
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Kertu Toompea

Simulations for Training Machine Learning Models

for Autonomous Vehicles

Bachelor’s Thesis (9 ECTS)

Supervisors:

Raimond-Hendrik Tunnel, MSc

Tambet Matiisen, MSc

Tartu 2019

2

Simulations for Training Machine Learning Models for Autonomous Vehicles

Abstract:

Training machine learning models for autonomous vehicles requires a lot of data which is

time consuming and tedious to label manually. Simulated virtual environments help to

automate this process. In this work these virtual environments are called simulations. The

goal of this thesis is to survey the most suitable simulations for off-road vehicles (while not

discarding the urban option). Only the simulations which provide labeled output data, are

included in this work. The chosen 12 simulations are surveyed based on the information

found online. The simulations are then analyzed based on the predefined features and

categorized according to their suitability for training machine learning models for off-road

vehicles. The results are shown in a table for comparison. The main purpose of this work is

to map the seemingly large landscape of simulations and give a compact picture of the

situation.

Keywords:

Simulations, environments, off-road, autonomous vehicles, sensors, machine learning,

automated labeling, survey, overview

CERCS: P170 Computer science

Masinõppe Mudelite Treenimise Simulatsioonid Autonoomsetele Sõidukitele

Lühikokkuvõte:

Masinõppe mudelite treenimine autonoomsete sõidukite jaoks nõuab palju andmeid, mille

käsitsi märgendamine on aeganõudev. Simulatsioonid aitavad seda protsessi

automatiseerida. Käesolev töö koostab ülevaate 12-st internetiotsingu abil leitud

simulatsioonist ja analüüsib neid lähtuvalt nende sobivusest maastikul liikuvatele

sõidukitele (säilitades võimaluse liikuda ka linnakeskkonnas).

Võtmesõnad:

Simulatsioonid, keskkonnad, maastik, autonoomsed sõidukid, sensorid, masinõpe,

automaatne märgendamine, ülevaade

CERCS: P170 Informaatika

3

Table of Contents

1 Introduction ... 4

2 Aspects of Simulations .. 7

2.1 Environments .. 7

2.2 Sensors .. 8

2.3 Output Training Labels ... 11

3 Methodology and Features .. 14

4 Simulations .. 17

4.1 CARLA ... 17

4.2 AirSim .. 18

4.3 Deepdrive 2.0 ... 20

4.4 LGSVL Simulator .. 21

4.5 Sim4CV .. 23

4.6 SynCity ... 24

4.7 Unikie ... 26

4.8 rFpro ... 27

4.9 Cognata ... 29

4.10 SCANeR Studio .. 30

4.11 Highwai ... 31

4.12 NVIDIA Drive .. 32

5 Results ... 34

5.1 Discussion ... 38

6 Conclusion ... 40

7 References ... 41

Appendix ... 44

I. Glossary .. 44

II. Table – All Results ... 45

III. Initial List of Simulations ... 46

IV. Licence ... 47

4

1 Introduction

Development of autonomous vehicles is an active field, binding together the automotive

industry and computer science. Machine learning (ML) is one of the main computer science

fields that contributes to the development and testing of autonomous vehicles. However, a

lot of labeled data is needed to train ML models to achieve the desired driving behavior and

perception of the environment surrounding the vehicle.

The amount of data needed for training and testing ML models for autonomous vehicles is

comparable to hundreds of millions (or even billions) physically driven miles [1]. It is time-

consuming to create and label such an amount of data with a large variety of scenarios in

the real world. Therefore virtual environments are used to simulate the real world and collect

automatically labeled data faster (Waymo: 25K virtual cars running 24/7 drive 10M

simulated miles per day1). In this thesis the virtual environments are called simulations. By

running a simulation (or several in parallel) non-stop on a modern computer hardware, a lot

more data can be generated efficiently, than a real vehicle with a driver could during the

same time. Also dangerous situations in simulations do not result in any actual damage.

Based on the different vehicles’ simulations found online, it is necessary to clarify that the

simulations described in this work are for training ML models for autonomous ground

vehicles’ obstacle detection. The simulations which are for training people to drive, testing

specific traffic scenarios, controlling actual steering/throttle/brake of a vehicle or simulating

vehicle dynamics, are not in the scope of this work.

Besides the amount of data and a ’safe’ environment, the main benefit of using the

simulations in the scope of this work, is their ability to generate and provide labeled data

for ML. Without labeling, the simulation can produce a large amount of data (e.g. batches

of hundreds of thousands images) but which then needs to be labeled manually. Manual

labeling is a tedious and time consuming work which is possible to avoid. Therefore

automatic labeling is one of the key value points in the simulations.

There are many simulations on the market and several interesting details about them (e.g.

how exactly they are made, which are most suitable for off-road use, to what extent they are

configurable, what simulation specific details affect the training of ML models for the most,

etc.).

1 https://youtu.be/Q0nGo2-y0xY?t=1880

https://youtu.be/Q0nGo2-y0xY?t=1880

5

Before diving into those details about every simulation, it is useful to have an overview of

simulations which are potentially suitable for further investigation. No such overview was

found which would give answers to the questions introduced in the following paragraph.

Therefore the survey made in this work maps the seemingly large landscape of simulations

and gives a compact picture of the situation. The focus is on the availability of sensors, off-

road vs urban environments and the output training labels needed for ML models. The

results (chapter 5) aim to serve as a guide for anyone choosing a simulation for a use case

that corresponds to the surveyed parameters.

This work finds answers to the following questions:

 How many of the available simulations come with built-in urban and off-road

environments?

 How many have dynamic objects (e.g. humans, vehicles) in their environments?

 How many provide specific sensors (e.g. cameras, lidar, radar)?

 How many output specific training labels (e.g. semantic segmentation, bounding

boxes) for ML?

 How many have a free-to-use licence?

 How many offer online documentation (i.e. installation and user guides)?

 How many are built on widely known game engines (i.e. Unreal Engine and Unity)?

 What are their constraints considering the above questions?

Related work found about existing simulations in the scope of this work was limited. A few

articles were found which describe a certain simulation product (e.g. CARLA [2], AirSim

[5,6]). Other found articles related to simulations and training ML models with synthetic

data, mostly described a method [4,7], approach [16,22] or a use case [11,10]. One publicly

available overview of simulations was found by Transport Systems Catapult from 2018 [12],

but it was too broad and focused on automated driving systems (ADS), not training ML

models for fully autonomous vehicles. One more overview report was found but it was not

freely available2. Another seemingly promising article about different simulation platforms

was found [13] but it did not include any details about actual simulations and states that

many simulations were not yet available at the time of its writing. Finally, one overview of

simulations was found as part of a wider review about perception systems and simulators

2 https://www.strategyanalytics.com/access-services/automotive/autonomous-vehicles/reports/report-

detail/simulation-for-autonomous-vehicles

https://www.strategyanalytics.com/access-services/automotive/autonomous-vehicles/reports/report-detail/simulation-for-autonomous-vehicles
https://www.strategyanalytics.com/access-services/automotive/autonomous-vehicles/reports/report-detail/simulation-for-autonomous-vehicles

6

for autonomous vehicles [14]. In chapter 5 of this work, different types of simulation

platforms are introduced, partly including the simulations interesting for this work here.

As a result, a fresh overview of simulations in the focus of this work was needed. This need

is mainly driven by a personal interest in creating a new simulation which is suitable for

both urban and off-road vehicles, with the main focus on the off-road.

This work is divided into 6 chapters. The first one here is the Introduction that guided the

reader into the world of targeted simulations and described the purpose of this work. The

2nd chapter, Aspects of Simulations, introduces what are the main interest points of the

surveyed simulations. The 3rd chapter, Methodology and Features, describes what exactly

is surveyed in the simulations and how the information was collected. The 4th chapter,

Simulations, holds brief descriptions of each surveyed simulation and presents its collected

information about the features. The 5th chapter, Results, shows the gathered information as

a whole and draws an interpretation from the results. The 6th and the final chapter,

Conclusion, briefly visits the key results of this work.

