
UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Navedanjum Ansari

Identifying Semantically Duplicate Questions

Using Data Science Approach: A Quora Case

Study

Master’s Thesis (30 ECTS)

Supervisors: Rajesh Sharma

Tartu 2019

2

Identifying Semantically Duplicate Questions Using Data Science Approach:

A Quora Case Study
Abstract:

Two questions are semantically duplicate, given that precisely the same answer can satisfy both

the questions. Identifying semantically identical questions on, Question and Answering(Q&A)

social media platforms like Quora is exceptionally significant to ensure that the quality and the

quantity of content are presented to users, based on the intent of the question and thus enriching

overall user experience. Detecting duplicate questions is a challenging problem because natural

language is very expressive, and a unique intent can be conveyed using different words,

phrases, and sentence structuring. Machine learning and deep learning methods are known to

have accomplished superior results over traditional natural language processing techniques in

identifying similar texts.

In this thesis, taking Quora for our case study, we explored and applied different machine

learning and deep learning techniques on the task of identifying duplicate questions on Quora’s

question pair dataset. By using feature engineering, feature importance techniques, and

experimenting with seven selected machine learning classifiers, we demonstrated that our

models outperformed a few of the previous studies on this task. Xgboost model, when fed with

character level term frequency and inverse term frequency, achieved superior results to other

machine learning models and also outperformed a few of the Deep learning baseline models.

We applied deep learning techniques to model four different deep neural networks of multiple

layers consisting of Glove embeddings, Long Short Term Memory, Convolution, Max pooling,

Dense, Batch Normalization, Activation functions, and model merge. Our deep learning

models achieved better accuracy than machine learning models. Three out of four proposed

architectures outperformed the accuracy from previous machine learning and deep learning

research work, two out of four models outperformed accuracy from previous deep learning

study on Quora’s question pair dataset, and our best model achieved accuracy of 85.82% which

is close to Quora state of the art accuracy.

Keywords: Quora, Duplicate question, Machine learning, Deep learning, model, neural

network

CERCS: P170 - Computer science, numerical analysis, systems, control

3

Semantselt Kahekordsete Küsimuste Kindlakstegemine: Quora Juhtumi

Uurimine
Lühikokkuvõte: Kaks küsimust on semantselt dubleeritud, arvestades, et täpselt sama vastus

võib rahuldada mõlemaid küsimusi. Semantselt identsete küsimuste väljaselgitamine selliste

sotsiaalmeediaplatvormide kohta nagu Quora on erakordselt oluline, et tagada kasutajatele

esitatud sisu kvaliteet ja kogus, lähtudes küsimuse kavatsusest ja nii rikastades üldist

kasutajakogemust. Dubleerivate küsimuste avastamine on väljakutseks, sest looduskeel on

väga väljendusrikas ning ainulaadset kavatsust saab edastada erinevate sõnade, fraaside ja

lausekujunduse abil. Masinõppe ja sügava õppimise meetodid on teadaolevalt saavutanud

paremaid tulemusi võrreldes traditsiooniliste loodusliku keeletöötlemise tehnikatega sarnaste

tekstide väljaselgitamisel.

Selles teoses, võttes Quora oma juhtumiuuringuks, uurisime ja kohaldasime erinevaid

masinõppe- ja sügavõppetehnikaid ülesandel tuvastada Quora küsimuse paari andmesetikul

Kahekordne küsimused. Kasutades omaduste inseneritehnikat, eristavaid tähtsaid tehnikaid

ning katsetades seitsme valitud masinõppe klassifikaatoriga, näitasime, et meie mudelid

edestasid paari varasemat selle ülesandega seotud uuringut. Xgboost mudelil, mida söödetakse

tähetaseme termilise sagedusega ja pöördsagedusega, saavutati teiste masinõppemudelite

suhtes paremad tulemused ning edestati ka paari Deep learningi algmudelit.

Meie kasutasime sügava õppimise tehnikat, et modelleerida neli erinevat sügavat

neuralivõrgustikku, mis koosnevad Glove embeddingist, Long Short Term Memory,

Convolution, Max pooling, Dense, Batch normaliseerimisest, Aktuaalsetest funktsioonidest ja

mudeli ühendamisest. Meie süvaõppemudelid saavutasid parema täpsuse kui

masinõppemudelid. Kolm neljast väljapakutud arhitektuurist edestasid täpsust varasemast

masinõppe- ja süvaõppetööst, kaks neljast mudelist edestasid täpsust varasemast sügava

õppimise uuringust Quora küsitluspaari andmestik ning meie parim mudel saavutas täpsuse

85.82% mis on kunstilise seisundi Quora lähedal Täpsus.

Võtmesõnad: Quora, Kahekordne küsimus, masinaõpe, õpe, Sügav õppimine, modell,

neuralivõrgustik

CERCS: P170 - arvutiteadus, arvuline analüüs, süsteemid, kontroll

Table of Contents

1. Introduction ...6

1.1 Scope and motivation ..6

1.2 Research problem..6

1.3 Summary of contribution and structure description..7

2. Literature Review...8

2.1 Different approaches ...8

2.2 Application of the research .. 10

2.3 Summary .. 11

3. Data ... 13

3.1 Data collection .. 13

3.2 Exploratory Data Analysis .. 13

3.3 Visual Dataset Representation ... 15

3.4 Data Cleaning ... 16

4. Background .. 17

4.1 Quora Graphs .. 17

4.2 Feature Engineering .. 18

4.3 Machine Learning Algorithms ... 21

4.4 Deep Learning Introduction .. 23

4.5 Deep Learning Algorithms .. 25

5 Methodology .. 28

5.1 Experimental and research design ... 28

5.2 Feature Importance ... 29

5.3 Machine Learning Pipeline with TF-IDF ... 29

5.4 Deep Learning Design and Set-up ... 31

6 Description of models and results evaluation .. 37

6.1 Content Organization: ... 37

6.2 Evaluation Metrics .. 37

6.3 Baseline Model Classifiers .. 38

6.4 Feature Importance Analysis ... 39

6.5 TF-IDF with ML Models .. 43

6.6 Deep Learning Models .. 45

7 Conclusions and future work .. 46

5

8 References ... 48

Appendix .. 50

I.A Hyperparameters used for the machine learning models .. 50

I.B Hyperparameters used for the deep learning layers .. 51

II. License ... 52

6

1. Introduction
Social media platforms are a great success as can be witnessed by the number of the active user

base. In the age of internet and social media, there has been a plethora of social media platforms,

for example, we have Facebook, for user interaction, LinkedIn, for professional networking,

WhatsApp for chat and video calling, Stack Overflow for technical queries, Instagram for photo

sharing. Along the line, Quora is a Question & Answer platform and builds around a community

of users to share knowledge and express their opinion and expertise on a variety of topics.

Question Answering sites like Yahoo and Google Answers existed over a decade however they

fail to keep up the content value of their topics and answers due to a lot of junk information posted;

thus their use base declined[1]. On the other hand, Quora is an emerging site for the quality content,

launched in 2009 and as of 2019, it is estimated to have 300 million active users, and the company

has a valuation of $2Bn1. Quora has 400,000 unique topics2 and domain experts as its user so that

the users get the first-hand information from the experts in the field.

With the growing repository of the knowledge base, there is a need for Quora to preserve the trust

of the users, maintain the content quality, and also discard away the junk, duplicate and insincere

information. Quora has successfully overcome this challenge by organizing the data effectively

by using modern machine learning and deep learning technology to eliminate question duplication.

1.1 Scope and motivation
The most popular Q&A platforms have been Stack Overflow, Reddit, and Quora. In this thesis,

we take Quora for our case study and investigate the reason behind the Quora’s success in regards

to organizing the content. In this thesis, we focus on aspects of how Quora maintain the knowledge

repository by detecting the duplicate question such that all the answers for semantically similar

questions to be organized so that users get quantity and quality of responses. We will analyze and

run our experiments to predict the duplicate questions using Machine learning and Deep learning

methods.

1.2 Research problem
As for any Q&A, it has become imperative to organize the content in a specific way to appeal users

to be an active participant by posting questions and same time share their knowledge in respective

domain of expertise. In keeping the users' interest, it is also essential that users do not post duplicate

questions and thus multiple answers for a semantically similar question, this is avoided if

semantically duplicate questions are merged then all the answers are made available under the

same subject. Detecting semantically duplicate questions and finding the probability of matching

also helps the Q&A platform to recommend questions to the user instead of posting a new one.

Given our focus of study, we defined the following research questions:

RQ1: How does the structure and features of Quora help in presenting the most valuable

information to its users from a massive pool of data contents?

1 Vox - https://www.vox.com/recode/2019/5/16/18627157/quora-value-billion-question-answer
2 Statistics 2019 - https://foundationinc.co/lab/quora-statistics/

7

RQ2: How can we detect duplicate questions on Quora using machine learning and deep learning

methods?

RQ3: How can we achieve the best possible prediction results on detecting semantically similar

questions?

The first research question has been studied in the past in terms of specific areas such as only the

topic organization, user organization or general organization but we aim to put together the holistic

view of the content organization both in terms of user base and the contents. Research question

two and three have also been studied on the first dataset released by Quora3 however we aim to

achieve the higher accuracy in detecting semantically duplicate questions on same datasets, and

we will employ both machine learning and deep learning methods to achieve better prediction

results.

1.3 Summary of contribution and structure description
We have extracted different features from the existing question dataset and explored various

machine learning algorithm. After employing feature engineering upon raw dataset, we

experimented with different machine learning algorithms to draw our baseline. We also showed

that not all features were useful in predicting duplicate question and after analyzing and dropping

a few of the features, our result for ML models slightly improved but did not degrade at all. We

also have the existing baseline from the works of literature, which we will surpass. We then tried

many deep learning methods to finally experiment with our four best deep learning architectures,

using the tensor flow and keras python library4. With our experiment results, we have shown that

deep learning methods are suitable for solving the problem of detecting semantically similar

questions. Our deep learning methods win over not only our baseline machine learning models but

also performs better than baselines from previous research studies.

