
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Joanna Niklus

Current State-of-the-Art Bioinformatics

Methods in Alzheimer’s Disease Studies

Bachelor’s Thesis (9 ECTS)

Supervisor: Hedi Peterson, PhD

Tartu 2017
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Abstract:

Alzheimer’s disease is the most common form of dementia, mostly affecting people

over the age of 65, world-wide. The studies have focused on finding the reasons for

onset and possible cure.

The methods addressed in this thesis are mainly based on the microarray gene expres-

sion data. The data is analysed for differentially expressed genes and these are further

analysed using visualisation or enrichment analyses.

This thesis hopes to provide an overview of the bioinformatical methods, used in the

research of Alzheimer’s disease. Resulting in a diverse list on bioinformatical meth-

ods, the analysis provides short descriptions and examples of the most used approaches

among a chosen subset of articles related to Alzheimer’s disease studies.
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Kaasaegsed bioinformaatika meetodid Alzheimeri tõve uuringutes

Lühikokkuvõte:

Alzheimeri tõbi on kõige levinum dementsuse vorm ning see esineb ülemaailmselt va-

nematel inimestel. Uuringud keskenduvad põhjuste ja ravi leidmisele.

Käsitletavad meetodid põhinevad geeniekspressiooni andmetel. Erinevalt avalduvad gee-

nid eraldatakse ning kasutatakse edasistes analüüsides.

Käesolev bakalaureusetöö pakub ülevaadet Alzheimeri tõve uuringutes kasutatavatest

bioinformaatilistest meetoditest. Tuleneval mitmekülgsete meetodite hulgal põhinev ana-

lüüs kirjeldab lähenemisi lühidalt ning toob välja näiteid valitud artiklite hulgast.

Võtmesõnad: alzheimeri tõbi, andmete integreerimine, bioinformaatika

CERCS: B110, P170
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1 Introduction

Alzheimer’s disease affects the brain, disrupting memory, thinking and judgement and

causing problems in everyday life. This disease has been studied for over 100 years,

however no cure or onset cause has been found. Usually, people over the age of 65 are

affected, however there are cases, where people are affected, as early as 50. This earlier

onset is predictable, when the person has certain gene traits. This type is also inheritable,

affecting family members from different generations. Because of this type, the causes

are thought to be genetic, however no certain knowledge of the disease mechanisms, is

known. This complex disease is affecting people all over the world, and the number of

cases is growing each year, as well as the costs related to caregiving and hospitalisation,

for example. As the population is ageing, the patient numbers and costs will continue

to grow, if no cure or method of prevention is found.

The methods involved in diagnosing Alzheimer’s disease include mental fortitude and

memory impairment tests, cerebrospinal fluid analysis and post-mortem brain tissue ex-

amination. However, the first signs of dementia may appear up to a decade later, when

the disease has already progressed in the brain. The research related to better diagnosing

techniques as well as better understanding of the onset and progression, are important.

The methods used in this research involve differential gene expression, brain imaging

scans and searching for possible drug targets. As the disease is thought to have genetic

causes, the gene expression studies can shed light on why and how the disease pro-

gresses.

Bioinformatics provides many methods for analysing gene expression and the relevant

pathways contributing to the progression of the disease, and discovering drug targets, for

example. These methods are mainly based on tissue samples isolated from post mortem
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brains, limiting the study of differential gene expression in earlier stages. Gene expres-

sion studies use microchips, enabling the analysis of multiple samples and providing

more information in one reaction. These data are then analysed using computer al-

gorithms and statistical methods to extract the genes that behave differently in diseased

brains than in healthy brains. Numerous other studies conducted on these possible genes

offer more insight and might provide targets for drugs.

There are problems linked to the availability of data from earlier stages, but also to

how the studies are conducted. Not every method is compatible with certain hypotheses

proposed during research. Furthermore, the submitted studies need to have certain qual-

ity of data presentation and descriptions of the conducted analyses and used methods.

There are many new methods proposed and many new possibly related genes offered,

however, the new methods need validation to be confidently used and the genes need

further studies. Moreover, the novel genes offered, have little overlap between them.
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2 Background

2.1 Biology

2.1.1 The central dogma of molecular biology

This short introduction into the basics of genetics is based on the writings of A. Lesk

and A. Heinaru, except in cases otherwise cited [1, 2]. The Central Dogma of Molecular

biology states that genetic information transmits from deoxyribonucleic acid (DNA) to

ribonucleic acid (RNA) and from there to protein [Figure 1]. It does not transmit from

protein to nucleic acid [3]. The DNA is the carrier of genetic information in cells. It

Figure 1. The central dogma of molecular biology. Genetic information transmits from
nucleic acid to nucleic acid and from nucleic acid to protein. It does not transmit from
protein to nucleic acid, nor from protein to protein. The solid lines show the usual
transmission. By Philippe Hupé, via Wikimedia Commons; modified [4]

is a sequence based on the four-letter alphabet of adenine (A), guanine (G), cytosine

(C) and thymine (T). These four nucleotides make up complementary pairs: A with T,

and G with C. When pairing together they form hydrogen bonds: A forms two hydrogen

bonds with T and G forms three hydrogen bonds with C. These four nucleotides connect
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with one-another to make up a long, linear strand that has an anti-parallel (oriented in

the opposite direction) and complementary sequence, forming the double helix. Each

strand has a direction, named after the positions of the open ends, i.e. the 5’ end and

the 3’ end. The sequence is read from 5’ end to 3’ end, and because of the differences

of the ends and the specificity of the regulatory or replicatory proteins, the synthesising

proteins move from 5’ end toward 3’ end.

Nucleotides form sequences, known as genes. Either strand of DNA can contain genes

Figure 2. Splicing of the transcribed pre-mRNA. The pre-mRNA is modified by excising
the introns and splicing together the exons. The mRNA is then transcribed into a protein.
There are sequences in the ends of the strands that remain untranscribed (UTR). By Qef,
via Wikimedia Commons [5]

and in eukaryotes one gene is often split into segments along one strand. Genes contain

intervening regions called introns between regions that are expressed, i.e. exons [Figure

2]. As the strands are directed, the regions toward the 5’ end from the gene are called

upstream regions and similarly, regions towards the 3’ end are called downstream re-

gions.

The expression of genes is controlled by internal mechanisms that may turn the genes

on or off. One of these mechanisms is regulatory genes, which can be found upstream

from the gene they regulate. The regulation can be repressing, meaning the regulatory

gene’s product binds so that its target gene can no longer be expressed, therefore lessen-

ing the target gene’s product. The regulation can also be activating, in which case the

transcription is promoted.
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RNA has a slightly different alphabet than that of DNA - instead of thymine, RNA has

uracil (U), which also forms two hydrogen bonds with A. Moreover RNA is single-

stranded, that is often folded, forming complementary structures with itself. After

the transcription of the whole gene (introns and exons) the pre-messenger RNA (pre-

mRNA) is synthesised and undergoes splicing, during which the introns are excised and

the exons are spliced together, forming a strand of mRNA [Fig.2]. mRNA further un-

dergoes translation, forming a protein. Proteins are strands of amino acids, determined

by the sequence of the gene (mRNA). One amino acid corresponds to a three-nucleotide

group, called a codon, making the number of possibilities for different sets of nucle-

otides into 64, which represent 20 standard amino acids. Among these 64 codons are

3 stop codons - a sequence such that, when the translator molecule encounters this, it

stops the translation. However, there is only one sequence from which the translation

starts.

Because of the intra-cellular influences (e.g. pH level) and molecular interactions, DNA,

RNA and proteins have different structure. In the cell, the DNA has the form of lin-

ear double-stranded helix, densely and orderly packed into multiple chromosomes (the

number is dependent on species). The single-stranded RNA has three main functions:

mRNA, tRNA and rRNA. mRNA is what is used to translate specific proteins; trans-

fer RNA (tRNA) transports amino acids to ribosomes during translation; and ribosomal

RNA (rRNA) makes up the ribosome, in which the translation takes place. Each of these

RNA types has a different structure which correlates with its purpose. The 3D native

state of proteins is determined by the amino acid sequence, and the native state is what

determines the function of the protein.

