
5 Game asset - anything that can go into a game (environment, 3D objects, etc.). 

https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-

assets--cms-24380 

https://www.unrealengine.com/
https://unity.com/
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380
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road environments that provide driving options in forests, fields, mountains, underground 

mines and other places interesting for an off-road vehicle. 

Actors 

A simulation can have dynamic objects (actors) like humans and vehicles that have specific 

behaviors in the environment. Besides the main driving actor vehicle (aka the ego-vehicle), 

which is typically provided, some simulations allow adding new secondary actors. Similarly 

with the environments, it is not always trivial to add new actor assets into some existing 

simulation. So in this work, the availability of already included actors (humans, vehicles) is 

surveyed. 

For all the provided environments it is important that the different objects (e.g. ground, 

vegetation, road, buildings, people, other vehicles, etc.) in the simulation can be 

automatically labeled for ML. This is described more closely in chapter 2.3 – Output 

Training Labels. 

In addition to the environments, the actors and the output that the simulation produces, one 

more important part is introduced: the sensors which take input from the environment and 

provide data for the output. The next chapter introduces the main interesting sensors in the 

scope of this work. 

2.2 Sensors 

The main sensors which make up an autonomous vehicle’s perception system, are cameras, 

lidars and radars [17]. In this work, additionally a thermal infrared (IR) camera is added into 

the scope for a better human detection in off-road environments. While there are other 

important sensors in autonomous vehicles, the selection is made to limit the list for the scope 

of this work. 

Before getting to the actual simulations where the presence of those sensors is surveyed, an 

introduction to each sensor is made. It will give an understanding how to think of those 

sensors in the virtual world and briefly describes how they work. 

Cameras 

Cameras in simulations are described as sensors. There can be different ones. According to 

the image type they can provide, cameras in simulations can be either RGB, depth, thermal 

IR, semantic segmentation or some other type not limited to this list. It is important to note 
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that unlike other cameras here, there is no equivalent for semantic segmentation camera in 

the real world. The images from those cameras provide unique training data for ML. 

The RGB camera generates regular camera images from the surroundings. The depth camera 

generates ground-truth depth data where each pixel is marked with the distance from the 

camera. The thermal IR camera generates images where each pixel estimates the 

temperature of surrounding objects. The semantic segmentation camera generates images 

with each class (e.g. road, car, human) denoted by a different color (e.g. road=purple, 

car=blue, human=red). Example images from RGB, depth and semantic segmentation 

cameras are in Figure 1. As the semantic segmentation is also an important output label, it 

will be described more closely under a dedicated chapter (2.3 – Output Training Labels). 

Figure 1. From the left: RGB, depth, semantic segmentation.6 

Cameras in simulations usually have the following parameters which can be configured: 

 image size (width, height) in pixels 

 field of view (FOV) in degrees 

 position and orientation relative to the vehicle 

In this work, the surveyed cameras in the simulations are the RGB, depth and thermal IR 

camera. 

Lidar 

The lidar sensor in the real world measures distance to its target objects using laser beams. 

In a simulation it is implemented using ray casting7 where each ray represents a real world 

laser beam (Figure 2). The sensor generates data which is a measurement of all the lidar 

sample point coordinates in 3D space at a given time. From lidar sample points it is possible 

to detect objects in 3D space. The more sample points, the better accuracy in detection as 

the shape of an object becomes more clear. 

                                                 
6 https://carla.readthedocs.io/en/latest/cameras_and_sensors/ 
7 https://en.wikipedia.org/wiki/Ray_casting  

https://carla.readthedocs.io/en/latest/cameras_and_sensors/
https://en.wikipedia.org/wiki/Ray_casting
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Figure 2. Example image of a lidar point cloud.8 

The configurable attributes of a typical lidar sensor are: 

 number of lasers 

 range 

 number of points generated per second 

 rotation frequency 

 FOV (horizontal and vertical) in degrees 

 position and orientation relative to the vehicle 

In the real world, lidar sensor cannot ’see’ through objects. It is an optical sensor and 

obstacles like grass, tree leaves, fog and rain limit its view. If the sensor is implemented in 

a realistic way in the simulation, it will not penetrate objects. For this, an electromagnetic 

sensor type is needed, such as radar. 

Radar 

The radar sensor in the real world measures usually the speed and distance of target objects 

in its field of view. Differently from the lidar, which is an optical sensor, radar uses 

electromagnetic waves to sense the surroundings. In a simulation (Figure 3), there are 

several ways to implement radar [20]. A simplified overview of two ways are given. One is 

that the radio wave is created as a cone-shaped object (starting from the sensor) and the 

measurement points are recorded in 3D space where the cone intersects with other objects. 

The second is ray tracing9, or ray casting as it is for lidar. Objects which can or cannot be 

penetrated by the wave, are defined in the engine [21]. If the simulated radar sensor is used 

                                                 
8 https://carla.readthedocs.io/en/latest/cameras_and_sensors/ 
9 https://en.wikipedia.org/wiki/Ray_tracing_(graphics) 

https://carla.readthedocs.io/en/latest/cameras_and_sensors/
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
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to measure also the speed of an object, it can be calculated from several measurements in a 

row, using the closest points [20]. 

Figure 3. Simulated radar view visualization (in yellow color).10  

The configurable attributes of a typical radar sensor are based on its implementation 

example in Unity game engine [21]. These are: 

 range 

 FOV (horizontal and vertical) in degrees 

 position and orientation relative to the vehicle 

Both, the lidar and radar are used in autonomous vehicles and the simulations. Without 

going into further details if or which sensor should be chosen from those two, they both are 

important sensors in this survey. 

2.3 Output Training Labels 

The final important aspect is the output labels. The output training labels (or the ground 

truth) are what the simulation outputs as the training data for ML. The main purpose of a 

simulation is not to simply provide a large amount of data but to provide data which is 

already labeled. Labeling, when applied automatically, saves time and is more accurate than 

if done by a human. Easily extracted labeled data is one of the main value points why the 

simulations in the scope of this work are used. There are different types of labels. Here 

semantic segmentation and bounding boxes (2D and 3D) are described which all are 

included in the surveyed features. 