Moreover, our machine learning ensemble model TF-IDF achieved the accuracy of 82.33% and

higher F1 score compared to literature[2]. We showed that our machine learning model achieved

better F1 score and accuracy than those machine learning algorithm result in [2]. Also, our deep

learning model achieved an accuracy of 85.82%. Three out of four presented deep learning models

outperformed the results from the literature [2]–[5], and fourth architecture results achieved close

to Quora’s state of the art accuracy presented by Quora engineering team on their website[6].

The structure of the thesis is as follows:

Chapter 2 presents the related work done on analyzing Quora and detecting duplicate questions.

Chapter 3 explains the details about data, exploratory data analysis, and data cleaning.

Chapter 4 presents the description of machine learning and deep learning methods used to build

the prediction models.

Chapter 5 describes the evaluation metrics used in machine learning and deep learning approach.

Chapter 6 discusses the feature engineering, experiment design, and approach employed.

Chapter 7 presents the models used in this research and evaluation of results.

Chapter 8 presents a summary of the result and discussion on future work.

3 https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
4 Tensorflow keras - https://www.tensorflow.org/guide/keras

8

2. Literature Review
This chapter presents the review and description of works of literature. In the later section, we

present a summary of the performance baseline selected from the previous study.

2.1 Different approaches
Structure and Effective Features of Quora

The previous studies that are most relevant to the research question on the structural organization

of content are discussed thoroughly in “Wisdom in social crowd: an analysis of Quora” [1]. Quora

is composed of three types of graphs. The user-topic graph, social graph, and associated questions

to questions graph to recommend related questions. This paper has presented a detailed analysis

of these three graphs to understand how they help users filter out a few exciting questions-answers

from a large group of less appealing questions-answers.

The paper also tried to compare the effectiveness of attracting answers using social ties to that of

attracting answers from the following topics. The result was that questions received more answers

from users who follow the associated topic rather than those who follow the asker but still both

social ties and topics play an important role in attracting answers. The other aspect examined was

the answer quality of answers contributed by followers taking the vote count as a measure. The

outcome was that for more than 50% of the questions asked by super users, answers from followers

were of high quality; this goes hand in hand with the similar survey on Q & A behaviors on

Facebook[7] which suggests that close friends have more incentive to provide right answers.

One of the features of Quora that is strongly affected by social connection is upvotes. The primary

purpose of upvotes is to promote the quality of answers. The paper has tried first tried to analyze

the impact of voting on the ranking of answers. The result shows that in 85% of the questions, the

best-ranked answer got the highest number of votes; this shows that the number of votes is the

main factor for ranking of answers; this raises a concern that potential bias in the voting process

could result in an incorrect ranking of answers. Authors in Facebook[7] have analyzed votes on

answers provided by super users. The outcome of was that in 40% of the questions, answers from

super users received the highest votes while 60% of the case, their answers are in the top two most

voted. The implication here is that regardless of the quality of their answer, superusers can often

get more votes over other users [8].

Detection of duplicate questions

There have been quite a few works of research on the detection of duplicate data on the first release

Quora dataset. The previous works related to our research questions, which discusses the best

performing Machine learning and Deep learning approach are reviewed as follows.

The previous work to detect duplicate question pairs using Deep learning approach[5], shows that

deep learning approach achieved superior performance than traditional NLP approach. They used

deep learning methods like convolutional neural network(CNN), long term short term memory

networks (LSTMs), and a hybrid model of CNN and LSTM layers. Their best model is LSTM

9

network that achieved accuracy of 81.07% and F1 score of 75.7%. They used GloVe word vector

of 200 dimensions trained using 27 billion Twitter5 words in their experiments.

The deep learning approaches in [5] utilize a Siamese network structure[9], where each question

goes through a separate branch of the network with identical parameters and weights. Questions

are first changed into vectors of vocabulary indexes then converted into word embedding using

pre-trained Glove [10]. The embedding is then passed through the encoding layer to change the

word matrix into a feature vector, and then the feature vectors are connected using the method

proposed by Bowman et al. [11]. In the end, the connected feature vectors are passed through a

multi-layer perceptron that gives the final output. The authors have experimented with three

different encoding methods. The first method was CNN based on what was proposed by Koon[12]

and Bogdanova et al. [13]. This encoding method had an output, a feature vector of size 1x328.

The second encoding method was bidirectional LSTM based on what was proposed by Wang et

al. [14]. This encoding method produced (1x10N) features where N is the number of words in a

sentence. The third encoding strategy was a hybrid of the above two methods, which applies the

bidirectional LSTM and the CNN method consecutively resulting in a feature vector of 1x328. The

final step was to combine the feature vectors from the two branches of the Siamese neural network

to produce the final prediction. For this, they used a multilayer perceptron, which resulted in a 2%

performance gain compared to a mere concatenation of the two feature vectors. The final output

layer was composed of a single (1x2) vector where each element corresponds to the duplicate and

non-duplicate class.

The method proposed in the Stanford report[15] makes use of Siamese GRU neural network to

encode each sentence and apply different distance measurements to the sentence vector output of

the neural network. Their approach involves a few necessary steps. The first step was data

processing, which involves tokenizing the sentences in the entire dataset using the Stanford

Tokenizer6. This step also involved changing each question to a fixed length for allowing batch

computation using matrix operations. The second step involves sentence encoding, where they

used both recurrent neural network(RNN) and gated recurrent unit (GRU). They initialized the

word embedding to the 300-dimensional GloVe vectors[10].

The next step was determining the distance measure[16] that are used in combining the sentence

vectors to determine if they are semantically equivalent. There were two approaches for this step,

the first being calculating distances between the sentence vectors and running logistic regression

to make the prediction. The paper has tested cosine distance, Euclidean distance, and weighted

Manhattan distance. The problem here is that it is difficult to know the natural distance measure

encoded by the neural network. To tackle this issue, they replaced the distance function with a

neural network, leaving it up to this neural network to learn the correct distance function. They

provided a row concatenated vector as input to the neural network and also experimented using

one layer and two-layer in the neural network. The paper utilized data augmentation as an approach

to reduce overfitting. They also did a hyperparameter search by tuning the size of the neural

network hidden layer (to 250) and the standardized length of the input sentences (to 30 words)

which led to better performance.

5 Twitter Glove 200d, 27B token - https://nlp.stanford.edu/projects/glove/
6 https://nlp.stanford.edu/software/tokenizer.shtml

10

In the literature Determining Entailment of Questions in the Quora Dataset [3], authors have used

word ordering and word alignment using a long-short-term-memory(LSTM) recurrent neural

network[17], and the decomposable attention model respectively and tried to combine them into

the LSTM attention model to achieve their best accuracy of 81.4% . Their approach involved

implementing various models proposed by various papers produced to determine sentence

entailment on the SNLI dataset.7 Some of these models are Bag of words model, RNN with GRU

and LSTM cell, LSTM with attention, Decomposable attention model. Some of the challenges

they faced in implementing these models were the issue with memory because of the hugeness of

the dataset and also issues with overfitting which they tried to tackle by introducing drop out and

regularization.

Doing a sentence analysis showed that different models have their pros and cons in a different type

of sentence pairs. Sentences similar grammatically but with words out of vocabulary were better

classified with word-by-word and two-way-word-by-word attention models. On the other hand,

LSTM attention model performed well in classifying sentences with words tangentially related.

However, in cases were words in the sentences have a different order; the decomposable attention

model[18] achieves better performance. This paper tried to combine the GRU/LSTM model with

the decomposable attention model to gain from the advantage of both and come up with better

models with better accuracy like LSTM with Word by Word Attention, and LSTM with Two Way

Word by Word Attention.

In the relevant literature, “Detection of Duplicates in Quora and Twitter Corpus”[2], the authors

have experimented with six traditional machine learning classifiers. They used a simple approach

to extract six simple features such as word counts, common words, and term frequencies(TF-

IDF)[19] on question pairs to train their models. The best accuracy reported in this work is 72.2%

and 71.9% obtained from binary classifiers random forest and KNN, respectively.

Finally, we reviewed the experiments by Quora’s engineering team[6] on solving the problem of

detecting semantically duplicate questions. In production, they use the traditional machine learning

approach using random forest with tens of manually extracted features. Three architectures

presented in their work use LSTM in combination with attention, angle, and distances. The point

noted from this literature is that Quora uses the word embedding from its Quora Corpus and

therefore state of the art has higher accuracy reported compared to all other selected baselines from

the literature review that used GloVe pre-trained word to vectors from the glove project8.

2.2 Application of the research
The content organization speaks about the victory; Quora has achieved in terms of popularity and

quality contents. Therefore, the content organization and features implemented by Quora can serve

as a benchmark for other social media platforms in general and precisely a standard method to

organize and moderate contents for other Q&A platforms.

7 SNLI - https://nlp.stanford.edu/projects/snli/
8 https://nlp.stanford.edu/projects/glove

11

Identifying duplicate texts has an advantage in various domains, such as information retrieval for

building efficient search engines and recommendation systems. Detecting semantically similar

question is a hard problem since there are multiple ways to describe textually, the same meaning.

The model can be useful in cases where content-categorization is required or for sorting user-

generated contents online. It can be helpful to build automatic chatbots that reply to user queries

online and thus reduces the human effort by avoiding to cater to each individual’s queries. User

can search for their answers from the pool of available questions, or they can be offered the

recommendations to look for question items which are similar to what they intend to ask. Such

models can utilized in Online Chat, Information retrieval search engines, Q&A forums, call center

support desks.