The biochemical functions of proteins are vast, they can be structural (e.g. membranes

of organelles), catalytic (e.g. enzymes), regulatory (e.g. hormones) or control gene
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transcription. The native state of proteins requires certain conditions to be met, e.g. the

pH level and temperature (such as in the cell) in order for the proteins to fold spontan-

eously into the respective native state. This state can, however, unfold into a disordered

and functionally passive structure. This process, called denaturation, happens when the

conditions in which the protein is active, change. In very few cases the protein’s struc-

ture recovers to its native state, when the normal conditions are restored. However, in

irreversible cases of denaturation, the protein does not recover its natural state caus-

ing the aggregation of insoluble inactive proteins. These aggregates are linked to many

diseases, one of such being AD, which is further discussed below.

2.1.2 Brain

Brain is the commanding organ responsible for tasks such as controlling the internal

synchrony of functions. The brain is separated into two hemispheres and divided into

several regions in regard to the respective functions. For example, the hippocampus and

amygdala are associated with memory. The main cells native to the brain are neurons,

which transmit the information among brain regions [6].

The structure of neurons is characterised by their central cell body called soma, input

strands called dendrites and an output strand called axon [Fig.3]. The axon connects to

other neurons’ dendrite(s) and the connecting part is called a synapse [8]. An important

feature of axons, is the myelin sheath that coats them [6]. It provides the rapidness of

information transfer as well as functional insulation [6].
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Figure 3. A schematic illustration of a neuron. 1) The dendrites through which the
neuron receives the information; 2) The cell body, a.k.a. soma; 3) The axon, coated with
the myelin sheath and used for transporting the signals out; 4) The axon terminals via
which the neuron connects to other neurons’ dendrite(s), for example. Via Wikimedia
Commons; modified [7]

2.1.3 Alzheimer’s disease

The first known description of AD originates from the year 1901, when Alois Alzheimer

provided a detailed and extensive documentation of one of his 51 year old female pa-

tients, who showed signs of paranoid symptomatology, sleep disorders, memory disturb-

ances, aggressiveness, crying and progressive confusion [9]. After the patient’s death,

Alzheimer further described the plaques and tangles in the brain [9]. In the later years

similar cases were published and some of Alzheimer’s earlier work was further specified

[9].

After numerous research and investigation, the understanding of the disease has im-

proved, however no cure to stop or reverse the progression has been reported and AD

has become one of the most common form of dementia [9, 10]. Moreover, the costs and

patient numbers of dementia are growing yearly [11].

The risk factors of AD include old age, environment (e.g. smoking, obesity, hyperten-
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sion) and genetics (late and early onset) [12]. Late onset AD (also called sporadic AD)

is the most common case, affecting people over the age of 65. Although some genetic

risk factors have been identified (e.g. the inheritance of the ε4 allele of APOE), they do

not guarantee the development of the disease [12]. However in the case of familiar AD

(early onset AD), in which symptoms develop before the age of 60, mutations in the

APP and presenilin (PSEN1, PSEN2) genes attribute to the disease, so that many family

members across multiple generations are affected [12]. This type of AD accounts for

about 0.1% of the disease cases.

Currently, the presence of AD is confirmed by analysing the cerebrospinal fluid (CSF)

of the patients for established biomarkers, including amyloid beta protein, tau protein

and phospho-tau protein [13]. However, since CSF is obtained via lumbar punctures,

both invasive and painful, there is a need for biomarkers that are more easily obtainable,

more sensitive and more specific.

In addition to CSF analysis, mental fortitude and memory impairment tests are also

conducted and combined with brain imaging to identify AD. However this does not

provide the diagnosis with 100% certainty. The most definitive diagnosis remains the

post-mortem brain tissue analysis [12].

AD progression has been divided into three stages: early stage, middle stage and late

stage. As first symptoms of AD may manifest more than a decade later, when the dis-

ease has already spread in the brain, the early stage is often undetected [14]. Also,

the time intervals of these stages differ for individuals and depend on multiple factors,

for example hypertension, depressive symptomatology or chronic psychological stress

[12, 14]. AD affects brain functions such as memory (forgetfulness, unable to recog-

nize faces), thinking, orientation (lost in familiar places), comprehension (unaware of

time and date), language (communication) and judgement (depression, aggression), pro-
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Figure 4. The progression of AD through the brain. The blue part shows the progression
and affected regions over the years. As can be seen, the brain with severe AD is show-
ing shrinkage of the cerebral cortex. Figure by National Institute on Aging, National
Institutes of Health; modified [15]

gressing over the years [Figure 4]. The disease will eventually influence other physical

abilities as far as the patient needing assistance in self-care, incapability of walking,

difficulties swallowing, making one unable to eat without assistance, and finally ending

with death [12].

AD affects brain regions such as entorhinal cortex, hippocampus, frontal cortex and

amygdala and includes pathophysiological symptoms such as abnormal tau proteins

forming neurofibrillary tangles [Fig.5], neuronal loss and atrophy, synaptic dysfunc-

tion, neurodegeneration and amyloid-β plaques [Fig.6] [14, 16].

In normal brains, tau proteins are involved in the assembly and stability of axonal mi-

crotubules [17]. In brains affected by Alzheimer’s disease [Fig.5], the tau proteins have

become hyperphosphorylated, which results in the progressive disruption of neuronal

cytoskeleton and the formation of intracellular neurofibrillary tangles (NFT) [17].

The amyloid beta proteins in normal brains are located on the surface of the neurons

and are related to neuronal growth, adhesion, cell mobility and regulation of transcrip-

tion [17]. Mutations in the APP (Amyloid Precursor Protein) gene result in the different

cleavage of the gene [Fig.6], producing neurotoxic amyloid-beta peptides [17]. These

13



amyloid-beta peptides adhere together and form extracellular amyloid plaques [17].

Figure 5. Illustration of normal functions of tau and causes of AD affected tau. The
microtubules involved in information transmission between cells, can be seen disinteg-
rating, which causes cells to lose connection and thereby disrupting the brain functions.
By ADEAR, via Wikimedia Commons [18]

Figure 6. Figure showing the formation of Beta-Amyloid plaque. In healthy cells,
APP molecule is differently cleaved and thus producing different products. In diseased
brains, however, the differently cleaved products are not soluble and therefore form
aggregates, known as Beta-Amyloid Plaques. By ADEAR, via Wikimedia Commons
[19]
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2.2 Bioinformatics

Bioinformatics is an interdisciplinary field combining mathematics, statistics, computer

science and biology. The aim of bioinformatics is to solve biological problems with the

help of computational resources and statistical methods.

2.2.1 Microarrays

Microarrays are designed for the simultaneous analysis of millions of sequences in one

reaction. The surface has an orderly arrangement of immobilised probes with known se-

quences [Fig.7]]. The probes, also known as oligonucleotides, have a specific sequence

and type (DNA or RNA) according to the specifics of the subsequent experiment [20].

There are three types of probes that are used by most of the designs: perfect match (PM),

mismatch (MM) and control probes. The section that one probe occupies is called a fea-

ture, PM and MM probe together are called a probe pair. A number of probe pairs are

selected per gene, hybridizing in different locations of the gene, thus forming a probe

set. The number of probe pairs per gene as well as the length of the probes depends on

the manufacturer of the array [20, 21].

Hybridization entails the binding of two complementary strands of different origins.

The probe sequences on the array are synthetic, whereas the target sequences come

from cells [21]. The more specific properties of microarrays are based on the manufac-

turer of the array, as well as the ensuing application and experiment type.

PM probes are entirely complementary to its target sequences, while MM probes have,

in the centre of the sequence, one nucleotide that is complementary to the respective

nucleotide of the PM probe [21]. The one mismatching probe is enough to disrupt the

binding of the strands, and therefore provides a negative control for background hybrid-
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ization [22]. Capturing the non-specific binding and the background was the theoretical

design of the MM probes, determining the reliability of the PM probe [23].