The reader of this work is expected to be familiar with ML at an introductory level and

understand the terminology which is specified in the Glossary.

7

2 Aspects of Simulations

Before describing the methodology and features of this survey, the main aspects of

simulations in the scope of this work are introduced. This chapter gives a better

understanding why certain features were selected for surveying and what is their role in the

simulation. The aspects cover the environments, sensors and output training labels in a

simulation.

2.1 Environments

The word ‘environment’ in a simulation usually refers to either a driving environment (e.g.

urban, off-road) or a weather conditions (e.g. sunny, cloudy, rain). While it is important to

have different weather conditions in a simulation, in this work the main focus is on the

driving environments.

The driving environment in a simulation defines for which kind of physical environments

and vehicles the simulation can be used. For example, if an ML model is trained on the data

retrieved from an urban city, it will not perform well if tested in a forest. The training and

testing data are too different.

Many simulations are built using game engines. The ones most often used are Unreal

Engine3 (UE) and Unity4. This enables game environments to be used also in simulations.

Still, attention to physics-based fidelity is required which is important for a realistic driving

environment but not necessarily for a game. While it is possible to create new game

environments (as game assets5), it is not trivial and requires dedicated skills. When using

the existing high-fidelity environments available in asset stores, it can be time consuming

to find the right ones, they can cost extra or there may be a technical barrier to overcome

before they can be used. Regardless of the reasons behind mentioned constraints, in this

work the surveyed driving environments are the ones that are already included with the

simulation and can be used out of the box for both urban and off-road driving.

The most commonly provided simulation environments are urban (see chapter 5 – Results).

They can vary from a short fixed size road track to large cities generated from real world

maps with a variety of roads, buildings and traffic intersections. Less common are the off-

3 https://www.unrealengine.com
4 https://unity.com/
5 Game asset - anything that can go into a game (environment, 3D objects, etc.).

https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-

assets--cms-24380

https://www.unrealengine.com/
https://unity.com/
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380

8

road environments that provide driving options in forests, fields, mountains, underground

mines and other places interesting for an off-road vehicle.

Actors

A simulation can have dynamic objects (actors) like humans and vehicles that have specific

behaviors in the environment. Besides the main driving actor vehicle (aka the ego-vehicle),

which is typically provided, some simulations allow adding new secondary actors. Similarly

with the environments, it is not always trivial to add new actor assets into some existing

simulation. So in this work, the availability of already included actors (humans, vehicles) is

surveyed.

For all the provided environments it is important that the different objects (e.g. ground,

vegetation, road, buildings, people, other vehicles, etc.) in the simulation can be

automatically labeled for ML. This is described more closely in chapter 2.3 – Output

Training Labels.

In addition to the environments, the actors and the output that the simulation produces, one

more important part is introduced: the sensors which take input from the environment and

provide data for the output. The next chapter introduces the main interesting sensors in the

scope of this work.

2.2 Sensors

The main sensors which make up an autonomous vehicle’s perception system, are cameras,

lidars and radars [17]. In this work, additionally a thermal infrared (IR) camera is added into

the scope for a better human detection in off-road environments. While there are other

important sensors in autonomous vehicles, the selection is made to limit the list for the scope

of this work.

Before getting to the actual simulations where the presence of those sensors is surveyed, an

introduction to each sensor is made. It will give an understanding how to think of those

sensors in the virtual world and briefly describes how they work.

Cameras

Cameras in simulations are described as sensors. There can be different ones. According to

the image type they can provide, cameras in simulations can be either RGB, depth, thermal

IR, semantic segmentation or some other type not limited to this list. It is important to note

9

that unlike other cameras here, there is no equivalent for semantic segmentation camera in

the real world. The images from those cameras provide unique training data for ML.

The RGB camera generates regular camera images from the surroundings. The depth camera

generates ground-truth depth data where each pixel is marked with the distance from the

camera. The thermal IR camera generates images where each pixel estimates the

temperature of surrounding objects. The semantic segmentation camera generates images

with each class (e.g. road, car, human) denoted by a different color (e.g. road=purple,

car=blue, human=red). Example images from RGB, depth and semantic segmentation

cameras are in Figure 1. As the semantic segmentation is also an important output label, it

will be described more closely under a dedicated chapter (2.3 – Output Training Labels).

Figure 1. From the left: RGB, depth, semantic segmentation.6

Cameras in simulations usually have the following parameters which can be configured:

 image size (width, height) in pixels

 field of view (FOV) in degrees

 position and orientation relative to the vehicle

In this work, the surveyed cameras in the simulations are the RGB, depth and thermal IR

camera.

Lidar

The lidar sensor in the real world measures distance to its target objects using laser beams.

In a simulation it is implemented using ray casting7 where each ray represents a real world

laser beam (Figure 2). The sensor generates data which is a measurement of all the lidar

sample point coordinates in 3D space at a given time. From lidar sample points it is possible

to detect objects in 3D space. The more sample points, the better accuracy in detection as

the shape of an object becomes more clear.

6 https://carla.readthedocs.io/en/latest/cameras_and_sensors/
7 https://en.wikipedia.org/wiki/Ray_casting

https://carla.readthedocs.io/en/latest/cameras_and_sensors/
https://en.wikipedia.org/wiki/Ray_casting

10

Figure 2. Example image of a lidar point cloud.8

The configurable attributes of a typical lidar sensor are:

 number of lasers

 range

 number of points generated per second

 rotation frequency

 FOV (horizontal and vertical) in degrees

 position and orientation relative to the vehicle

In the real world, lidar sensor cannot ’see’ through objects. It is an optical sensor and

obstacles like grass, tree leaves, fog and rain limit its view. If the sensor is implemented in

a realistic way in the simulation, it will not penetrate objects. For this, an electromagnetic

sensor type is needed, such as radar.

Radar

The radar sensor in the real world measures usually the speed and distance of target objects

in its field of view. Differently from the lidar, which is an optical sensor, radar uses

electromagnetic waves to sense the surroundings. In a simulation (Figure 3), there are

several ways to implement radar [20]. A simplified overview of two ways are given. One is

that the radio wave is created as a cone-shaped object (starting from the sensor) and the

measurement points are recorded in 3D space where the cone intersects with other objects.

The second is ray tracing9, or ray casting as it is for lidar. Objects which can or cannot be

penetrated by the wave, are defined in the engine [21]. If the simulated radar sensor is used

8 https://carla.readthedocs.io/en/latest/cameras_and_sensors/
9 https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

https://carla.readthedocs.io/en/latest/cameras_and_sensors/
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

11

to measure also the speed of an object, it can be calculated from several measurements in a

row, using the closest points [20].

Figure 3. Simulated radar view visualization (in yellow color).10

The configurable attributes of a typical radar sensor are based on its implementation

example in Unity game engine [21]. These are:

 range

 FOV (horizontal and vertical) in degrees

 position and orientation relative to the vehicle

Both, the lidar and radar are used in autonomous vehicles and the simulations. Without

going into further details if or which sensor should be chosen from those two, they both are

important sensors in this survey.

2.3 Output Training Labels

The final important aspect is the output labels. The output training labels (or the ground

truth) are what the simulation outputs as the training data for ML. The main purpose of a

simulation is not to simply provide a large amount of data but to provide data which is

already labeled. Labeling, when applied automatically, saves time and is more accurate than

if done by a human. Easily extracted labeled data is one of the main value points why the

simulations in the scope of this work are used. There are different types of labels. Here

semantic segmentation and bounding boxes (2D and 3D) are described which all are

included in the surveyed features.

10 https://m.eet.com/content/images/eetimes/Fig2-View_from_simulator_1511161122.jpg

https://m.eet.com/content/images/eetimes/Fig2-View_from_simulator_1511161122.jpg

12

Semantic Segmentation

Semantic segmentation is a labeling type in ML where every pixel in an image is marked

with information about to which object class it belongs (Figure 4).