2.3 Summary
By summarizing the related work, it is noted that the various approach used by the authors of the

reviewed paper can be utilized to ensemble a better model for detecting duplicate questions. The

chain network of users represented helps any social network platform to organize their user base

and content effectively. Previous studies [2]–[5] are most relevant to this research work in

detecting duplicate questions as these pieces of literature have used traditional machine learning

and deep learning algorithms on the duplicate question datasets. We use results from [2]–[5] as the

baseline results for our experiments, and we aim to outperform their results using our proposed

approach using traditional machine learning and deep neural networks. The Quora blog from

Quora’s engineering team[6] is very relevant to our research experiments as it is the Quora state

of the art produced in the duplicate question pair dataset and influence the selection of our deep

learning algorithms. The other reviewed works also influence the selection of features and models

in our experiments.

12

Table 1. Performance Baseline from selected literature

Paper Model Technique Accuracy F1 score

Detection of Duplicates in
Quora and Twitter Corpus[2]

Logistic regression

Machine
Learning

0.671 0.66

Decision Tree 0.693 0.69

SVM 0.6 0.55

KNN 0.719 0.72

Naïve Bayes 0.637 0.5

Random Forest 0.722 0.73

Determining Entailment of
Questions in the Quora

Dataset[3]

LSTM

Deep learning

0.784 0.8339

LSTM with Attention 0.81 0.8516

LSTM with Two Way Word by
Word Attention

0.814 0.8523

Decomposable Attention Model 0.798 0.8365

Quora Question Duplication[4]

Siamese with bag of words

Deep learning

77.3 73.2

Siamese with LSTM 83.2 79.3

Seq2Seq LSTM with Attention 80.8 76.4

Ensemble 83.8 79.5

Duplicate Question Pair
Detection with Deep

Learning[5]

LSTM (twitter word embedding
200d)

Deep learning 0.8107 0.757

Quora State of the Art[6]

LSTM with concatenation

Deep learning

0.87 0.87

LSTM with distance and angle 0.87 0.88

Decomposable attention 0.86 0.87

We aim to produce better results from the baseline selected from the previous study, the results

achieved from each of the studies on Quora duplicate question pair dataset is summarized as

presented in above Table 1

13

3. Data
In this chapter, we briefly describe the data collection, exploratory data analysis, data visualization,

and data cleaning process.

3.1 Data collection
The data for this research work is taken from the First Quora Dataset release hosted on Amazon

S39. There is a total of 404290 rows in the dataset, which indicates that there are total 404290

question pairs, and the overall file size is 55.4 MB.

GloVe pre-trained word vectors are used for word embeddings. GloVe pre-trained vectors are

available at SNLI project site Glove10 . The total file size is 1.53GB in ZIP format ‘.gz.’ These are

vectors of dimension 300 are used to convert word to vectors in our machine and deep learning

models. In the feature engineering process to convert word to vector for distance calculation, we

used Google news vectors11 GoogleNews-vectors-negative300.bin.gz, of 3 million words and 300

dimensions.

3.2 Exploratory Data Analysis
We performed the necessary statistics on the dataset, which helps us to give a more detailed

understanding of the duplicate Quora question dataset. There is a total of six columns in the dataset.

Each of the columns is meaningful and describe the characteristic of the row. The description of

the columns is as described below in Table 2.

Table 2. Description of columns in dataset

Colum Name Description

id
A unique identifier assigned to each row in the dataset. The first

row has an id of 0, and the last row has id 404289

qid1 A unique identifier for the question in question1 column.

qid2 A unique identifier for the question in question2 column.

question1
question1 contains the actual question to be compared with

question2

question2
question2 contains the actual question to be compared with

question2

is_duplicate

is_duplicate is the result of a semantical comparison of question

pair.

0 indicates false i.e. question pair is not duplicate

1 indicates true i.e. question pair is duplicate

9 http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv
10 https://nlp.stanford.edu/projects/glove/
11 https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz

14

The snapshot below in Figure 1 shows the actual data in the raw tab-separated format.

Figure 1. Snapshot of raw data file in tsv format

In the dataset using python, we ran the underlying statistics to look for the total number of

unique questions, several questions that occur in the dataset more than once and the number of

positive pair i.e. the question pair identified as semantically similar.

Figure 2 Statistics on the dataset

As can be seen from Figure 2 above, we have total 537933 unique questions, and we could identify

this from the unique qids from both qid1 and qid2. qids uniquely identify the questions; therefore,

the repetition of qid suggested the questions occurred multiple times as part of another question

column or question pair set. In our dataset, we have 36.92% of the duplicate question pair set,

which is our positive sample identified as 1 in our class label column is_duplicate. Since our

15

dataset consists of approximately 37% positive label and 63% negative label, we will not re-sample

our dataset as this is an adequately balanced dataset.

3.3 Visual Dataset Representation
The plot below is Figure 3 is the visual representation of class label distribution in the dataset.

Figure 3. Class Label distribution

In the histogram plot in Figure 4 shows the distribution of question occurrence count.

Figure 4 Distribution of question occurrence in dataset

In the histogram plot Figure 4, the x-axis represents the number of times question occurs, and the

y-axis or height of the bar represents how many such questions with occurrence count exist in the

dataset. As can be visualized from the graph the majority of questions occurs less than 60 times,

and the first bar shows the unique occurrence and second bar the number of the appearance of

question twice and so on.

Positive Sample 149263

Negative Sample 255027

Total Question Pairs 404290

16

3.4 Data Cleaning
We perform additional statistics using Python, that helps us to clean the data because this is a

cumbersome task to perform manually on 404290 pair of questions. Table 3 presents

additional stats computed from question pairs.

Table 3 Statistics on question1 and question2

Statistics Average Sum Count

q1 length 59.53672 24070099 404290

q2 length 60.10838 24301217 404290

Max length q1 623(char count)

Max length q2 1169(char count)

q1 length - q2 length -0.57166 -231118 404290

q1 length <=5 - - 53

q2 length <=5 - - 19

Mostly these questions short length questions are one word, one and two length questions are just

the question marks and special characters, foreign characters. We discard as these data rows in the

data cleaning process. From the table above, we observe that the q2 length on an average is greater,

and therefore, we have an average negative difference. These basic statistics gives us an overall

understanding of our dataset and help discard some of the data rows which are not useful. For

example, we can eliminate all that dataset rows where question length is not significantly

meaningful.

We dropped a total of 72 rows from our raw dataset based on the logic that both question1 length

and question2 less than 6 or either one of the question length is less than 6.

Effective count in clean dataset = 404218.

We have utilized the cleaned set as an input to only our machine learning models. Elimination of

72 data rows will have a negligible impact on our prediction. However, we decided to discard the

72 rows and continue to work with 404218 data rows in our machine learning approach, and we

continue with the usual data with 404290 rows in the original form for our deep learning approach.

17

4. Background
This chapter briefly explains the following:

 Different types of connection graphs Quora uses to deliver the contents, briefly introduced

in Chapter 2, Section2.1

 Introduction to deep learning concepts and techniques.

 Presents the features extracted using feature engineering.

 Explains various machine and deep learning models used in the experiments of this thesis.

4.1 Quora Graphs
This section gives an overview of the different types of graphs, which are mainly discussed and

analyzed in the reviewed work[1], [7], [8]. Quora is composed of three types of the user topic

graph, the social graph, and the related question graph.

The user topic graph

The user topic graph enables users to get news and notification about the questions created under

the topics they are following. The first analysis of this graph tries to compare and understand the

relation between the number of followers and number of questions. The result shows that the top

four followed topics are not the top four when it comes to the number of questions. So this means

that a higher number of followers does not always produce more questions [1]. The other analysis

tries to examine whether users interest in a topic will attract more activities in the questions under

that topic and this was done by looking at the correlation between the number of views or answers

per question, and the number of followers of each topic. The observation showed that questions

under topics followed by many tend to have a higher number of average page view and answers.

The above analysis shows that topics are an effective way of leading users to questions that they

find interesting.

The social graph

A survey on Quora users[8] shows that most users follow people whom they find interesting and

knowledgeable. To validate the claim, the paper[1] has analyzed the correlation between the

number of followers that a user has to the quantity and quality (votes) answers that the user has

posted. The result was especially users with less than 100 followers, which compose 91% of the

total population showed a strong relationship between the number of followers and quality of

answers.

The other analysis tries to understand the impact of social connection with question answering by

asking the question, do super users draw more and better answers form their followers. The result

showed that users do not get more answers to their questions just because they have many

followers[8]. The next examination was to see the percentage of answers received from followers.

It showed that even half of the questions asked by super users received no answer from their

followers. The case might be because followers instead seek answers from followees. The other

observation is that compared to ordinary users, super users attract more answers from followers,

which shows that sociality has some level of influence on question answering.

18

The related question graph

In Quora, each question has a list of related questions ranked with the measure of similarity which

forms the related questions graph. The paper has tried to analyze this graph to determine if this

structure help user find top questions. One observation about the connectivity of the graph was

that the question graph was dominated by one significant connected component that covers 98%

of all questions. The 2% are mostly new questions whose related questions have not been computed

yet. The research paper[1] tried to analyze was the stability of the question graph, to do this, a

comparison was made between two snapshots of the question graph taken at different times with

two-month difference. The result was that 60% of the of all the questions did not show any change

while 30% had only one new entry in their related question list.

4.2 Feature Engineering
We dropped the first three columns id, qid1, and qid2 from the initial raw dataset and created

additional useful features so that we have two columns question1, question2, and class label

is_duplicate. Following are the new features designed from initial raw data, and we have a total of

31 columns in our featured dataset, which will serve as input to our machine learning models. Thus

to summarize, we have thirty features and one class label column that is our binary class either 0

or 1.