Most commonly used microarrays are manufactured by Affymetrix and Illumina [Fig-

ure 7]. The photochemical synthesis directed manufacturing of Affymetrix GeneChip

Figure 7. A comparison of Affymetrix and Illumina arrays. By Philippe Hupé, via
Wikimedia Commons [24]

arrays is their main distinguishing feature [21]. The oligonucleotides synthesised onto

the array are in accordance with the intended use, which may be gene expression pro-

filing, whole-genome transcriptome mapping or custom genotyping [21]. The probes

on the array are typically 25 nucleotides long and 11 probe pairs are usually selected

per gene. The arrays, 1.28 cm2 in size, are capable of containing more than 1.4 million

different features [21].

Illumina uses silica beads containing around 105 copies of the same 75 base pair long

oligonucleotide acting as probe. Their highly miniaturized arrays (1.4 mm across) can

hold up to 50 000 beads and about 40 000 array elements per square millimetre. The

localisation and identification are done post-assembly [25].

As mentioned above, the hybridisation process involves the probes on the array, and

sample material from the cells. Based on the RNA isolated from the cells, the cDNA are
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synthesised, labelled fluorescently and washed over the array in controlled conditions

[26]. Later, the array is scanned, and a composite image is created [26]. In two-colour

microarrays, fluorescent labels for healthy and diseased samples differ in colour, en-

abling the calculation of differential expression [26]. One-colour microarrays feature

one type of sample types and thus have one colour.

2.2.2 Data preprocessing and related algorithms

Since raw data includes inconsistencies, noise and missing values, the data has to be

cleaned and levelled. Data inconsistencies can be caused, for example, by hairs, scratches

or precipitation on the array, the scanner (less reliable below a certain intensity) or the

image analysis software (peculiarities in calculations) [26]. As missing values and out-

liers (a value far away from other values) interfere with statistical tests and clustering,

data cleaning and levelling is important for more meaningful results [26].

To choose a suitable method, amongst the pool of different and growing number of al-

gorithms, one has to consider the type of the array used as well as the objective of the

experiment.The following paragraphs introduce the general idea of data preprocessing

and some of the most used methods are further described.

The conventional first step in preprocessing is correcting the data for background noise,

and effects of individuals and batches. Individual effects include for example the age

and sex of the person, the interval between death and collection of tissue, brain pH level,

and cause of death. Batch effects include for example the time of hybridisation, used

chemicals, humidity, and the scientist doing the experiment. It has been shown to be the

main step of data preprocessing, as well as one with the biggest impact on the perform-

ance [27].

Next step is the normalization or the levelling of the data, i.e. median-centering the
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value distributions across samples in the dataset, ensuring the better comparability of

the data [28]. In the end of this step, the data from different datasets are comparable.

The last step is usually the summarization of the data, reducing the volume, but directly

or implicitly preserving the outcomes of the analysis. Probe set values are respectively

combined, forming a measure of expression for the genes [21].

Some of the most used preprocessing algorithms for Affymetrix arrays in relation to

the AD studies include Robust multi-array average (RMA) [29], GC-corrected RMA

(GCRMA) [30] and MicroArray Suite 5.0 (MAS5.0) developed by Affymetrix [31].

RMA uses global background adjustment and across-array normalization [29]. For gene

expression measurement it uses log-transformed PM values [29]. For the combination

of intensity values RMA uses median polish and fold change in the differential expres-

sion detection [29].

However, RMA does not use MM probes for calculations as MAS5.0 does. The Af-

fymetrix algorithm subtracts MM probe values from the values of PM probes in the

background correction step [32]. For the combination of intensity values, MAS5.0 uses

the Tukey biweight estimator [33].

GCRMA is a variant of RMA with the same normalisation and summarisation steps,

however it uses an estimate of non specific binding, taking advantage of sequence in-

formation for background correction [34].

2.2.3 Differential expression analysis

Expression change can be conveyed by three measures: intensity ratio, log ratio and

fold change. The log ratio and fold change are derived from the intensity ratio, which

represents the raw value for expression [26].

To calculate the intensity ratio for two-colour data, intensities of sample and control are
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divided. This produces an asymmetrical distribution for the values, as down-regulated

genes are represented in the range (0...1) and up-regulated genes belong in the range of

(1...) [26].

The log ratio is calculated as a log-transformation of the intensity values. The base of

the logarithm can be freely chosen (most commonly used is base 2), however the base

has to be the same for all of the samples [26]. The log-transformation makes the value

distribution more symmetric, as both up- and down-regulated genes fall in the range of

0 to infinity [26].

The calculation of fold change likewise changes the distribution to be more symmetrical

and the of values range from 1 to infinity [26]. Fold change values stay the same as the

intensity ratio in cases when the expression is higher than one, and in cases where the

expression is lower than one, the fold change takes the value of the inverse intensity

ratio [26].

2.2.4 Data visualization

An important step in data analysis, to better comprehend the information produced, is

data visualisation [26]. For example, the construction of scatter plots can be very in-

formative for initial evaluations of data, as well as comparing the data sets [26]. Further

comprehension can be achieved by clustering the data, that is dividing the genes into a

number of groups with similar expression patterns [26]. This reduces the dimensional-

ity of the data, as well as makes the data more intuitive for the user [26]. Furthermore,

when visualising the clustered data as a heat map, for example, a visual observation can

determine, whether the control groups are clustered together or not, providing further

information about the quality of methods used thus far in the analyses.

There are a number of ways to visualise different information, however some methods
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work better with certain kind of data. For example, heatmaps are a better way to visu-

alise the intensities of differential gene expression values than networks, for instance.

From amongst the many methods, networks, heatmaps, scatterplots and boxplots, are

introduced below.

Networks have the form of graphs and convey information about interactions. When

thinking of it mathematically, it is a set of nodes or vertices V and a set of edges E,

where vertices are connected via edges and an edge is specified by the vertices it con-

nects [1]. When an edge has a value associated with it, the graph is labelled, e.g. the

labels can stand for correlation coefficient [1]. In a directed graph, the vertices are

ordered, e.g. the first vertex shows a regulator and the second vertex shows the gene it

influences.

Biological networks include for example protein-protein interaction (PPI) networks,

regulatory networks (containing gene expression control information); networks con-

veying the signal transmission inside, outside or within the cell; and metabolic net-

works, modelling the metabolism in organisms [35]. In the scope of this thesis the focus

is mainly on PPI and regulatory networks. PPI networks are undirected and contain

information about the interactions between different proteins. Regulatory networks are

directed and contain the information of regulations, i.e. which genes are affected by

which regulators.

Even though the biological networks contain various different information, there are

certain patterns - network motifs - which are common to all the aforementioned, and

these motifs are found to perform specific functions relative to the motif structure [36].

Uri Alon introduces in his review four network motif families, including 1) simple regu-

lation; 2) feedforward loop (FFL); 3) single-input module (SIM); and 4) dense overlap-

ping regulon (DOR) [36]. These network motifs, shown in Figure 8, have been found for
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Figure 8. Four families of network motifs and their examples. A: Simple regulation. X
regulates Y without any additional interactions. B: Negative autoregulation. X represses
its own transcription. C: Positive autoregulation. X enhances its own production. D:
Feedforward loop. X influences Y, which in turn influences Z, which is also influenced
by X. These influences can be repressing or enhancing, thus there are eight possible
feedforward loop structures, of which the most frequent two are shown. E: Single input
module. X regulates a group of targets Yn. F: Dense overlapping regulon. A set of reg-
ulators Xn regulate a group of targets Ym. G: Diamond pattern. H: Regulated feedback
with a double-negative-feedback loop. From the article by Uri Alon [36]

example in sensory networks, responding to stress and nutrient signals, developmental

networks guiding the differentiations, protein modification networks and neuronal net-

works, suggesting the structural simplicity of complex biological networks Figure 8

[36].