Figure 4. Semantic segmentation example.11

It is a useful and detailed method to classify data for ML because every label meaningfully

(i.e. semantically) describes the corresponding object [8,9]. In a simulation, for example if

a model needs to learn obstacles on the vehicle’s path, the exact boundaries as well as the

type of every obstacle is available with semantic segmentation. Also, considering the

semantic class of an obstacle, different actions can be taken, e.g detecting a human may

require a driving path modification but detecting a small rock may not.

Semantic segmentation of a 3D point cloud, e.g. from a lidar, is similar but the pixels are

now points in a 3D space and each point is assigned a label as the type of the object it

belongs to. In this work, only 2D semantic segmentation is considered in the simulations.

11 https://carla.readthedocs.io/en/latest/cameras_and_sensors

https://carla.readthedocs.io/en/latest/cameras_and_sensors

13

Bounding Boxes

Bounding boxes in ML are labels that are used for marking the smallest 2D or 3D box

surrounding an object (e.g. a human, vehicle, etc.). Examples of 2D and 3D bounding boxes

are in Figure 5.

Figure 5. Bounding boxes 2D (left) and 3D (right).12

The box (axis-aligned) shows the maximum bounds of an object along each world axis.

Bounding boxes are used for moving objects (e.g. humans, vehicles). This is mainly because

it is a faster method than semantic segmentation but also because the bounding boxes can

be used for tracking. Tracking the moving objects is useful for predicting their path. For

example a vehicle can adjust its driving direction to avoid humans or other vehicles who are

on a collision course with it. In combination, semantic segmentation and bounding boxes

provide more information for learning about obstacles and to avoid them.

12 https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/boxcars-improving-

vehicle-fine-grained-recognition-using-3d-bounding-boxes-in-traffic-surveillance/

https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/boxcars-improving-vehicle-fine-grained-recognition-using-3d-bounding-boxes-in-traffic-surveillance/
https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/boxcars-improving-vehicle-fine-grained-recognition-using-3d-bounding-boxes-in-traffic-surveillance/

14

3 Methodology and Features

The target group of the survey consisted of simulations which are used for generating

labeled data for training ML models for autonomous vehicles. The simulations were found

online, via Google search and among GitHub repositories, using mainly (but not limited to)

the following keywords in varying combinations: simulation, simulator, autonomous,

vehicles, cars, machines, driving, machine learning, training, models, synthetic, artificial,

data, labels, bounding box, semantic segmentation, off-road, environments.

From the results with videos, images, home pages, code repositories or dedicated

documentation sites, the first sample was made from what seemed to be relevant to the

targeted simulations, or looked more popular. Then the list was narrowed down, by a more

thorough search about each simulation by using mainly its homepage, source code in GitHub

and results from Google and YouTube.

Finally only those simulations were selected for this work which:

1. had documented or video reference about at least one of the surveyed sensors,

2. had documented or video reference about at least one of the surveyed environments,

3. had documented or video reference about at least one of the surveyed output training

labels,

4. in case of GitHub repository, had activity within a few months from the time of the

search,

5. were found to have news coverage or significant mentions since 2018 (especially

from GTC13 2018),

6. and whose homepage information seemed not older than 2018.

The search was done in Q1 2019 and finally 12 simulations were selected out of the initial

39.

The features of the simulations for this work were chosen based on what was available in

the found simulations and what is important for training ML models for off-road vehicles.

The information what is important for ML models was gathered from the course

Introduction to Computational Neuroscience in University of Tartu (UT), from cooperation

with the UT Computational Neuroscience Lab and from the found research papers

[17,3,5,4].

13 https://www.nvidia.com/en-us/gtc/

https://www.nvidia.com/en-us/gtc/

15

As the documentation about the simulations varied in its presence and detail, missing

information was requested via direct email or a provided online contact form. From those

requests only one received an answer (from Craig Quiter, the creator of the simulation

Deepdrive 2.0). The remaining missing information is marked as not available (NA).

The features interesting for training ML models from simulation data, were introduced in

the previous chapter. Here the licence type and documentation availability are added which

are useful when choosing a simulation for further validation or use.

The following features are finally taken into account for each simulation:

1. Licence – the licence type and source code availability (open source).

2. Documentation – online documentation availability for different usage steps:

 Installation

 Environment usage

 Sensor configuration

 Output labels usage.

3. Engine – the used engine.

4. Driving environment – included driving environments:

 Urban

 Off-road.

5. Actors in environment – included actor assets of:

 Cars

 Humans.

6. Sensors – availability (out of the box) of the surveyed sensors:

 Cameras (RGB, depth, thermal / IR

 Lidar

 Radar.

7. Output training labels – availability (out of the box) of the surveyed output labels:

 Semantic segmentation

 2D bounding box

 3D bounding box.

Licence types for the simulations are roughly divided to free and commercial (not free).

Here a ’free’ licence is a free-to-use licence (i.e. GPL, MIT) which is included with the

simulation. It is important to note here that if an open source simulation has for example

16

MIT licence but is built on a game engine such as UE, then the simulation and its engine

component (UE) are clearly separated in the terms of licencing. UE has its own licencing

terms. Similarly, a simulation can have other components included which have their own

licence. Commercial licences are usually not free-to-use and can have different terms/costs

for users. Here they are simplified to one type ’proprietary’.

Based on those features the information is collected throughout the work and presented in

chapter 5 – Results.

17

4 Simulations

Here the 12 selected simulations are listed. For each, a brief description of its general

information, environments, sensors and output training labels is provided. Here, ‘featured’

means what is surveyed in the simulations (e.g. featured sensors are the cameras, lidar and

radar that are listed in the previous chapter).

4.1 CARLA

CARLA14 is an open source simulation for autonomous driving research (Figure 6). It is

created by research scientists from Intel Labs, Toyota Research Institute and Computer

Vision Center in Barcelona [2]. The simulation is built on the UE game engine. It was

published in March 2018 and its latest version at the time of the survey was 0.9.5.

Figure 6. Example images from CARLA simulation.

Environments

For the driving environment, CARLA provides 7 ready made towns, from which one is rural

(using different combinations of provided urban assets), and 15 different predefined weather

conditions. It is possible to build new custom towns (with provided urban assets) and

configure the weather. No off-road environment is provided. From the actor assets, humans

and cars are provided.

Sensors

From the featured sensors the simulation provides cameras (RGB, depth) and lidar. No radar

is provided. Additional sensors provided in CARLA, but not featured in the survey, are a

collision detector, lane detector, obstacle sensors, accelerometer and GPS. In CARLA it is

14 http://carla.org/

http://carla.org/

18

also possible to add other types of sensors through the API. This is a good customization

option but it is not clear within what limits the other types of sensors can be added (e.g. is

the limitation within the used game engine or are there any additional constraints). The

configurable parameters for sensors are what is typically available for the cameras and lidar

(see chapter 2). More exact details about their sensor configurations are available on their

documentation site15.

Output Training Labels

The simulation provides 12 semantic segmentation classes (Unlabeled, Building, Fence,

Other, Pedestrian, Pole, Road line, Road, Sidewalk, Vegetation, Car, Wall, Traffic sign) and

both 2D and 3D bounding boxes for all the dynamic objects in the simulation (Figure 7).

Figure 7. From the left: semantic segmentation, 2D bounding boxes, 3D bounding boxes in CARLA.

Additionally, CARLA provides information about the states of the traffic lights and the

speed limit at the current location of the vehicle.

4.2 AirSim

AirSim16 is an open source simulation for autonomous systems, including aerial and ground

vehicles. It is developed by Microsoft for AI research in computer vision and reinforcement

learning. Its first documented release was published in September 2017 and the latest

version at the time of the survey was 1.2.0. For driving environments, their newer pre-

release v1.2.1 is taken into account. The simulation is available on UE and Unity, but as the

Unity version is still experimental at the time of writing, then only the UE version is

surveyed. Example images from the simulation are in Figure 8.

15 https://carla.readthedocs.io/en/latest/
16 https://github.com/Microsoft/AirSim

https://carla.readthedocs.io/en/latest/
https://github.com/Microsoft/AirSim

19

Figure 8. Example images from AirSim simulation.