Set 0 Base Feature

1. Question 1 dataset: This is the question 1 column in the dataset

2. Question 2 dataset: This is the quest 2 column in the dataset

3. Is duplicate: This is the class label which is a binary classification of whether given

question pair is duplicate or not represented by 0 and 1 respectively.

Set 1 Basic Features

4. Length of question1: Length of the question1 feature is derived from the corresponding

question1. Length includes all the characters, punctuation and white spaces.

5. Length of question 2: Length of the question2 feature is derived from the corresponding

question2.Length includes all the characters, punctuation and white spaces.

6. Difference in the length of questions: Difference in the length feature is calculated as the

difference between the length of corresponding question1 and question2.

7. Number of characters in q1: Number of characters in question1 feature is calculated as

a distinct number of characters excluding white spaces in corresponding question 1.

8. Number of characters in q2: Number of characters in question2 feature is calculated as a

distinct number of characters excluding white spaces in corresponding question 2.

9. Number of words in q1: Number of words in question 1 feature is calculated as the

number of words in corresponding question 1 including repeated words.

19

10. Number of words in q2: Number of words in question 2 feature is calculated as the

number of words in corresponding question 2 including repeated words.

11. Number of common words in q1 and q2: Number of common words in q1 and q2 feature

is calculated as distinct common words in corresponding question 1 and question 2.

Set 2 Fuzzy Features

12. Qratio: Qratio feature is the quick ratio comparison of the two question strings and has

value range from 0 to 100. More similar questions have a higher score.

13. Wratio: Wratio feature is the weighted ratio that uses different algorithms to calculate the

matching score and returns the best ratio for two question strings. Score range from 0 to

100.

14. Partial ratio: Partial ratio feature calculates the best score for partial string matching

against all substrings of the greater length and returns the best score. Score range from 0 to

100

15. Token set ratio: Token set ratio feature is calculated on the strings by segregating the

strings into three parts. First part of common strings which are then arranged as sorted

intersection, and other parts from each of the questions as sorted remainders. It then

computes scores from compares sorted intersection with each of combination of sorted

intersection and sorted remainders of that string. Token set ratio returns the highest score

from the comparison on sorted intersection versus (sorted intersection + sorted remainder

from question1) and sorted intersection versus (sorted intersection + sorted remainder from

question2). Score range from 0 to 100.

16. Token sort ratio: Token sort feature tokenizes the strings and then sort the strings

alphabetically and join back into strings. It then compares the transformed strings using

ratio to return score. Score range from 0 to 100.

17. Partial token set ratio: Partial token set feature is similar to token set ratio except that

after it tokenizes string it uses partial ratio in place of ratio to calculate the matching score.

Score range from 0 to 100.

18. Partial token sort ratio: Partial token sort ratio is similar to token sort ratio except that it

uses partial ratio in place of ratio, after sorting the token to compute matching score. Score

range from 0 to 100.

Set 3 Distance Features

20

19. Word mover’s distance(wmd): World mover’s distance[20]feature calculates the

distance between two documents, in our case, it gives the distance between two

corresponding questions in our dataset. It uses word2vec embedding to find the distance

between similar or semantically similar words. The stop words like ‘the,’ ‘to’ etc. are

removed using nltk12 library. We used pre-trained word2vec GoogleNews-vectors-

negative300.bin.gz embedding and python’s genism library to compute word mover’s

distance, a small value of wmd indicates that the two questions are related. Wmd uses

Euclidean distance to calculate the distance.

20. Normalized word mover’s distance (norm wmd): Normalized word mover’s is similar

to word mover’s distance just that word2vec vectors are normalized such that vectors have

equal length because Euclidean distance could become large if the difference in the two

vectors length differs. Normalizing helps in reducing risk of miscomputing.

21. Cosine distance: Cosine distance feature calculates the angle between the word vectors of

two question sentences. The cosine distance value of 1 indicates that two sentences are in

the same direction and hence related. Value of 0 means they are perpendicular with very

less to no similarity and -1 means there is no similarity at all. Cosine distance is calculated

using scipy’s spatial13 python library.

22. Minkowski distance: Minkowski distance feature is a generic distance metric that can be

computed as the summation of differences of vector dimensions raise to the power p and

whole raise to the inverse of power p. We have used p=3 to calculate the Minkowski

distance.

 𝑑(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖|𝑝𝑛
𝑖=1)1/𝑝 (1)

23. Cityblock distance: Cityblock distance feature is a special case of Minkowski distance

metric when we use the value of p=1 in the above equation of Minkowski distance.

Cityblock is also known as the Manhattan distance.

24. Euclidean distance: Euclidean distance feature is also a special case of Minkowski

distance metric when we use the value of p=2 in the equation of Minkowski distance.

25. Jaccard distance: Jaccard distance feature is computed as a ratio of intersection between

two vectors sets to the union of two vector sets. The two vector sets are derived from the

two question sentences in our dataset.

12 NLTK – Natural Language Toolkit - https://www.nltk.org/
13 https://docs.scipy.org/doc/scipy/reference/spatial.distance.html

21

26. Canberra distance: Canberra distance is computed as the sum of the absolute difference

of two vector points divided by the absolute sum of individual vector points.

 𝑑(𝑥, 𝑦)𝑐𝑎𝑏=
 ∑

|𝑥𝑖−𝑦𝑖|

|𝑥𝑖|+|𝑦𝑖|

𝑛
𝑖=1 (2)

27. Braycurtis distance: Braycurtis distance is also called as Sorenson distance. It is also a

variant of Manhattan distance normalized by the sum of the vector points in two objects x

and y.

 𝑑(𝑥, 𝑦)𝑠𝑑 =

∑ |𝑥𝑖−𝑦𝑖|𝑛

𝑖=1

∑ (𝑥𝑖+𝑦𝑖)𝑛
𝑖=1

 (3)

Set 4 Vectors Features

28. Skew question1 vector: Skewness is the measure of distribution. Skewness indicates a

deviation tendency from the mean in one of the direction. Skewness is computed over

question 1 vector. A normal distribution has a skew value equal to 0.

29. Skew question2 vector: Skewness is computed over question 1 vector.

30. Kurtosis question1 vector: Kurtosis distance is the measure of dense distribution towards

the tails of the distribution. A normal distribution has a value equal to 0. Kurtosis vector is

computed over question 1 vector.

31. Kurtosis question2 vector: Kurtosis is computed over question 2 vectors.

4.3 Machine Learning Algorithms
We have used the following seven machine learning algorithms to draw our initial baseline on

duplicate question pair dataset

K-Nearest neighbors: The k-nearest neighbors (KNN)[21] algorithm is a simple, easy-to-

implement supervised machine learning algorithm that can be used to solve both classification and

regression problems. A supervised machine learning algorithm (as opposed to an unsupervised

machine learning algorithm) is one that relies on labeled input data to learn a function that produces

an appropriate output when given new unlabeled data.

Decision Tree: Decision tree classifiers are used successfully in many diverse areas. Their most

important feature is the capability of capturing detailed decision-making knowledge from the

supplied data. Decision Tree is the most powerful and accessible tool for classification and

prediction. A Decision tree is a flowchart like a tree structure, where each internal node denotes a

22

test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal

node) holds a class label.

Random forest: Decision trees are the building blocks of the random forest model.

Random forest[22], like its name implies, consists of a large number of individual decision trees

that operate as an ensemble. Each unique tree in the random forest spits out a class prediction, and

the class with the most votes becomes our model’s prediction. The random forest is a classification

algorithm consisting of many decisions trees. It uses bagging and feature randomness when

building each individual tree to try to create an uncorrelated forest of trees whose prediction by

committee is more accurate than that of any individual tree.

Extra Trees: Extra tree[23] classifier is a type of ensemble learning technique which aggregates

the results of multiple de-correlated decision trees collected in a “forest” to output its classification

result. In concept, it is very similar to a Random Forest Classifier and only differs from it in the

manner of construction of the decision trees in the forest. The main difference between random

forests and extra trees (usually called extreme random forests) lies in the fact that, instead of

computing the locally optimal feature/split combination (for the random forest), for each feature

under consideration, a random value is selected for the split (for the extra trees).

Adaboost: AdaBoost[24] is a popular boosting technique which helps you combine multiple

“weak classifiers” into a single “strong classifier”. A weak classifier is simply a classifier that

performs poorly but performs better than random guessing. AdaBoost can be applied to any

classification algorithm, so it is really a technique that builds on top of other classifiers as opposed

to being a classifier itself. AdaBoost is a type of "Ensemble Learning" where multiple learners are

employed to build a stronger learning algorithm. AdaBoost works by choosing a base algorithm

(e.g., decision trees) and iteratively improving it by accounting for the incorrectly classified

examples in the training set. We assign equal weights to all the training examples and choose a

base algorithm. At each step of the iteration, we apply the base algorithm to the training set and

increase the weights of the incorrectly classified examples. We iterate n times, each time applying

base learner on the training set with updated weights. The final model is the weighted sum of the

n learners.

Gradient Boosting Machine: Gradient boosting[25] is a machine learning technique for

regression and classification problems, which produces a prediction model in the form of an

ensemble of weak prediction models, typically decision trees. It builds the model in a stage-wise

fashion as other boosting methods do, and it generalizes them by allowing optimization of an

arbitrary differentiable loss function. Gradient boosting involves three elements which include a

loss function to be optimized, a weak learner to make predictions and additive model to add weak

learners to minimize the loss function.

XGBoost: XGBoost[26] is an implementation of gradient boosted decision trees designed for

speed and performance. XGBoost is a decision-tree-based ensemble Machine Learning algorithm

that uses a gradient boosting framework. In prediction problems involving unstructured data

(images, text, etc.), artificial neural networks tend to outperform all other algorithms or

frameworks. However, when it comes to small-to-medium structured/tabular data, decision tree-

23

based algorithms are considered best-in-class right now. XGBoost is short for extreme gradient

boosting. It is a library designed and optimized for boosted tree algorithms. Its main goal is to push

the extreme of the computation limits of machines to provide a scalable, portable and accurate for

large scale tree boosting.