When analysing biological networks, there are three important features in common with
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non-random networks, including scale free and small-world properties and modularity

[Fig.9] [37]. Scale free networks include a small number of highly connected nodes

Figure 9. Examples of networks. It can be seen that the small-world network seems
to have direct or indirect connections between all the nodes. The existence of network
hubs is identifiable in the case of the scale-free network. By Utopiawiki (Own work),
via Wikimedia Commons [38]

called ’hubs’ and a lot of less connected nodes [37]. The scale free networks are re-

markably resistant to accidental attacks (e.g. mutations), however when an attack is

coordinated (e.g. a pathogen) on a hub-node, the network is very vulnerable [39]. Small-

world networks have the tendency of having a shorter path between any two nodes than

that expected in a random network of similar size and having a similar number of con-

nections [37]. Finally the modularity refers conceptually to gene groups performing

similar functions separable from the rest of the system, which means, they are in con-

trast to motifs, which can not be separated from the rest of the system [37].

Heatmaps can be thought of as a coloured matrix, with the rows representing genes,

columns representing patients, for example, and the cells contain a colour correspond-

ing to the value of expression [40]. However, without a certain ordering of the rows and

columns, the interpretation of the matrix proves to be complicated, as the rows tend to
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be in a random order, as can be seen from Figure 10 [40]. In order to retrieve mean-

Figure 10. Random gene expression data. It can be difficult to perceive patterns from
the randomly ordered rows and columns. Figure by MIT OpenCourseWare [41].

ingful data from gene expression heatmaps, the rows and columns are reordered with

clustering algorithms [40]. One of the common algorithms is hierarchical clustering,

which also provides a dendrogram to show the division levels of the values [40]. Clus-

tering is based on the concept that gene expressions, arising from the similar functions

and regulation, group the genes into clusters, an example of this is provided as Figure

11 [26].

To perform clustering, one would create either a distance matrix or a similarity matrix,

Figure 11. A: The dendrogram (hierarchical tree) showing the similarity divisions. B:
The heatmap with clear clusters, depicting two-way clustering, i.e. the clustering of
both rows and columns. The meaning of the genes is irrelevant in the scope of this
illustration. By Rawlinson S, McKay I, Ghuman M, Wellmann C, Ryan P, Prajaneh S,
Zaman G, Hughes F, Kingsmill V, via Wikimedia Commons [42]
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using a distance metric [43]. These metrics can be, for example, Eucleidean distance or

Pearson correlation coefficient [43]. The algorithm works by finding the closest clusters,

merging them together, calculating a distance (or similarity) value for the new cluster

and repeating these steps until all genes are clustered [26]. This can be done ’bottom

up’ or ’top down’, that is the algorithm would start with all the nodes as single clusters

and iteratively add the closest (most similar) nodes to the cluster or it would begin with

one cluster containing all the nodes and iteratively remove the furthest (least similar)

nodes.

Another commonly used clustering method is the k-means clustering, for which the

number of groups (k) has usually been provided by the user [26]. The resulting clusters

do not have a hierarchical structure, but they are geometrically very compact and close

to the respective centroids [26].

Scatterplots are useful for the pairwise comparison of datasets in order to find dispropor-

tionately expressed genes [40]. A special case of scatterplot is the volcano plot, which

has been used to visualise the fold changes of the data [Fig.12].

Boxplots are used for visualising the robust summary of a dataset’s distribution. Figure

Figure 12. An illustration of a volcano plot. By Roadnottaken (Own work), via Wiki-
media Commons; modified [44]
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13 shows the elements of a boxplot. The whiskers are usually used with a multiplier of

1.5 [45].

Figure 13. An illustration of the elements of a boxplot. By Ruediger85 (changed lan-
guage). Original by RobSeb (Own work), via Wikimedia Commons [46]

2.2.5 Databases

The amount of biological data is growing fast and thus there is a need for good data-

bases that not only store the data, but are also regularly updated and have a consistent

standard for the presentation (as well as storage) of the data. Microarray data is only a

small fraction of biological data, it also includes for example, sequences, interactions,

functions and disease information. Thus, in order to regulate the structure of the data to

be uploaded, minimum requirements ensuring the easy interpretation and verification of

the data were proposed as the MIAME standards [47]. There are several databases fol-

lowing these guidelines, including, but not limited to, Gene Expression Omnibus (GEO)

and ArrayExpress [48].

GEO at the NCBI and ArrayExpress share a similar purpose, they are both public re-

positories of high-throughput data and are both recommended by scientific journals [49,

50]. Researchers can submit for example, microarray and sequencing data, as well as

query, review and download the data [50, 49]. ArrayExpress imports GEO datasets on

a weekly basis [50].

The National Center for Biotechnology Information (NCBI) at the National Institutes of
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Health (NIH) accommodates many databases relevant to biotechnology and bioinform-

atics, including GEO and PubMed for example [51]. NCBI has integrated the Entrez

database retrieval system to provide access to many databases containing for example

nucleotide sequence data and genomic mapping information [51].

The Gene Ontology (GO) provides annotation of genes, meaning the terms describing

the gene product are assigned to corresponding genes. GO terms are divided into three

main categories: molecular function, biological process and cellular component, that

are in themselves three independent ontologies [52]. The terms are hierarchically or-

ganized, a node may have more than one parent and each node in GO ontologies is

linked to additional other information, e.g. the SwissPROT or GenBank databases. The

interlinking of databases tries to eliminate dated facts, because biological knowledge is

improving daily [52].

Kyoto Encyclopedia of Genes and Genomes (KEGG) is similar to GO, in that it provides

functional meaning to genes and genomes, assisting in interpreting biological datasets.

KEGG is essentially a collection of databases, containing information about drugs, dis-

eases, genes, cellular functions and much more, as well as offering tools for data ana-

lysis and query [53]. KEGG can be used for the identification of enriched gene path-

ways.

Similar to this is the Reactome peer-reviewed database [54]. Expert biologist, in collab-

oration with others, for example, GO (vocabularies), PubMed (research literature) and

Entrez (genes), create the annotations for the pathways [54]. The website also provides

tools for various activities, for example over-representation analyses, pathway analyses

and visualisation of full pathway information [54].

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database in-

cludes information about protein-protein interactions, both known and predicted, and
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covers more than 2 000 organisms [55]. The comprehensive interactions contained in

STRING are derived from multiple databases, full-text articles and analyses, and scored

with a confidence value [55].

2.2.6 Software

As a system for statistical graphics and computation, the open source programming lan-

guage R can be obtained with a graphical run-time environment. The free, open source

and open development Bioconductor project relying upon R, contains packages for ana-

lysing and understanding genomic and sequence data, amongst others. These additional

packages can be obtained as R packages [56].

An open source software platform used for biological research is Cytoscape, which was

originally designed only for this purpose. However, Cytoscape has since matured and

expanded into being a general platform for complex network visualization and analysis

in several domains [57]. For example, Cytoscape provides data file import (e.g. from

GO), connections to public databases (e.g. NCBI Entrez Gene), analyses and visual-

isations in JavaScript environment via Cytoscape.js and several plugins for additional

features [58, 59].
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3 Analysis

I selected 15 articles found via PubMed and Google Scholar using the terms ’bioinform-

atics’, ’alzheimer’ and restricting the year to be since 2010. Among the articles I have

used, 13 are from the years 2015 and 2016, one from 2010 and one from 2013. The

following analysis is based on what I read and summarized from these articles.

3.1 The goals and objectives

The goals of the chosen articles were, in general, to identify novel genes; to further

explore and expand the knowledge of less known previous findings; or to use novel ap-

proaches or previously unused methods in relation to AD studies. Ray and Zhang had

the goal of identifying genes with differential topology in the pairwise regional coex-

pression networks of entorhinal cortex, hippocampus, middle temporal gyrus and pos-

terior cingulate cortex [60]. The goals of Jamal and colleagues were to identify genes

with potential relation to AD [61]. Zhang and others wanted to improve the knowledge

of the molecular pathogenesis of AD by identifying AD related genes, sub-networks and

pathways [62]. The purpose of the study by Puthiyedth and colleagues was to provide

new knowledge about the regional specificity of AD by identifying significant genes in

regions associated with AD [63].

