
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Daniel Kütt

Delta Building Visualization – Admin Tool

Bachelor’s Thesis (9 ECTS)

Supervisor: Raimond Hendrik Tunnel, MSc

Tartu 2019

2

Delta Building Visualization – Admin Tool

Abstract:

The thesis describes the creation of the Admin Tool for the Delta Building Visualization.

During this thesis the existing visualization program was refactored and two additional

programs were created: Server program, based on ASP.NET Core, and Admin Tool

program, based on Aurelia framework. The data collection and processing was delegated to

the Server and the Admin Tool allows using user’s custom data in the visualization and also

control what is being visualized, remotely over the web.

Keywords:

Visualization, Unity, computer graphics, ASP.NET Core, REST API, Aurelia, web

application, client-server architecture, Model-View-Controller, GUI design

CERCS: P170 Computer science, systems

Delta õppehoone visualisatsioon – administratiivne tööriist

Lühikokkuvõte:

Antud töös loodi Delta õppehoone visualisatsioonile administratiivne tööriist. Töö käigus

restruktureeriti Delta õppehoone visualisatsiooni programm ning loodi lisaks kaks uut

programmi: ASP.NET Core-l põhinev server ja Aurelial põhinev administratiivne tööriist.

Serverile delegeeriti andmete kogumine ja töötlus, tööriista kaudu aga võimaldati

visualisatsioonis kasutada enda andmeid ning visualiseeritavat kontrollida läbi

veebirakenduse.

Võtmesõnad:

Visualisatsioon, Unity, arvutigraafika, ASP.NET Core, REST API, Aurelia, veebirakendus,

klient-server arhitektuur, Model-View-Controller, graafilise kasutajaliidese disain

CERCS: P170 Arvutiteadus, süsteemid

3

Table of Contents

1 Introduction ... 4

2 Requirements ... 6

2.1 Functional Requirements .. 6

2.2 Non-Functional Requirements .. 7

3 The Implementation .. 8

3.1 Architecture .. 8

3.2 Client .. 10

3.2.1 Communication Protocol ... 10

3.2.2 Communication Process ... 12

3.3 Server .. 13

3.3.1 Internal states ... 13

3.3.2 REST API ... 16

3.4 Admin Tool .. 16

3.4.1 Design .. 17

3.4.2 Functionality .. 18

4 Testing and Results ... 21

4.1 Improvements ... 22

5 Conclusion ... 23

References ... 24

Appendix ... 25

I. DBV Project Architecture Chart .. 25

II. Admin Tool Tabs .. 26

III. Accompanying Files ... 32

IV. License .. 33

4

1 Introduction

The Delta building is the new (currently under construction) joint study and research

building of the Faculty of Economics, the Institute of Computer Science and the Institute of

Mathematics and Statistics of the University of Tartu1. In the lobby of the new building there

is planned a Video Wall Screen displaying a 3D visualization of the structure, the inhabitants

and the weather outside. The visualization also shows the timetable (as text), the current

time and temperature outside the campus.

Students A. Voitenko and A. Nikolajev created the first version of the Delta Building

Visualization (DBV) as their BSc theses [1] [2]. That project consisted of the Delta building

visualization model, which was capable of displaying the current time, date, weather

information, visualizing people in the campus building and more. The DBV project is now

further improved in the current thesis and by BSc theses of E. Linde (lighting and weather

effects) and M. Perli (actor pathfinding and behavior) [3] [4].

The goal of this thesis is to further develop the DBV project so that the visualization could

be controlled and configured remotely over an internet connection. The DBV project is

refactored into three components for separation of concerns: the Client, the Server and the

Admin Tool (see chapter 3), each responsible for one concern.

This separation removes the need to edit scripts or scenes when we want to control or

configure the visualization. Otherwise modification would usually require a new build of

the application. The separation also allows us to make the DBV Client more easily visualize

our custom data. This has three main benefits: firstly, development of the project in the

future will be faster due to the ability to simulate different scenarios which saves the

developers time. Secondly, hard to predict bugs with real-time data, that comes from several

external APIs, can be reproduced more easily. Finally, this tool can be used to make

demonstrations of the DBV when promoting University of Tartu and the Institute of

Computer Science at different events.