TF-IDF: TF-IDF[19] stands for term frequency-inverse document frequency, is a scoring measure

widely used in information retrieval (IR) or summarization. TF-IDF is intended to reflect how

relevant a term is in a given document. The intuition behind it is that if a word occurs multiple

times in a document, we should boost its relevance as it should be more meaningful than other

words that appear fewer times (TF). At the same time, if a word occurs many times in a document

but also along with many other documents, maybe it is because this word is just a frequent word;

not because it was relevant or meaningful (IDF). That is, the most relevant words are those that

would help us, as humans, to better understand a whole document without reading it all. TF-IDF

is computed at the word level or character level. In word level, as the name suggests frequency

computed for words and for character level, the frequency is computed over characters.

We will implement this over the question dataset and apply TF-IDF and then apply the machine

learning model to evaluate our results. In Python, we can use TfidfVectorizer function from the

sklearn.feature_extraction Library14. To extract TF-IDF, we only need to select the analyzer type

as either character for character level computation or word for world level TF-IDF computation.

4.4 Deep Learning Introduction
Deep learning is an AI-based machine learning technique that instructs computers to do tasks that

falls naturally to mankind that is to learn by model. Deep learning is a crucial innovation behind

automatic cars and autos empowering them to understand a stop signal or to differentiate between

a person on foot and a street lamp post. It is the critical technology that enables voice control in

gadgets like mobiles, laptops, Television, and headphones. In recent times, Deep learning is in the

limelight because it is accomplishing results that were impractical earlier. With the help of deep

learning, a computer-based model can self-learn classification tasks just like humans, directly from

images, videos, texts, or voice. Deep learning models are capable of achieving superior accuracy

that surpasses human-level results. These deep learning models are trained on an enormous amount

of labeled data-set and neural architectures of multiple layers.

Majority of deep learning techniques utilize neural networks, and therefore, deep learning models

are also known as deep neural networks. The term "deep' in deep-learning usually suggests the

multiple hidden neural layers in the neural network. A conventional neural network is built with a

small number of hidden layers usually 2-3, whereas deep neural networks can have a large number

of hidden layers up to 150. The models that are built upon deep neural networks are trained on a

massive amount of labeled data set, and the neural layers are capable of learning features directly

from the data set without the need of manual feature extraction. Figure 5, given below, shows the

visual representation of neural architecture.

14 https://scikit-learn.org/stable/modules/feature_extraction.html

24

Figure 5. Neural Network Architecture

Methods to create and train Deep learning models are:

Train from scratch

The process of training a deep neural networks from scratch requires, collection of a large amount

of labeled data set and development of a network architecture that will get familiar with the features

and model from the input data. This method is useful for new application systems, or systems that

will produce a large number of output labels. This technique is less common in deep learning

because these deep neural networks typically take weeks or months to train the model due to a

large amount of input data and a slow learning rate.

Transfer Learning

The transfer learning method is most commonly used in the majority of deep learning applications.

In this process, we utilize a pre-trained model and then fine-tune as per our requirement and input

data. We pick up some existing model such as GoogLeNet[27] and feed in new input data that

contains previously unknown classification labels. We then make changes to the neural network

to try out new tasks, for example, to detect numbers from 0 to 9 from image pixels in place of

1000's of distinct labels. Transfer learning does not require a tremendous amount of input data,

and classification task can be achieved by training the tweaked model on small data set, this

reduces the total computation time.

Feature Extraction

Feature extraction is a less commonly used method in deep learning; in this method, the neural

network is treated as a feature extractor. Every layer is responsible for learning feature from the

input data set and thus can at any given time extract the learned feature during training from these

neural network layers. The extracted features can then be fed as input to the traditional machine

learning classifiers such as random forest, support vector machines(SVM), etc.

25

4.5 Deep Learning Algorithms
1. LSTM[17]: Long short-term memory (LSTM) is an artificial recurrent neural network

(RNN) architecture used in the field of deep learning. Unlike standard feedforward neural

networks, LSTM has feedback connections. It can process not only single data but also

entire sequences of data. For example, LSTM applies to tasks such as unsegmented,

connected handwriting recognition, or speech recognition. A standard LSTM unit is

composed of a cell, an input gate, an output gate and a forget gate. The cell remembers

values over arbitrary time intervals, and the three gates regulate the flow of information into

and out of the cell. LSTM networks are well-suited to classifying, processing, and making

predictions based on time series data since there can be lags of unknown duration between

essential events in a time series. LSTMs were developed to deal with the vanishing gradient

descent problem.

2. Word Embedding[20]: Word embeddings are a family of natural language processing

techniques aiming at mapping semantic meaning into a geometric space. This is done by

associating a numeric vector to every word in a dictionary, such that the distance between

any two vectors would capture part of the semantic relationship between the two associated

words. The geometric space formed by these vectors is called an embedding space.

3. Glove Embedding[10]: GloVe is used for obtaining vector representations for words.

Training is performed on aggregated global word-word co-occurrence statistics from a

corpus, and the resulting representations showcase interesting linear substructures of the

word vector space.

4. Time Distributed(Dense)15: Time distributed dense layer is used on RNN, including LSTM,

to keep one-to-one relations on input and output. Assume we have 60-time steps with 100

samples of data (60 x 100 in another word) and you want to use Recurrent Neural

Network(RNN) with the output of 200. If we do not use time distributed dense layer, we

will get 100 x 60 x 200 tensor. So we have the output flattened with each time step mixed.

If we apply the time distributed densely, we are going to apply fully connected dense on

each time step and get output separately by time steps.

5. Lambda: Lambda layer is a layer that wraps an arbitrary expression. For example, at a point,

we want to calculate the square of a variable, but we cannot only put the expression into our

model because it only accepts layer, so we need Lambda function to make our expression

be a valid layer in keras. Lambda is similar to python’s Lambda function where we can

interact with keras layer using our own expression.

15 Time Distributed Dense - https://keras.io/layers/wrappers/#timedistributed

26

6. Convolution 1D16: A CNN works well for identifying simple patterns within our data that

will then be used to form more complex patterns within higher layers. A 1D CNN is handy

when we expect to derive interesting features from shorter but mostly fixed-length segments

of the overall data set and where the location of the feature within the segment is not of high

relevance.

7. GlobalMaxPooling 1D[28]: This block performs precisely the same operation as the 1D

Max pooling block except that the pool size is the size of the entire input of the block, i.e.,

it computes a single max value for all the incoming data. The 1D Global max pooling block

takes a vector and computes the max value of all values for each of the input channels. The

output is thus a tensor of size is 1 x 1 x (input channels). Use global max pooling blocks as

an alternative to the Flattening block after the last pooling block of our convolutional neural

network. Using 1D Global max pooling block can replace the fully connected blocks of our

CNN

8. Merge[29]: Merge is used to join multiple neural networks together. A good example would

be where we have two types of input, for example, tags and an image To combine these

networks into one prediction and train them together, we merge these Dense layers before

the final classification.

9. Dense[30]: A dense layer is just a regular layer of neurons in a neural network. Each neuron

receives input from all the neurons in the previous layer, thus densely connected. The layer

has a weight matrix W, a bias vector b, and the activations of previous layer a. The following

is the docstring of class Dense from the keras documentation output = activation (dot (input,

kernel) + bias) where activation is the element-wise activation function passed as the

activation argument, the kernel is a weights matrix created by the layer, and bias is a bias

vector created by the layer.

10. Batch Normalization[31]: Batch normalization is a technique for improving the

performance and stability of neural networks, and also makes more sophisticated deep

learning architectures work in practice. The idea is to normalize the inputs of each layer in

such a way that they have a mean output activation of zero and standard deviation of one.

This is comparable to how the inputs to networks are standardized. How does this help? We

know that normalizing the inputs to a network helps it learn. However, a network is just a

series of layers, where the output of one layer becomes the input to the next. That means we

can think of any layer in a neural network as the first layer of a smaller subsequent network.

Thought of as a series of neural networks feeding into each other, we normalizing the output

16 Convolution 1D - https://keras.io/layers/convolutional/#conv1d

27

of one layer before applying the activation function, and then feed it into the following layer

(sub-network).

11. Dropout[32]: Dropout is a regularization technique, which aims to reduce the complexity

of the model to prevent overfitting. Using “dropout," we randomly deactivate specific units

(neurons) in a layer with a certain probability p from a Bernoulli distribution. So, if we set

half of the activations of a layer to zero, the neural network will not be able to rely on

particular activations in a given feed-forward pass during training. As a consequence, the

neural network will learn different, redundant representations; the network cannot rely on

the particular neurons and the combination (or interaction) of these to be present. Another

good side effect is that the training will be faster. Dropout is a technique used to tackle

Overfitting. The Dropout method in “keras.layers” module takes in a float between 0 and 1,

which is the fraction of the neurons to drop. Dropout consists of randomly setting a fraction

rate of input units to 0 at each update during training time, which helps prevent overfitting.

12. PreLU[33]: Parametric Rectified Linear Unit(PreLU), Parametric ReLU is inspired by

ReLU, which, as mentioned before, has a negligible impact on accuracy compared to ReLU.

Based on the same ideas that of ReLU, PreLU has the same goals: increase the learning

speed by not deactivating some neurons. The primary argument for Parametric ReLu’s over

standard ReLu’s is that they do not saturate as we approach the ramp. In most other ways,

they do not offer a distinct advantage. Think of it as an advantage in being able to tell the

difference between a wrong answer and a horrible answer. The effect may not seem

dramatic, but in some instances, it can be genuinely advantageous.

13. Activation[34]: Applies an activation function to the output of a layer such as tanh, sigmoid

activation. It takes into consideration the effects of different parameter interaction and

applies the transformation where it filters the value from which neuron to be passed to the

next layer or the output.

