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Quantum-Secure Coin Toss Protocol Using Collapse-Binding Commit-

ments 

Abstract: 

Commitment schemes are a widely used cryptographic primitive that is used in a number of 

important applications, from zero-knowledge proofs to secure computation. In a classical 

setting, there are canonical security definitions that are proven to provide security against 

computationally bounded adversaries. Yet, there are no canonical security definitions that 

are provably secure and easy to use in the quantum case. One such definition for the quantum 

setting was proposed in [Dominique Unruh, Computationally Binding Quantum 

Commitments, EUROCRYPT 2016]. This paper presents the classical security definitions 

of commitment schemes, as well as the alternatives in the quantum setting. The advantages 

of the proposed security definition, called “collapse-binding” are presented, with an example 

use case in a quantum-secure coin toss protocol. 
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Kvantturvaline mündiviske protokoll kasutades kollaps-siduvaid kin-

nistusskeeme 

Lühikokkuvõte: 

Kinnitusskeem on laialt kasutatav krüptograafiline primitiiv, mida kasutatakse ulatuslikult 

erinevates rakendustes, alates teabetust tõestustest turvalise arvutamiseni. Klassikalises 

krüptograafias on kasutusel definitsioonid, mis on tõestatult arvutuslikult turvalised. See-

vastu kvantkrüptograafias ei leidu kanooniliselt kasutatavaid kinnitusskeemide turvadefinit-

sioone, mis oleksid tõestatavalt turvalised ning lihtsalt kasutatavad. [Dominique Unruh, 

Computationally Binding Quantum Commitments, EUROCRYPT 2016] esitles definit-

siooni, mida kutsutakse „kollaps-siduvaks“, mida saaks kasutada turvadefinitsioonina 

kvantkinnistusskeemides. Selles töös tutvustatakse nii klassikalise krüptograafia kinnistuss-

keemides kasutatavaid turvadefinitsioone kui ka kvantkrüptograafia alternatiive. Kollaps-

siduvate protokollide eelised eelnevate definitsioonide ees tuuakse välja, illustreerides kol-

laps-siduvate protokollide kasutusvõimalust kvant-turvalises mündiviske protokollis. 

Võtmesõnad: 

Kvantkrüptograafia, kinnistusskeem, mündiviske protokoll  

CERCS:    

P175, Informaatika, süsteemiteooria 
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Introduction 

Commitment schemes are one of the most important primitives in cryptography. They are 

used in numerous applications such as zero-knowledge protocols, coin toss protocols and 

secure computation. A lot of the existing constructions are based on security against com-

putationally bounded adversaries, while their security against quantum adversaries is un-

known. Thus, finding a good protocol for quantum-secure commitment schemes is one of 

the open questions in quantum cryptography. 

A commitment scheme is a protocol between two parties: the sender and the receiver. The 

protocol consists of two phases: the commit phase and the open phase. During the commit 

phase, the sender commits to a value. During the open phase, the sender sends the opening 

information to reveal, which value they committed to.  

This thesis provides an overview of security definitions used in classical commitment 

schemes: binding property (the sender should not be able to change his mind about the sent 

message), hiding property (the recipient should not learn anything about the received mes-

sage) and completeness (the recipient should always positively verify, given correct opening 

information). Then, the security properties for the quantum setting are introduced.  

While hiding property and completeness have straightforward adaptations to the quantum 

setting, the definition of binding property cannot be easily adapted. This thesis gives an 

overview of the definitions proposed so far. A property called “collapse-binding”, as pro-

posed in [1], is introduced as a good quantum analogue for binding property in the classical 

sense. The advantages of this definition include its parallel composability (the only defini-

tion with such property so far) and compatibility with short commitments.  

The first chapter explains the mathematic and cryptographic preliminaries that are necessary 

for the comprehension of this paper. Presented are some definitions with illustrative exam-

ples. The first chapter is mainly meant for readers without a good working knowledge of 

quantum cryptography. 

The second chapter gives some background on commitment schemes and explains in detail 

the security definitions needed in the classical case. It gives a formal definition of perfect 

completeness, hiding and biding property.  
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The third chapter presents some of the prior definitions that have been proposed for binding 

commitment schemes in the quantum case. Here, the definition of collapse-binding commit-

ments is introduced. Additionally, formal definitions of perfect completeness and hiding 

property are given for the quantum setting.  

The fourth chapter proposes a quantum-secure coin toss protocol using the definition of col-

lapse-binding commitments to showcase a possible use case. The security definitions for the 

protocol are given along with two theorems.  

The fifth chapter gives a conclusion as well as an overview of any further work planned for 

the future.  
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1. Quantum cryptography 

This chapter gives an introduction to frequently used definitions and notations in quantum 

cryptography. The following concepts are necessary for understanding the protocols intro-

duced further in the paper. A more thorough background on quantum computing can be 

found in [1] and in [2]. 

1.1 Notations 

In this thesis only the finite-dimensional vector spaces over the complex numbers are con-

sidered. Such vector spaces are members of Hilbert spaces, hereon denoted by ℋ. To denote 

quantum states, the Dirac notation is used. That is, notation |∙⟩ corresponds to a vector, and 

notation ⟨∙| to its complex conjugate transpose. Their inner products are written as ⟨ ∙ | ∙ ⟩. 

The length of a quantum system is denoted by ‖∙‖. Notation ⨁ is used to indicate XORing 

and ⨂ to indicate tensoring. 