Environments

AirSim is developed as a UE plugin so it can be easily added to an UE environment. This is

useful if custom driving environments are needed. AirSim has 8 different weather options

and 9 different driving environments (small urban neighbourhood block, large city with

moving vehicles and pedestrians, Zhangjiajie mountains in China, Redwood forest, dynamic

forest environment for camera detection of animals, plains with windmill farm, short

coastline segment similar to Maui's Hana road, Africa terrain and animated animals,

mountain landscape with power lines for drone camera detection). From these environments

5 are off-road. While it is rare to have off-road environments available, AirSim was initially

made for aerial vehicles and does not provide large variety of objects for ground vehicles

there. This constraint can be overcome by importing a new environment from a 3rd party or

creating a new custom environment. The latter option can be time consuming and complex

process though, if a user has no prior experience in environment design. From the actor

assets, cars are provided. No human assets are provided.

Sensors

From the featured sensors AirSim provides cameras (RGB, depth, thermal IR) and a lidar.

No radar is provided. Additional non-featured sensors in AirSim are barometer,

magnetometer, IMU, GPS and distance sensors. The configuration options are comparable

to what is typically available for the cameras and lidar (see chapter 2). More exact details

about their sensor configurations are available on their documentation site.

Output Training Labels

The simulation provides semantic segmentation and bounding boxes (2D and 3D). For

semantic segmentation (Figure 9), a segmentation class is provided for every mesh object

20

(in the range of 0-255)17 in the simulation. Using their API, existing segmentation can be

modified to set desired semantic information (within provided range).

Figure 9. Example image of the semantic segmentation output label in AirSim.

For bounding boxes, AirSim does not provide API tools. While it is a significant constraint,

it can be overcome using UE-s own tools to get 2D and 3D bounding boxes of desired

objects.

4.3 Deepdrive 2.0

Deepdrive 2.018 is an open source simulation for experimenting with reinforcement learning

of autonomous driving (Figure 10). It is built on UE and supports an external Python

plugin19 for simplified customization in UE. The simulation is developed under the initiative

of Craig Quiter and should not be confused with its earlier version which was a different

product but named similarly Deepdrive (without 2.0). In addition to the online

documentation, the following includes also information received directly over email.

Figure 10. Example image from Deepdrive 2.0 simulation.

17 https://microsoft.github.io/AirSim/docs/image_apis/#segmentation
18 https://deepdrive.io/
19 https://github.com/20tab/UnrealEnginePython

https://microsoft.github.io/AirSim/docs/image_apis/#segmentation
https://deepdrive.io/
https://github.com/20tab/UnrealEnginePython

21

Environments

The simulation comes with one 3 km track for road driving. No other urban environments

are included, neither any off-road. From the actor assets, cars are provided. No human assets

are provided.

Sensors

From the featured sensors, cameras (RGB, depth) are provided. From other non-featured

cameras there are five additional ones (reflectivity, world normals, ambient occlusion, base

color, roughness – see Figure 11). The latter ones are not specific to this simulation but they

are the typical camera views provided in UE.

Figure 11. Example camera views from Deepdrive 2.0.

Lidar and radar sensors are not provided. From other non-featured sensors, many different

ones are available, some of them vehicle and racing specific (e.g. IMU, brake, handbrake,

distance, lap number, collision, position, steering, throttle). Additional information (within

the limitation of the UE-s own possibilities) can be accessed using the external Python

plugin.

Output Training Labels

Deepdrive 2.0 provides 3D bounding boxes for the cars in the simulation. Other training

labels are not provided by the simulation itself. This constraint can be overcome using the

Python plugin to extract the label information directly from UE.

4.4 LGSVL Simulator

The LGSVL Simulator20 is a simulation software designed for developing and testing

autonomous vehicles (Figure 12). It is built on Unity and includes a Python API. Created by

the LG Electronics Silicon Valley Lab, its first release21 came in December 2018 and the

latest version at the time of the survey was 2019.03.

20 https://www.lgsvlsimulator.com/
21 https://github.com/lgsvl/simulator

https://www.lgsvlsimulator.com/
https://github.com/lgsvl/simulator

22

Figure 12. Example image from LGSVL simulation.

Environments

By default the simulation provides one urban driving map and options to change the map to

a different urban one. The map can be changed inside Unity. Also the parameters for

weather, traffic and pedestrians can be changed. No off-road environment is provided. From

the actor assets, humans and cars are provided.

Sensors

From the featured sensors, the simulation provides cameras (RGB, depth), lidar and radar.

Additionally available non-featured sensors are GPS and IMU.

Output Training Labels

The simulation provides semantic segmentation, 2D and 3D bounding boxes (Figure 13) for

the vehicles, pedestrians and unknown objects.

Figure 13. Example images22 of different output labels from LGSVL simulation. Upper left: semantic

segmentation (of the scene on its right), bottom left: 2D bounding boxes, bottom right: 3D bounding boxes.

22 https://www.youtube.com/watch?v=NgW1P75wiuA

https://www.youtube.com/watch?v=NgW1P75wiuA

23

4.5 Sim4CV

Sim4CV23 is a simulation for computer vision researchers. It is developed by King Abdullah

University of Science and Technology. The simulation (Figure 14) is built on UE and its

first release was published in 2017 as open source. The latest version at the time of the

survey is not open source and its exact version remains unknown as no public information

was found.

Figure 14. Example image from Sim4CV simulation.

Environments

From their video24 and the related research papers [22,15] the simulation has both urban and

off-road environments. It has one small town and for off-road it has one grassy field with

trees and one desert environment (Figure 15).

Figure 15. Examples of off-road environments in Sim4CV.

In their work [15] the creators describe adding environments easily with ’drag and drop’.

This seemingly simple option for adding new off-road environments is certainly interesting

for the scope of this survey but as no more information is provided, the final confirmation

23 https://sim4cv.org/
24 https://www.youtube.com/watch?v=SqAxzsQ7qUU

https://sim4cv.org/
https://www.youtube.com/watch?v=SqAxzsQ7qUU

24

has to be done by evaluating their product. From the actor assets, humans and cars both are

provided.

Sensors

From the featured sensors only the RGB and depth cameras are documented. The remaining

featured sensors (thermal IR camera, lidar, radar) are not provided.

Output Training Labels

The simulation provides semantic segmentation, 2D and 3D bounding boxes. The 3D

bounding box example was not found on any of their available outdoor environment images

but the other two labels in Sim4CV are shown in Figure 16.

Figure 16. Examples of the output labels. From the left: semantic segmentation, 2D bounding boxes.

Having all three featured labels available in addition to off-road environments makes it very

interesting product for further validation.

4.6 SynCity

SynCity25 is a commercial simulation for autonomous vehicles (including ground, air and

underwater). The simulation is built on the Unity game engine. It is developed by CVEDIA,

a private company based in Netherlands. They focus on providing custom need-based

environments and highly configurable sensors for their customers. The simulation is not

available online for free. Some examples from the simulation are in Figure 17.

25 https://syncity.com/

https://syncity.com/

25

Figure 17. Example images from SynCity simulation.

Environments

The environments are provided together with the simulation according to the customer

needs. Both urban and off-road environments are possible. From the examples on their

homepage, it is possible to choose from at least the following off-road environments: desert,

forestry and agricultural lands, savannah, marine (for ships/rescue), underground mines and

aerial (for drones). See Figure 18 for examples of available off-road environments:

Figure 18. Examples from SynCity off-road environments. From the left: desert, forest, savannah.

From the featured actor assets, humans and cars are available.

Sensors

From the featured sensors, all cameras (RGB, depth, thermal IR), lidar and radar are

provided. It is possible to add also custom sensors to the simulation and have every attribute

of a sensor configurable (within the limits provided by Unity).

Output Training Labels

All the featured labels are provided: semantic segmentation, 2D and 3D bounding boxes.

The output data is not limited to SynCity documentation and can be expanded using Unity’s

own possibilities.