                                                 
10 https://m.eet.com/content/images/eetimes/Fig2-View_from_simulator_1511161122.jpg 

https://m.eet.com/content/images/eetimes/Fig2-View_from_simulator_1511161122.jpg
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Semantic Segmentation 

Semantic segmentation is a labeling type in ML where every pixel in an image is marked 

with information about to which object class it belongs (Figure 4). 

Figure 4. Semantic segmentation example.11 

It is a useful and detailed method to classify data for ML because every label meaningfully 

(i.e. semantically) describes the corresponding object [8,9]. In a simulation, for example if 

a model needs to learn obstacles on the vehicle’s path, the exact boundaries as well as the 

type of every obstacle is available with semantic segmentation. Also, considering the 

semantic class of an obstacle, different actions can be taken, e.g detecting a human may 

require a driving path modification but detecting a small rock may not. 

Semantic segmentation of a 3D point cloud, e.g. from a lidar, is similar but the pixels are 

now points in a 3D space and each point is assigned a label as the type of the object it 

belongs to. In this work, only 2D semantic segmentation is considered in the simulations. 

  

                                                 
11 https://carla.readthedocs.io/en/latest/cameras_and_sensors 

https://carla.readthedocs.io/en/latest/cameras_and_sensors
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Bounding Boxes 

Bounding boxes in ML are labels that are used for marking the smallest 2D or 3D box 

surrounding an object (e.g. a human, vehicle, etc.). Examples of 2D and 3D bounding boxes 

are in Figure 5. 

Figure 5. Bounding boxes 2D (left) and 3D (right).12 

The box (axis-aligned) shows the maximum bounds of an object along each world axis. 

Bounding boxes are used for moving objects (e.g. humans, vehicles). This is mainly because 

it is a faster method than semantic segmentation but also because the bounding boxes can 

be used for tracking. Tracking the moving objects is useful for predicting their path. For 

example a vehicle can adjust its driving direction to avoid humans or other vehicles who are 

on a collision course with it. In combination, semantic segmentation and bounding boxes 

provide more information for learning about obstacles and to avoid them. 

                                                 
12 https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/boxcars-improving-

vehicle-fine-grained-recognition-using-3d-bounding-boxes-in-traffic-surveillance/ 

https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/boxcars-improving-vehicle-fine-grained-recognition-using-3d-bounding-boxes-in-traffic-surveillance/
https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/boxcars-improving-vehicle-fine-grained-recognition-using-3d-bounding-boxes-in-traffic-surveillance/


14 

 

3 Methodology and Features 

The target group of the survey consisted of simulations which are used for generating 

labeled data for training ML models for autonomous vehicles. The simulations were found 

online, via Google search and among GitHub repositories, using mainly (but not limited to) 

the following keywords in varying combinations: simulation, simulator, autonomous, 

vehicles, cars, machines, driving, machine learning, training, models, synthetic, artificial, 

data, labels, bounding box, semantic segmentation, off-road, environments. 

From the results with videos, images, home pages, code repositories or dedicated 

documentation sites, the first sample was made from what seemed to be relevant to the 

targeted simulations, or looked more popular. Then the list was narrowed down, by a more 

thorough search about each simulation by using mainly its homepage, source code in GitHub 

and results from Google and YouTube. 

Finally only those simulations were selected for this work which: 

1. had documented or video reference about at least one of the surveyed sensors, 

2. had documented or video reference about at least one of the surveyed environments, 

3. had documented or video reference about at least one of the surveyed output training 

labels, 

4. in case of GitHub repository, had activity within a few months from the time of the 

search, 

5. were found to have news coverage or significant mentions since 2018 (especially 

from GTC13 2018), 

6. and whose homepage information seemed not older than 2018. 

The search was done in Q1 2019 and finally 12 simulations were selected out of the initial 

39. 

The features of the simulations for this work were chosen based on what was available in 

the found simulations and what is important for training ML models for off-road vehicles. 

The information what is important for ML models was gathered from the course 

Introduction to Computational Neuroscience in University of Tartu (UT), from cooperation 

with the UT Computational Neuroscience Lab and from the found research papers 

[17,3,5,4]. 

                                                 
13 https://www.nvidia.com/en-us/gtc/  

https://www.nvidia.com/en-us/gtc/
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As the documentation about the simulations varied in its presence and detail, missing 

information was requested via direct email or a provided online contact form. From those 

requests only one received an answer (from Craig Quiter, the creator of the simulation 

Deepdrive 2.0). The remaining missing information is marked as not available (NA). 

The features interesting for training ML models from simulation data, were introduced in 

the previous chapter. Here the licence type and documentation availability are added which 

are useful when choosing a simulation for further validation or use. 

The following features are finally taken into account for each simulation: 

1. Licence – the licence type and source code availability (open source). 

2. Documentation – online documentation availability for different usage steps: 

 Installation 

 Environment usage 

 Sensor configuration 

 Output labels usage. 

3. Engine – the used engine. 

4. Driving environment – included driving environments: 

 Urban 

 Off-road. 

5. Actors in environment – included actor assets of: 

 Cars 

 Humans. 

6. Sensors – availability (out of the box) of the surveyed sensors: 

 Cameras (RGB, depth, thermal / IR 

 Lidar 

 Radar. 

7. Output training labels – availability (out of the box) of the surveyed output labels: 

 Semantic segmentation 

 2D bounding box 

 3D bounding box. 

Licence types for the simulations are roughly divided to free and commercial (not free). 

Here a ’free’ licence is a free-to-use licence (i.e. GPL, MIT) which is included with the 

simulation. It is important to note here that if an open source simulation has for example 
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MIT licence but is built on a game engine such as UE, then the simulation and its engine 

component (UE) are clearly separated in the terms of licencing. UE has its own licencing 

terms. Similarly, a simulation can have other components included which have their own 

licence. Commercial licences are usually not free-to-use and can have different terms/costs 

for users. Here they are simplified to one type ’proprietary’. 