1.2 Quantum states 

In classical computation, every bit has a determined state – 0 or 1. In quantum computation, 

a quantum bit, or a qubit for short, can be in state |0⟩ (corresponding to the classical state 

0), in state |1⟩ (corresponding to the classical state 1), or in superposition between the two:  

|Ψ⟩ =  𝛼|0⟩ + 𝛽|1⟩. 

Here, 𝛼 and 𝛽 are complex numbers with |𝛼|  representing the probability that |Ψ⟩ yields 

the result 0 after measurement, and |𝛽|  representing the probability that |Ψ⟩ yields the result 

1. A qubit is always of norm 1:  

‖|Ψ⟩‖ =  |𝛼| + |𝛽| = 1. 

Quantum states can also be written in the vector form. The two qubits in the two-dimensional 

Hilbert space ℂ  corresponding to the classical states 0 and 1 are defined as  

|0⟩ ∶=
1

0
 and |1⟩ ∶=

0

1
. 
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Generalizing to higher-dimensional systems, any n-dimensional quantum state |Ψ ⟩ =

∑ 𝛼 |𝑖 ⟩,  can be written as a vector 
𝛼
⋮

𝛼
 ∈  ℂ  of length ‖|Ψ ⟩‖ =

|𝛼 | + ⋯ + |𝛼 | = 1.  

1.3 Computational basis  

Since Hilbert space is finite-dimensional, it is possible to assume a set of basis states and 

represent all the other states through them. In most cases, some orthonormal bases are as-

sumed (representing the classical possibilities of the system) which are called the computa-

tional basis. Canonically, the vectors from the vector space {0, 1}  form an orthonormal 

basis for quantum states.  

Definition 1.1. Consider a Hilbert space ℋ of dimension 2 . A set of 2  vectors 𝐵 =

{|𝑏 ⟩} ⊆ ℋ is called an orthonormal basis for ℋ if 

⟨𝑏 |𝑏 ⟩ = 𝛿 ,  ∀𝑏 , 𝑏 ∈ 𝐵 

and every |𝜓⟩ ∈ ℋ can be written as 

|𝜓⟩ = 𝜓

∈

|𝑏 ⟩, for some 𝜓 ∈ ℂ. 

The values of 𝜓  satisfy 𝜓 = ⟨𝑏 |𝜓⟩, and are called the ‘coefficients of |𝜓⟩ with respect to 

basis {|𝑏 ⟩}’. 

A quantum system of length 𝑛 has 2  basis vectors, thus, a representation in the ket-form is 

often used instead of the vector-form. For example, a two-qubit system in ℂ  would be rep-

resented by four basis states:  

|00⟩ =
1
0

⨂
1
0

=

1
0
0
0

, 

 |01⟩ =
1
0

⨂
0
1

=

0
1
0
0

,   
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|10⟩ =
0
1

⨂
1
0

=

0
0
1
0

,  

|11⟩ =
0
1

⨂
0
1

=

0
0
0
1

. 

1.4 Density operators 

To understand density operators, it is important to first define quantum ensembles. 

Definition 1.2. Consider a quantum system that is a linear combination of pure states |Ψ ⟩ 

with respective probabilities 𝑝 . 𝐸 = {|Ψ ⟩ , 𝑝 } shall be called a quantum ensemble with 

1. ∀𝑖 ∶  |Ψ ⟩ ∈ ℋ, 

2. ∀|Ψ ⟩ ∶ ‖|Ψ  ⟩‖ = 1, 

3. ∀𝑖 ∶  𝑝 ≥ 0, 

4. ∑ 𝑝 = 1. 

The density operator, in turn, allows for a more convenient way of describing mixed states. 

Definition 1.3. Consider a quantum ensemble 𝐸 = {|Ψ ⟩ , 𝑝 }. The density operator of the 

quantum ensemble, also known as the density matrix, is defined as 

 =  𝑝 |Ψ ⟩⟨Ψ |. 

Intuitively, a density operator is a matrix containing information about the probabilities of 

the outcomes of physical experiments. The simplest example of a density operator is the 

density operator of a pure state: 

 =  |Ψ⟩⟨Ψ|. 

In case of a two-dimensional quantum system |Ψ⟩ =  
√

|0⟩ +
√

|1⟩, the corresponding den-

sity operator would be of form  
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 = |0⟩⟨0| + |1⟩⟨1| =
0

0 0
+

0 0

0 =
0

0
= 𝐼, 

where 𝐼 is the identity matrix. 

1.5 Measurements 

Measurement is a quantum operation that converts a quantum state into a probabilistic clas-

sical state. Provided that the chosen bases are orthonormal, it is possible to perform meas-

urements with respect to any basis. Naturally, using different computational basis leads to 

different probabilities and different post-measurement states. In a classical system, a meas-

urement would be merely an observation of state, whereas a measurement in the quantum 

setting disturbs the states.  

An important case of measurements is called a projective measurement. Projective measure-

ments are performed using orthogonal projectors.  

Definition 1.4. An orthogonal projector is an operator 𝑄 that satisfies 𝑄 = 𝑄 and 𝑄 = 𝑄. 

Definition 1.5. The trace of a matrix 𝑀 ∈ ℂ ×  is the sum of its diagonal elements: 

𝑡𝑟(𝑀) = 𝑀 . 