The study by Yue and colleagues aimed to provide a new gene interaction analysis tool,

which would provid higher credibility [64]. It was hypothesised that the understand-

ing of the underlying mechanisms of AD could be improved by identifying DEGs from

amongst data downloaded from GEO [65]. The study by L. Zhao and colleagues inten-

ded to determine the differences between the aging of male and female mouse brains

in regions significantly affected by AD [66]. The objectives of Forabosco and col-
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leagues were to analyse TREM2 in the networks of different brain regions and data sets

to provide better understanding of TREM2 connections with known genes involved in

AD [67]. Wang et al. studied nineteen brain regions for expanded descriptions of AD-

associated molecular networks [68]. In the article by Y. Zhao and colleagues, the aim

was to uncover the potential roles of miRNAs in AD pathogenesis and expand know-

ledge related to AD mechanisms [69].

Acquaah-Mensah and Taylor showed in their article the usefulness of in-situ hybrid-

isation (ISH) data in differential gene expression studies [70]. The paper by Martinez-

Ballesteros et al. aimed at providing gene expression patterns and deeper knowledge

acquired by and integrated method consisting of descision trees, quantitative rules and

hierarchical cluster analysis [71]. The goal of Song and colleagues was to evaluate

the extent of AD-related gene identification of the NetWAS approach [72]. Nevado-

Holgado and Lovestone proposed the hypothesis that the effect of Non-Steroidal Anti-

Inflammatory Drugs (NSAIDs) on the risk of AD might be through previously unrecog-

nised effects in addition to the known inflammation-suppressing effects [73]. The study

by Hao and Friedman aimed at providing additional information for the effects of AD

drugs, which had failed the clinical trials or were in clinical trials [74].

3.2 The data and methods used

3.2.1 Data

To better understand the disease and its mechanisms, it is important to know which

genes are involved and how they are expressed compared to genes in normal, healthy

brains. Thus the gene expressions of both healthy and diseased brains are needed. Out

of all the 14 brain regions the datasets represented, hippocampus, entorhinal cortex and
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posterior cingulate cortex were the most studied, with hippcampus studied 12 times,

entorhinal cortex 5 times and posterior cingulate cortex 3 times.

When collecting cell samples from brain section slabs, the most accurate and efficient

way is by laser capture microdissection (LCM). This method captures only specific cells

from a cell population, while other methods may also gather the surrounding cells [75].

Capturing only one cell, makes the gene expression data more accurate, because in a

tissue scrape, i.e. a population of cells as opposed to one cell, the majority of the cells

might not be diseased, thus making the diseased cell’s expression data suppressed [75].

One of the most mentioned across the selection of articles and also studied cell type is

the pyramidal neuron. These cells occur in the forebrain structures (e.g. cerebral cortex

and hippocampus) and their abundance in cortical structures, as well as their features

suggest high involvement in cognitive processing [76].

Regarding the species mostly studied, humans were in the majority. The other species

under investigation was the mouse, as lab-bred and as a data set from the Allen Brain

Atlas (ABA) database. Breeding mice in controlled conditions, enabled Zhao and col-

leagues to use earlier stages of AD, a variety of ages and to control the distribution

of gender [66]. ABA data was retrieved as mouse genome-wide in-situ hybridisation

(ISH) image data with cellular level resolution for the article by G.K. Acquaah-Mensah

and R.C. Taylor [70]. The high-throughput ISH method provides gene expression data

across the brain that is tissue- or cell-type specific, the specifics of the technique are

provided by Eichele and Diez-Roux [77]. Acquaah-Mensah and Taylor used, for their

analyses, a set of genes from the mouse hippocampus that consisted of genes associated

with inflammation, apoptosis and response to oxidative stress [70].

The articles by Acquaah-Mensah and Taylor, Yue et al., Ray and Lovestone, L. Zhang

et al. and Puthiyedth all used the same dataset containing the gene expression data from
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hippocampus, entorhinal cortex, middle temporal gyrus, posterior cingulate cortex, su-

perior frontal gyrus and visual cortex [70, 64, 60, 62, 63]. Yue et al. and L. Zhang both

used two datasets containing the hippocampal gene expression data [64, 62].

The microarrays used in the datasets mostly featured Affymetrix GeneChip arrays. Illu-

mina arrays were in the minority. Other data production methods included quantitative

Real-Time Polymerase Chain Reaction (qRT-PCR) and brain imaging methods, such as

Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) scans.

3.2.2 Preprocessing

The most used preprocessing methods include the Robust Multi-array Average (RMA),

RMA with GC background correction (GCRMA) and Microarray Analysis Suite 5.0

(MAS5.0). The uses of these methods varied, for example the RMA method was the

most occurring and was most used for background corrections [64, 65, 62, 70]. Among

other preprocessing phases, RMA was also used for the normalisation step [65, 68].

The GCRMA method is an alteration of the RMA method, its only difference is the

background correction approach and was used once for this step [67]. Normalisation

was the second step, in which this method was used [67, 69].

The MAS5.0 method was the only method used for the revision of PM-MM values,

which is to be expected, because none of the other two methods use MM probes for

their calculations [64, 62].

3.2.3 Analyses and methods

Analysing differential gene expression between healthy and diseased cells gives import-

ant information on how a disease has affected the cell, which genes are up-regulated,

which are down-regulated and which ones have no change in expression. Up-regulated
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gene produces more of its product than normal, which may lead to the accumulation of

those gene products. Down-regulation on the other hand means that there is less of the

gene’s product is produced.

Differential expression

A variety of methods were used in the assortment of the articles, however, there were

cases in which similar approaches were used. Machine learning was used in three art-

icles, however their approaches differed; the differences are further discussed below [71,

61, 72]. Also used by more than one article was the open source statistical program-

ming language and analytic tool, R and the related Bioconductor project. Bioconductor

is popular for the processing and analyses of biological data and there are numerous

packages available for different processing needs.

The use of Bioconductor framework spanned across multiple stages of the experiments,

corroborating the versatility of the project. From amongst the numerous packages of

Bioconductor, the most used in relation to the differential expression analyses were

limma and siggenes. The limma package is used for data analysis from microarrays

or RNA-Seq technologies, providing a variety of functions for reading, pre-processing,

exploring and analysing gene expression data [78]. The siggenes package makes use

of methods such as Significance Analysis of Microarrays (SAM) and Empirical Bayes

Analysis of Microarrays (EBAM) to identify differentially expressed genes [79].

Other methods used include two-class significance analysis of microarrays (SAM), t -

test, genome-wide relative significance (GWRS) together with genome-wide global sig-

nificance (GWGS) and the Coloured (α, β)-k Feature Set.

The significance analysis of microarrays (SAM) was used by Ray and colleagues in or-

der to process probe sets for differentially expressing genes [60]. The expression values
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from the entorhinal cortex, hippocampus, middle temporal gyrus and posterior cingulate

cortex were previously summarized by GC-RMA. This provided them with four sets of

differentially expressed genes (DEGs), one for each region of the brain they used.

The article by Feng et al. used the t test to identify significant differential expression

between diseased brain samples and normal samples [65]. The list of DEGs was re-

duced by limiting the fold change (FC) and p values of each gene, they obtained DEGs

with fold changes larger that 2 or less than 0.5 and with less than 0.05 for p value [65].

Using a relatively novel method, Zang et al. used the genome-wide relative significance

(GWRS) and genome-wide global significance (GWGS) to identify the robust gene sig-

natures, which were then used to retain a number of top ranked genes for further ana-

lyses [62]. GWRS measures the degree of differential expression on a genome-wide

scale using fold changes. Based on corresponding GWRS of a gene, GWGS was com-

puted - a value marking the global significance of a gene across multiple studies. These

genes were then ranked according to the degree of differential expression and 300 top

scoring genes were selected.

Puthiyedth and colleagues used gene expression data from six brain regions (entorhinal

cortex, hippocampus, middle temporal gyrus, posterior cingulate cortex, superior frontal

gyrus and visual cortex) in two sets of analyses [63]. First, they identified the probes

differentially expressed in each region separately using (α, β)-k Feature Set approach.

Second, they combined the data from each region, in which the specific probe values

from each of the regions were combined. The Coloured (α, β)-k Feature Set approach

was then applied on the combined data in order to acquire the probes differentially ex-

pressed in every region [63]. They compared this combined region result with other

commonly used methods, the RankProd and GeneMeta of Bioconductor.

