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Actor model in the IoT network edge for creating distributed applica-

tions using Akka 

Abstract: 

With the upcoming wave of devices coming in the next few years to the Internet of Things 

(IoT), new challenges will arise with respect to the vast amount of data generated by these 

devices and the processing of all these data in an efficient manner. Cloud-centric architec-

tures, that rely on the distant cloud for processing data, do not seem to fit the new require-

ments of this new dynamic Internet of Things, where multiple devices constantly need to 

interact with each other, handling real-time data processing. The edge computing model 

moves the computing from the cloud to the network edge, close to the source of data, reduc-

ing latency and bandwidth needs of the whole network among other benefits. Moreover, in 

this new model, edge devices play a central role, handling the incoming and outgoing of the 

data, and providing computation power to the network. Furthermore, there is the possibility 

to distribute the computation process among all edge devices. In this new decentralized 

model, a new paradigm is needed that can deal with this distributed scenario. The Actor 

model, which defines actors as its basic unit of computation, addresses the need of working 

in a distributed environment with requirements of concurrency, resiliency and scalability 

among others. Message passing is defined as the sole mechanism for interaction between 

actors in the model, allowing to perform concurrent and parallel computation without the 

need of locks or any thread-safe mechanisms. The Akka toolkit is an implementation of the 

Actor model which offers, through its platform, a series of modules and libraries than can 

be used to build concurrent and distributed applications. In this thesis, the Akka toolkit is 

used as an alternative for developing applications on the edge, applying the concept of the 

Actor model. Lightweight containerization through Docker is used to deploy the application 

on a distributed network of devices representing the edge devices. Finally, an IoT Akka 

system architecture is proposed along with its implementation, based on a Wireless Sensor 

Network IoT scenario, to demonstrate the feasibility of conceiving applications on the edge 

rather than using a cloud based approach. 
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Tegutsejate mudel Asjade Interneti hajusate rakenduste loomiseks 

servavõrgus Akka abil 

Lühikokkuvõte: 

Lähiaastatel oodatava Asjade Interneti seadmete hulga kasvuga kerkivad esile uued 

väljakutsed arvestades seadmete toodetud suuri andmemahtusid ja andmete efektiivse 

töötlemise vajadust. Pilve-põhised arhitektuurid, mis toetuvad kaugel asuvaile pilveserver-

itele andmete töötluseks, ei täida uue, dünaamilise Asjade Interneti vajadusi, kus mitmed 

seadmed peavad pidevalt üksteisega suhtlema ja reaalajaandmetöötlust teostama. Servaar-

vutuse mudel liigutab arvutused pilvest võrgu serva, andmeallikate lähedale, vähendades nii 

latentsust ja läbilaskevõime vajadusi võrgu jaoks tervikuna. 

Lisaks mängivad selles uues mudelis keskset rolli servaseadmed, hallates andmevoogude 

sisenemist ja väljumist ning varustades võrku arvutusliku võimekusega. Sealjuures on ole-

mas võimalus jaotada arvutuslikku protsessi serva seadmete vahel laiali. 

Selles detsentraliseeritud mudelis on vajadus uue paradigma järele, mis taoliste hajus-

stsenaariumitega toime tuleks. Tegutsejate mudel (inglise k. actor model), mille arvutus-

likeks baasüksusteks on tegutsejad, vastab hajuskeskkonna vajadustele arvestades teiste seas 

konkurentsuse, veataluvuse ja skaleruuvuse nõuetega. 

Ainsaks suhtlusmehhanismiks tegutsejate vahel selles mudelis on sõnumite edastus, võimal-

dades konkurrentset ja paralleelset arvutamist ilma lukustus- või lõimeturvalisusme-

hhanismideta.  

Akka tööriistakomplekt on tegutsejate mudeli implementsioon, mille platvorm pakub 

mooduleid ja teeke konkurrentsete ja hajusate rakenduste ehitamiseks. Käesolevas lõputöös 

kasutatakse Akka riistakomplekti rakendute arendamiseks servale, kasutades tegutsejate 

mudeli põhimõtet. Kergeid konteinertehnoloogiad Dockeri näol kasutatakse rakenduse 

juurutamiseks seadmete hajusvõrku, mis esindab servaseadmeid. Viimaks esitletakse As-

jade Interneti süsteemi arhitektuuri koos implementatsiooniga, põhinedes juhtmevaba sen-

sorvõrgu stsenaariumil, et demonstreerida rakenduste loomise teostatavust servas pilve-

põhise lahenduse asemel.  