Based on those features the information is collected throughout the work and presented in 

chapter 5 – Results. 
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4 Simulations 

Here the 12 selected simulations are listed. For each, a brief description of its general 

information, environments, sensors and output training labels is provided. Here, ‘featured’ 

means what is surveyed in the simulations (e.g. featured sensors are the cameras, lidar and 

radar that are listed in the previous chapter). 

4.1 CARLA 

CARLA14 is an open source simulation for autonomous driving research (Figure 6). It is 

created by research scientists from Intel Labs, Toyota Research Institute and Computer 

Vision Center in Barcelona [2]. The simulation is built on the UE game engine. It was 

published in March 2018 and its latest version at the time of the survey was 0.9.5. 

Figure 6. Example images from CARLA simulation. 

Environments 

For the driving environment, CARLA provides 7 ready made towns, from which one is rural 

(using different combinations of provided urban assets), and 15 different predefined weather 

conditions. It is possible to build new custom towns (with provided urban assets) and 

configure the weather. No off-road environment is provided. From the actor assets, humans 

and cars are provided. 

Sensors 

From the featured sensors the simulation provides cameras (RGB, depth) and lidar. No radar 

is provided. Additional sensors provided in CARLA, but not featured in the survey, are a 

collision detector, lane detector, obstacle sensors, accelerometer and GPS. In CARLA it is 

                                                 
14 http://carla.org/  

http://carla.org/
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also possible to add other types of sensors through the API. This is a good customization 

option but it is not clear within what limits the other types of sensors can be added (e.g. is 

the limitation within the used game engine or are there any additional constraints). The 

configurable parameters for sensors are what is typically available for the cameras and lidar 

(see chapter 2). More exact details about their sensor configurations are available on their 

documentation site15. 

Output Training Labels 

The simulation provides 12 semantic segmentation classes (Unlabeled, Building, Fence, 

Other, Pedestrian, Pole, Road line, Road, Sidewalk, Vegetation, Car, Wall, Traffic sign) and 

both 2D and 3D bounding boxes for all the dynamic objects in the simulation (Figure 7). 

Figure 7. From the left: semantic segmentation, 2D bounding boxes, 3D bounding boxes in CARLA. 

Additionally, CARLA provides information about the states of the traffic lights and the 

speed limit at the current location of the vehicle. 

4.2 AirSim 

AirSim16 is an open source simulation for autonomous systems, including aerial and ground 

vehicles. It is developed by Microsoft for AI research in computer vision and reinforcement 

learning. Its first documented release was published in September 2017 and the latest 

version at the time of the survey was 1.2.0. For driving environments, their newer pre-

release v1.2.1 is taken into account. The simulation is available on UE and Unity, but as the 

Unity version is still experimental at the time of writing, then only the UE version is 

surveyed. Example images from the simulation are in Figure 8. 

                                                 
15 https://carla.readthedocs.io/en/latest/  
16 https://github.com/Microsoft/AirSim  

https://carla.readthedocs.io/en/latest/
https://github.com/Microsoft/AirSim
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Figure 8. Example images from AirSim simulation. 

Environments 

AirSim is developed as a UE plugin so it can be easily added to an UE environment. This is 

useful if custom driving environments are needed. AirSim has 8 different weather options 

and 9 different driving environments (small urban neighbourhood block, large city with 

moving vehicles and pedestrians, Zhangjiajie mountains in China, Redwood forest, dynamic 

forest environment for camera detection of animals, plains with windmill farm, short 

coastline segment similar to Maui's Hana road, Africa terrain and animated animals, 

mountain landscape with power lines for drone camera detection). From these environments 

5 are off-road. While it is rare to have off-road environments available, AirSim was initially 

made for aerial vehicles and does not provide large variety of objects for ground vehicles 

there. This constraint can be overcome by importing a new environment from a 3rd party or 

creating a new custom environment. The latter option can be time consuming and complex 

process though, if a user has no prior experience in environment design. From the actor 

assets, cars are provided. No human assets are provided. 

Sensors 

From the featured sensors AirSim provides cameras (RGB, depth, thermal IR) and a lidar. 

No radar is provided. Additional non-featured sensors in AirSim are barometer, 

magnetometer, IMU, GPS and distance sensors. The configuration options are comparable 

to what is typically available for the cameras and lidar (see chapter 2). More exact details 

about their sensor configurations are available on their documentation site. 

Output Training Labels 

The simulation provides semantic segmentation and bounding boxes (2D and 3D). For 

semantic segmentation (Figure 9), a segmentation class is provided for every mesh object 
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(in the range of 0-255)17 in the simulation. Using their API, existing segmentation can be 

modified to set desired semantic information (within provided range). 

Figure 9. Example image of the semantic segmentation output label in AirSim. 

For bounding boxes, AirSim does not provide API tools. While it is a significant constraint, 

it can be overcome using UE-s own tools to get 2D and 3D bounding boxes of desired 

objects. 

4.3 Deepdrive 2.0 

Deepdrive 2.018 is an open source simulation for experimenting with reinforcement learning 

of autonomous driving (Figure 10). It is built on UE and supports an external Python 

plugin19 for simplified customization in UE. The simulation is developed under the initiative 

of Craig Quiter and should not be confused with its earlier version which was a different 

product but named similarly Deepdrive (without 2.0). In addition to the online 

documentation, the following includes also information received directly over email. 

Figure 10. Example image from Deepdrive 2.0 simulation. 

                                                 
17 https://microsoft.github.io/AirSim/docs/image_apis/#segmentation 
18 https://deepdrive.io/  
19 https://github.com/20tab/UnrealEnginePython  

https://microsoft.github.io/AirSim/docs/image_apis/#segmentation
https://deepdrive.io/
https://github.com/20tab/UnrealEnginePython
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Environments 

The simulation comes with one 3 km track for road driving. No other urban environments 

are included, neither any off-road. From the actor assets, cars are provided. No human assets 

are provided. 