26

4.7 Unikie

Unikie Simulator26 is a commercial simulation (Figure 19) mainly focusing on lidar based

autonomous systems, including cars, ships and underground mine special vehicles. It is

developed by Unikie, a private software company in Finland who provides tools also for

collecting and processing data from the simulation for machine learning. The used engine

remains unknown. The simulation itself and its documentation is not available for free.

Figure 19. Example image from Unikie simulation.

Environments

From their homepage, Unikie provides both urban and off-road environments. From off-

road, an underground mine and harbor are available. Having an underground mine is a rare

environment to offer and in this survey it is considered as an off-road driving option. This

unique environment is the main reason why this simulation is included in this work. The

harbor environment, even if not in the scope of this work, shows the variety in possible

environments and slightly distinguishes Unikie from many other surveyed simulations. In

addition, in Unikie it is possible to add custom environments. From the actor assets, humans

and cars are available.

Sensors

From the featured sensors only RGB cameras and lidar are found to be available. From the

non-featured sensors, IMU and GPS are mentioned on their homepage. Information about

other sensors remains unknown.

26 https://www.unikie.com/en/solutions/unikie-simulator/

https://www.unikie.com/en/solutions/unikie-simulator/

27

Output Training Labels

According to their homepage, Unikie simulation provides automatic labeling for machine

learning data, but no exact information was found about what kind of labeling is provided

or what are the label classes. So the information about semantic segmentation and bounding

boxes remains unknown. This makes Unikie different from all other surveyed simulations

here as it was one of the requirements in chapter 3 to have at least one of the featured output

label available.

The reason why Unikie was exceptionally included in the survey, was mainly because of its

uniqueness in environments and written statement on their homepage that they do provide

labeled data from the simulation.

4.8 rFpro

RFpro27 is a commercial simulation (Figure 20) for developing and testing autonomous

vehicles, including ADAS (Advanced Driving Assistance Systems) and vehicle dynamics.

It is developed by rFpro, a private company in UK who makes high fidelity simulations for

professional motorsports and other road-only vehicles. The used engine for the simulation

remains unknown. The simulation and the documentation are not available online for free.

Figure 20. Example images from rFpro simulation.

Environments

RFpro provides physically accurate road surface environments (Figure 21), including

motorsport tracks. The environments are created from real world HD maps and lidar

scanning.

27 http://www.rfpro.com/driving-simulation/

http://www.rfpro.com/driving-simulation/

28

Figure 21. Example images from rFpro environments with road varieties.

Their idea is to copy the real world road surface and near surroundings (including

atmosphere and weather) as physically closely as possible. No off-road environments are

provided. From the actor assets, humans and cars are provided.

Sensors

From the featured sensors, the simulation provides cameras (RGB, depth), lidar and radar.

No information was found about the thermal IR camera or any other non-featured sensors.

Output Training Labels

According to their homepage the simulation provides labels for training supervised learning

models, but only semantic segmentation (Figure 22) was mentioned. No information about

bounding boxes (2D or 3D) was found.

Figure 22. Example of semantic segmentation in rFpro28.

During this survey, the exact semantic segmentation classes were not found to be available.

28 https://www.youtube.com/watch?v=r2hJZu7qLO0

https://www.youtube.com/watch?v=r2hJZu7qLO0

29

4.9 Cognata

Cognata29 is a simulation (Figure 23) for autonomous vehicles and ADAS. It is developed

by Cognata - a US based Israeli startup, founded in 2016. The simulation uses a custom

engine and provides automatic urban environment generation (from provided urban assets).

The simulation software and its documentation are not available online for free.

Figure 23. Example image from Cognata simulation.

Environments

The simulation provides a city environment with urban assets and automatic urban

environment generation. No off-road environments are provided, neither any information

about possibilities to add other custom environments in the simulation. From the actor

assets, both humans and cars are available.

Sensors

From the featured sensors, RGB camera, lidar and radar are provided. No information about

the depth or thermal IR cameras is found.

Output Training Labels

The simulation provides semantic segmentation (Figure 24), including the classes: cars,

signs, buildings, humans, vegetation and electric pole.

29 https://www.cognata.com/

https://www.cognata.com/

30

Figure 24. Semantic segmentation from Cognata simulation.

Regarding 2D and 3D bounding boxes, no information is available whether the simulation

provides them.

4.10 SCANeR Studio

SCANeR Studio30 is a commercial simulation (Figure 25) for autonomous vehicles. It is part

of their simulation platform which includes testing and driving for ADAS, Human Machine

Interface (HMI), headlight testing and vehicle dynamics. It is the product of a private French

company AVSimulation and targets professional automotive industry customers. As a

toolset for professionals, it also enables integration with driving simulators and dedicated

hardware. The used simulation engine remains unknown. SCANeR Studio simulation

software and documentation are not available online for free.

Figure 25. Example images from SCANeR Studio simulation, with semantic segmentation on the right.

Environments

The provided driving environments are urban only: a city and road (highway). It is possible

to create new advanced environments, including the road, weather conditions, sensors,

30 https://www.avsimulation.fr/solutions/

https://www.avsimulation.fr/solutions/

31

traffic, vehicle dynamics and drivers. No off-road environments are provided though. From

the actor assets, cars are provided. About human assets, no information was available.

Sensors

From the featured sensors, RGB camera, lidar and radar are provided. Information about the

depth and thermal IR cameras remains unknown. Also no additional non-featured sensors

were brought out.

Output Training Labels

SCANeR Studio provides semantic segmentation (Figure 25, on the right) but no

information about exact classes was found. Also information about bounding boxes (2D or

3D) remains unknown.

4.11 Highwai

Highwai31 is a commercial simulation (Figure 26) focusing on training neural networks for

autonomous vehicles. It is developed by Highwai, a private company in US who, starting

from 2016, makes AI toolsets for object detection (including dataset creation and

manipulation). Highwai simulation is built on Unity.

Figure 26. Example images from Highwai simulation.

Environments

The simulation provides urban environment (city) with customization options in scenes and

scenarios. No off-road environment is provided. From the actor assets, both humans and

cars are available.

Sensors

From the featured sensors, cameras (RGB, depth, thermal IR) and lidar are provided. No

information about radar sensor is provided.

31 https://www.highwai.com

https://www.highwai.com/

32

Output Training Labels

The simulation provides bounding boxes (2D, 3D) and object segmentation (Figure 27).

Semantic segmentation is not mentioned in their provided materials. From their video

content32, object classes such as vehicles, buildings, roads, pedestrians, street props (no

information what this means), road markings and sidewalk are provided.

Figure 27. Output labels from the left: 2D bounding boxes, 3D bounding boxes and object segmentation.

No documentation is provided if the object segmentation classes can be customized.

4.12 NVIDIA Drive

NVIDIA Drive33 simulation software is part of NVIDIA DRIVE Constellation, a simulation

platform for developing autonomous vehicles which consists of hardware and software. The

simulation (Figure 28) is available together with the DRIVE SDK to Nvidia’s partners (e.g.

developers and autonomous systems providers). From how it looks from one34 of their

videos35, the simulation is built on UE. For the wider public, access to the simulation is

restricted.

Figure 28. Example images of NVIDIA Drive simulation.

32 https://www.youtube.com/watch?v=7i_xa9pYokY
33 https://developer.nvidia.com/drive
34 https://www.youtube.com/watch?v=DXsLDyiONV4 (NVIDIA Drive simulation in January 2019)
35 https://www.youtube.com/watch?v=lVlqggTiTzY (NVIDIA Drive simulation introduction at GTC 2018)

https://www.youtube.com/watch?v=7i_xa9pYokY
https://developer.nvidia.com/drive
https://www.youtube.com/watch?v=DXsLDyiONV4
https://www.youtube.com/watch?v=lVlqggTiTzY

33

Environments

Environments in NVIDIA Drive simulation are urban only. Mainly roads (highways) and

some city environments are noted in their videos. The simulated environments are created

from (real world) HD map data and are customizable. About the included actor assets no

information is provided.

Sensors

From the featured sensors, the simulation provides RGB cameras, lidar and radar. No

information was found about the depth and thermal IR sensors. Additional provided non-

featured sensor is the IMU. There is an option to add custom sensors but no further

information is provided about which sensors exactly.