Definition 1.6. A projective measurement on a Hilbert space ℋ is defined by a set of pro-

jectors 𝑀 = {𝑄 , … , 𝑄 }, where 𝑄  are orthogonal projectors that sum to the identity operator 

on ℋ: 

𝑄 = 𝐼ℋ . 

Let 𝐸 = {|Ψ ⟩ , 𝑝 } be an ensemble over ℋ. When measuring the state described by 𝐸 with 

𝑀, the outcome j has probability  

𝑃𝑟(𝑗) = 𝑝 𝑄 |Ψ  ⟩ = 𝑡𝑟𝑄  . 

If the measurement outcome is j, then after the measurement the system is in state 
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𝑃𝑀𝑆(𝑗) =
𝑝 𝑄 |Ψ  ⟩

∑ 𝑝 𝑄 |Ψ  ⟩
=

𝑄  𝑄

𝑡𝑟𝑄  𝑄
. 
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2. Classical commitment schemes 

This chapter introduces the concept of commitment schemes and gives formal definitions to 

the required properties in the classical setting. 

2.1 Preliminaries 

An algorithm is considered to be polynomial-time if its runtime is always bounded by a 

polynomial in its input length. The letter  denotes the security parameter and notation 1 

corresponds to a bit-string of 1-s of length . The latter is used as an input in algorithms for 

making them run in polynomial-time. A function 𝜇(𝑛) is negligible if for any polynomial 

function 𝑝𝑜𝑙𝑦(∙) and for a large enough 𝑛: 

𝜇(𝑛) ≤
1

𝑝𝑜𝑙𝑦(𝑛)
. 

Notation 𝑎 ← 𝐴(1) is used to denote running some algorithm 𝐴 with the security parameter 

in its input and assigning the value to 𝑎. (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚) denotes running an algo-

rithm 𝑐𝑜𝑚𝑚𝑖𝑡 that returns a commitment-opening pair for some message 𝑚. Algorithm 

𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) returns if 𝑚 is a valid opening of 𝑐 with 𝑢. Abbreviation 𝑀𝑆𝑃  denotes 

a message space of valid messages for the algorithm 𝑐𝑜𝑚𝑚𝑖𝑡, dependent on the security 

parameter 𝜂.  

As a technicality, it is assumed to be possible to find triples (𝑐, 𝑚, 𝑢) with 

Pr[𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1] = 1 in polynomial-time in 𝜂. Hereon, abbreviation “iff” corre-

sponds to “if and only if”. 

2.2 Commitment schemes 

A commitment scheme is a two-party protocol consisting of two phases: the commit phase 

and the open phase. The purpose of the protocol is to allow one party to commit to a value 

in such a way that the other party does not learn anything about the committed value before 

the open phase. At the same time, the commitment should be binding, meaning, the sender 

should not be able to change his mind about the message after making the commitment.  
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Figure 2.1: A commitment scheme. 

In the commit phase, the first party, called the sender, runs a polynomial-time algorithm 

𝑐𝑜𝑚𝑚𝑖𝑡 to create a commitment-opening pair for some message 𝑚. Then, he sends the 

commitment value 𝑐 to the second party, called the recipient. In the open phase, the sender 

sends the message 𝑚  and the opening information 𝑢 to the recipient. After that, the recipient 

runs a deterministic polynomial-time algorithm 𝑣𝑒𝑟𝑖𝑓𝑦 to check if 𝑢 is a valid opening of 𝑐 

for 𝑚. A graphical description is shown on Figure 2.1. 

A commitment scheme has to satisfy the following requirements: 

1. Binding property: After the commit phase, the sender should not be able to change, 

which value to open the commitment to.  

2. Hiding property: After the commit phase, the recipient should not be able to gain any 

knowledge about the committed message.  

3. Completeness: After the commit phase, given the correct opening information of the 

commitment, the recipient should always respond with positive verification.  

2.3 Binding property   

A formal definition of the binding property in the classical setting is given in [3]. Adapted 

to notations: 
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Definition 2.1. A commitment scheme (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is computationally binding iff 

for any polynomial-time algorithm A, any security parameter 𝜂, the following is negligible: 

Pr[𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1 ∧ 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚 , 𝑢 ) = 1 ∧ 𝑚 ≠ 𝑚 : (𝑐, 𝑚, 𝑢, 𝑚 , 𝑢 ) ←

𝐴(1)]. 

To put it differently, a commitment scheme is computationally binding if and only if for any 

polynomial-time algorithm A, there exist no triples (𝑐, 𝑚, 𝑚 ) with 𝑚 ≠ 𝑚  such that both 

𝑚 and 𝑚  are a valid opening for 𝑐 with more than negligible probability. 

Analogously: 

Definition 2.2. A commitment scheme (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is statistically binding iff for any 

polynomial-time algorithm A, any security parameter 𝜂, the following is negligible: 

Pr[𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1 ∧ 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚 , 𝑢 ) = 1 ∧ 𝑚 ≠ 𝑚 : (𝑐, 𝑚, 𝑢, 𝑚 , 𝑢 ) ←

𝐴(1)]. 

In case of computational binding, the commitment scheme is only provably secure against 

polynomial-time adversaries. In case of statistical binding, the computational power of the 

adversary is unlimited.  