1 https://eik.ut.ee/en/portfolio/the-new-delta-building/

https://eik.ut.ee/en/portfolio/the-new-delta-building/

5

Chapter 2 of this thesis covers the functional and non-functional requirements based on

which the Admin Tool was developed. In Chapter 3 the architecture of the new solution is

covered in subchapter 3.1 and subchapters 3.2 - 3.4 cover the implementation of the Client,

the Server and the Admin Tool (respectively). Chapter 4 details the testing of the solution

and in Chapter 5 conclusions are made and potential future improvements are suggested. In

the Appendix both the source code of the project and the compiled build can be found along

with a chart detailing the architecture of the project and screenshots of the Admin Tool.

6

2 Requirements

In the following subchapters the functional and non-functional requirements of the Admin

tool are provided. The requirements are listed as user requirements: the goal is to represent

what functionality will the system provide to the user [5]. They are based on the problem

description from the Introduction and discussions with the thesis supervisor.

2.1 Functional Requirements

The functional requirements focus on what parts of the visualization can be controlled to

show the user’s desired outcome. Five functional requirements were established for the

Admin Tool project.

F1 The student actors in the visualization should be controllable remotely

In the initial implementation, the student actors [2] in the visualization are sent to rooms

based on the data from Cumulocity [1] thus the actors are not directly controllable. The

Admin Tool should make it possible to send actors to a room and remove them from it as

the user wishes using a graphical user interface (GUI).

F2 The weather should be controllable remotely

In contrast to F1, the data on which the weather effects are shown comes from external third

party services [1] and thus there is no control over what is shown in the visualization. The

Admin Tool should allow the user to change the weather effects (whether it is raining,

snowing or a sunny day), the intensity of these effects and the temperature (which is

displayed on the GUI above the timetable)

F3 The timetable should be controllable remotely

Educator actors are sent to classrooms based on the timetable from the Study Information

System (SIS) [1].In order to have full control over the actors, the timetable needs to be

customizable from the Admin Tool. This way the user can change where educator actors are

being sent. As a result, the timetable that is displayed on the timetable GUI element can also

be changed.

F4 The time of day should be controllable remotely

The time of day (displayed on the timetable GUI element) gets information from the system

time and thus the displayed time depends on the machine running the visualization. Custom

times should be possible to set from the Admin Tool so that the time of day on the timetable

7

and the visualization’s calculated time of day (lighting outside the building) can be

controlled.

F5 The cameras should be controllable remotely

The visualization uses 6 different (virtual) cameras, positioned throughout the building, that

move back and forth and through which the visualization loops, showing different parts of

the building. It should be possible to select, which camera feed is shown, and the camera

position should be tweakable (within the range of its movement)

2.2 Non-Functional Requirements

In addition to the functional requirements listed in the previous chapter, three non-functional

requirements were set with the aim of increasing the usability of the solution.

NF1 The Admin Tool should work on the Chrome web browser

The Chromium based Chrome web browser is the most widely used web browser in the

world2 so by ensuring that it is works on Chrome (and by extension on Chromium browsers

- Opera, Microsoft Edge), the Admin Tool will be usable by a number of different browsers.

NF2 The Admin Tool should consider limitations of mobile devices

The DBV can be shown in an environment where people do not have access to their personal

computers. For example: showing the visualization at a conference, debugging the

visualization running in the Delta building etc. In these cases, one can use their mobile phone

to use the Admin Tool so it should be possible to use the Admin Tool to its full extent on a

mobile device.

NF3 The Client should react to the inputs of the Admin Tool in under 100 milliseconds

100 milliseconds is considered the maximum amount of time that a system can take to

respond to the user for the interaction to feel instantaneous [6]. Thus, the Client should react

to the inputs coming from the Admin Tool so that the user of the tool feels like they are

interacting directly with the Client.