The RankProd method uses the fold changes (FC) of genes for the ranking and com-
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parison within regions. GeneMeta uses the false discovery rate (FDR) of genes for the

production of a ranked gene list and is based on a meta-analysis method. Article written

by Yue et al. uses RankProd to integrate their chosen datasets and detect from these data

the DEGs [64]. Four different methods are then used on this integrated data to identify

differential co-expression and obtain the gene association scores. The four methods

used are the STRING database, Differentially Co-expressed Genes and Link (DCGL)

package of R, Empirical Bayesian (EB) analysis and Weighted Gene Co-expression

Network Analysis (WGCNA). These methods are further discussed below, as well as in

the case study section.

The three articles using machine learning techniques, used different approaches, further

introduced in this and the next paragraphs [71, 61, 72]. Martinez-Ballesteros et al. used

Quantitative Association Rules (QAR), the C4.5 algorithm and the GarNet algorithm

and presented the integration of these machine learning methods [71]. First, they used

the C4.5 algorithm to obtain a classification of healthy and diseased genes from the data-

set, which was then used to obtain the percentage of correctly classified instances. This

percentage was used as minimum threshold for the selection of GarNet configurations.

GarNet was then executed several times on a test set in order to obtain an accuracy value

higher than that of the C4.5. Next, they ran the GarNet on the original dataset to obtain

QAR providing information about the whole dataset and extracted the most frequent

gene-AD state associations [71].

Jamal et al., however have used a selection of eleven machine learning methods in order

to predict AD-connected genes from their gene pool [61]. They obtained 56 405 genes

from the Entrez Gene database, which provided them with a positive dataset containing

458 genes reported as possible AD causes and a negative dataset containing 55947 genes

not related to AD. Their machine learning methods include Naive Bayes (NB), NB
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Tree, Bayes Net, Decision table, Decision table/NB (DTNB) hybrid classifier, Random

Forest (RF), J48, Functional Tree, Locally Weighted Learning (J48 + k-nearest neigh-

bour (KNN)), Logistic Regression and Support Vector Machine (SVM). They computed

the features of networks, sequences and functions which were then used by the machine

learning algorithms in order to generate classifiers [61]. For the training of the clas-

sifier models, ten-fold cross-validation was used, and the results were averaged across

the generated models [61]. A gene was used in their following analyses, if it had been

predicted by all of the methods [61].

Song et al. used the NetWAS approach to prioritize the previously found GWAS results

[72]. The GWAS and NetWAS prioritised gene lists were compared with AD-associated

genes from the Online Mendelian Inheritance in Man (OMIM) database, and it was

found that NetWAS associations were in accordance with known annotations [72].

Integration of methods

Some of the articles used novel approaches by combining methods or algorithms and

some introduced newly composed methods for data analysis, differential gene analysis

or gene signature combining. Most of those are described below.

Based on a schematic network of AD, Hao and Friedman constructed a mathematical

model comprising of partial differential equations [74]. This model can be used to sim-

ulate the effect of different drugs on AD, drugs that have been used in clinical trials or

those that have failed them [74].

A novel approach was composed for the combination of gene signatures, using the mul-

tiplication of matrices [64]. Using four different approaches to find four sets of gene

pair signatures, and processing these into uniformity, matrices of those signatures were

formed. A new matrix, formed by the multiplication of those four matrices, comprised
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a new and combined score for each gene pair [64].

In order to better analyse gene co-expression networks, a novel method based on differ-

ential topology was composed [60]. They based this method on the idea, that genes with

differential topology between two region-specific co-expression networks would have

region- or condition-specific functions [60]. Since AD is a progressive disease, meaning

that two successive regions of the brain may not be in the same stage of the disease, this

novel method could provide new knowledge of the disease and its progression, and of

the earlier stage attributes [60].

Nevado-Holgado and Lovestone made use of fuzzy logic and the boolean operator

"AND" for combining gene signatures [73]. They derived gene expression signatures

from blood and brain, and of drug induced gene expression signatures. After the de-

rivations they determined the overlap between these signatures. This approach tests if

there are other ways besides suppressing inflammation with which Non-Steroidal Anti-

Inflammatory Drugs (NSAID) could affect the disease risk. However, they also mention

that this method does not take into account the direction of the dysregulations in gene

expression [73]. Their findings suggest that NSAIDs could have additional influences

than those of the known inflammation-suppression [73].

3.2.4 Additional analyses

Additional analyses such as differential co-expression, functional enrichment, pathway

enrichment and network analyses that have been conducted by the subset of articles are

further discussed below.

Differential co-expression analyses were conducted by Yue et al. on a set of acquired

DEGs [64]. They made use of the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING), Differentially Co-expressed Genes and Link (DCGL) package, Empirical
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Bayesian (EB) analysis and Weighted Gene Co-expression Network Analysis (WGCNA)

algorithm. The obtained scores were combined using the novel algorithm they proposed

(previously discussed) producing a new score for each gene pair. They used the gene

pair scores for the construction of five networks which then underwent a topological

analysis, the clustering coefficients and short average paths were obtained and com-

pared for the investigation of small-world network property [64].

The co-expression analysis used by Ray and W. Zhang was also used to introduce the

topological overlap measure [60]. They compared region-specific co-expression net-

works and used the topological overlap measure to select genes of interest. Wang et

al. used the WGCNA for the identification of gene modules with similar expression

patterns [68]. They constructed a topological overlap matrix and employed the average

linkage hierarchical clustering. The resulting tree was dynamically cut into highly con-

nected modules [68].

Using the mouse ISH data, Acquaah-Mensah and Taylor used the reverse engineering

of transcriptional regulatory networks, by the use of an ensemble of algorithms [70].

For the visualisation and analyses of the networks, they used Cytoscape and its pack-

ages. Yue et al. also used networks visualised and analysed with Cytoscape in their

study [64]. They produced five differential co-expression networks and conducted to-

pological analyses to find out which networks had the small-world property. Ingenuity

Pathway Analysis (IPA) network analysis was used for the retrieval of biological con-

nectivity information for significantly up- or down-regulated genes [66]. These connec-

tions were used for network generation, which were scored and ranked for comparison

[66]. Jamal et al. constructed a human PPI network based on the interaction informa-

tion collected from various databases with Cytoscape [61]. This network was used for

the extraction of network properties of potential AD genes with their chosen 11 machine
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learning algorithms [61]. The STRING database was used for the interaction analysis of

found DEGs [69]. Interaction was considered significant if it had been experimentally

validated and had a confidence score> 0.6. Based on these connections, a regulatory

network was constructed with Cytoscape [69]. In order to construct a network, Y. Zhao

et al. used the STRING database for the retrieval of significant genes, by selecting

genes with a confidence score> 0.6 and used the Cytoscape for the following network

construction [69]. For the detection of dense network regions, Zhang and colleagues

utilized the Cytoscape plugin ClusterONE and clusters with a node count > 11 and a

density score > 0.2 were selected [62].

Martinez-Ballesteros et al. conducted an enrichment analysis on the previously found

gene set to obtain the respective GO terms [71]. They further restricted this set of terms

and procured a set with significantly overrepresented terms. Y. Zhao and colleagues

used GO for measuring the functional similarity of genes and used an R package called

Ground-Operation Simulation (GOSim) for the calculations [69]. They chose p < 0.05

as the threshold in the identification of similar function location [69].

The popular Database for Annotation, Visualisation and Integrated Discovery (DAVID)

was used for pathway and functional enrichment analyses. By providing the identified

differentially expressed genes, or other genes of interest, DAVID returns the respective

KEGG pathways or GO terms. For example, DAVID was used for the retrieval of en-

riched KEGG pathways based on a set of genes [64, 73]. DAVID was also used for the

evaluation of biological and functional relevance of a set of co-expressed genes [67].

The pathways and functional terms were considered statistically significant when the

respective p value was either less than 0.05 or 0.01 [65, 62].