Sensors 

From the featured sensors, cameras (RGB, depth) are provided. From other non-featured 

cameras there are five additional ones (reflectivity, world normals, ambient occlusion, base 

color, roughness – see Figure 11). The latter ones are not specific to this simulation but they 

are the typical camera views provided in UE. 

Figure 11. Example camera views from Deepdrive 2.0. 

Lidar and radar sensors are not provided. From other non-featured sensors, many different 

ones are available, some of them vehicle and racing specific (e.g. IMU, brake, handbrake, 

distance, lap number, collision, position, steering, throttle). Additional information (within 

the limitation of the UE-s own possibilities) can be accessed using the external Python 

plugin. 

Output Training Labels 

Deepdrive 2.0 provides 3D bounding boxes for the cars in the simulation. Other training 

labels are not provided by the simulation itself. This constraint can be overcome using the 

Python plugin to extract the label information directly from UE. 

4.4 LGSVL Simulator 

The LGSVL Simulator20 is a simulation software designed for developing and testing 

autonomous vehicles (Figure 12). It is built on Unity and includes a Python API. Created by 

the LG Electronics Silicon Valley Lab, its first release21 came in December 2018 and the 

latest version at the time of the survey was 2019.03. 

                                                 
20 https://www.lgsvlsimulator.com/  
21 https://github.com/lgsvl/simulator  

https://www.lgsvlsimulator.com/
https://github.com/lgsvl/simulator
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Figure 12. Example image from LGSVL simulation. 

Environments 

By default the simulation provides one urban driving map and options to change the map to 

a different urban one. The map can be changed inside Unity. Also the parameters for 

weather, traffic and pedestrians can be changed. No off-road environment is provided. From 

the actor assets, humans and cars are provided. 

Sensors 

From the featured sensors, the simulation provides cameras (RGB, depth), lidar and radar. 

Additionally available non-featured sensors are GPS and IMU. 

Output Training Labels 

The simulation provides semantic segmentation, 2D and 3D bounding boxes (Figure 13) for 

the vehicles, pedestrians and unknown objects. 

 

Figure 13. Example images22 of different output labels from LGSVL simulation. Upper left: semantic 

segmentation (of the scene on its right), bottom left: 2D bounding boxes, bottom right: 3D bounding boxes. 

                                                 
22 https://www.youtube.com/watch?v=NgW1P75wiuA 

https://www.youtube.com/watch?v=NgW1P75wiuA
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4.5 Sim4CV 

Sim4CV23 is a simulation for computer vision researchers. It is developed by King Abdullah 

University of Science and Technology. The simulation (Figure 14) is built on UE and its 

first release was published in 2017 as open source. The latest version at the time of the 

survey is not open source and its exact version remains unknown as no public information 

was found.  

Figure 14. Example image from Sim4CV simulation. 

Environments 

From their video24 and the related research papers [22,15] the simulation has both urban and 

off-road environments. It has one small town and for off-road it has one grassy field with 

trees and one desert environment (Figure 15). 

Figure 15. Examples of off-road environments in Sim4CV. 

In their work [15] the creators describe adding environments easily with ’drag and drop’. 

This seemingly simple option for adding new off-road environments is certainly interesting 

for the scope of this survey but as no more information is provided, the final confirmation 

                                                 
23 https://sim4cv.org/  
24 https://www.youtube.com/watch?v=SqAxzsQ7qUU  

https://sim4cv.org/
https://www.youtube.com/watch?v=SqAxzsQ7qUU
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has to be done by evaluating their product. From the actor assets, humans and cars both are 

provided. 

Sensors 

From the featured sensors only the RGB and depth cameras are documented. The remaining 

featured sensors (thermal IR camera, lidar, radar) are not provided. 

Output Training Labels 

The simulation provides semantic segmentation, 2D and 3D bounding boxes. The 3D 

bounding box example was not found on any of their available outdoor environment images 

but the other two labels in Sim4CV are shown in Figure 16. 

Figure 16. Examples of the output labels. From the left: semantic segmentation, 2D bounding boxes. 

Having all three featured labels available in addition to off-road environments makes it very 

interesting product for further validation. 

4.6 SynCity 

SynCity25 is a commercial simulation for autonomous vehicles (including ground, air and 

underwater). The simulation is built on the Unity game engine. It is developed by CVEDIA, 

a private company based in Netherlands. They focus on providing custom need-based 

environments and highly configurable sensors for their customers. The simulation is not 

available online for free. Some examples from the simulation are in Figure 17. 

                                                 
25 https://syncity.com/  

https://syncity.com/
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Figure 17. Example images from SynCity simulation. 

Environments 

The environments are provided together with the simulation according to the customer 

needs. Both urban and off-road environments are possible. From the examples on their 

homepage, it is possible to choose from at least the following off-road environments: desert, 

forestry and agricultural lands, savannah, marine (for ships/rescue), underground mines and 

aerial (for drones). See Figure 18 for examples of available off-road environments: 

Figure 18. Examples from SynCity off-road environments. From the left: desert, forest, savannah. 

From the featured actor assets, humans and cars are available. 

Sensors 

From the featured sensors, all cameras (RGB, depth, thermal IR), lidar and radar are 

provided. It is possible to add also custom sensors to the simulation and have every attribute 

of a sensor configurable (within the limits provided by Unity). 

Output Training Labels 

All the featured labels are provided: semantic segmentation, 2D and 3D bounding boxes. 

The output data is not limited to SynCity documentation and can be expanded using Unity’s 

own possibilities. 
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4.7 Unikie 

Unikie Simulator26 is a commercial simulation (Figure 19) mainly focusing on lidar based 

autonomous systems, including cars, ships and underground mine special vehicles. It is 

developed by Unikie, a private software company in Finland who provides tools also for 

collecting and processing data from the simulation for machine learning. The used engine 

remains unknown. The simulation itself and its documentation is not available for free. 

Figure 19. Example image from Unikie simulation. 