2 http://gs.statcounter.com/browser-market-share

http://gs.statcounter.com/browser-market-share

8

3 The Implementation

In order to satisfy the functional requirements, the existing project was refactored and two

new programs were created, as can be seen on Figure 1.

Chapter 3.1 gives a general overview of the designed architecture of the solution, including

the three new components: the Client, the Server and the Admin Tool. After that chapters

3.2 - 3.4 go into details of each of the new component respectively.

3.1 Architecture

Adding the Admin Tool to the DBV in order to modify the input data of the visualization

required refactoring of how the data is received from external sources. To accomplish this

the Model-View-Controller (MVC) architectural pattern was followed. MVC pattern is

commonly used for decoupling views and models by establishing a communication protocol

between them [7] and thus fits as a pattern to use for the project.

Following MVC, the existing DBV project is split into the corresponding three layers as can

be seen on Figure 2 (a more detailed version of the chart is located in Appendix I).

Figure 1. The old (left) and new (right) structure of the project.

9

The first component/layer of the MVC pattern is the Model, which contains the data that is

being visualized. Second layer is the View, which is makes the data visible to users and

responds to updates from the Model. The third and final layer is the Controller, which allows

modifying the model and thus makes it possible to change, what is shown in the View layer.

First the querying of the external data (i.e. weather, agent counts in a room, the SIS timetable

info) is delegated to the Server. The Server oversees collecting the data on behalf of the

Client, and it stores it in an internal state. This way the Client is now completely in the View

layer, containing only the logic for visualizing the data.

The internal state of the Server consists of multiple smaller states: the Cumulocity state

contains information about how many people are in the Delta building rooms (info from the

Cumulocity API), weather state contains information about the weather etc. Information for

these states comes from a job scheduler, which is responsible for periodically querying the

data from the respective APIs (Cumulocity for the sensor data, SIS for the timetable,

OpenWeatherMap for the weather data) and relaying the info to the states, which then

process the data as needed. This all together makes up the Model layer.

Each of the smaller states can also be modified by their prospective controller class. The

controllers have methods that can be called remotely to supply the Model with custom data

from the user using the Admin Tool, but first this data must pass validation (it must fit the

model of the Model that is being modified). The different methods together make an API

and overall form the Controller layer of the application. The Controller and Model layer are

both in the Server.

Figure 2. The MVC pattern applied to the DBV project.

10

The other half of the View layer is the Admin Tool, which is a web application. The Admin

Tool is capable of displaying the state of the application, but also has the capability of

communicating with the Controller layer and thus modifying the Model. So, in conclusion,

the View layer consists of the Client and the Admin Tool.

3.2 Client

The Client program is the existing visualization application that was made with the Unity

game engine. Since the data gathering and initial processing is now a responsibility of the

Server, the Client had to be refactored so that it would communicate with the Server to

receive the data that it would have queried itself in the previous version. In Chapter 3.2.1

the implementation of the communication protocol is covered and in Chapter 3.2.2 the

communication procedure is explained further.

3.2.1 Communication Protocol

Since the Client is no longer doing the data gathering itself, it relies on the Server to provide

this information. The communication between the Client and the Server is done using

asynchronous TCP sockets as they are very light-weight, they work well with the nature of

the communication and they allow the communication format to be defined by the author

[8].

The chosen communication format was created by the author and it is based on JSON3 due

to two reasons. Firstly, the JSON format is easily readable, so it is easy to debug, should

there be problems with the data. And, secondly, the APIs that are being queried support

returning data in the JSON format and this has already been used in the previous version of

the DBV project meaning that we do not have to refactor the data processing on the Client

side (the logic that determines how the visualization reacts to the data).

Components that previously handled the data gathering are now dependent on the TCP

Listener and had to be refactored to obtain the data through the observer pattern, as

illustrated by Figure 3.

3 https://en.wikipedia.org/wiki/JSON

https://en.wikipedia.org/wiki/JSON

11

The observer pattern was chosen because it increases code reusability by not tightly coupling

components [7]. As a result, the observer pattern allows us to quickly add more components

that depend on external data in the future without having to modify existing components.