2.4 Hiding property 

Adapted from the definition of statistical hiding in [4]: 

Definition 2.3. A commitment scheme (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is computationally hiding iff for 

any polynomial-time algorithm 𝐴, any security parameter 𝜂 and any messages 𝑚 , 𝑚 ∈

𝑀𝑆𝑃 , the probability |𝑝 − 𝑝 | is negligible, where 

𝑝 ∶= 𝑃𝑟[𝑏 = 1: (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚 ), 𝑏 ← 𝐴(1, 𝑐)].  

To put it another way, a commitment scheme is computationally hiding if and only if for 

any polynomial-time algorithm A and any messages 𝑚  and 𝑚  from the message space, 

the probability distribution of guessing the committed value is negligibly close to a uni-

formly random distribution. 

Analogously: 
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Definition 2.4. A commitment scheme (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦)  is statistically hiding iff for any 

algorithm 𝐴, any security parameter 𝜂 and any messages 𝑚 , 𝑚 ∈ 𝑀𝑆𝑃 , the probability 

|𝑝 − 𝑝 | is negligible, where 

𝑝 ∶= 𝑃𝑟[𝑏 = 1: (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚 ), 𝑏 ← 𝐴(1, 𝑐)].  

Similarly to the binding property, the difference between computational hiding and statisti-

cal hiding is the computational bounds of the algorithm A in the former case.  

2.5 Completeness 

The definition of completeness in the quantum case from [3] can be directly applied to the 

classical case. Adapted to notations:  

Definition 2.5. A commitment scheme (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦)  has perfect completeness iff for 

all m ∈ MSP: 

𝑃𝑟[𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1: (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚)] = 1.  

In other words, a commitment scheme has perfect completeness if and only if for all valid 

messages from the message space and all valid commitment-opening pairs generated by the 

algorithm 𝑐𝑜𝑚𝑚𝑖𝑡, the algorithm 𝑣𝑒𝑟𝑖𝑓𝑦 always returns 1. 
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3. Quantum commitment schemes 

This chapter introduces the security properties used in quantum commitment schemes. An 

overview of previously proposed security definitions for the quantum setting is given, with 

a special focus on collapse-binding commitments.  

3.1 Preliminaries 

An algorithm is considered to be quantum-polynomial-time if it is a quantum algorithm and 

its runtime is always bounded by a polynomial in its input length. A commitment scheme 

composes sequentially if the security of the protocol is preserved when multiple commit-

ments are executed one after another. A commitment scheme composes in parallel if the 

security of the protocol is preserved when multiple commitments are synchronously exe-

cuted in parallel with all the rounds performed at the same time.  

A trivial superposition is a superposition of states where one state occurs with probability 1 

and others with probability 0. A non-trivial superposition is a mixed state where two or more 

states have probability greater than 0. A function 𝑓 is called a trapdoor function if 𝑓(𝑥) is 

computable in polynomial time, but it is computationally infeasible to find the inverse of 

𝑓(𝑥), unless some secret information, called the trapdoor, is given.  

3.2 Prior approaches 

When trying to adapt the definition of binding property to the quantum case, obvious ap-

proaches fail. In the classical setting, the binding property requires the adversary to be unable 

to open a commitment to more than one message, except with negligible probability. As 

shown in [5], in the quantum case, it is possible to construct a commitment scheme that is 

secure with respect to the definition of classical-style binding, yet, the adversary would be 

able to open a commitment to any message of his choosing. Namely, the commitment is a 

quantum state in a non-trivial superposition, therefore, measuring it makes it collapse, 

thereby destroying the state. Consequently, such a scheme would be considered classically 

binding, yet useless in real-life applications.  

[6] first proposed an information-theoretically hiding and binding commitment scheme us-

ing quantum communication. However, [7] proved this construction to be faulty by showing 

the impossibility of information-theoretically hiding and binding commitments.  
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To ensure the security of the binding property, a number of protocols ( [6], [7], [8], [9], [10]) 

have used the definition of sum-binding. Informally, sum-binding considers a bit-commit-

ment scheme with 𝑝 + 𝑝 ≤ 1 + 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒, where 𝑝  is the probability that the adversary 

successfully opens the commitment to message 𝑏. However, such construction is specific to 

bit commitments and has no good generalization to the string commitment case (further dis-

cussion can be found in [9]). Furthermore, it is not clear whether the protocol composes in 

parallel or even sequentially. Consequently, sum-binding commitments are currently not 

used as a sub-protocol in any known protocol. 

[9] introduced an oblivious transfer protocol that proposes a security property called CDMS-

binding. This definition uses a family of functions, dependent on the particular use case, to 

specify in which way the commitment should be binding. Although CDMS-binding com-

mitments have been used as a part of larger protocols, its composability by itself is not 

known.  

Another possible construction of commitment schemes is using perfectly-binding commit-

ments. Informally, perfectly-binding commitments require there to exist no such tuple 

(𝑐, 𝑚, 𝑢, 𝑚 , 𝑢′), that 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1, 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚′, 𝑢′) = 1 and 𝑚 ≠ 𝑚′. No-

tably, this definition requires the length of the commitment to be at least as long as the 

message, thus making the protocol less efficient. In addition, as shown in [7], perfectly-

binding commitments cannot be statistically hiding. An example of a perfectly-binding com-

mitment scheme can be found in [11]. 

[12] introduced the notion of UC-secure commitments. UC-secure commitments are con-

structed using some additional setup (e.g. a common reference strings) and a trapdoor func-

tion to allow the simulator to extract the committed message. As a result, UC commitments 

require stronger computational assumptions, tend to have a higher complexity and be less 

efficient. Additionally, depending on the setup used, UC commitments might not allow for 

short commitments (e.g. when using a common reference strings as a setup).  