Võtmesõnad: 

Asjade Internet, Akka, Tegutsejate mudel, Servaarvutus, Docker 

CERCS: P170:Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimiste-

ooria) 
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1 Introduction 

Throughout history advances in technology have changed the way people solve problems 

and think about the future. Since the invention of the computer on the 1800’s, many other 

new developments have surged based on the concept of having computing devices pro-

cessing data. There is hardly any other invention in the last century that has had such a 

significant impact on human lives, as the invention of the Internet as global communication 

network. 

The invention of the Internet has drastically changed the way people and machines interact 

with each other, enabling instant access to real-time information and services from different 

parts of the world. In the last few years, Internet has become almost a necessity, as multiple 

services are only available through Internet. Furthermore, most devices such as computers, 

smartphones, sensors, etc. make use of the Internet for sharing data, performing computa-

tions or providing other types of functionalities. This connectivity of devices with the Inter-

net has led to the creation of new concepts such as the Internet of Things (IoT) which has 

gained popularity in recent years. 

Along this line is also the concept of cloud computing, which has become an omnipresent 

concept when it comes to Internet services. Multiple applications rely on the computing 

power and other resources provided by the cloud for their correct operation. Devices such 

as sensors and wearables make use of cloud services to process the data they generate. This 

fact puts on evidence the necessity of new ways to handle the amount of data originating 

from these devices. Challenges do not only involve elements such as data storage or com-

puting power, but also demand software solutions that can manage and process this large 

amount of information. 

While many possible solutions have been proposed and implemented to deal with this sce-

nario, most of them rely on the cloud as a service provider. Fair enough, there are multiple 

cloud providers such as Amazon Web Services and Microsoft Azure, that offer various so-

lutions for different problems. However, within the next few years, a new incoming wave 

of devices that will generate vast amount of data, will increase the necessity of different 

resources and will demand different types of solutions, addressing issues related to availa-

bility, security and latency among others. 

Edge computing is set to be one of the main focus of research in the upcoming years as it 

specifically deals with the aforementioned problems [1]. The amount of data generated from 

multiple devices will require a change of approach, not only in terms of network connectiv-

ity, but also in terms of software solutions. 

One of these approaches is the Actor model. The Actor model was developed by Carl Hewitt 

in the 1973, and since then, it has been evolving from a mathematical model to a more 

practical solution that fits the requirements of concurrency and distribution of computation 

tasks in a distributed environment. A clear example of a practical implementation of the 

Actor model is the Akka toolkit, which encompasses a set of modules and libraries that use 

the Actor model as its core element to provide a comprehensive set of tools for creating 

applications in a distributed environment, favoring concurrency and resiliency among other 

features. 

The Actor model, from an application model perspective, does not limit itself to a specific 

domain or architecture. It can be used to model almost any kind of application, on any do-

main, and it can be used in different types of scenarios, whether that is on the cloud, edge 

or other types of environments. The Actor model presents a solution that can make efficient 

use of the available resources within a network and distribute the processing tasks among 
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all the nodes that conform it, providing a robust framework which can be used to build 

different types of applications in a distributed environment. 

1.1 Problem statement 

Internet of Things (IoT) devices used on the edge are usually resource constrained devices, 

at least compared with cloud devices. This implies that efficient use of its resources is not 

an option but a central problem that needs to be addressed. Systems to be developed on the 

edge must be able to respond to different challenges. Among these challenges, the most 

important are: 

Concurrency: The fact that the edge deals with resource constrained devices, makes it al-

most inevitable to think about the concept of concurrency in an effort to use all the available 

computing power of all edge devices, distributing the computation tasks. 

Resiliency: It is imperative to deal with the problem of connectivity. Especially with re-

source constrained devices, which can run out of power or suffer other types of problems, 

which can affect the system functionality and/or availability. In this sense, the system needs 

to be reactive and self-managed, in order to deal with these type of situations. 

Scalability: Given the amount of devices working at the edge layer and its characteristics, 

especially in terms of connectivity and power consumption, systems on the edge layer must 

be flexible enough to allow new devices to join the network or to leave it, without requiring 

major efforts in configuration or modifications to adapt to new environments. 

Performance: Appropriate use of resources is mandatory. Memory and computing power 

with fast and reliable response are one of the main challenges on the edge layer. 

1.2 Scope and Goal 

The main focus of this thesis is to study the applicability of the Actor model in the network 

edge to build distributed applications. In order to achieve this goal, different applications 

are developed using the Akka toolkit, with Java as the programming language. Another goal 

of the thesis is to identify and analyze ways to deploy these services on the edge, for which 

Docker, and more specifically Docker Swarm is used. The specific research goals are: 

Feasibility of the Actor model on the edge: Analyze how to apply the Actor model on the 

network edge. 