Environments 

From their homepage, Unikie provides both urban and off-road environments. From off-

road, an underground mine and harbor are available. Having an underground mine is a rare 

environment to offer and in this survey it is considered as an off-road driving option. This 

unique environment is the main reason why this simulation is included in this work. The 

harbor environment, even if not in the scope of this work, shows the variety in possible 

environments and slightly distinguishes Unikie from many other surveyed simulations. In 

addition, in Unikie it is possible to add custom environments. From the actor assets, humans 

and cars are available. 

Sensors 

From the featured sensors only RGB cameras and lidar are found to be available. From the 

non-featured sensors, IMU and GPS are mentioned on their homepage. Information about 

other sensors remains unknown. 

                                                 
26 https://www.unikie.com/en/solutions/unikie-simulator/ 

https://www.unikie.com/en/solutions/unikie-simulator/
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Output Training Labels 

According to their homepage, Unikie simulation provides automatic labeling for machine 

learning data, but no exact information was found about what kind of labeling is provided 

or what are the label classes. So the information about semantic segmentation and bounding 

boxes remains unknown. This makes Unikie different from all other surveyed simulations 

here as it was one of the requirements in chapter 3 to have at least one of the featured output 

label available. 

The reason why Unikie was exceptionally included in the survey, was mainly because of its 

uniqueness in environments and written statement on their homepage that they do provide 

labeled data from the simulation. 

4.8 rFpro 

RFpro27 is a commercial simulation (Figure 20) for developing and testing autonomous 

vehicles, including ADAS (Advanced Driving Assistance Systems) and vehicle dynamics. 

It is developed by rFpro, a private company in UK who makes high fidelity simulations for 

professional motorsports and other road-only vehicles. The used engine for the simulation 

remains unknown. The simulation and the documentation are not available online for free. 

Figure 20. Example images from rFpro simulation. 

Environments 

RFpro provides physically accurate road surface environments (Figure 21), including 

motorsport tracks. The environments are created from real world HD maps and lidar 

scanning. 

                                                 
27 http://www.rfpro.com/driving-simulation/  

http://www.rfpro.com/driving-simulation/
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Figure 21. Example images from rFpro environments with road varieties. 

Their idea is to copy the real world road surface and near surroundings (including 

atmosphere and weather) as physically closely as possible. No off-road environments are 

provided. From the actor assets, humans and cars are provided. 

Sensors 

From the featured sensors, the simulation provides cameras (RGB, depth), lidar and radar. 

No information was found about the thermal IR camera or any other non-featured sensors. 

Output Training Labels 

According to their homepage the simulation provides labels for training supervised learning 

models, but only semantic segmentation (Figure 22) was mentioned. No information about 

bounding boxes (2D or 3D) was found.  

Figure 22. Example of semantic segmentation in rFpro28. 

During this survey, the exact semantic segmentation classes were not found to be available. 

                                                 
28 https://www.youtube.com/watch?v=r2hJZu7qLO0 

https://www.youtube.com/watch?v=r2hJZu7qLO0
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4.9 Cognata 

Cognata29 is a simulation (Figure 23) for autonomous vehicles and ADAS. It is developed 

by Cognata - a US based Israeli startup, founded in 2016. The simulation uses a custom 

engine and provides automatic urban environment generation (from provided urban assets). 

The simulation software and its documentation are not available online for free. 

Figure 23. Example image from Cognata simulation. 

Environments 

The simulation provides a city environment with urban assets and automatic urban 

environment generation. No off-road environments are provided, neither any information 

about possibilities to add other custom environments in the simulation. From the actor 

assets, both humans and cars are available. 

Sensors 

From the featured sensors, RGB camera, lidar and radar are provided. No information about 

the depth or thermal IR cameras is found. 

Output Training Labels 

The simulation provides semantic segmentation (Figure 24), including the classes: cars, 

signs, buildings, humans, vegetation and electric pole. 

                                                 
29 https://www.cognata.com/  

https://www.cognata.com/
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Figure 24. Semantic segmentation from Cognata simulation.  

Regarding 2D and 3D bounding boxes, no information is available whether the simulation 

provides them. 

4.10 SCANeR Studio 

SCANeR Studio30 is a commercial simulation (Figure 25) for autonomous vehicles. It is part 

of their simulation platform which includes testing and driving for ADAS, Human Machine 

Interface (HMI), headlight testing and vehicle dynamics. It is the product of a private French 

company AVSimulation and targets professional automotive industry customers. As a 

toolset for professionals, it also enables integration with driving simulators and dedicated 

hardware. The used simulation engine remains unknown. SCANeR Studio simulation 

software and documentation are not available online for free. 

Figure 25. Example images from SCANeR Studio simulation, with semantic segmentation on the right. 

Environments 

The provided driving environments are urban only: a city and road (highway). It is possible 

to create new advanced environments, including the road, weather conditions, sensors, 

                                                 
30 https://www.avsimulation.fr/solutions/  

https://www.avsimulation.fr/solutions/
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traffic, vehicle dynamics and drivers.  No off-road environments are provided though. From 

the actor assets, cars are provided. About human assets, no information was available. 

Sensors 

From the featured sensors, RGB camera, lidar and radar are provided. Information about the 

depth and thermal IR cameras remains unknown. Also no additional non-featured sensors 

were brought out. 

Output Training Labels 

SCANeR Studio provides semantic segmentation (Figure 25, on the right) but no 

information about exact classes was found. Also information about bounding boxes (2D or 

3D) remains unknown. 

4.11 Highwai 

Highwai31 is a commercial simulation (Figure 26) focusing on training neural networks for 

autonomous vehicles. It is developed by Highwai, a private company in US who, starting 

from 2016, makes AI toolsets for object detection (including dataset creation and 

manipulation). Highwai simulation is built on Unity. 

Figure 26. Example images from Highwai simulation. 

Environments 

The simulation provides urban environment (city) with customization options in scenes and 

scenarios. No off-road environment is provided. From the actor assets, both humans and 

cars are available. 

Sensors 

From the featured sensors, cameras (RGB, depth, thermal IR) and lidar are provided. No 

information about radar sensor is provided. 