28

5 Methodology
This chapter describes the process flow for our machine learning and deep learning experiments.

In this chapter, a general approach to training our machine learning classifiers, the process flow

for feature importance analysis, the process of TF-IDF with ML classifiers and four different deep

learning architectures that we modeled for our experiments are presented.

5.1 Experimental and research design
Influenced by the literature and the previous study, we started our experiments with the binary

classification of whether a given pair of question is a semantically duplicate question. We began

with feature engineering to produce as many as 28 new features from the given question pair

dataset and apply different machine learning algorithms. Figure 6 presented below shows the flow

of traditional machine learning pipeline.

Figure 6. The flow of the experiment with traditional machine learning classifiers

Quora question pair dataset is collected and cleaned, as described in Section 3. Once the data is

clean, we apply a set of operations to obtain new feature listed in Section 4.2. We obtain 28 new

feature set from feature engineering technique, and then a dataset with a total of 30 columns are

split into 80:20 training and test set. Python libraries scipy spatial distance, genism, nltk,

fuzzywuzzy, numpy are used to extract features. Word2vec features are obtained using genism and

29

Google pre-trained vectors17 of 3 million words and 300 dimensions. Machine learning classifiers

are trained on the training set, and prediction results are evaluated on the test set.

5.2 Feature Importance
We analyzed and studied the features extracted using feature engineering to validate the positive

contributions from each of the features, and then we retrain our models by dropping the least

important features. The flow of feature importance is as presented below in Figure 7

Figure 7. Flowchart of experiment with feature importance

We start by computing the feature importance value of all the features in the dataset. We have a

total of 28 new features extracted in the experiment stage of Section 6.1. We analyze and select

the top twenty features that are helpful to our machine learning classifiers, and then dropped eight

features and re-train our model with only 20 new features and then evaluate new results from

classifiers on the validation dataset.

5.3 Machine Learning Pipeline with TF-IDF
TF-IDF word level

The flow of term frequency and inverse term frequency(TF-IDF) word-level model with machine

learning classifiers is presented in Figure 8. TF-IDF word level as the name suggests computes

TF-IDF at word level in the document, in our case, it is a question sentence.

17 https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz

30

Figure 8. The flow of TFIDF word-level features fed to machine learning classifier

TF-IDF word-level feature for question1 and question2 is extracted using the python library from

sklearn TFIDFVectorizer18. The model learns the inverse frequency of words from the set of

combined unique question1 and question2 word set. The corresponding TF-IDF feature obtained

for each of the questions in the pair is then passed as input to the different machine learning

classifiers. The classifiers are then trained on the training dataset, which is 80% of total dataset

and tested on 20% of the validation set.

TF-IDF character level

The flow of term frequency and inverse term frequency(TF-IDF) character level model with

machine learning classifiers are presented in Figure 9. TF-IDF word level as the name suggests

computes TF-IDF at character level in the document, in our case, it is a question.

18 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

31

Figure 9. The flow of TFIDF character level features fed to machine learning classifier

TF-IDF character level feature for question1 and question2 is extracted using the python library

from sklearn TFIDFVectorizer19. The model learns the inverse frequency of characters from the

set of combined unique question1 and question2 character set. The corresponding TF-IDF,

character level feature, obtained for each of the questions in the pair is then passed as input to the

different machine learning classifiers. The classifiers are then trained on the training dataset, which

is 80% of total dataset and tested on 20% of the validation set.

5.4 Deep Learning Design and Set-up
Architecture-1: In this simple neural network architecture, we use a pair of questions as the two

inputs. The architecture consists of the Embedding layer, LSTM layer applied separately on each

of the question inputs, and then the model is merged using the Merge layer from keras library20.

The output from the merged model layer is then passed through the series of Batch Normalization,

Dense, Parametric rectified linear unit, Dropout and Sigmoid Activation function is applied at the

final output layer. The Visualization and sequential ordering of the different layers in the simple

neural network can be visualized, as presented in Figure 10. The use of each of the layers applied

to train our simple neural network is presented in the Chapter 4, section 4.5. Embedding layers is

the first hidden layer of a network that uses word embedding to represent a word as a dense vector,

and we specify three arguments to the Embedding function, the input dimension, output dimension,

and the input length. We use the input length, i.e. number of words as 40 and output dimension as

300. Input dimension is computed as the index of words + 1 in the sequence.

19 https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
20 https://keras.io/

32

Figure 10. Architecture-1 Simple Neural network architecture with two inputs

In this model, we are not using any special pre-trained vectors like GloVe. The output of

Embedding layer is fed to the LSTM layer. We used the dropout weight of 0.2 within LSTM to

avoid overfitting. Each of the models merged as passed through a sequence of layers, as shown in

Figure 10. The output from the intermediate Dense layer is 300, and the final Dense layer always

has output dimension one, which then fed to sigmoid activation to give us the classification result.

Architecture-2: Neural network architecture-2 is modeled slightly different before applying to

merge of different models otherwise after merge it very similar and trained on exactly same hyper-

parameters as simple neural network presented as in Figure 10. In Architecture-2, we increase the

number of independent models before merge to four, which are then merged and trained to produce

the classification result. Architecture-2 with four inputs, two different networks are used for each

of the questions; the architecture can be visualized as present in Figure 11 below.

33

Figure 11. Architecture-2 Deep neural network architecture with four inputs

Additional models before the merge, consist of Embedding layer using GloVe21 pre-trained vector

of 300 dimensions with 840B tokens. Embeddings are then fed to Time distributed dense layer to

maintain one to one relationship over time-distribution. Lambda sum is applied along the axis to

produce the output of 300 dimensions. Thus all the four independent models producing the output

of 300d are then merged and passed through hidden layers of Batch Normalization, Dense, PreLu,

Dropout, Batch Normalization, Dense and Sigmoid Activation to produce the classification result.

21 https://nlp.stanford.edu/projects/glove/

34

Architecture-3: Architecture-3 uses four sub-model or independent model from Architecture-2

with all the hyper-parameters tuned with the exact same value; the model differs after the merge

of the four independent models. The modeled neural network architecture-3 can be visualized, as

presented in Figure 12 below. In this deep neural network, we used additional hidden layers of

Batch Normalization, Dense, and Dropout. Final Dense layer has output dimension 1, and then it

passed through Activation to predict the classification result.

Figure 12. Architecture-3 Deep neural network with four inputs and dense hidden layers

35

Architecture 4: Deep neural network architecture-4 can be visualized, as presented in Figure 13

below:

Figure 13. Architecture-4 Deep neural network with six inputs and dense hidden layers

The deep neural network architecture-4 is modeled in such a way that it takes the six input which

are then passed through six independent models and then merged into a single model consisting

of twenty-three layers.

36

Four out of six independent or sub-models are similar to that of the four sub-models before the

merge as presented in Figure 12. The two new sub-models that we added consist of GloVe based

Embedding layer, Convolution Neural Network layer applied multiple times before and after

Dropout layer. The output from the Convolution 1D layer is maxed out using Global Max Pooling

1D22 layer. Global Max Pooling output is then passed through hidden layers of Batch

Normalization, Dense and Dropout. The Dropout layer has shown to perform well within our

experiments with a weight of 0.2; therefore, throughout our neural network modeling; dropout

weigh used is 0.2. All six layers produce the output of dimension 300 which is then merged as a

single model and passed through another twenty-six layer consisting of repeated units of Dense,

Dropout and Batch Normalization and finally a Dense layer with the output of dimension size one

which is fed to sigmoid Activation to predict the classification result. See section 4.5 for

description and functionality of each of these deep learning algorithms used in the layers. We have

used TensorFlow23 keras python library to model each of the neural network architecture presented

in this section. All models are trained on the batch size of 300 and number of epoch iterations as

150.

22 https://keras.io/layers/pooling/
23 https://www.tensorflow.org/tutorials/keras

37

6 Description of models and results evaluation
This chapter presents the result obtained from our experiments by using the approach described

in Chapter 5. Metrics used for model evaluation and comparative analysis of the result is also

discussed.

6.1 Content Organization:
Investigation of content organization has been a peripheral part of this research work which on

studying the relevant literature [1], [7], [8] shows that having connections within the social

network as Quora does in the form of social, user topic and related question graph helps the social

media to attract users by notifying through features like upvotes or activity of the followers and

followees. The related question graph helps users to formulate their question is a better way or

chose from one recommended question. Thus Quora has done an excellent job in building a social

network and creating a link between users as well as links between data in the form of topic,

question, and relevant answer. Quora graphs are explained in Section 4.1.

6.2 Evaluation Metrics
In this section, we present the evaluation metrics used for comparison of results. The selection of

metrics is the most crucial step in the evaluation of our models as it influences how we measure

the performance of our model against each other and the baselines selected. The metrics used in

this research work are presented below.

Accuracy: Accuracy is the ratio of the total number of correct predictions made by the models to

the total number of predictions requested to the model. In simpler terms, it is the total number of

correct predictions, in case of binary classification such as our case 0 predicted as 0 and one

predicted as 1. It is often expressed in terms of percentage.

F1-Score: F1-score or F1-measure is harmonic mean of precision and recall. To understand F1-

Score, we need to understand Precision, also known as Specificity and Recall, also known as

Sensitivity.

 𝐹1 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

Precision: Precision or Specificity is the ratio of predicted positive samples that are actually

positive to the total number of positive predictions made by the models. For example, in the test

sample of 100, let us say our model predicts 50 samples to be positive but in actual only 40 of

them are genuinely positive which means the model has predicted 40 samples correctly and ten

samples incorrectly. Thus here the precision will be 40/50, i.e., 0.8 or 80%.