Output Training Labels

The provided training labels are semantic segmentation and 2D bounding boxes. No

information about the availability of the 3D bounding boxes was found.

34

5 Results

From the surveyed simulations and their features all the gathered information is in the four

tables below. The first table (Table 1) shows the more general information about the

simulation, including the licence type, availability of documentation and the used engine.

The second table (Table 2) shows information about provided driving environments and

what kind of actor assets they include. The third table (Table 3) shows the sensors. And

finally the fourth table (Table 4) is for the output training labels. The cells marked with NA

are unknown, meaning the information was not found to be available online and the requests

for information sent over email were not answered. After each table the results are described.

Table 1. The information about licencing, documentation and the used engine.

 Documentation

Licence Installation Environments Sensor

config

Output

labels

Engine

CARLA MIT + + + + UE

AirSim MIT + + + + UE

Deepdrive MIT + - - - UE

LGSVL Simulator Propr + + + + Unity

Sim4CV Propr + - - - UE

SynCity Propr NA36 NA NA NA Unity

Unikie Propr NA NA NA NA NA

rFpro Propr NA NA NA NA NA

Cognata Propr NA NA NA NA Custom

SCANeR Studio Propr NA NA NA NA NA

Highwai Propr NA NA NA NA Unity

NVIDIA Drive Propr NA NA NA NA UE

Table legend:

Licence cell colors: blue – open source, red – not open (commercial).

Other cell colors: green – available, red – not provided, grey – unknown.

36 SynCity documentation site docs.syncity.com was taken down in April 2019 and since then no documentation about

their current product is available online. The GitHub repository https://github.com/Cvedia/syncity-redist provides

installation intructions to an SDK from 2018 but its relevance to their present product is unknown.

https://github.com/Cvedia/syncity-redist

35

In overall the results show that 4 of the surveyed 12 simulations are open source (33%) from

which 3 have a free-to-use licence (25%). All the open source solutions are documented

well enough online to get a fairly good understanding about how to install and start using

them. The commercial solutions are expected to provide the documentation to their

customers but here almost no information was found online or received over email.

Therefore validating a commercial simulation before deciding its suitability for purchase

can take a significant amount of time and effort. Especially considering that there are many

commercial simulation providers available in the field.

Regarding the used engines, the information was available in 9 cases out of 12 (75%). The

UE game engine is noted in total 5 cases (42%) and then Unity in 3 cases (25%). Only in

one case a custom built engine is noted (Cognata). In overall, the UE game engine seems to

be currently the most popular choice for modern simulations found for this work.

Table 2. The information about the environments and included actor assets.

Environment

For Driving Actors

Urban Off-road Humans Cars

CARLA T - + +

AirSim T C F M G - +

Deepdrive R - - +

LGSVL Simulator C - + +

Sim4CV T D G + +

SynCity T C H D F U H G + +

Unikie C U H + +

rFpro T C R - + +

Cognata C - + +

SCANeR Studio C R - NA +

Highwai C - + +

NVIDIA Drive C H - NA NA

Table legend:

Environment Urban: T - town, C - city, R - road track, H - highway

Environment Off-road: F - forest, D - desert, M - mountains, G - grassy field, U - underground mine, H – harbor

The results show that the main interest in this work to have the simulation being suitable out

of the box for both urban and off-road vehicles, is satisfied only in 4 cases (33%). From

those (AirSim, Sim4CV, SynCity, Unikie) only AirSim is open source and available for

36

free. This is a surprising result that there is so few off-road options. In contrast, at least one

urban environment is provided in every simulation.

Two unique environments were noted, besides the forest, mountains, desert and grassy

plains. These two were the underground mine and harbor. Both provided by commercial

providers (SynCity and Unikie).

The featured actor assets in simulations seem to be present in most cases. Usually this

information tends to be not documented but available through alternative sources (i.e. videos

and product presentations). Car assets (besides the main one) were found to be included in

11 cases out of 12 (92%) and human assets in 8 cases (67%). The information was not

available for humans in 2 cases (17%) and for cars in 1 case (8%). The least available

information was about NVIDIA Drive, which is surprising as they are a big provider on the

market and have presented their simulation at large product shows since GTC 2018.

Table 3. The information about the sensors.

 Sensors

Cameras Others

RGB Depth Thermal / IR Lidar Radar

CARLA + + - + -

AirSim + + + + -

Deepdrive + + - - -

LGSVL Simulator + + - + +

Sim4CV + + - - -

SynCity + + + + +

Unikie + - - + -

rFpro + + NA + +

Cognata + NA NA + +

SCANeR Studio + NA NA + +

Highwai + + + + NA

NVIDIA Drive + NA NA + +

Sensors are the most documented features throughout all the simulations. Starting from the

cameras, besides the regular RGB one (which is available for all), the depth camera is

provided in 8 cases out of 12 (67%) and the thermal IR camera in 3 cases (17%). No

information was found in 3 cases for the depth camera and in 4 cases for the thermal IR

camera (all commercial products). For the off-road vehicles the rare presence of the thermal

37

IR camera may be a significant constraint as other sensors do not provide enough

information to detect humans in nature.

From the other sensors, lidar is the most provided sensor being present in 10 cases (83%).

Radar is less common, noted in 6 cases (50%). For radar, only in one case (Highwai) the

information was not found.

Table 4. The information about the output training labels.

Output Training Labels

Semantic Segmentation 2D bounding box 3D bounding box

CARLA + + +

AirSim + -* -*

Deepdrive -* -* +

LGSVL Simulator + + +

Sim4CV + + +

SynCity + + +

Unikie NA NA NA37

rFpro + NA NA

Cognata + NA NA

SCANeR Studio + NA NA

Highwai NA38 + +

NVIDIA Drive + + NA

*- Not provided by the simulation but can be extracted using the game engine’s own tools.

Somewhat surprising is to see that even from the available documentation, not all

simulations provide the featured output training labels. Still, most simulations provide at

minimum one and for some it is at least mentioned in the documentation if it is a planned

feature or what is the workaround options to get such information (e.g. retrieving the labels

directly from the game engine).

From the output training labels, semantic segmentation is most often provided, being there

in 9 cases (75%). For the bounding boxes the situation is less clear. 2D and 3D bounding

37 Unikie homepage declares that in their simulation the data can be automatically labeled but the exact labels are not specified.
38 Highwai provides object segmentation but no mentions noted about semantic segmentation.

38

boxes both in 6 cases (50%) indicate that it cannot be taken for granted that a simulation for

training ML models has all the main labels out of the box. For the large amount of

commercial cases (33-42% for the bounding boxes and 17% for semantic segmentation) the

information remains unknown.

In case of common features across all the results, the urban environment and regular camera

images are provided in all of the surveyed simulations. The information was not found only

in case of commercial simulations. SynCity was the only commercial simulation for which

all the featured environmens, sensors and output labels were available.

Finally, if one has to choose a simulation for further validation and off-road in mind, a free

and open source one seems to be a good starting point. But the problem is that in this case

there is no choice – none of the free ones include all the features. Only AirSim has off-road

environments included and is free. Even though AirSim has its constraints (extracting

important output training labels is only through the game engine’s own tools), a fair amount

of information is available about this simulation and it uses widely known game engine UE

which means a potentially large support network for extracting missing labels using UE

tools. AirSim has been a popular choice already for many users in the research field (during

this work at least five published research papers encountered during this work used AirSim

[5,6,16,17,19] and four more [13,14,15,18] mentioned it, all within 2017-2019). There are

also some papers about CARLA, and their GitHub activity seems active, but there is no off-

road environment. This is a significant constraint of CARLA.

In overall, the choices are limited and lack of information about most commecial products

prevent making clear decisions about existing simulations. Which leads to a thought that

perhaps developing a new free product with all the featured properties may be worth to

evaluate further. Similarly, contributing to an existing open source solution could be of

value.

5.1 Discussion

During the survey several thoughts and questions came up, some of those not fitting in the

scope of this work (e.g. importance of high-fidelity, choosing the engine, simulation design

and architecture, hardware requirements). Two of the closest ones to the scope of this work

are listed here.