The observer pattern is implemented by defining interfaces for the Subject and the Observer,

in which observers implementing the Observer interface can subscribe to the Subject (the

TCP Listener on Figure 3) so when the Subject receives an update, it notifies all of its

Observer listeners. In our project the pattern was adapted and modified by adding a clause

to the subscription process: the observers can tell the subject, what data are they exactly

interested in. For example, if the TCP Listener receives the JSON data below, it would notify

all observers that were subscribed to “camera” data with the following:

1. {
2. "name": "camera",
3. "manual": true,
4. "state": {
5. "activeCamera": 2,
6. "position": 50
7. }

8.}

This is because of line 2 in the JSON data which specifies that the state data contains

information about the “camera” state, the information that gets passed to the observers is on

lines 4 - 7 (the state JSON object).

Figure 3. Components of the observer pattern: subject (white) and observers (yellow).

12

3.2.2 Communication Process

When the Unity application is started, in the starting phase of the application the TCP

Listener is started, which then tries to connect to the location which is specified in its config

file. Using a config file allows us to change the host that we are trying to connect to without

having to recompile the visualization client. The config file functionality is provided by the

SharpConfig plugin4.

If the connection fails, the Client closes the socket and releases the allocated resources, waits

a few seconds and tries connecting again. This way the application does not require a restart,

if the Server is not running at the time of the application launch and it also makes the

application able to reestablish its connection with the Server should it be disrupted due to

network issues.

After the initial connection is made with the Server, the Server returns its internal

visualization state, which is used to quickly get the visualization working. Responsible for

this is the state observer, which sole purpose is to process the initial state response by

notifying all subscribed observers with the initial state of the visualization.

When the initial connection process is completed, the TCP Listener stays in listening mode,

waiting for new data from the Server and when it arrives, the specified observers are notified

and the listening process starts again. This is repeated till the application is shut down. The

whole process is depicted on Figure 4.

4 https://github.com/cemdervis/SharpConfig

Figure 4. The communication process.

https://github.com/cemdervis/SharpConfig

13

Currently the communication process is only one way i.e. the client does not send the server

information about its different processes. For example, the server is not aware of the actor’s

exact locations, only that there should be n number of actors in a specific room. The

communication process from the Server’s side is covered in the next chapter.

3.3 Server

The Server is the first of the two new applications that were created as a part of this thesis.

It is built on top of Microsoft’s ASP.NET Core framework, a free and open-source web

framework5.

This framework was chosen because it is based on the .NET Framework, which is what the

Unity engine also uses for its scripting language. Working on the same framework allows

us to use the same constructs and potentially even reuse the business logic code. Another

reason for choosing ASP.NET Core is it being cross-platform (due to it also running on the

.NET Core framework), which gives us more flexibility in the future, when we want to host

the server on a remote (virtual) machine. Finally, the author did not have any experience

with the framework before and wanted to use this as a learning opportunity.

In Chapter 3.3.1 we go into more detail about the Model layer of the application, covering

the design and implementation of the internal states of the Server. Chapter 3.3.2 describes

the creation of the REST API through which the Admin Tool can communicate with the

Server.

3.3.1 Internal states

The internal states are essentially the model layer of the application meaning that they

contain the core information that the application is running on [7]. This is achieved by

gathering the data from external sources (Cumulocity sensor data, OpenWeatherMap API’s

weather data etc.), processing it and then notifying the connected clients. In addition to this,

the data is also stored internally in memory for future use.

The first step of implementing the model layer was to determine the actual model of the

data. To do this we analyzed the visualization to see, what is being used by the visualization

and vice versa. After this, corresponding data structures were created to hold this

5 https://en.wikipedia.org/wiki/ASP.NET_Core

https://en.wikipedia.org/wiki/ASP.NET_Core

14

information in an easily accessible way. They are referred to as the internal states of the

application, because they contain the data which the Client is visualizing.

An example of this is the building state which contains the following information about the

rooms of the Delta building: room name, as indicated by the room number (1004, 1037 etc.),

room size, which tells how many seats for student actors are in this room (35 for room 1004,

256 for room 1037) and the human count, which indicates how many student actors are in

the aforementioned rooms (comes from sensor data).