[13] proposed a computationally binding commitment scheme for string commitments. This 

protocol is based on the definition of Q-binding commitments. Namely, for an adversary 𝐴 

and a predicate 𝑄, the adversary has at most 𝑝 + 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 probability of winning in 

a “betting game” over an adversary who uses the definition of perfect commitments. The 

protocol, however, comes with a number of drawbacks. Firstly, the only known way for 
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constructing statistically hiding Q-binding commitments requires using an equivocal 

trapdoor. Consequentially, this protocol would require stronger computational assumptions. 

In addition, it is not clear (or proven) if this construction could be used for parallel compo-

sition as it is mostly specialized for the commit-and-choose paradigm.  

A property called DFRSS-binding was proposed in [14] to provide security in the bounded 

quantum storage model, meaning, in a setup where the adversary’s quantum memory is lim-

ited to a fixed amount of qubits. The definition is specific to the bit commitment case with 

a possibility of extending the definition to bit-strings. Informally, in case of a DFRSS-bind-

ing commitment, given the classical part of the state of both the sender and the recipient, it 

is possible to extract what bit the sender will open to. Due to the fact that this definition was 

originally intended to be used in the bounded quantum storage model, some modifications 

are needed to allow usage in the unbounded storage model. As a result, DFRSS-binding 

commitments cannot be statistically hiding, nor do they allow for commitments that are 

shorter than the message (when used outside the bounded quantum storage model).  

3.3 Binding property  

In order to construct post-quantum secure commitment schemes, [3] proposed a property 

called “collapse-binding”. This definition seems to provide the same properties in the quan-

tum setting as computationally-binding property does in the classical setting. In particular, 

collapse-binding commitments are provably composable, can be used with statistical hiding, 

and allow for short commitments. 

As proposed in [3]: 

Definition 3.1. For algorithms 𝐴, 𝐵 consider the following games: 

𝐺𝑎𝑚𝑒 :  (𝑆, 𝑀, 𝑈, 𝑐) ← 𝐴(1), 𝑚 ← 𝑀 (M), 𝑏 ← 𝐵(1, 𝑆, 𝑀, 𝑈, 𝑐) 

𝐺𝑎𝑚𝑒 :  (𝑆, 𝑀, 𝑈, 𝑐) ← 𝐴(1),                                                  𝑏 ← 𝐵(1, 𝑆, 𝑀, 𝑈, 𝑐) 

Here 𝑆, 𝑀, 𝑈 are quantum registers. 𝑀 (M) is a measurement of 𝑀 in the computational 

basis.  

We call an adversary (A, B) valid if 𝑃𝑟[𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1] = 1 when running 

(𝑆, 𝑀, 𝑈, 𝑐) ← 𝐴(1) and measuring 𝑀, 𝑈 in the computational basis to obtain 𝑚, 𝑢. 
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A commitment scheme is collapse-binding iff for any quantum-polynomial-time valid ad-

versary (A, B), the difference |𝑃𝑟[𝑏 = 1: 𝐺𝑎𝑚𝑒 ] − 𝑃𝑟[𝑏 = 1: 𝐺𝑎𝑚𝑒 ]| is negligible. 

Collapse-binding commitments require the adversary 𝐴 to only output states that look like a 

trivial superposition of messages. Since 𝑀 (M) is a complete measurement in the com-

putational basis, it disturbs the state if and only if it is not a computational basis state. Thus, 

the probability difference between 𝐺𝑎𝑚𝑒  and 𝐺𝑎𝑚𝑒  is more than negligible only if the 

commitment is a non-trivial superposition. Consequently, collapse-binding commitments 

can be easily used with rewinding-based proofs. In rewinding-based proofs, the adversary’s 

state is saved and the adversary is executed multiple times, starting from that state. By def-

inition, measuring the opened message should not disturb the state, hence allowing for easy 

rewinding.  

As previously stated, collapse-binding commitments are composable. Namely, a proof was 

provided in [3] to show the possibility of parallel composition. More formally: 

Lemma 3.1. Let (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) be a collapse-binding commitment with message space 

𝑀. Let 𝑛 = 𝑛() be a polynomially-bounded and quantum-polynomial-time computable in-

teger. 

Figure 3.1: Collapse-binding commitments. 



22 

 

Let (𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑣𝑒𝑟𝑖𝑓𝑦 ) be the n-fold parallel composition of (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦). That is, 

its message space is 𝑀 . And 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑚 , … , 𝑚 ) computes (𝑐 , 𝑢 ) ← 𝑐𝑜𝑚𝑚𝑖𝑡(𝑚 ) for 

𝑖 = 1, … , 𝑛, and returns (𝑐, 𝑢) with 𝑐 ≔ (𝑐 , … , 𝑐 ) and u≔ (𝑢 , … , 𝑢 ). And 

 𝑣𝑒𝑟𝑖𝑓𝑦 (𝑐 , … , 𝑐 ), (𝑚 , … , 𝑚 ), (𝑢 , … , 𝑢 ) = 1 iff ∀𝑖. 𝑣𝑒𝑟𝑖𝑓𝑦(𝑐 , 𝑚 , 𝑢 ) = 1. 

Then (𝑐𝑜𝑚𝑚𝑖𝑡 , 𝑣𝑒𝑟𝑖𝑓𝑦 ) is collapse-binding. 