Recall: Recall or Sensitivity is the ratio of predicted positive samples that are actually positive to

the total number of actual positive predictions. For example, we have 50 positive predictions as in

the previous case, but only 40 of them are actually positive, but in the total sample of 100 we have

38

actually 60 positives, i.e., out of 60, only 40 predicts are correctly done. Thus our recall is 40/60,

i.e., 0.6667 or 66.7%.

Precision and Recall appears to be confusing at first, but the easiest way to get hold of the concept

is to understand the distinct difference that is Precision is the proportion of positive predictions

done correctly from the predicted positives and Recall is the proportion of positive samples

identified from the actual positive labels.

Log loss: Log loss is also known as cross-entropy, and when the classification type is of binary as

in our research, then it is known as binary cross-entropy. Log Loss value lies in the range of {0,1}

where ideal models will have log loss of 0, and the worst model will have log loss of 1. Log loss

indicates how badly our model predicted the probability of our classification. For example, let us

say if a positive sample 1 is predicted to have a probability of 0.2, then an error in prediction is

high and log loss increases as the predicted probability value has a huge difference. Similarly, if

negative sample 0 is predicted to have a probability of 0.2, then the error in prediction is less, and

log loss decreases as the predicted probability value is close to the actual class label. Thus log loss

as performance metrics suggests how good our model is at predicting probabilities. In our work,

we used log loss as one of the metrics to evaluate our deep learning models.

6.3 Baseline Model Classifiers
The most basic approach is to clean the data set after exploratory data analysis and extract features

from feature engineering to produces the input to the model with 30 features and 1 class label as

described in section 4.1 and 4.2. These feature files serve as input to our models to detect whether

a given pair of question sets are duplicate or not. We split the dataset into 20 percent as validation

dataset, and we train our models on 80 percent of the dataset.

We trained our model and then evaluated the prediction on our test data set to achieve the baseline

for our machine learning algorithms used in this research. Table 4 shows validation accuracy and

F1 score of our baseline machine learning models. The bar plot of accuracy achieved by classifiers

is shown in Figure 14.

Table 4. The baseline performance of traditional machine learning classifiers on the dataset with thirty features

Classifiers Validation Accuracy Validation F1-Score

K Nearest Neighbors 0.7275 0.7031

AdaBoost 0.7041 0.6936

XGBoost 0.7417 0.7326

Gradient Boost 0.7271 0.7176

Decision Tree 0.7054 0.6992

Random Forest 0.7099 0.7016

ExtraTrees 0.7039 0.6849

39

Figure 14. Accuracy of machine learning classifiers obtained from the featured dataset

As can be observed from Table 4 and Figure 14, clearly the Xgboost model outperforms all the

other selected classifiers with the Accuracy of 0.7416 and F1 score of 0.7326.

The top three performing models in our baseline set are Xgboost, Gbm, and KNN. These three

models have the highest accuracy and F1 scores.

6.4 Feature Importance Analysis
We plotted feature importance of our baseline classifiers to analyze the essential features for all

our classifiers so that we can eliminate the non-contributing features and re-run our experiments

to validate if dropping the features help our experiments. As long as we do not suffer any

degradation in the performance of our model by dropping the features, we establish that we have

dropped the unimportant features. We plotted feature importance graph for six classifiers, except

for the KNN for which we studied feature importance from the result output matrix.

40

Figure 15. Feature Importance plot of machine learning classifiers

Based on our feature importance plot shown in Figure 15, we selected the top 20 features based on

their importance concerning all the classifiers. The performance result achieved after feature

importance analysis and feature drop is as presented below in Table 5.

41

Table 5. Performance of traditional machine learning classifiers after feature drop

Classifiers Validation Accuracy Validation F1-Score

K Nearest Neighbors 0.7311 0.7076

AdaBoost 0.7048 0.6938

XGBoost 0.7431 0.7349

Gradient Boost 0.7289 0.7196

Decision Tree 0.7054 0.6992

Random Forest 0.7085 0.7021

ExtraTrees 0.7069 0.6914

Xgboost, Gbm and KNN after feature drop still stood to be the top three performers in our baseline

model set, and none of the classifiers suffers from any degradation. However, the gain achieved

after feature drop is minimal. The plots below in Figure 16 and Figure 17 shows the comparative

visualization of Accuracy and F1 score before and after the feature drop.

Figure 16. Accuracy comparison of ML classifiers Before versus After feature drop

42

Figure 17. F1 score comparison of ML classifiers Before versus After feature drop

So far, Xgboost gives the highest accuracy score amongst all the classifiers. With Xgboost, we

achieved the accuracy of 0.7431 and F1 score of 0.7439, followed by Gbm with an accuracy

of 0.7289 and F1 score of 0.7196. KNN with an accuracy of 0.7311 and F1 score of 0.7076.

The table below summarizes the actual Accuracy and F1 score achieved by our classifiers after

selecting the top 20 features. The eight dropped features are difference in the length, WRatio,

jaccard distance, braycurtis distance, Euclidean distance, cityblock distance, partial token set

ratio, partial token sort ratio.

43

6.5 TF-IDF with ML Models
Xgboost algorithm achieved an F1 score of 80.44 % compared to F1 score 79% published in

“Quora Question Duplication” by Albert.T & Eric Xu.” The accuracy achieved is 82.44%, which

is very close to that of 83.7% achieved by the same literature. Thus our results show that ML

models like Xgboost can also produce effective results similar to the Deep learning algorithms like

LSTM. Table 6 below presents the performance result of machine learning models with TF-IDF

word and character level.

Table 6. Performance of ML classifiers with TF-IDF word and TF-IDF character level

 TF-IDF word level TF-IDF character level

Classifiers Val Accuracy Val F1-Score
Val

Accuracy
Val F1-
Score

K Nearest
Neighbors 0.7513 0.7359 0.7845 0.7543

AdaBoost 0.6883 0.6076 0.6871 0.6201

XGBoost 0.7881 0.7596 0.8244 0.8044

Gradient Boost 0.6756 0.5339 0.6951 0.6009

Decision Tree 0.6677 0.5651 0.6672 0.5767

Random Forest 0.6284 0.3866 0.6484 0.4066

ExtraTrees 0.6281 0.3864 0.6581 0.4059

Presented below in Figure 18-23 is the classification report for boosting algorithms, representing

the ensemble of TF-IDF word level, character level fed as a feature to machine learning models.

Figure 19. TF-IDF character with Xgboost

Figure 18. TF-IDF word with Xgboost

44

Figure 20. TF-IDF word with Adaboost Figure 21. TF-IDF character with Adaboost

 Figure 22. TF-IDF character with Gbm Figure 23. TF-IDF word with Gbm

Classification report provides additional performance metrics such as precision, recall, F1 for

each of the class labels distribution in the test dataset.

45

6.6 Deep Learning Models

Table 7. Accuracy and Log loss performance of deep neural network architectures

Network
Training

Loss

Training

Accuracy

Validation

Loss

Validation

Accuracy

Architecture- 1 0.2902 0.8715 0.4062 0.8133

Architecture -2 0.2502 0.9012 0.4172 0.8312

Architecture- 3 0.1728 0.9127 0.4393 0.8522

Architecture- 4 0.0997 0.9674 0.38501 0.8582

Presented in Table 7 above, training and validation accuracy and log loss metrics obtained from

the deep neural network architectures presented in Figure 10 Architecture-1, Figure 11

Architecture-2, Figure 12 Architecture-3 and Figure 14 Architecture-4 in Section 6.4. The models

are trained on 80% of the dataset and validated on the rest of 20% dataset, which has been a

consistent parameter for data split throughout our research work. Since we modelled and

experimented with applied deep learning techniques using Tensorflow Keras python library which

offers only accuracy as the metrics at the end of each epoch and finding additional metrics like F1

score require us to run additional tests on test dataset and, calculate other metrics from prediction

results either manually or programmatically by using other python libraries like sklearn metrics24

or yellowbrick25. In our case accuracy is the very suitable performance measure since on Quora

platform, if duplicate questions are not identified then only data content duplication but if non-

duplicate questions are merged as one question which also means answers will also be merged

under one of the selected questions, then the problem is more critical. Quora engineering team uses

accuracy as an important performance metric for this problem[6]. Therefore, identifying as many

correct labels is very important. Therefore we use accuracy to measure the performance of our

proposed deep neural networks.

24 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
25 https://pypi.org/project/yellowbrick/

46

7 Conclusions and future work
In this thesis, we investigated how the content of Quora is organized and how the problem of

detecting duplicate question helps Quora presents the value of information to its users. The

baseline from studies [2]–[5] has shown to achieve the accuracy of 83.8%, and we tried the series

of experiments to outperform this result. We started by establishing another baseline results from

the featured engineered initial dataset. Xgboost appears to be the most promising algorithm in the

category of our baseline. We initially worked with a total of 30 features, including the original

dataset question1 and question2. We then analyzed feature importance and selected only the top

20 features which were shown to be contributing positively in our prediction model. Re-running

the experiments under the same hyperparameters tuned as in the initial baseline models has been

demonstrated that eliminated features were not helpful at all for our models in boosting the

prediction results. Thus our new result on baseline showed a minimal increase in Accuracy and F1

score. Our best model Xgboost gave a performance result of 74.31% and F score of 0.7349 which

outperformed the literature reviewed machine learning baseline[2]

We then explored with calculating the term frequency and inverse term frequency for both the

question sets and run the initial model on the same set of tuned hyper-parameters. Our results show

that not all models performed well in ensemble with TF-IDF character level, but our best model

Xgboost achieved the accuracy of 82.44% and F1 score of 0.8044. TF-IDF character level with

Xgboost ensemble results shows that machine learning models are efficient in solving natural

language problem of detecting semantically similar question and compared to other baseline

achieved from few of the deep learning methods such as LSTM and LST with Siamese listed in

table 1, our machine learning TF-IDF with Xgboost outperformed them.