In total 5 internal states were created to satisfy functional requirements F1 - F5:

• the building state – from the example above (F1),

• the weather state – what weather effects are shown in the visualization (F2),

• the SIS state – what timetable is shown and where are the educator actors (F3),

• the time state – what time of day and what timescale is the visualization using (F4),

• the camera state – what camera feed is the visualization using and in which position

is the camera (F5).

The second step of implementing the model layer is to ensure that the model is up to date

with the latest information and state managers were created for this purpose. The state

managers contain within themselves 2 states: automatic and manual. The automatic state is

the state containing real-time data from the external data sources, the manual state however

has a combination of the real-time data and data set by the user of the Admin Tool. Having

two separate states allows us to keep one state up to date with current information even if

the visualization is in the manual state - the information does not get lost and is ready to be

used.

The time and the camera state do not require any additional work besides wrapping and

initializing them – the time state gets its time from the system clock and the camera state is

initially set to automatic. The building, weather and SIS state, however, depend on external

data and this has to be constantly queried in the background.

The building state is kept up to date using the same long polling method as described in

Voitenko’s thesis [1] with slight alterations, but for the weather and timetable state a job

scheduler was used. Since ASP.NET Core does not have support for regular background

tasks built in, Quartz.NET v3 was used. Quartz.NET is a .NET port of a popular open source

15

Java job scheduling framework Quartz6 and the version 3 introduces asynchronous task-

based jobs7. Two jobs were created to regularly query the SIS and OpenWeatherMap APIs

and update the respective states. Whenever any of the states get an update, the Client is

notified of the changed state. This can be seen on Figure 5:

While the states use internally a combination of primitives, strings, lists and dictionaries to

hold the data, they all also expose an interface through which one can receive or overwrite

the state with JSON data. The JSON functionality to ASP.NET Core is added by JSON.NET

from Newtonsoft, a popular JSON framework for .NET8. Since the states can be converted

into JSON and loaded from JSON, we can copy the automatic state over to the manual state

when we do the corresponding switch. This is useful for when the user wants to switch the

visualization to manual mode and change only a few things, as nothing will change in the

visualization with just the switch.

By operating with JSON, we can use the same interface to send data in JSON format to both

the Client and the Admin Tool. The Server-side setup for communicating with the Admin

Tool is covered in the next chapter.

6 https://www.quartz-scheduler.net/

7 https://www.quartz-scheduler.net/documentation/quartz-3.x/migration-guide.html

8 https://www.newtonsoft.com/json

Figure 5. The state updating process.

https://www.quartz-scheduler.net/
https://www.quartz-scheduler.net/documentation/quartz-3.x/migration-guide.html
https://www.newtonsoft.com/json

16

3.3.2 REST API

The REST API exposed by the Server is a collection of interfaces which can be called using

HTTP requests. The support for these APIs comes out of the box with ASP.NET Core. The

callable methods are attached to controller classes that first validate the inputs. When the

validation passes, they modify the model as the input and business logic dictate. These

controller classes, as their name may hint, form the Controller layer.

The Controller layer in the DBV project consists of 5 separate controller classes, each one

responsible for handling the communication and modification with one of the states. This is

depicted on Figure 6 below:

Using the available methods, we can modify the state of the application and control, what is

being visualized by the client. It is done by making the API calls with a tool like Postman9,

which would require us to know the API endpoints and the requested format of the data, or

through a client like the Admin Tool that has been interfaced for this exact purpose.

3.4 Admin Tool

The Admin Tool is the second of the two new applications that were created as part of this

thesis. It is built in the JavaScript framework Aurelia, which is a collection of JavaScript

modules with support for dependency injection, templating, binding, routing and more10.

9 https://www.getpostman.com/

10 https://aurelia.io/

Figure 6. The relationship of controllers (green) and the state managers (red).

https://www.getpostman.com/
https://aurelia.io/

17

The Aurelia framework was chosen mainly due to the author’s previous experience with it,

but also because Aurelia has support for all of the functionalities that a modern web

application needs (i.e. routing, templating, dependency injection etc.). In Chapters 3.4.1 and

3.4.2 we respectively cover the implementation of the design and functionality of the Admin

Tool.