In addition to DAVID, GeneGo MetaCoreTM database was also used for the identific-

ation of significant biological pathways [80, 60]. MetaCoreTM platform offers for ex-
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ample information on interactions and pathways, gene-disease associations and several

tools for data visualisation and analysis [80].

3.2.5 Statistics

Statistical methods are used for correction, calculation of different scores and measures

(by which selection or discarding can be done), identification of differential expression

through differences in expression levels, determining the statistical significance, etc. All

of these methods, and more, are used throughout the articles. Subsequent descriptions

cover most of the methods used.

An essential measure to determine the importance of the results in regard to some claim

(null hypothesis) is the p-value. A cutoff value is chosen (e.g. 0.01) and is used for

either rejecting (p <= 0.01) or failing to reject (p > 0.01) the corresponding claim.

Another measure used is the fold change which is used to measure the change in values,

e.g. gene expression between normal and diseased samples. The values of up-regulated

genes fall between 1 and infinity and down-regulated gene value can be between 0 and

1. To remove this uneven distribution, the fold changes are log-transformed.

Bonferroni correction and false discovery rate (FDR) are the standard methods for the

adjustment and correction of multiple testing. These methods entail the selection of

probes based on a significance threshold, for example if the Bonferroni corrected p value

is above the threshold of 0.0001, the probe is discarded [63, 67]. This is similar for FDR,

e.g. if the FDR has a value smaller than that of the threshold, the probe is considered

significant [68, 62].

Pearson’s correlation coefficient was used for measuring the expression similarity between

genes in order for the genes to be consider co-expressed (additional conditions applied)

in the article by Ray and W. Zhang and to measure the coexpression significance of gene
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pairs in the article by Feng and colleagues [60, 65].

Other less used statistical methods include Benjamini and Hochberg statistical tests,

Fisher’s exact test, Mann-Whitney U-test, Student t-test.

3.2.6 Visualisation

The visualisation of data is important to improve the understanding of it. Most common

visualisations were networks, heatmaps and volcano plots, further introduced below.

The constructed networks usually displayed the differentially expressed genes and their

connections or the regulatory interactions between genes (regulatory network). Most

commonly the networks were built using the Cytoscape platform, but there were cases

in which Ingenuity Pathway Analysis (IPA) was used. Both provide extensive analyses

of the networks, such as cluster analysis, topological analysis or the calculation of dif-

ferent network properties.

For example Acquaah-Mensah and Taylor visualized the obtained regulatory networks

with Cytoscape and after analyses and examinations, identified a regulatory motif [Fig.14]

consisting of three regulators all connected [70]. Yue et al. also used Cytoscape for the

construction of their co-expression networks of which one was shown to exhibit small-

world network properties and another exhibiting scale-free characteristics [64].

Jamal et al. used Cytoscape for the construction of human PPI network [61]. The PPI

network of Zhang and colleagues was visualized by Cytoscape based on the STRING

interaction data [62]. Y. Zhao and colleagues used Cytoscape for the visualization of

miRNA regulatory networks [69]. The network visualization tool used by L.Zhao et al.

was IPA – the Ingenuity Pathway Analysis, providing them with a molecular network

[66]. IPA provides web-based analyses, integration and interpretation of data derived

from the Ingenuity Knowledge Base [81]. Feng et al. used the online IPA database for
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Figure 14. Part of Figure 2 from the paper by Acquaah-Mensah and Taylor [70]. The
figure shows the regulatory motif featuring genes predicted to be each other’s transcrip-
tional targets.

obtaining PPI and protein-biomolecule interaction information and constructed a PPI

network in which each edge was linked with at least 1 DEG and the chosen threshold

for the co-expressed gene pair significance correlation was chosen as absolute Pearson

Correlation Coefficient larger than 0.6 [65].

Heatmaps were the second most used visualisation techniques. They display the in-

tensity of the differential expression, typically using one colour (e.g.red) to show over-

expression and another colour(e.g. green) to show under-expression, with the interim

stages being a mixture of those intensities. The construction of heatmaps was mostly

conducted via the R environment. One important step in visualising the data as heatmap

is the data clustering.

Hierarchical clustering used Spearman, Pearson correlation or Eucleidean distance as

similarity/distance measures.

Martinez-Ballesteros et al. used hierarchical clustering as assessment of how well
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the genes, found by the machine learning algorithm they used, classified as control

or diseased based on their expression levels [71]. For the clustering of patients, they

used Spearman correlation, for genes they used Pearson’s correlation. In the article by

Forabosco et al., hierarchical clustering tree was used for module detection [67]. To

create this tree, they used the dissimilarity matrix, which was based on the topological

overlap measure. Using a dynamic tree-cutting algorithm, they defined a set of modules

based on branches of the clustering tree.

Wang et al. created a topological overlap matrix based on previously found adjacency

matrix and employed hierarchical clustering algorithm to cluster probesets based on the

topological overlap matrix [68]. Later, a tree-cutting algorithm was used and the hier-

archical clustering dendrogram was cut into highly connected modules.

Hierarchical clustering based on Eucleidean distance was used by Y. Zhao et al. in order

to determine the closest associations and cluster the found DEGs and miRNAs as well

as distinguish the diseased and control tissues according to the expression values [69].

The article by L. Zhao et al. mentioned hierarchical clustering, in which Pearson’s

correlation was used for the distance calculations between assays [66]. One of their

heatmaps can be seen on Figure 15.

The volcano plots were used for the visualisation of fold change values and p-values.

L. Zhao et al. used the volcano plot to display statistically significant genes with large

and small expression changes [66]. The x-axis displayed the values of fold changes and

y-axis those of the p-values as can be seen from Figure 15 [66]. Martinez-Ballesteros et

al. displayed the expression levels of the selected genes with a volcano plot [71]. They

used p < 0.05 as a cutoff and identified up-regulated genes by having FC > 1.5 and

FC < 0.66 for the representation of down-regulation [71].

42



Figure 15. Part of Figure 3 from the study by L. Zhao and colleagues [66].The heat
map displays hippocampal gene expression changes in female mice of different ages.
As can be seen, four mice have been chosen per age group. The red signifies high ex-
pression and green signifies low expression. The volcano plot on the left displays the
fold changes and p-values of the same age groups as the heatmap. The blue horisontal
line in the volcano plot, separates the significantly changed genes (p < 0.05) and in-
significantly changed genes (p > 0.05). The red dots represent up-regulated and green
dots down-regulated genes.

3.3 Summary of the outcomes and their promises

The novel genes that were reported in the articles (not considering supplementary data)

were summarised and have been presented as a Supplementary Table. With the use of

machine learning approaches and molecular analyses, Jamal et al. identified thirteen

genes with relation to AD and showed that an investigational AD-specific drug, AL-

108 inhibited the novel drug targets found in the study [61]. The study by Zhang et al.
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identified eight genes of which some have been proven to have relations to AD [62]. The

study also reported four significant KEGG pathways. The analyses of Puthiyedth and

colleagues provided a set of six genes and two miRNAs highly correlated to AD with

the potential of improving the disease’s knowledge [63]. Feng et al. reported a set of

seven up- and four down-regulated significant genes, significant pathways and GO terms

[65]. Y. Zhao and colleagues uncovered a set of target genes and their regulators, which

could be used as potential therapeutic targets [69]. For the identification of novel AD-

related genes, Ray and W. Zhang introduced a new network topology analysis method,

which was used to examine gene co-expression networks of different brain regions [60].

The method identified a brain region to be less severely affected, which has also been

confirmed in the literature [60].

The studies of L. Zhao et al. on the brains of mice from four age groups, provided

knowledge of the differences between the ageing of female and male brains [66]. They

also indicated that the brains of female mice, underwent changes related to ageing earlier

than male mice brains [66]. The investigation into TREM2 by Forabosco and colleagues

showed its mediating role of changing the microglial cytoskeleton, and connections with

genetically implicated AD genes [67]. By analysing nineteen brain regions, Wang et al.

identified novel networks and pathways shown to be in association with AD, as well as

provided new knowledge on molecular mechanisms related to the regional vulnerability

of AD [68].