                                                 
31 https://www.highwai.com  

https://www.highwai.com/


32 

 

Output Training Labels 

The simulation provides bounding boxes (2D, 3D) and object segmentation (Figure 27). 

Semantic segmentation is not mentioned in their provided materials. From their video 

content32, object classes such as vehicles, buildings, roads, pedestrians, street props (no 

information what this means), road markings and sidewalk are provided. 

Figure 27. Output labels from the left: 2D bounding boxes, 3D bounding boxes and object segmentation. 

No documentation is provided if the object segmentation classes can be customized. 

4.12 NVIDIA Drive 

NVIDIA Drive33 simulation software is part of NVIDIA DRIVE Constellation, a simulation 

platform for developing autonomous vehicles which consists of hardware and software. The 

simulation (Figure 28) is available together with the DRIVE SDK to Nvidia’s partners (e.g. 

developers and autonomous systems providers). From how it looks from one34 of their 

videos35, the simulation is built on UE. For the wider public, access to the simulation is 

restricted. 

Figure 28. Example images of NVIDIA Drive simulation. 

                                                 
32 https://www.youtube.com/watch?v=7i_xa9pYokY 
33 https://developer.nvidia.com/drive  
34 https://www.youtube.com/watch?v=DXsLDyiONV4 (NVIDIA Drive simulation in January 2019) 
35 https://www.youtube.com/watch?v=lVlqggTiTzY (NVIDIA Drive simulation introduction at GTC 2018) 

https://www.youtube.com/watch?v=7i_xa9pYokY
https://developer.nvidia.com/drive
https://www.youtube.com/watch?v=DXsLDyiONV4
https://www.youtube.com/watch?v=lVlqggTiTzY
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Environments 

Environments in NVIDIA Drive simulation are urban only. Mainly roads (highways) and 

some city environments are noted in their videos. The simulated environments are created 

from (real world) HD map data and are customizable. About the included actor assets no 

information is provided. 

Sensors 

From the featured sensors, the simulation provides RGB cameras, lidar and radar. No 

information was found about the depth and thermal IR sensors. Additional provided non-

featured sensor is the IMU. There is an option to add custom sensors but no further 

information is provided about which sensors exactly. 

Output Training Labels 

The provided training labels are semantic segmentation and 2D bounding boxes. No 

information about the availability of the 3D bounding boxes was found. 
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5 Results 

From the surveyed simulations and their features all the gathered information is in the four 

tables below. The first table (Table 1) shows the more general information about the 

simulation, including the licence type, availability of documentation and the used engine. 

The second table (Table 2) shows information about provided driving environments and 

what kind of actor assets they include. The third table (Table 3) shows the sensors. And 

finally the fourth table (Table 4) is for the output training labels. The cells marked with NA 

are unknown, meaning the information was not found to be available online and the requests 

for information sent over email were not answered. After each table the results are described. 

Table 1. The information about licencing, documentation and the used engine. 

 
 Documentation  

Licence Installation Environments Sensor 

config 

Output 

labels 

Engine 

CARLA MIT + + + + UE 

AirSim MIT + + + + UE 

Deepdrive MIT + - - - UE 

LGSVL Simulator Propr + + + + Unity 

Sim4CV Propr + - - - UE 

SynCity Propr NA36 NA NA NA Unity 

Unikie Propr NA NA NA NA NA 

rFpro Propr NA NA NA NA NA 

Cognata Propr NA NA NA NA Custom 

SCANeR Studio Propr NA NA NA NA NA 

Highwai Propr NA NA NA NA Unity 

NVIDIA Drive Propr NA NA NA NA UE 

Table legend: 

Licence cell colors: blue – open source, red – not open (commercial). 

Other cell colors: green – available, red – not provided, grey – unknown. 

                                                 
36 SynCity documentation site docs.syncity.com was taken down in April 2019 and since then no documentation about 

their current product is available online. The GitHub repository https://github.com/Cvedia/syncity-redist provides 

installation intructions to an SDK from 2018 but its relevance to their present product is unknown. 

https://github.com/Cvedia/syncity-redist
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In overall the results show that 4 of the surveyed 12 simulations are open source (33%) from 

which 3 have a free-to-use licence (25%). All the open source solutions are documented 

well enough online to get a fairly good understanding about how to install and start using 

them. The commercial solutions are expected to provide the documentation to their 

customers but here almost no information was found online or received over email. 

Therefore validating a commercial simulation before deciding its suitability for purchase 

can take a significant amount of time and effort. Especially considering that there are many 

commercial simulation providers available in the field. 

Regarding the used engines, the information was available in 9 cases out of 12 (75%). The 

UE game engine is noted in total 5 cases (42%) and then Unity in 3 cases (25%). Only in 

one case a custom built engine is noted (Cognata). In overall, the UE game engine seems to 

be currently the most popular choice for modern simulations found for this work. 

Table 2. The information about the environments and included actor assets. 

 

Environment 

For Driving Actors 

Urban Off-road Humans Cars 

CARLA T - + + 

AirSim T C F M G - + 

Deepdrive R - - + 

LGSVL Simulator C - + + 

Sim4CV T D G + + 

SynCity T C H D F U H G + + 

Unikie C U H + + 

rFpro T C R - + + 

Cognata C - + + 

SCANeR Studio C R - NA + 

Highwai C - + + 

NVIDIA Drive C H - NA NA 

Table legend: 

Environment Urban: T - town, C - city, R - road track, H - highway 

Environment Off-road: F - forest, D - desert, M - mountains, G - grassy field, U - underground mine, H – harbor 

The results show that the main interest in this work to have the simulation being suitable out 

of the box for both urban and off-road vehicles, is satisfied only in 4 cases (33%). From 

those (AirSim, Sim4CV, SynCity, Unikie) only AirSim is open source and available for 
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free. This is a surprising result that there is so few off-road options. In contrast, at least one 

urban environment is provided in every simulation. 

Two unique environments were noted, besides the forest, mountains, desert and grassy 

plains. These two were the underground mine and harbor. Both provided by commercial 

providers (SynCity and Unikie). 