3.4.1 Design

According to NF2, the application should be easy to use on a mobile device, the goal for

design was set to build a responsive web application that would work on many different

screen sizes.

To achieve this, the author chose the Bootstrap library to build and style the Admin Tool

with. Bootstrap is a toolkit for building responsive and mobile-first experiences11 and it is

one of the most popular frameworks for doing so12. In addition to this, the author also

decided to base the design off of an open source bootstrap starter template13, to create the

base for a dashboard-style responsive mobile-first web application which can be seen on

Figure 7.

11 https://getbootstrap.com/

12 https://www.ostraining.com/blog/webdesign/bootstrap-popular/

13 https://startbootstrap.com/templates/simple-sidebar/

Figure 7. Layout of the Admin Tool: Header (gray), Menu (blue), Content (white) and a

button to toggle the Menu (violet).

https://getbootstrap.com/
https://www.ostraining.com/blog/webdesign/bootstrap-popular/
https://startbootstrap.com/templates/simple-sidebar/

18

A layout with a collapsible sidebar was chosen so that the user can maximize the area of the

Content by hiding away the Menu using the Toggle Button. This is aimed toward screens

with limited vertical space.

The Header is the top navbar which currently holds only the toggle button, on mobile this

element is always visible in the top of the screen, so that users have easier access to the

Sidebar. In the future the Header can be extended to have links to generic items such as

Admin Tool settings or session management. Currently the Sidebar contains the navigation

links that the user can use to navigate to different functionality tabs.

The Content section is the main section of each view - it is the part of the screen where the

user interacts with the Client through the REST API of the Server. In the top of the Content

section there is an information box notifying the user whether that specific module is using

manual data from the user or real-time data from the respective data source. This is shown

on Figure 8:

By using the switch button shown on the figure, the user can quickly switch between the

manual and automatic state.

3.4.2 Functionality

To communicate with the REST API exposed by the Server, five tabs were created: weather,

building, camera, time and timetable tab. Each of the tabs communicates with one of the

controllers as depicted on Figure 10:

Figure 8. The weather module shown in the weather tab is in the automatic state.

19

Each of the tabs have different web form elements14 to manipulate the corresponding state.

For example, the Building tab has input fields, which let you specify the count of actors in

a room. The input fields have labels which identify the room and there is also an element

attached to the input field which shows the current and max actor count of a room. An

example of this is shown on Figure 9:

The user can write the room actor count in the field and by either pressing [Enter] or clicking

the submit button, both of which submit the web form. When the form is submitted, the

values get sent to the building controller (the Server) through a HTTP PUT15 request, which

validates the data. If the request is valid, the controller modifies the building state and returns

the new state back through the controller to the Admin Tool, which then updates its display.

14 https://www.w3schools.com/html/html_form_elements.asp

15 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_message

Figure 10. Admin Tool and Server communication.

Figure 9. Input fields of the building tab that enable modifying of the building state.

https://www.w3schools.com/html/html_form_elements.asp
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_message

20

Since the building state was modified, the state manager also notifies all connected Client

applications of this and the visualization state changes (actors move around to represent the

new state).

In the content portion of the screen there is also the information box mentioned in the

previous chapter and displayed on Figure 8Figure 8. The weather module shown in the

weather tab is in the automatic state.. Due to the whole tabs being too big to display in this

chapter, they can be found in Appendix II.

In addition to the five tabs, a sixth tab was created for scenarios. These scenarios are a

predefined set of instructions for the Server, that can be used from the Admin Tool to test

the project and to showcase it. The scenarios try to emulate possible situations the

visualization may have to work in while also demonstrating some of the edge cases (i.e. the

whole visualization is filled to its’ capacity).

21

4 Testing and Results

To ensure that the result of the thesis is of quality, the Admin Tool project was tested. The

technique selected for the testing was functional testing16 where functional and non-

functional requirements listed in Chapter 2 were tested and checked, if they were satisfied.