Suitability for applications: In terms of developing applications for the edge using the 

Actor model with the Akka toolkit. 

Deployment of the Application Stack: Analyze mechanisms to deploy the Application 

Stack to the different nodes on the edge. 

Fault-tolerance of the system: Once deployed, how the system can heal and manage itself 

in different scenarios. 

1.3 Related work and thesis proposal 

Several works have been dealing with the computation at the network edge, developing 

frameworks and platforms that can be applied on different domains. Feng et al. [12] pro-

posed a framework for edge computing on the road for vehicles, using efficiently all the 

available resources on the edge. Liyanage et al. [13] developed a framework for mobile 

devices to provide a computation service platform. Chang et al. [14] propose the idea of the 

Indie Fog infrastructure, in which user’s edge devices, such as routers, are used for provid-

ing a computational service platform on the network edge. Long et al. [15] proposed an edge 
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computing framework for video data processing, based on the availability of mobile devices 

and their computation power. 

Fürst et al. [16] proposed an actor based execution framework for distributed IoT applica-

tions, called Nandu. This framework is also based on the Actor model, however, instead of 

exposing to developers with a distributed application model using the Actor model, it pro-

vides an execution environment that can be used to implement sequential application logic, 

abstracting the underlying execution mechanism that works using actors and adapting them 

throughout the lifetime of the application. 

Most of the related work have dealt with the computation at the edge using the typical edge 

model of distributed devices with no further importance to the model and the relationships 

behind the connectivity of the nodes in the network. The work of Fürst et al. [16], instead 

of using the Actor model as an application model, envisions to abstract its logic from the 

development process. Contrary to all these approaches, in this thesis, the focus is on the 

architectural model and patterns that can be used to conceive applications on the network 

edge, embracing the distributed nature of the environment. More specifically, using the Ac-

tor model as an application model to build different types of edge applications. The Akka 

toolkit is used as a main tool for providing a robust edge architecture, that can be used to 

conceive applications on the network edge, making use of all the available power of the 

different nodes that compose the network. 

1.4 Thesis outline 

This thesis is structured in the following manner: First, on chapter 2 the basic concepts of 

the Actor model and Akka are introduced in order to have a clear understanding of the con-

cepts discussed throughout the thesis. Next, on chapter 3, two implementations developed 

using the Akka toolkit are presented and discussed, along with detailed descriptions of the 

structure of the applications and its components. On chapter 4, an edge architecture is pro-

posed along with its implementation applied on a real IoT scenario, in order to demonstrate 

how applications can be conceived using the Actor model and the Akka toolkit. On chapter 

5, the main application developed on chapter 4, is put on evaluation with respect to the 

research goals of the thesis. Finally, on chapter 5, a series of conclusions are drawn based 

on all the work carried out throughout the thesis, analyzing the most important aspects and 

considerations to be made when working with the Actor model, using the Akka toolkit, to 

create edge applications. 
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2 Background 

2.1 IoT – Internet of Things 

The Internet of Things represents an interconnected network of different elements such as 

mobile phones, sensors, vehicles, home appliances, wearables etc. The heterogeneity of 

these elements is represented by the word “things”, as nowadays almost anything can be 

connected through the internet.  

The availability of the internet in a global scale has allowed manufacturers to develop prod-

ucts that can rely on the internet to share and process data. This has brought along the de-

velopment of software applications that can leverage these devices through the use of inter-

net, enabling communication between these devices and other components, and making it 

possible to process data on a large scale. These devices are present in almost any field of the 

human activity. An example of this are all the new smart home appliances that can be re-

motely controlled through internet. Another example is the car industry, where new car 

models are fully automated and operate sending and receiving real-time information through 

sensors and using the internet to share and gather data in order to make decisions. 

 

 
 

 

Figure 1. IoT Architecture 
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2.2 Edge computing 

The idea of edge computing consists of giving more decision capabilities and independence 

to the network edge.  The network edge is the closest to the devices that are the source of 

the data to be processed. Placing computing power and other resources on the proximity of 

these devices can help dealing with different problems inherent of internet communication, 

such as latency and bandwidth [1].  

 

 

Figure 2. Edge computing characteristics 

There are many classifications for the edge devices, and this could vary depending on many 

aspects such as the deployment architecture [2] [3]. The concept of what encompasses the 

edge is also blurry, with different authors extending the term to include different elements. 

Taking this into account, it is possible to say that the edge comprehends a wide range of 

elements, from small and resource-constrained devices, such as sensors and wearables, up 

to more heterogeneous and complex elements, such as resource-rich servers and edge data 

centers. 