Acquaah-Mensah and Taylor demonstrate the usefulness of in-situ hybridisation (ISH)

expression data and its capability to offer unique insights [70]. Furthermore, the three-

gene-hub they found [Fig.14] provides implication of diet-induced changes in gene ex-

pression [70]. By integrating three machine learning algorithms, Martinez-Ballesteros

et al. showed the successful characterisation of information by the obtained rules of
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the formed method [71]. They reported ninety genes of which some had previous con-

nections to AD [71]. Song and colleagues reported the first use of NetWAS on any

AD-related phenotype for the prioritization of the performed genome-wide association

study (GWAS) results [72]. They also identifyed the need of multiple-mapping chal-

lenge solutions by new gene-based association tests [72]. Yue et al. introduced a novel

approach based on the analysis of a combined co-expression network and reported the

new method to have better credibility and strength compared with other methods used

for the construction of networks [64]. The analyses of Nevado-Holgado and Love-

stone provided additional information suggesting that NSAIDs might have an effect

on gene expression pathways indirectly related to inflammation [73]. Their suggestion

could introduce novel approaches for the therapeutic studies in dementia [73]. Hao and

Friedman’s simulations with different drugs used in (current and failed) clinical trials,

indicated the efficacy of combined drug therapy [74].

3.4 Case study - Co-expression network-based analysis of hippo-

campal expression data associated with Alzheimer’s disease us-

ing a novel algorithm

Authors: Hong Yue, Bo Yang, Fang Yang, Xiao-Li Hu, Fan-Bin Kong

DOI: 10.3892/etm.2016.3131

Journal: Experimental and Therapeutic Medicine

Volume, pages: 11, 1707-1715
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The goal of the study. "to provide a novel tool for the analysis of gene interaction

with a higher credibility and rapid transmission of information, concentrating on the

scores of each gene pair across multiple approaches."

Datasets. Datasets were downloaded from ArrayExpress, of them together contained

54 patients and 30 normal controls. Details of the datasets are shown in Table 1.

Sample size
Accession number (cases/controls) Platform Featured brain regions

E-GEOD-1297 31(22+9) Affymetrix HG-U133A hippocampus
E-GEOD-28146 30(22+8) Affymetrix HG-U133 Plus 2.0 hippocampus

E-GEOD-5281 23(10+13) Affymetrix HG-U133 Plus 2.0 entorhinal cortex, hippocampus, medial
temporal gyrus, posterior cingulate, su-
perior frontal gyrus, primary visual cortex

Table 1. Modified from the paper. The details of used datasets.

Data preprocessing. The RMA method was used as background correction. MAS5.0

was used for the PM-MM value revision with median method. Gene expression level

values were transformed for comparability. For data screening, they used the feature

filter method from genefilter package of Bioconductor. Probes not matching any genes

were discarded.

Differential gene expression detection. They applied the RankProd algorithm for the

integration of array datasets and for the detection of differentially expressed genes. For

the significantly differentially expressed genes, the percentage of false-positive was cal-

culated and pfp < 0.01 was used as the cut-off value. This provided a list of 144

differentially expressed genes.

Four methods used for the constructions of differential co-expression networks.Their

study consisted of applying four separate methods (described below) for co-expression

analyses, provide a combined method and compare the results.

The first method, used was the use of STRING co-expression scoring. The scores for
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each protein pair were obtained and based on these scores, the STRING network was

constructed. This network consisted of 74 nodes and 166 edges.

Secondly, they used an R package called differentially co-expressed genes and links

(DCGL). This method identifies co-expression interactions with the use of its sub-

modules. These calculations used length-normalised Eucleidean distance for the meas-

ure of differential co-expression, Pearson correlation coefficient for the filtering of gene

pairs and a binomial probability model for the estimation of differential expression sig-

nificance. The network constructed had 16 nodes and 43 edges.

The third method was the Empirical Bayesian approach. The differentially co-expressed

genes were identified by the control of FDR at the 0.05 value. The obtained pairwise

correlations were visualised in the co-expression network. The network had 76 nodes

and 88 edges.

The fourth method was the WGCNA. The method was used to perform an analysis

on the correlation network, as well as the construction of the network. The network

included 107 nodes and 2 271 edges.

Combining the scores of the various methods. This was done with the novel al-

gorithm, which used the multiplication of the four matrices of respective methods to

produce a new matrix with the new combined score. This was followed by the construc-

tion of the fifth - combined co-expression network. The network consisted of 37 nodes

and 57 edges.

Network analyses. With the use of Cytoscape, a clustering coefficient, short average

path length and fitting coefficientR2 (a measure of degree distributions) were calculated

for each of the five networks, which are shown in Table 2.

After the comparison of the topological parameters, it was found that the network to
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Measure STRING DCGL EB WGCNA Combined

R2 0.786 0.037 0.477 0.071 0.810
Clustering coefficient 0.300 0.178 0.0 0.820 0.172
Mean shortest path length 2.925 1.783 2.038 1.578 3.618

Table 2. Table II. from the article. Topological parameters of co-expression networks
constructed using four existing approaches and the new algorithm [64].

Figure 16. Sections taken from the article. These show the WGCNA network (left) and
the combined network (right). The WGCNA shows small-world network properties and
the combined network exhibits scale-free network properties.

show the greatest small-world characteristics was WGCNA, and the network to show

the greatest characteristics of scale-free properties was the combined network.

Functional enrichment analysis. The differentially expressed genes identified with

RankProd were used for the pathway enrichment analysis with DAVID online tool.

From this list, the five top pathways (in decreasing order) in which the genes were en-

riched in, included proteasome, oxydative phosphorylation, Parkinson’s disease, Hunt-

ington’s disease and AD pathways. However the genes identified by the DCGL and EB

methods, had no enriched pathways.

Closing remarks. It was mentioned by Yue et al. that the methods used depend on
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the essence of the subsequent experiment. Therefore one has to choose carefully the

method to be used, because different co-expression network analysis methods provide

different results [64].

The novel combined method aimed for greater credibility and strength in gene interac-

tion analyses [64]. Furthermore, the respective network exhibited scale-free properties,

inherent to biological networks.

3.5 Trends and tendencies

The articles reported finding many novel genes related to AD. By my counting, out

of the 170 genes proposed, only 10 were reported more than once. This small over-

lap between the genes provides further evidence of the complexity of AD. The novel

methods described still need validation, as is stated by the authors. However, as the

amount of people affected by AD grows each day, there is a pressing need for additional

knowledge of the onset and progression of this disease.

More than 100 years of research into the causes and progression of this disease has

provided little knowledge of prevention or reversion of the disease symptoms. This

further corroborates the complexity of the disease

These 15 articles are but a small amount of those submitted yearly. The growing amount

of information can cause overlooking of good methods because of unclear or lacking

descriptions.
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4 Conclusion

This thesis provides an overview of different methods used for the research of Alzheimer’s

disease. These methods are provided in groups of the corresponding tasks they are used

for and the most popular methods are further discussed.

There are various approached which can be used for improving the knowledge of Alzheimer’s

disease, of which differential gene expression analyses are mostly introduced. These

analyses combine the use of microarray data, data processing algorithms and know-

ledge integration from databases with validated information. Furthermore, there are

numerous data visualisation methods which can be used for improving the comprehen-

sion of the findings. This thesis adresses the most used methods across a selection of

articles related to Alzheimer’s disease and bioinformatics methods.

During the analysis of the articles, some intricacies appeared. For example the complex

descriptions of conducted experiments or of composed novel algorithms. The proposed

novel methods, approaches or algorithms were mentioned to be in need of validation.

The reconstruction of the methods from another point of view by other scientists, could

bring out some discrepancies, not detected by the original authors. Therefore detailed

and unambiguous descriptions of novel approaches are very important.

It was also noticed, that the proposed novel genes, had very little overlap amongst them-

selves. Different methods and approaches could be factors contributing to this obser-

vation. However it also indicates the necessity for additional analyses of these novel

genes, which would benefit from unambiguous reports as well.

This thesis could provide an initial grasp on the studies, analyses and methods conduc-

ted with the purpose of understanding the mechanics of Alzheimer’s disease onset and

progression. As well as an overview of already conducted analyses and their results.
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