In addition to manually testing the solution, the author also shared development versions of

this tool with Perli and Linde, who could use it while testing their own solutions [3] [4].

The testing was performed throughout development and with the final version of the Admin

Tool, testing environment was Google Chrome version 74 on Windows 10 with the Server,

Admin Tool and Client applications all running in the same machine. In addition to this, the

Admin Tool was also tested with the author’s personal smartphone Mi 817 using the same

Wi-Fi network as the Server program.

Firstly, the RAM usage of the Server application was measured when the application states

were all on automatic mode, no significant increase in its usage was detected. This is most

likely due to the garbage collection18 and on demand dependency injection that the Server

application inherits from ASP.NET Core.

Secondly the functional requirements 1 - 5 were tested. While all of the requirements were

met, the author noted two improvements which would improve the usage of the Admin Tool

and help with further testing in the future. These improvements are covered in chapter 4.1.

Some of the testing also took place on the mobile phone (also in the Chrome browser). The

author did not notice any features that were unusable because of mobile phone limitations,

therefore concluding that NF2 is met.

Finally, the speed of the project was measured, measuring the time it took the Client to

receive the information sent by the Admin Tool. All the other components besides the

building tab/state took on average under 15 milliseconds for the information to reach the

Client, with the initial requests taking longer due to resource allocation. Most of the time

was spent on the processing of the HTTP request, as the time it took for the Server to notify

the Client was constantly around 5 milliseconds. If we assume that the DBV project gets a

similar configuration as the SIS so that the Admin Tool’s HTTP request takes the same time

16 https://en.wikipedia.org/wiki/Functional_testing

17 https://www.gsmarena.com/xiaomi_mi_8-9065.php

18 https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

https://en.wikipedia.org/wiki/Functional_testing
https://www.gsmarena.com/xiaomi_mi_8-9065.php
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

22

to reach the endpoint as it does for the SIS, the average time added to the response would

be 45 milliseconds, which added up totals at 60 milliseconds. This is less than 100

milliseconds and therefore satisfies the non-functional requirement NF3.

An exception to this is the building tab / state change, as this took on average 157

milliseconds to reach the Client due to the processing of the state change input in the Server

that came from the Admin Tool taking longer. However, the author noted that this was not

noticeable in the visualization due to the nature of the actors’ movement and predicts that

this will not be an issue even with the added latency.

4.1 Improvements

The testers (the author, E. Linde and M. Perli) noted that it was tedious to have to manually

enter values for all fields, as a result templates were added to the tabs. These templates allow

the user to set the corresponding state to the described values by clicking just one button.

An example of this can be seen on Figure 11, where there are 3 weather templates.

By activating one of the templates, the user can quickly setup the visualization to show rain

or snow weather effects.

In addition to the templates, buttons were added to randomly give values to the fields, where

it would make sense. As a result, in the building tab of the Admin Tool, it was now possible

fill out either a room, an entire floor or the entire building randomly (or empty it).

Another thing the testers noted was that while some of the changes took place fast, there

were effects in the visualization which would happen over a long time (i.e. 30 minutes). To

help showcase them a way to edit the timescale of the visualization was added, to the time

tab of the Admin Tool.

Figure 11. Weather templates for a sunny, a snowy and a rainy day.

23

5 Conclusion

As the result of this thesis the existing Delta Building Visualization solution (the Client)

was refactored and two new programs (the Server and the Admin Tool) were created. The

Client is now only responsible for visualizing data while the Server oversees gathering and

processing it. Through the Admin Tool it is now possible to remotely control, what is being

visualized by the Client.

Firstly, the requirements for the new solution were defined. The Client - Server - Admin

Tool architecture was designed to satisfy the requirements. The Server program was created

in ASP.NET Core and the Admin Tool in the Aurelia Javascript framework. The solution’s

functionalities were tested by the author and several improvements were made as a result of

testing.