The featured actor assets in simulations seem to be present in most cases. Usually this 

information tends to be not documented but available through alternative sources (i.e. videos 

and product presentations). Car assets (besides the main one) were found to be included in 

11 cases out of 12 (92%) and human assets in 8 cases (67%). The information was not 

available for humans in 2 cases (17%) and for cars in 1 case (8%). The least available 

information was about NVIDIA Drive, which is surprising as they are a big provider on the 

market and have presented their simulation at large product shows since GTC 2018. 

Table 3. The information about the sensors. 

 Sensors 

Cameras Others 

RGB Depth Thermal / IR Lidar Radar 

CARLA + + - + - 

AirSim + + + + - 

Deepdrive + + - - - 

LGSVL Simulator + + - + + 

Sim4CV + + - - - 

SynCity + + + + + 

Unikie + - - + - 

rFpro + + NA + + 

Cognata + NA NA + + 

SCANeR Studio + NA NA + + 

Highwai + + + + NA 

NVIDIA Drive + NA NA + + 

Sensors are the most documented features throughout all the simulations. Starting from the 

cameras, besides the regular RGB one (which is available for all), the depth camera is 

provided in 8 cases out of 12 (67%) and the thermal IR camera in 3 cases (17%). No 

information was found in 3 cases for the depth camera and in 4 cases for the thermal IR 

camera (all commercial products). For the off-road vehicles the rare presence of the thermal 
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IR camera may be a significant constraint as other sensors do not provide enough 

information to detect humans in nature. 

From the other sensors, lidar is the most provided sensor being present in 10 cases (83%). 

Radar is less common, noted in 6 cases (50%). For radar, only in one case (Highwai) the 

information was not found. 

Table 4. The information about the output training labels. 

 

Output Training Labels 

Semantic Segmentation 2D bounding box 3D bounding box 

CARLA + + + 

AirSim + -* -* 

Deepdrive -* -* + 

LGSVL Simulator + + + 

Sim4CV + + + 

SynCity + + + 

Unikie NA NA NA37 

rFpro + NA NA 

Cognata + NA NA 

SCANeR Studio + NA NA 

Highwai NA38 + + 

NVIDIA Drive + + NA 

*- Not provided by the simulation but can be extracted using the game engine’s own tools. 

Somewhat surprising is to see that even from the available documentation, not all 

simulations provide the featured output training labels. Still, most simulations provide at 

minimum one and for some it is at least mentioned in the documentation if it is a planned 

feature or what is the workaround options to get such information (e.g. retrieving the labels 

directly from the game engine). 

From the output training labels, semantic segmentation is most often provided, being there 

in 9 cases (75%). For the bounding boxes the situation is less clear. 2D and 3D bounding 

                                                 
37 Unikie homepage declares that in their simulation the data can be automatically labeled but the exact labels are not specified. 
38 Highwai provides object segmentation but no mentions noted about semantic segmentation. 
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boxes both in 6 cases (50%) indicate that it cannot be taken for granted that a simulation for 

training ML models has all the main labels out of the box. For the large amount of 

commercial cases (33-42% for the bounding boxes and 17% for semantic segmentation) the 

information remains unknown. 

In case of common features across all the results, the urban environment and regular camera 

images are provided in all of the surveyed simulations. The information was not found only 

in case of commercial simulations. SynCity was the only commercial simulation for which 

all the featured environmens, sensors and output labels were available.  

Finally, if one has to choose a simulation for further validation and off-road in mind, a free 

and open source one seems to be a good starting point. But the problem is that in this case 

there is no choice – none of the free ones include all the features. Only AirSim has off-road 

environments included and is free. Even though AirSim has its constraints (extracting 

important output training labels is only through the game engine’s own tools), a fair amount 

of information is available about this simulation and it uses widely known game engine UE 

which means a potentially large support network for extracting missing labels using UE 

tools. AirSim has been a popular choice already for many users in the research field (during 

this work at least five published research papers encountered during this work used AirSim 

[5,6,16,17,19] and four more [13,14,15,18] mentioned it, all within 2017-2019). There are 

also some papers about CARLA, and their GitHub activity seems active, but there is no off-

road environment. This is a significant constraint of CARLA. 

In overall, the choices are limited and lack of information about most commecial products 

prevent making clear decisions about existing simulations. Which leads to a thought that 

perhaps developing a new free product with all the featured properties may be worth to 

evaluate further. Similarly, contributing to an existing open source solution could be of 

value. 

5.1 Discussion 

During the survey several thoughts and questions came up, some of those not fitting in the 

scope of this work (e.g. importance of high-fidelity, choosing the engine, simulation design 

and architecture, hardware requirements). Two of the closest ones to the scope of this work 

are listed here. 
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First, it became apparent that while the open source simulations are fairly well documented 

but almost none of the commercial products provide such detailed information online, then 

it is not really possible to compare the open source and commercial products in detail by 

simply surveying them. At least not without actually purchasing (or having some direct 

access to) the commercial products themselves. This more thorough evaluation and testing 

of some selected products is needed and could be done as a future work. 

Secondly, before rushing into the process of creating a new simulation that would be suitable 

for both off-road and urban, one needs to re-evaluate the need for urban. Several seemingly 

high quality commercial simulations already exist for urban. If the main interest is on off-

road then perhaps it is worth to consider contributing to an existing open source solution in 

order to improve it for off-road. And, if this is for some reason not possible (because of any 

existing design constraints etc.), then return to the idea of creating a new one, and then focus 

on off-road only. 
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6 Conclusion 

This work guided the reader to the world of simulations and synthetic labeled data 

generation for training ML models for autonomous vehicles. The importance of labeled data 

is emphasized over the large quantity of unlabeled data. Briefly, the reason of this work was 

mentioned and the main questions introduced. Regarding vehicles, the focus was expanded 

from common urban-only to also off-road. 

Different aspects of the simulations were described for better understanding of the features 

selected in the survey. Briefly, the simulation environments (including actors), sensors and 

output labels were introduced.  