The benefits of using edge computing can be summarized in the following aspects: 

 Low latency communication: As the source of data is close to the processing center, 

there is less time between sending and receiving packets of information. 

 Reduce bandwidth of the network: As more data is handled locally, the amount of 

data that travels back and forth with the distant cloud is reduced, alleviating the sat-

uration of the whole network. 

 Location awareness: A device on the edge can be aware of the surrounding context 

where it is deployed. 

 Geographical distribution: Devices on the edge can be distributed on a large area, 

providing uninterrupted connection, critical aspect in some application’s context. 

 Security: With most of the data processed locally, there is no need to send important 

private information to the cloud, meaning less opportunities for attackers to obtain 

information by intercepting communications or taking advantage of cloud data 

breaches. 

Despites these benefits, there are numerous challenges to face on the edge. Lots of these 

challenges are related with the inherent characteristics of the edge, such as limited compu-

tation power or the heterogeneity of the devices.  
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As suggested by different authors such as Weisong [4], among these challenges there is one 

in particular that is of interested of this thesis, the programmability of edge applications. In 

this sense, applications on the edge must be in accordance with the nature of the edge, that 

is to say, applications must be designed so that they can be partitioned or distributed over 

the network. This seems like a perfect fit for the Actor model which is discussed in the next 

section. 

2.3 Actor model 

The Actor model was developed by Carl Hewitt [5] in 1973. This is a mathematical model 

that was inspired by physics laws rather than mathematics. The model was conceived as a 

universal paradigm for concurrent computation, hence, it is in nature a concurrent model of 

computation, which means that is suitable for creating highly concurrent and parallelizable 

systems in a distributed environment. 

At a higher level, the model is simple. The basic unit of computation is an Actor. An Actor 

is an entity that can communicate with other actors through messages, and this is the only 

mean of communication. An actor can also create other actors establishing a hierarchy of 

actors within a system. An actor embodies the following three things: 

1. Information processing (computation through its behavior) 

2. Storage (state)  

3. Communication (through message passing) 

An actor has state and behavior, much like an Object on the Object Oriented Paradigm. 

However, in the Actor model there are some restrictions that bring some guarantees at the 

time of carrying out computations. The state is own completely by the actor and it is not 

sharable or accessible to other actors on the system. This means that there is no necessity 

for locks or other types of synchronization mechanisms on a multithreaded environment.  

The actor can change its state in response to a message or can perform some computation 

depending on the message. The computation is the behavior of the actor. An actor can also 

send messages, which will be directed towards another actor or the actor itself, thus, allow-

ing recursion. This receiving actor, will proceed to take a specific action, as previously men-

tioned. The set of actors that take part on this communication, will construct an actor system. 

Messages are one of the key concepts of this model. It is the only way to communicate 

between actors. In concrete, an actor can do one of the following things in response to a 

message [5]: 

 Send a finite number of messages to other actors 

 Create a finite number of new actors 

 Designate the behavior to be used for the next message it receives 

One of the main achievements of this model is the decoupling of the actor from the process 

of sending messages, which can be done asynchronously. An actor can only communicate 

with other connected actors. Connections can be done through: 

 direct physical attachment   

 memory or disk addresses   

 network addresses   

 email addresses  

Depending on the type of connection, addresses will vary, it could be MAC address in case 

of physical connection or a simple memory address. Messages are delivered on best efforts 

basis. Once an actor has sent a message, it is responsibility of the receiver to handle it, this 
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is the key element that allows decoupling a message from the sender actor. This type of 

communication is also referred as fire and forget. 

The Actor model is an abstract concept based on some axioms that define the behavior and 

structure of the model. There are several properties and mechanisms working behind scenes. 

Implementations of the model should obey these rules and may use other concepts on top of 

it, to expose the behavior of the model in a practical way. 

2.4 The Akka toolkit 

Akka is a toolkit based on the idea of creating distributed systems using the Actor model. 

Akka was developed for Scala and Java, making use of the Java Virtual Machine (JVM). It 

is also possible to find other implementations of the Actor model for other programming 

languages, such as Akka.NET, for the .NET platform, using C# and F#.  

It is also important to notice the amount of information and projects available using Akka 

in regards to the language. Most of these implementations use Scala, while very few are 

implemented in other programming languages. This can be explained because of the origin 

of the creators of Akka, who are also involved in the development of Scala, but also because 

of the facilities that Scala provides. For instance, code for implementing Akka in Scala is 

very short and succinct in comparison with Java code, which can be quite long and bloated. 