3.4 Hiding property 

In the quantum setting, computational hiding can be defined as proposed in [3], adapted to 

notations: 

Definition 3.2. Let (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) be a commitment scheme. (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is 

computationally hiding iff for any quantum-polynomial-time 𝐴 and any polynomial ℓ, there 

is a negligible 𝜇 such that for any 𝜂, any 𝑚 , 𝑚 ∈ 𝑀𝑆𝑃  with |𝑚 |, |𝑚 | ≤ ℓ(), and any 

|Ψ⟩, |𝑝 − 𝑝 | ≤ 𝜇() where 

𝑝 ∶= 𝑃𝑟[𝑏 = 1: (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚 ), 𝑏 ← 𝐴(1, |Ψ⟩, 𝑐)].  

Informally, a commitment scheme is computationally hiding against quantum adversaries if 

and only if for any two messages that are bounded in length by a polynomial function, the 

probability difference of the adversary guessing the message is bounded by a negligible 

function.  

Analogously: 

Definition 3.3. Let (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) be a commitment scheme. (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is sta-

tistically hiding iff for any quantum algorithm 𝐴 and any polynomial ℓ, there is a negligible 

𝜇 such that for any 𝜂, any 𝑚 , 𝑚 ∈ 𝑀𝑆𝑃  with |𝑚 |, |𝑚 | ≤ ℓ(), and any |Ψ⟩, |𝑝 − 𝑝 | ≤

𝜇() where 

𝑝 ∶= 𝑃𝑟[𝑏 = 1: (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚 ), 𝑏 ← 𝐴(1, |Ψ⟩, 𝑐)].  

Just like in the classical case, statistical hiding does not require the adversary to be compu-

tationally bounded. Furthermore, the definition of collapse-binding in [3] allows for statis-

tically hiding commitments in the quantum random oracle model. As shown in [4], it is 

possible to construct collapse-binding commitments that are also statistically hiding in the 

standard model.  
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3.5 Completeness  

In the quantum setting, completeness can be defined as proposed in [3], adapted to nota-

tions:  

Definition 2.4. A commitment scheme (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦)  has perfect completeness iff for 

all m ∈ MSP: 

𝑃𝑟[𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑚, 𝑢) = 1: (𝑐, 𝑢) ← 𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑚)] = 1.  

Similarly to the classical case, a commitment scheme has perfect completeness in the quan-

tum case if and only if for all valid messages from the message space and all valid commit-

ment-opening pairs generated by the algorithm 𝑐𝑜𝑚𝑚𝑖𝑡, the algorithm 𝑣𝑒𝑟𝑖𝑓𝑦 always re-

turns 1. 
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4. Quantum-secure coin toss 

This chapter introduces the concept of coin toss protocols. Security definitions of a quantum-

secure coin toss protocol are given for both bit commitments and string commitments. Ad-

ditionally, two theorems are introduced. 

4.1 Protocol using bit commitments 

A coin toss protocol is a protocol between two parties that want to agree to a bit. At the same 

time, neither of them should be able to influence the final value of the bit to their advantage. 

The coin toss protocol presented in this paper uses classical communication, yet assumes an 

adversary that has the capacity of quantum computing. In the proposed protocol, the under-

lying commitment scheme is assumed to be collapse-binding and statistically hiding, as de-

fined in Chapter 3.  

A coin toss protocol proceeds as follows:  

 𝐴 chooses a value 𝑎 ← {0,1}. 

 𝐴 runs an algorithm 𝑐𝑜𝑚𝑚𝑖𝑡 to get a commitment-opening pair for 𝑎: (𝑐, 𝑢) ←

𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑎). 

 𝐴 sends the commitment 𝑐 to 𝐵. 

 𝐵 chooses a bit 𝑏 ← {0,1}. 

 𝐵 sends 𝑏 to 𝐴. 

 𝐴 computes 𝑟 ∶= 𝑎⨁𝑏. 

 𝐴 sends (𝑎, 𝑢) to 𝐵. 

 𝐵 runs an algorithm 𝑣 ← 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑎, 𝑢). 

 If 𝑣 = 1, 𝐵 computes 𝑟 ∶= 𝑎⨁𝑏. Otherwise, the protocol aborts. 

A visual representation of the protocol is shown in Figure 4.1. 
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4.2 Security definitions  

Intuitively, a coin toss protocol is secure if the probability distribution of 𝑟 is negligibly 

close to uniformly random, even if one of the parties is corrupted. To show the security of 

the resulting protocol, the advantage of a malicious adversary is defined as the advantage 

they have in a “betting game” over an ideal adversary. In the ideal setting, a uniformly ran-

dom bit is 0 with probability  and 1 with probability .  

Formally: 

Definition 4.1. Let 𝑟 be 𝐵-s output in the coin toss protocol. For any quantum-polynomial-

time malicious 𝐴, let the advantage of 𝐴 be defined as follows: 

𝑎𝑑𝑣 ∶= 𝑚𝑎𝑥(𝑃𝑟[𝑟 = 0], 𝑃𝑟[𝑟 = 1]) −
1

2
 . 

A coin toss protocol is secure iff for any quantum-polynomial-time 𝐴, 𝑎𝑑𝑣 is negligible. 

Definition 4.2. Let 𝑟 be 𝐴-s output in the coin toss protocol. For any malicious 𝐵, let the 

advantage of 𝐵 be defined as follows: 

𝑎𝑑𝑣 ∶= 𝑚𝑎𝑥(𝑃𝑟[𝑟 = 0], 𝑃𝑟[𝑟 = 1]) −
1

2
 . 