39

First, it became apparent that while the open source simulations are fairly well documented

but almost none of the commercial products provide such detailed information online, then

it is not really possible to compare the open source and commercial products in detail by

simply surveying them. At least not without actually purchasing (or having some direct

access to) the commercial products themselves. This more thorough evaluation and testing

of some selected products is needed and could be done as a future work.

Secondly, before rushing into the process of creating a new simulation that would be suitable

for both off-road and urban, one needs to re-evaluate the need for urban. Several seemingly

high quality commercial simulations already exist for urban. If the main interest is on off-

road then perhaps it is worth to consider contributing to an existing open source solution in

order to improve it for off-road. And, if this is for some reason not possible (because of any

existing design constraints etc.), then return to the idea of creating a new one, and then focus

on off-road only.

40

6 Conclusion

This work guided the reader to the world of simulations and synthetic labeled data

generation for training ML models for autonomous vehicles. The importance of labeled data

is emphasized over the large quantity of unlabeled data. Briefly, the reason of this work was

mentioned and the main questions introduced. Regarding vehicles, the focus was expanded

from common urban-only to also off-road.

Different aspects of the simulations were described for better understanding of the features

selected in the survey. Briefly, the simulation environments (including actors), sensors and

output labels were introduced.

Then the methodology and features of this survey were clarified. The features of the

simulations for this survey were: licensing, documentation, the used engine, included

driving environments, sensors and the output training labels.

All together 12 simulations out of 39 were surveyed, each of the 12 holding a small

descriptive chapter of its own, with found facts and images.

After the surveyed simulations the results were described and presented in a table form. The

results were divided into four separate tables. Table 1 – general information about the

simulation, including licensing, documentation and the used engine. Table 2 – provided

driving environments with included actors. Table 3 – provided sensors. Table 4 – provided

output training labels for ML. Also the amount of unknown information (not found to be

available) was shown. The initial questions about simulations (see chapter 1) were answered

and some noticed constraints and findings are brought out. Briefly, few thoughts which

appeared during the process of this survey and led to the need for future work, were

introduced.

In overall, this work is expected to fill the gap about simulations for ML and autonomous

vehicles. It is a compact overview of currently (Q1 2019) provided solutions found online.

There may be more simulations which were not found so the list is not absolute. But for

choosing a simulation for further evaluation or to choose features for a new simulation, this

work can be a useful starting point. For how long this information remains reasonably valid,

is unclear, as the developing field of autonomous vehicles and ML applications seems to be

changing rapidly today.

41

7 References

[1] Kalra N, Paddock M, Rand Corporation. (2016). Driving to Safety: How Many Miles

of Driving Would It Take to Demonstrate Autonomous Vehicle Reliability?.

https://www.rand.org/pubs/research_reports/RR1478.html.

[2] Dosovitskiy, A, Ros, G, Codevilla, F, López, A, & Koltun, V. (2017). CARLA: An

Open Urban Driving Simulator.

http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf.

[3] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, Alexey

Dosovitskiy. 2018. End-to-end Driving via Conditional Imitation Learning.

https://arxiv.org/abs/1710.02410.

[4] Stephan R. Richter, Zeeshan Hayder, Vladlen Koltun. (2017). Playing for

Benchmarks. https://arxiv.org/abs/1709.07322.

[5] Shah, Dey, Lovett, Kapoor. (2017). AirSim: High-Fidelity Visual and Physical

Simulation for Autonomous Vehicles. https://arxiv.org/abs/1705.05065.

[6] Elizabeth Bondi, Debadeepta Dey, Ashish Kapoor, Jim Piavis, Shital Shah, Fei Fang,

Bistra Dilkina, Robert Hannaford. (2018). AirSim-W: A Simulation Environment for

Wildlife Conservation with UAVs.

http://teamcore.usc.edu/papers/2018/bondi_camera_ready_airsim-w.pdf.

[7] Alex Bewley, Jessica Rigley, Yuxuan Liu, Jeffrey Hawke, Richard Shen, Vinh-Dieu

Lam, Alex Kendall. (2018). Learning to Drive from Simulation without Real World

Labels. https://arxiv.org/abs/1812.03823.

[8] Seif. Semantic Segmentation with Deep Learning.

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-

and-code-e52fc8958823 (16.03.2019)

[9] Wang. Semantic Segmentation slides.

http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf (05.03.2019)

[10] Thomas Steil, Jurgen Roßmann. (2015). A Virtual Reality Testbed for Camera

Simulation in Aerospace Applications. https://ieeexplore.ieee.org/document/7604564.

[11] Dean A. Pomerleau. (1988). ALVINN: An Autonomous Land Vehicle in a Neural

Network. https://dl.acm.org/citation.cfm?id=89891.

https://www.rand.org/pubs/research_reports/RR1478.html
http://proceedings.mlr.press/v78/dosovitskiy17a/dosovitskiy17a.pdf
https://arxiv.org/abs/1710.02410
https://arxiv.org/abs/1709.07322
https://arxiv.org/abs/1705.05065
http://teamcore.usc.edu/papers/2018/bondi_camera_ready_airsim-w.pdf
https://arxiv.org/abs/1812.03823
https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823
https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823
http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://ieeexplore.ieee.org/document/7604564
https://dl.acm.org/citation.cfm?id=89891

42

[12] Zeyn Saigol, Alan Peters, Matthew Barton, Mark Taylor. (2018). Regulating and

Accelerating Development of Highly Automated and Autonomous Vehicles Through

Simulation and Modelling. https://s3-eu-west-1.amazonaws.com/media.ts.catapult/wp-

content/uploads/2018/03/23113301/00299_AV-Simulation-Testing-Report.pdf.

[13] Viswanath P, Mody M, Nagori S, Jones J, Garud H. Virtual Simulation Platforms

for Automated Driving: Key Care-About and Usage Model. Electronic Imaging. 2018

Jan 28;2018(17):1-6. https://doi.org/10.2352/ISSN.2470-1173.2018.17.AVM-164.

[14] Rosique F, Navarro PJ, Fernández C, Padilla A. A Systematic Review of

Perception System and Simulators for Autonomous Vehicles Research. Sensors. 2019

Jan;19(3):648. https://www.mdpi.com/1424-8220/19/3/648.

[15] Matthias Müller, Vincent Casser, Jean Lahoud, Neil Smith, Bernard Ghanem.

Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications. 2017.

https://arxiv.org/abs/1708.05869.

[16] Carrio A, Vemprala S, Ripoll A, Saripalli S, Campoy P. Drone detection using

depth maps. In2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) 2018 Oct 1 (pp. 1034-1037). IEEE. https://arxiv.org/abs/1808.00259.

[17] Josephine Mertens. Generating Data to Train a Deep Neural Network End-To-End

within a Simulated Environment. 2018. https://www.mi.fu-berlin.de/inf/groups/ag-

ki/Theses/Completed-theses/Master_Diploma-theses/2018/Mertens/MA-Mertens.pdf.

[18] Li W, Pan C, Zhang R, Ren J, Ma Y, Fang J, Yan F, Geng Q, Huang X, Gong H,

Xu W. AADS: Augmented autonomous driving simulation using data-driven

algorithms. arXiv preprint arXiv:1901.07849. 2019 Jan 23.

https://arxiv.org/abs/1901.07849.

[19] Jacques Valentin. Deep Reinforcement Learning for Autonomous Off-road Driving

in Simulation. 2018. https://dspace.cvut.cz/handle/10467/77185.

[20] Kallin N. 2018. Sensor simulation: Is AGXUnity a viable platform for adding

synthetic sensors. http://www.diva-

portal.se/smash/get/diva2:1303744/FULLTEXT01.pdf.