Then the methodology and features of this survey were clarified. The features of the 

simulations for this survey were: licensing, documentation, the used engine, included 

driving environments, sensors and the output training labels. 

All together 12 simulations out of 39 were surveyed, each of the 12 holding a small 

descriptive chapter of its own, with found facts and images.  

After the surveyed simulations the results were described and presented in a table form. The 

results were divided into four separate tables. Table 1 – general information about the 

simulation, including licensing, documentation and the used engine. Table 2 – provided 

driving environments with included actors. Table 3 – provided sensors. Table 4 – provided 

output training labels for ML. Also the amount of unknown information (not found to be 

available) was shown. The initial questions about simulations (see chapter 1) were answered 

and some noticed constraints and findings are brought out. Briefly, few thoughts which 

appeared during the process of this survey and led to the need for future work, were 

introduced. 

In overall, this work is expected to fill the gap about simulations for ML and autonomous 

vehicles. It is a compact overview of currently (Q1 2019) provided solutions found online. 

There may be more simulations which were not found so the list is not absolute. But for 

choosing a simulation for further evaluation or to choose features for a new simulation, this 

work can be a useful starting point. For how long this information remains reasonably valid, 

is unclear, as the developing field of autonomous vehicles and ML applications seems to be 

changing rapidly today. 
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Appendix 

I. Glossary 

Autonomous Vehicle39 (in this work: Fully autonomous vehicle) – a vehicle that is capable 

of sensing its environment and moving with no human input.  

Machine Learning40 (ML) – a computer science study field where a computer is “taught” 

through a mathematical model to do a task. 

Ground Truth41 – information provided by direct observation.  

Labeled data42 in ML – grouped data that is marked with one or more labels (meaningful 

tag for the group of data). 

Manual labeling - drawing bounding boxes around humans and cars, marking different 

areas of the image as road, buildings, trees, sky, etc. 

Automated Driving Systems43 (ADS) – a term used in automotive industry to refer to 

certain amount of automated driving aid in vehicles.  

Advanced Driver Assistance Systems44 (ADAS) – a term used in automotive industry to 

refer to sensors, functions, technology suppliers used in vehicles to assist its driver with 

certain functions (e.g. parking assistance).

                                                 
39 https://en.wikipedia.org/wiki/Self-driving_car 
40 https://en.wikipedia.org/wiki/Machine_learning 
41 https://en.wikipedia.org/wiki/Ground_truth 
42 https://en.wikipedia.org/wiki/Labeled_data 
43 https://en.wikipedia.org/wiki/Automated_driving_system 
44 https://www.aaam.org/automated-driving-systems-ads-introduction-technology-vehicle-connectivity/ 

https://en.wikipedia.org/wiki/Self-driving_car
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Ground_truth
https://en.wikipedia.org/wiki/Labeled_data
https://en.wikipedia.org/wiki/Automated_driving_system
https://www.aaam.org/automated-driving-systems-ads-introduction-technology-vehicle-connectivity/
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CARLA MIT + + + + UE T - + + + + - + - + + + 

AirSim MIT + + + + UE T C F M G - + + + + + - + -* -* 

Deepdrive MIT + - + - UE R - - + + + - - - -* -* + 

LGSVL 

Simulator 

Propr + + + + Unity C - + + + + - + + + + + 

Sim4CV Propr + - - - UE T D G + + + + - - - + + + 

SynCity Propr NA45  NA NA NA Unity T C H D F G U M 

h 

+ + + + + + + + + + 

Unikie Propr NA NA NA NA NA C U H + + + - - + - NA NA NA46 

rFpro Propr NA NA NA NA NA T C R - + + + + NA + + + NA NA 

Cognata Propr NA NA NA NA Custo

m 

C - + + + NA NA + + + NA NA 

SCANeR Studio Propr NA NA NA NA NA C R - NA + + NA NA + + + NA NA 

Highwai Propr NA NA NA NA Unity C - + + + + + + NA NA47 + + 

NVIDIA Drive Propr NA NA NA NA UE C H - NA NA + NA NA + + + + NA 

Figure 29. 

Table legend - Urban and Off-road: Urban: T - town, C - city, R - road track, H - highway. Off-road: F - forest, D - desert, M - mountains, G - grassy field, U - underground mine, H - harbor 

Licence: blue – open source, red – not open (commercial) 

 

                                                 
* - Not provided by the simulation but can be extracted using the game engine’s own tools. 
45 SynCity documentation site docs.syncity.com was taken down in April 2019 and since then no documentation about their current product was found online. The GitHub repository https://github.com/Cvedia/syncity-redist provides installation 
intructions to an SDK from 2018 but its relevance to their present product is unknown. 
46 Unikie homepage declares that in their simulation the data can be automatically labeled but the exact labels are not specified. 
47 Highwai provides object segmentation but no mentions noted about semantic segmentation. 

https://github.com/Cvedia/syncity-redist


III. Initial List of Simulations 

Here is the initial sample of 39 seemingly available simulations found online. The list is in 

no particular order. 

1. Apollo 

2. Autoware 

3. ANVEL 

4. Deepdrive 2.0 

5. NVIDIA Drive 

6. Waymo 

7. LGSVL Simulator 

8. Aurora 

9. Wayve 

10. Highwai 

11. Unikie 

12. Zoox 

13. Siemens TASS PreScan 

14. VIRES 

15. Righthook 

16. Truevision.ai 

17. SYNTHIA Dataset 

18. BI sim 

19. VDrift 

20. TORCS 

21. AutonoVi 

22. Aorta 

23. Dash 

24. Sim4CV 

25. CARLA 

26. AirSim 

27. The CAT vehicle testbed 

28. Holodeck 

29. Gym-UnrealCV 

30. SynCity 

31. Cognata 

32. Parallel Domain 

33. ANSYS VREXPERIENCE 

34. SCANeR Studio 

35. rFpro 

36. Gazebo 

37. V-Rep 

38. ARGoS 

39. Udacity self-driving car sim 
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