In addition to the improvements made by the author, during the development some ideas

that were too big for the current scope of the thesis came up. One idea was that the

visualization could support more sophisticated actor styles, for example different clothing

items, accessories and actor colors. If this idea were to be combined with a more

sophisticated integration with the SIS, the students of the institute could personalize the

actors that represent them. This could turn the DBV project into a memorable experience of

future students’ university times.

The author would like to thank the friends, the colleagues, the boss and the family, all of

whom provided (mostly) moral support during this project. The author is grateful for the

cooperation of students Perli and Linde with whom working together was a nice experience.

The author’s gratitude goes to his supervisor Raimond-Hendrik Tunnel, who was helpful in

all aspects of the thesis creation, who also provided moral support and life advice and who

was interesting to argue with. And in the end, the author is very excited to see this project

eventually being used in a live environment.

24

References

[1] Voitenko A. Delta õppehoone keskkonna visualiseerimine. University of Tartu,

bachelor’s thesis, 2018

[2] Nikolajev A. Delta õppehoone visualiseerimine ja optimeerimine. University of Tartu,

bachelor’s thesis, 2018

[3] Perli M. Agent Logic for Delta Building Visualization. University of Tartu, bachelor’s

thesis, 2019

[4] Linde E. Delta õppehoone visualisatsioon - visuaalsed efektid. University of Tartu,

bachelor’s thesis, 2019

[5] Sommerville I. Software Engineering (10th Edition), Pearson, 2016.

[6] Nielsen J. Usability Engineering, Academic Press, 1993.

[7] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley

https://github.com/dieforfree/edsebooks/blob/master/ebooks/Design%20Patterns%2C

%20Elements%20of%20Reusable%20Object-Oriented%20Software.pdf (24.03.2019)

[8] Hall B. Beej’s Guide to Network Programming, 2016

http://beej.us/guide/bgnet/pdf/bgnet_A4.pdf (08.05.2019)

https://github.com/dieforfree/edsebooks/blob/master/ebooks/Design%20Patterns%2C%20Elements%20of%20Reusable%20Object-Oriented%20Software.pdf
https://github.com/dieforfree/edsebooks/blob/master/ebooks/Design%20Patterns%2C%20Elements%20of%20Reusable%20Object-Oriented%20Software.pdf
http://beej.us/guide/bgnet/pdf/bgnet_A4.pdf

25

Appendix

I. DBV Project Architecture Chart

26

II. Admin Tool Tabs

27

28

29

30

31

32

III. Accompanying Files

The latest version of the source code for this project can be accessed form a Gitlab

repository19.

In the accompanying files, a build of the Client (Unity application) and of the Server and

Admin Tool (ASP.NET Core + Aurelia application) can be found along with the source

code that produced these builds.

19 https://gitlab.com/UT-CGVR-Projects/DeltaBuildingVisualization

https://gitlab.com/UT-CGVR-Projects/DeltaBuildingVisualization

33

IV. License

Non-exclusive license to reproduce thesis and make thesis public

I, Daniel Kütt,

 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive license) to:

reproduce, for the purpose of preservation, including for adding to the DSpace digital

archives until the expiry of the term of copyright,

Delta Building Visualization – Admin Tool,

supervised by Raimond-Hendrik Tunnel, MSc.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons license CC BY NC ND 3.0, which allows, by giving

appropriate credit to the author, to reproduce, distribute the work and communicate it to the

public, and prohibits the creation of derivative works and any commercial use of the work

until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe other persons’

intellectual property rights or rights arising from the personal data protection legislation.

Tartu, 10.05.2019

	1 Introduction
	2 Requirements
	2.1 Functional Requirements
	2.2 Non-Functional Requirements

	3 The Implementation
	3.1 Architecture
	3.2 Client
	3.2.1 Communication Protocol
	3.2.2 Communication Process

	3.3 Server
	3.3.1 Internal states
	3.3.2 REST API

	3.4 Admin Tool
	3.4.1 Design
	3.4.2 Functionality

	4 Testing and Results
	4.1 Improvements

	5 Conclusion
	References
	Appendix
	I. DBV Project Architecture Chart
	II. Admin Tool Tabs
	III. Accompanying Files
	IV. License