A coin toss protocol is secure iff for any adversary 𝐵, 𝑎𝑑𝑣 is negligible.  

Theorem 4.1. If (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is collapse-binding, then the coin toss protocol is secure 

with respect to Definition 4.1. and Definition 4.2. 

Figure 4.1: A successful coin toss. 
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Proof sketch. Let (𝐴 , 𝐴 ) be an adversary against the coin toss protocol in the sense of 

Definition 4.1. Let 𝑏 ∈ {0,1} and let 

𝑤𝑖𝑛 = Pr[𝑟 = 1 ∧ 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑎, 𝑢) = 1: (𝑆, 𝑐) ← 𝐴 , (𝑆, 𝑎, 𝑢) ← 𝐴 (𝑆, 𝑏)]. 

Here, 𝑆 denotes a quantum register and 𝑐, 𝑎, 𝑢, 𝑏 classical values. The protocol is secure, if 

the advantage 𝜀 = 𝑚𝑎𝑥(𝑃𝑟[𝑟 = 0], 𝑃𝑟[𝑟 = 1]) −  is upper bounded by a negligible func-

tion μ.  

Now, it is possible to apply a unitary circuit 𝑈  to 𝑆 in 𝐴 (𝑆, 𝑏) (renaming the register 𝑆 to 

𝑆′ to avoid confusion later): 

(𝑈, 𝐸) ← 𝑈 (𝑆′). 

Then, 𝑈 is measured in the computational basis and a classical value 𝑢 is returned. 

Since 𝑟 = 𝑎⨁𝑏, the probability 𝑤𝑖𝑛 requires a malicious adversary 𝐴 to output bit 𝑎 such 

that 𝑎 ∶= 𝑏, where 𝑏 ∈ {0,1}. Thus, the probability 𝑤𝑖𝑛 can be expressed in the new circuit 

as: 

𝑤𝑖𝑛 ∶= Pr 𝑟 = 1 ∧ 𝑣𝑒𝑟𝑖𝑓𝑦 1, 𝑐, 𝑏, 𝑢 = 1: (𝑆 , 𝑐) ← 𝐴 , (𝐸, 𝑈) ← 𝐴 (𝑆 , 𝑏), 𝑢

← ℳ(𝑈) . 

 Now, let 𝑈  denote a unitary circuit and 𝑀 a quantum register of length 1. Let 𝑈  be de-

fined as: 

𝑈 : |Ψ⟩ ⨂|𝑏⟩ ↦ 𝑈 |Ψ⟩ ⨂|𝑏⟩ . 

That is, the unitary circuit 𝑈  takes as an input state |Ψ⟩  tensored with a one-bit quantum 

register, and applies the unitary circuit 𝑈  or 𝑈  to |Ψ⟩  according to the value of 𝑀. 

Let ℳ  denote a measurement that takes as an input a one qubit register 𝑀 and checks 

whether 𝑀 = |+⟩. Here, |+⟩ is defined as a superposition of states |0⟩ and |1⟩: 

|+⟩ ≔
1

√2
|0⟩ +

1

√2
|1⟩. 

Now, let’s define an adversary (𝐴, 𝐵) against the coin toss protocol. 

Algorithm 𝐴 shall be defined as follows: 
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 𝑀 ∶= |+⟩. 

 (𝑆 , 𝑐) ← 𝐴 . 

 (𝐸, 𝑈, 𝑀) ← 𝑈 (𝑆 , 𝑀). 

 𝑆 ∶= 𝐸. 

 Return (𝑆, 𝑀, 𝑈, 𝑐). 

Algorithm 𝐵 shall be defined as follows: 

 𝐸 ∶= 𝑆. 

 (𝑆 , 𝑀) ← 𝑈 (𝐸, 𝑈, 𝑀). 

 𝑏 ← ℳ (𝑌). 

 Return 𝑏. 

Now, two games 𝐺𝑎𝑚𝑒  and 𝐺𝑎𝑚𝑒  can be distinguished.  

In 𝐺𝑎𝑚𝑒 , after running the adversary 𝐴, a measurement 𝑉 is performed by a projector  

𝑃 = |𝑚⟩⟨𝑚| ⊗ |𝑢⟩⟨𝑢|

( , , , )

. 

Here, the probability of the measurement succeeding is equal to the probability of 𝑤𝑖𝑛. Then, 

𝑀 is measured in the computational basis. Consequently, the state collapses into one of two 

basis states: |0⟩ or |1⟩. In 𝐺𝑎𝑚𝑒 , the probability of ℳ  succeeding is , according to the 

outcome probabilities of state 𝑀. Hence, the probability of 𝑉 and ℳ  both succeeding is 

𝑤𝑖𝑛 × = . 

In 𝐺𝑎𝑚𝑒 , the qubit 𝑀 is not measured. In this scenario, the probability of 𝑉 and ℳ  both 

succeeding is equal to 𝑤𝑖𝑛 . 

By definition of collapse binding, the difference between measuring and not measuring 𝑀 

should be negligible. Yet, the difference between 𝐺𝑎𝑚𝑒  and 𝐺𝑎𝑚𝑒  is non-negligible, thus 

contradicting the definition.  

The security of the protocol with respect to Definition 4.2. can be shown in a similar manner. 