[21] Matt Smith, Chico Queiroz. 2015. Unity 5.x Cookbook: Displaying a radar to

indicate the relative locations of objects.

https://subscription.packtpub.com/book/game_development/9781784391362/1/ch01lvl

1sec20/displaying-a-radar-to-indicate-the-relative-locations-of-objects.

https://s3-eu-west-1.amazonaws.com/media.ts.catapult/wp-content/uploads/2018/03/23113301/00299_AV-Simulation-Testing-Report.pdf
https://s3-eu-west-1.amazonaws.com/media.ts.catapult/wp-content/uploads/2018/03/23113301/00299_AV-Simulation-Testing-Report.pdf
https://doi.org/10.2352/ISSN.2470-1173.2018.17.AVM-164
https://www.mdpi.com/1424-8220/19/3/648
https://arxiv.org/abs/1708.05869
https://arxiv.org/abs/1808.00259
https://www.mi.fu-berlin.de/inf/groups/ag-ki/Theses/Completed-theses/Master_Diploma-theses/2018/Mertens/MA-Mertens.pdf
https://www.mi.fu-berlin.de/inf/groups/ag-ki/Theses/Completed-theses/Master_Diploma-theses/2018/Mertens/MA-Mertens.pdf
https://arxiv.org/abs/1901.07849
https://dspace.cvut.cz/handle/10467/77185
http://www.diva-portal.se/smash/get/diva2:1303744/FULLTEXT01.pdf
http://www.diva-portal.se/smash/get/diva2:1303744/FULLTEXT01.pdf
https://subscription.packtpub.com/book/game_development/9781784391362/1/ch01lvl1sec20/displaying-a-radar-to-indicate-the-relative-locations-of-objects
https://subscription.packtpub.com/book/game_development/9781784391362/1/ch01lvl1sec20/displaying-a-radar-to-indicate-the-relative-locations-of-objects

43

[22] Matthias Müller, Neil Smith, Bernard Ghanem. 2016. A Benchmark and Simulator

for UAV Tracking. https://www.semanticscholar.org/paper/A-Benchmark-and-

Simulator-for-UAV-Tracking-Mueller-

Smith/27850781e39df9f750e05409b8072261124068e8

https://www.semanticscholar.org/paper/A-Benchmark-and-Simulator-for-UAV-Tracking-Mueller-Smith/27850781e39df9f750e05409b8072261124068e8
https://www.semanticscholar.org/paper/A-Benchmark-and-Simulator-for-UAV-Tracking-Mueller-Smith/27850781e39df9f750e05409b8072261124068e8
https://www.semanticscholar.org/paper/A-Benchmark-and-Simulator-for-UAV-Tracking-Mueller-Smith/27850781e39df9f750e05409b8072261124068e8

44

Appendix

I. Glossary

Autonomous Vehicle39 (in this work: Fully autonomous vehicle) – a vehicle that is capable

of sensing its environment and moving with no human input.

Machine Learning40 (ML) – a computer science study field where a computer is “taught”

through a mathematical model to do a task.

Ground Truth41 – information provided by direct observation.

Labeled data42 in ML – grouped data that is marked with one or more labels (meaningful

tag for the group of data).

Manual labeling - drawing bounding boxes around humans and cars, marking different

areas of the image as road, buildings, trees, sky, etc.

Automated Driving Systems43 (ADS) – a term used in automotive industry to refer to

certain amount of automated driving aid in vehicles.

Advanced Driver Assistance Systems44 (ADAS) – a term used in automotive industry to

refer to sensors, functions, technology suppliers used in vehicles to assist its driver with

certain functions (e.g. parking assistance).

39 https://en.wikipedia.org/wiki/Self-driving_car
40 https://en.wikipedia.org/wiki/Machine_learning
41 https://en.wikipedia.org/wiki/Ground_truth
42 https://en.wikipedia.org/wiki/Labeled_data
43 https://en.wikipedia.org/wiki/Automated_driving_system
44 https://www.aaam.org/automated-driving-systems-ads-introduction-technology-vehicle-connectivity/

https://en.wikipedia.org/wiki/Self-driving_car
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Ground_truth
https://en.wikipedia.org/wiki/Labeled_data
https://en.wikipedia.org/wiki/Automated_driving_system
https://www.aaam.org/automated-driving-systems-ads-introduction-technology-vehicle-connectivity/

II. Table – All Results

L
ic

en
ce

Documentation

E
n

g
in

e

Environment Sensors Output Training Labels

For Driving Actors Cameras Others

In
st

al
la

ti
o
n

E
n

v
ir

o
n

m
en

ts

S
en

so
r

co
n

fi
g

O
u

tp
u
t

la
b

el
s

U
rb

an

O
ff

-r
o

ad

H
u

m
an

s

C
ar

s

R
G

B

D
ep

th

T
h

er
m

al
 /

 I
R

L
id

ar

R
ad

ar

S
em

an
ti

c

S
eg

m
en

ta
ti

o
n

2
D

 b
b

o
x

3
D

 b
b

o
x

CARLA MIT + + + + UE T - + + + + - + - + + +

AirSim MIT + + + + UE T C F M G - + + + + + - + -* -*

Deepdrive MIT + - + - UE R - - + + + - - - -* -* +

LGSVL

Simulator

Propr + + + + Unity C - + + + + - + + + + +

Sim4CV Propr + - - - UE T D G + + + + - - - + + +

SynCity Propr NA45 NA NA NA Unity T C H D F G U M

h

+ + + + + + + + + +

Unikie Propr NA NA NA NA NA C U H + + + - - + - NA NA NA46

rFpro Propr NA NA NA NA NA T C R - + + + + NA + + + NA NA

Cognata Propr NA NA NA NA Custo

m

C - + + + NA NA + + + NA NA

SCANeR Studio Propr NA NA NA NA NA C R - NA + + NA NA + + + NA NA

Highwai Propr NA NA NA NA Unity C - + + + + + + NA NA47 + +

NVIDIA Drive Propr NA NA NA NA UE C H - NA NA + NA NA + + + + NA

Figure 29.

Table legend - Urban and Off-road: Urban: T - town, C - city, R - road track, H - highway. Off-road: F - forest, D - desert, M - mountains, G - grassy field, U - underground mine, H - harbor

Licence: blue – open source, red – not open (commercial)

* - Not provided by the simulation but can be extracted using the game engine’s own tools.
45 SynCity documentation site docs.syncity.com was taken down in April 2019 and since then no documentation about their current product was found online. The GitHub repository https://github.com/Cvedia/syncity-redist provides installation
intructions to an SDK from 2018 but its relevance to their present product is unknown.
46 Unikie homepage declares that in their simulation the data can be automatically labeled but the exact labels are not specified.
47 Highwai provides object segmentation but no mentions noted about semantic segmentation.

https://github.com/Cvedia/syncity-redist

III. Initial List of Simulations

Here is the initial sample of 39 seemingly available simulations found online. The list is in

no particular order.

1. Apollo

2. Autoware

3. ANVEL

4. Deepdrive 2.0

5. NVIDIA Drive

6. Waymo

7. LGSVL Simulator

8. Aurora

9. Wayve

10. Highwai

11. Unikie

12. Zoox

13. Siemens TASS PreScan

14. VIRES

15. Righthook

16. Truevision.ai

17. SYNTHIA Dataset

18. BI sim

19. VDrift

20. TORCS

21. AutonoVi

22. Aorta

23. Dash

24. Sim4CV

25. CARLA

26. AirSim

27. The CAT vehicle testbed

28. Holodeck

29. Gym-UnrealCV

30. SynCity

31. Cognata

32. Parallel Domain

33. ANSYS VREXPERIENCE

34. SCANeR Studio

35. rFpro

36. Gazebo

37. V-Rep

38. ARGoS

39. Udacity self-driving car sim

47

IV. Licence

Non-exclusive licence to reproduce thesis and make thesis public

I, Kertu Toompea,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Simulations for Training Machine Learning Models for Autonomous Vehicles,

 (title of thesis)

supervised by Raimond-Hendrik Tunnel, Tambet Matiisen.

 (supervisors’ names)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons licence CC BY NC ND 3.0, which

allows, by giving appropriate credit to the author, to reproduce, distribute the work and

communicate it to the public, and prohibits the creation of derivative works and any

commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Tartu, 12.05.2019