Finally, we experimented with many different deep network layers and chose the four architecture

to present which outperformed the results obtained by literature [4], our best performance from

architecture-4 that achieved accuracy of 85.82%. We used log loss measures for our deep learning

as an indicator of the model performance along with accuracy. We reached the best training

accuracy of 96.74% and log loss of 0.09; however, in our work, the validation accuracy and

validation loss is our main focus. We achieved a better result and outperformed the results from

the previous study on the duplicate question pair dataset. Our best performance from this thesis

work is the accuracy of 85.82% and log loss of 0.385.

Our accuracy result is very near to the Quora state of the art[6] accuracy of 87%. While studying

the literature, we realized that the main difference in results exist because Quora has used their

own word embedding’s from the Quora corpus dataset which is very specific to the Quora’s

question format, etc. whereas we have used the GloVe general embedding; thus our results are

methods are more relevant to any general question and answering system.

Another way, Quora could achieve a better by pre-processing the original question pair dataset.

Since knowing the context in which question is asked, a proper replacement of some of the

pronouns can be done, and higher accuracy can be achieved. For example, pronoun like us, we,

they can be replaced if the topic under which question exist thus replacing it with their relative

context like “American,” “Programmers” and “Prisoners’ etc. during the pre-processing data stage

can help achieve a better result. Since we are unaware in which context questions were asked we

could not do such pre-processing on the original dataset.

47

The limitations expressed in the paragraph above if known in any context in case of any other

Social Media platforms or Quora can be used as the future development of this thesis. As also we

worked on standard intel core seven laptop without additional GPU capacity it took about total 32

days to train all our four deep learning models and also the TF-IDF+Xgboost model training

process took close to 7 hours. With better GPU capacity, we assume to achieve a slightly better

result, and the experiment could have been performed with constructing more deep learning

models and parameter tuning.

48

8 References

[1] G. Wang, K. Gill, M. Mohanlal, H. Zheng, and B. Y. Zhao, “Wisdom in the social crowd:

An analysis of Quora,” WWW 2013 - Proc. 22nd Int. Conf. World Wide Web, pp. 1341–

1351, 2013.

[2] S. Viswanathan, N. Damodaran, and A. Simon, Advances in Big Data and Cloud

Computing, vol. 750, no. January. Springer Singapore, 2019.

[3] A. Tung and E. Xu, “Determining Entailment of Questions in the Quora Dataset,” pp. 1–8,

2017.

[4] E. Dadashov, S. Sakshuwong, and K. Yu, “Quora Question Duplication,” pp. 1–9, 2017.

[5] T. Addair, “Duplicate Question Pair Detection with Deep Learning.”

[6] N. Jiang, Lili, Chang, Shuo, Dandekar, “Semantic Question Matching with Deep

Learning,” Blog Post. [Online]. Available:

https://www.quora.com/q/quoraengineering/Semantic-Question-Matching-with-Deep-

Learning. [Accessed: 04-May-2019].

[7] M. R. Morris, J. Teevan, and K. Panovich, “What do people ask their social networks, and

why?,” p. 1739, 2010.

[8] S. A. Paul, L. Hong, and E. H. Chi, “Who is Authoritative? Understanding Reputation

Mechanisms in Quora,” no. 2010, 2012.

[9] M. Nicosia and A. Moschitti, “Accurate Sentence Matching with Hybrid Siamese

Networks,” pp. 2235–2238, 2017.

[10] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for Word

Representation,” Proc. 2014 Conf. Empir. Methods Nat. Lang. Process., pp. 1532–1543,

2014.

[11] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts, “A Fast

Unified Model for Parsing and Sentence Understanding,” Proc. 54th Annu. Meet. Assoc.

Comput. Linguist. (Volume 1 Long Pap., pp. 1466–1477, 2016.

[12] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

2014.

[13] D. Bogdanova, C. dos Santos, L. Barbosa, and B. Zadrozny, “Detecting Semantically

Equivalent Questions in Online User Forums,” pp. 123–131, 2015.

[14] Z. Wang, W. Hamza, and R. Florian, “Bilateral multi-perspective matching for natural

language sentences,” in IJCAI International Joint Conference on Artificial Intelligence,

2017.

[15] Y. Homma, S. Sy, and C. Yeh, “Detecting Duplicate Questions with Deep Learning,” 30th

Conf. Neural Inf. Process. Syst. (NIPS 2016), no. Nips, pp. 1–8, 2016.

[16] J. O. JOSEPHSEN, “Similarity Measures for Text Document Clustering,” Nord. Med.,

vol. 56, no. 37, pp. 1335–1339, 1956.

[17] F. Gers, “Long short-term memory in recurrent neural networks,” Neural Comput., 2001.

[18] A. Parikh, O. Täckström, D. Das, and J. Uszkoreit, “A Decomposable Attention Model for

Natural Language Inference,” Proc. 2016 Conf. Empir. Methods Nat. Lang.

Process., pp. 2249–2255, 2016.

[19] S. Robertson, “Understanding inverse document frequency: On theoretical arguments for

IDF,” J. Doc., 2004.

[20] M. J. Kusner, Y. Sun, I. K. Nicholas, and Q. W. Kilian, “From Word Embeddings To

49

Document Distances Matt,” Washingt. Univ. St. Louis, 1 Brookings Dr., St. Louis, MO

63130, no. 7, 2015.

[21] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN Model-Based Approach in

Classification,” 2010.

[22] T. K. Ho, “Random decision forests,” in Proceedings of the International Conference on

Document Analysis and Recognition, ICDAR, 1995.

[23] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol.

63, no. 1, pp. 3–42, 2006.

[24] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” Proc. 13th

Int. Conf. Mach. Learn., 1996.

[25] J. H. Friedman, “Greedy Function Approximation : A Gradient Boosting Machine 1

Function estimation 2 Numerical optimization in function space,” North, 1999.

[26] T. Chen and C. Guestrin, “XGBoost : Reliable Large-scale Tree Boosting System,” arXiv,

2016.

[27] C. Szegedy et al., “GOOGLENET,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., 2015.

[28] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout

Networks,” 2013.

[29] Y. M. Chou, Y. M. Chan, J. H. Lee, C. Y. Chiu, and C. S. Chen, “Unifying and merging

well-trained deep neural networks for inference stage,” IJCAI Int. Jt. Conf. Artif. Intell.,

vol. 2018-July, pp. 2049–2056, 2018.

[30] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in Proceedings - 30th IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, 2017.

[31] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift,” 2015.

[32] G. Hinton, “Dropout : A Simple Way to Prevent Neural Networks from Overfitting,” vol.

15, pp. 1929–1958, 2014.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers,” Proc. IEEE Int. Conf.

Comput. Vis., 2015.

[34] B. Karlik and A. Vehbi, “Performance Analysis of Various Activation Functions in

Generalized MLP Architectures of Neural Networks,” Int. J. Artif. Intell. Expert Syst., no.

1, pp. 111–122, 2011.

50

Appendix

I.A Hyperparameters used for the machine learning models
The machine models are built using scikit-learn, sklearn python library26.The hyperparameter

values used in the experiments are presented as in Table 8.

Table 8. Hyperparameters used in the machine learning models

Classifiers Hyperparameters

KNN n_neighbors=10

Adaboost

algorithm='SAMME.R'
base_estimator=None
learning_rate=0.8
n_estimators=50

Xgboost

learning_rate=0.1
max_depth=5
n_estimators=100

Gbm

learning_rate=0.1 min_samples_leaf=1
n_estimators=100 subsample=1
max_depth=3 max_features='sqrt'
min_samples_split=2 random_state=10

Decision Tree
max_depth=5

Random Forest

max_depth=5
n_estimators=100
max_features=7

Extra Trees

max_depth=5
n_estimators=100
max_features=7

TfidfVectorizer
character level

analyzer='char'
token_pattern=r'\w{1,}'
ngram_range=(2,3)
max_features=5000

TfidfVectorizer
word level

analyzer='word'
token_pattern=r'\w{1,}'
max_features=5000

26 https://scikit-learn.org/0.20/documentation.html

51

I.B Hyperparameters used for the deep learning layers
The deep learning models are built using keras27.The hyperparameter values used in the

experiments are presented as in Table 9.

Table 9. Hyperparameters for deep neural network layers

Layer Hyperparameters

Dense - as Intermediate Layer output = 300

Dense - as pre-final Layer output = 1

BatchNormalization Default

Dropout weight = 0.2

LSTM

output= 300
 dropout_W=0.2
dropout_U=0.2

ConV1D

nb_filter=nb_filter
filter_length=filter_length
border_mode='valid'
activation='relu'
subsample_length=1

PReLU Default

GlobalMaxPooling1D Default

Activation sigmoid

Embedding without GloVe

len(word_index) + 1
300
input_length=40
dropout=0.2

Embedding with GloVe

len(word_index) + 1
output = 300
weights=[embedding_matrix]
input_length=40
trainable=False

mode.fit

batch_size=300
nb_epoch=150
verbose=1
validation_split=0.2
shuffle=True

mode.compile
loss='binary_crossentropy'
optimizer='adam'
metrics=['accuracy']

27 https://keras.io/

52

II. License

Non-exclusive license to reproduce thesis and make thesis public

I, Navedanjum Ansari,

1. herewith grant the University of Tartu a free permit (non-exclusive license) to reproduce, for

the purpose of preservation, including for adding to the DSpace digital archives until the

expiry of the term of copyright,

Identifying Semantically Duplicate Questions Using Data Science Approach: A Quora

Case Study,

supervised by Rajesh Sharma

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving

appropriate credit to the author, to reproduce, distribute the work and communicate it to the

public, and prohibits the creation of derivative works and any commercial use of the work

until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual

property rights or rights arising from the personal data protection legislation.

Navedanjum Ansari

14/08/2019