∎ 
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4.3 Protocol using string commitments 

When using collapse-binding commitments, the coin toss protocol can be extended from 

using bit commitments to using string commitments. 

A coin toss protocol with string commitments proceeds as follows:  

 𝐴 chooses a value 𝑎 ← {0,1} . 

 𝐴 runs an algorithm 𝑐𝑜𝑚𝑚𝑖𝑡 to get a commitment-opening pair for 𝑎: (𝑐, 𝑢) ←

𝑐𝑜𝑚𝑚𝑖𝑡(1, 𝑎). 

 𝐴 sends the commitment 𝑐 to 𝐵. 

 𝐵 chooses a bit-string 𝑏 ← {0,1} . 

 𝐵 sends 𝑏 to 𝐴. 

 𝐴 computes 𝑟 ∶= 𝑎⨁𝑏. 

 𝐴 sends (𝑎, 𝑢) to 𝐵. 

 𝐵 runs an algorithm 𝑣 ← 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑎, 𝑢). 

 If 𝑣 = 1, 𝐵 computes 𝑟 ∶= 𝑎⨁𝑏. Otherwise, the protocol aborts. 

Understandably, a coin toss protocol using string commitments needs security definitions 

that are generalized to bit-strings. Namely, in case of string commitments, the statistical 

distance between 𝑟 and 𝑟  should be negligible: 

𝑎𝑑𝑣 ∶= 𝑆𝐷(𝑟, 𝑟 ) = max
{ , , }

|𝑃𝑟[𝑟 ∈ 𝑇] − 𝑃𝑟[𝑟 ∈ 𝑇]|. 

The distribution of 𝑟  is uniformly random. In other words, for a bit-string of length 𝑛 

and for all 𝑟 ∈ {0,1} : 

Pr [𝑟 ] =
1

2
. 

However, statistical distance distinguishes the probabilities over all possible outputs, i.e. 

0, 1, ⊥, with ⊥ denoting negative verification by the algorithm 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑎, 𝑢). Hence, 

for any 𝑟 that outputs ⊥ with more than negligible probability, the advantage would be con-

sidered to be non-negligible. By definition, non-negligible advantage would mean the ad-

versary has broken the protocol. Henceforth, the definition of advantage is modified to only 

quantify over 𝑟, conditioned on 𝑣𝑒𝑟𝑖𝑓𝑦(1, 𝑐, 𝑎, 𝑢) = 1. 
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Formally: 

Definition 4.3. Let 𝑟 be 𝐵-s output in the coin toss protocol. Let 𝑟  be the ideal output 

of 𝐵. For any quantum-polynomial-time malicious 𝐴, let the advantage of 𝐴 be defined as 

follows: 

𝑎𝑑𝑣 ∶= max
{ , }

(𝑃𝑟[𝑟 ∈ 𝑇] − 𝑃𝑟[𝑟 ∈ 𝑇]). 

A coin toss protocol is secure iff for any quantum-polynomial-time 𝐴, 𝑎𝑑𝑣 is negligible. 

Definition 4.4. Let 𝑟 be 𝐴-s output in the coin toss protocol. Let 𝑟  be the ideal output of 

𝐴 in the coin toss protocol. For any malicious 𝐵, let the advantage of 𝐵 be defined as follows: 

𝑎𝑑𝑣 ∶= max
{ , }

(𝑃𝑟[𝑟 ∈ 𝑇] − 𝑃𝑟[𝑟 ∈ 𝑇]). 

A coin toss protocol is secure iff for any adversary 𝐵, 𝑎𝑑𝑣 is negligible.  

Theorem 4.2. If (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑣𝑒𝑟𝑖𝑓𝑦) is collapse-binding, then the coin toss protocol is secure 

with respect to Definition 4.3. and Definition 4.4.  

Proof idea. The proof of Theorem 4.2. could be constructed analogously to the proof of 

Theorem 4.1. Instead of initializing the qubit 𝑀 with a bit |+⟩, the register should be initial-

ized with a bit-string of length 𝑛 in superposition: 

1

√2
|𝑥⟩

∈{ , }

. 

Obviously, the proof should be adapted to the bit-string case by using a different method for 

calculating the probabilities. 
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5. Summary 

This paper presented the security definitions used in classical commitment schemes – hiding 

property, binding property and completeness. An overview was given of the definitions 

adapted to the quantum setting, with a special focus on binding property, as there is no ca-

nonical definition for the quantum case. A summary of previously proposed definitions was 

given, with some of their drawbacks and recommended use cases. A formal definition of 

collapse-binding commitments was provided with some insight into its advantages and use-

ful properties.  

Furthermore, the concept of coin toss protocols was introduced. To illustrate the usefulness 

of collapse-binding commitments, a quantum-secure protocol was constructed, using a sta-

tistically hiding and collapse-binding commitment scheme as the underlying protocol. The 

security definitions of the proposed protocol were defined, along with two theorems about 

the security of the protocol. The theorems were given with proof sketches, to show a possible 

way of formalizing the proofs. 

First and foremost, as future work, the proposed theorems should be given formal proofs 

with respect to given definitions. In addition, the security definitions should be strengthened 

against some specific attacks for the protocol to be usable as a sub-protocol in larger systems. 

As such, the security of a coin toss protocol in case of string commitments should be modi-

fied, to prevent attack for any malicious adversary 𝐴 that can find a function 𝑓 such that 

𝑓(𝑥) = 𝑐. 
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