Akka defines itself as a toolkit, which provides different sets of modules and libraries for 

exposing different types of functionalities of the Actor model, such as remoting, clustering, 

persistence, etc. The Akka documentation is extensive diving deep into some concepts. Most 

of the implementation details come from research papers and industry experience. The com-

pany that is behind the development of Akka, Lightbend, is a commercial company offering 

enterprise software solutions for distributed systems and cloud environments. This company 

is also behind the development of multiple frameworks and platforms such as the Play 

framework and the Scala programming language. Most of the examples and tools provided 

are oriented towards Scala with less support for Java and other languages. 

In order to start building applications with Akka, it is important to have a clear understand-

ing of the basic concepts. In this case, the core concept is the concept of an Actor and how 

it is implemented in Akka. On top of this basic concept other more elaborated concepts are 

built, such as Clustering and Sharding. 

2.4.1 Actor 

Akka defines an actor as a container for state, behavior and a mailbox along with its child 

actors and supervision strategy. All of these elements working together conform an actor in 

Akka. In the context of an actor system, actors need to know where to reach each other. For 

this, Akka uses actor references, which is an object than can be passed around as a sort of 

contact information, that can be used to communicate with a specific actor. This actor ref-

erence serves as the only way of communication with an actor, leaving the internal compo-

nents of an actor isolated from other actors, which serves to preserve its internal state from 

any kind of modification from the outside, which in turns allows for parallelism of opera-

tions. 

The actor’s state can be defined using a Finite State Machine mechanism, which Akka pro-

vides as a library, or it can be defined by user requirements as any other object. Akka guar-

antees the thread safety of passing messages, thus, the actor can process each message with-

out the necessity of using locks or any other type of thread synchronization. 
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Akka provides an infrastructure in which the actors can live, that is to say, Akka creates the 

actor system environment so that the user can deal directly with application details instead 

of dealing with the actor system internal details. This environment consists of a hierarchy 

of actors, with parent-child relationships. Figure 3 illustrates the Akka hierarchy of an actor 

system.  

 

 

Figure 3. Actor system hierarchy 

The root guardian “/” is a pseudo-actor because every actor has to have a parent actor that 

creates it, as shown in the hierarchy, but because this actor is the main root, it doesn’t have 

a parent, so it cannot be a “complete” actor. This root guardian serves a parent of all other 

actors in an actor system. 

The user guardian “/user” is the parent of all user created actors. When creating an actor, 

they are not created directly under the root guardian, but instead they have their own branch 

under the user guardian, this serves to distinguish these actors from the other Akka private 

actors. 

The system guardian “/system” is the parent of all Akka private actors that are used to run 

and maintain the system functionalities. These actors are not directly accessible to user ac-

tors and it is not possible to create user actors under this branch. 

The three previously mentioned actors are created by default when Akka starts an actor 

system. It is also important to mention how user created actors are supervised. The actor 

system hierarchy defines a special relationship between actors. Every actor, at least user 

created actors, have a parent actor, and possibly multiple child actors. In the case of failures, 

Akka defines different options to respond to a failure: 

1. Resume the subordinate, keeping its accumulated internal state 

2. Restart the subordinate, clearing out its accumulated internal state 

3. Stop the subordinate permanently 

4. Escalate the failure, thereby failing itself 

In this sense, Akka defines a supervision hierarchy which responds to the four above men-

tioned possible scenarios. This aspect is also related with an actor lifecycle. 
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2.4.2 Actor lifecycle 

Actors have a lifecycle that begins when an actor is created on a specific context or by the 

actor system. Actors are created from “prototypes” that are defined by the user. These pro-

totypes are classes that extend one of the predefined classes of Akka to create actors, such 

as AbstractActor or AbstractPersistentActor. 

The created actor is also called incarnation, which has a unique identifier or UID. This iden-

tifier will be maintained by the incarnation even after it restarts. However, if an actor is 

stopped, and then created again, then it will be given a new unique identifier. Apart from 

the identifier, a unique path for an actor is assigned so it can be reachable from other actors. 

Once the incarnation has been created, a method hook is called on the created actor, in this 

case the preStart hook is called. This hook can be used to initialize the actor using database 

connection or other types of initialization tasks. 

The postStop hook is called when an actor has received the order to be stopped. This hook 

can be used to free up resources and close respective connections. 

In case of restarting there are two additional hooks. The preRestart hook which terminates 

all child actors of an actor before restarting. Once all children are stopped, a new instance 

is created and the postRestart hook is called on this new instance. The postRestart hook, by 

default, calls the preStart hook on the new instance so that it can be correctly initialized. 

The whole process is illustrated in figure 4.  

 

 

Figure 4. Actor lifecycle 
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2.4.3 Messages 

Actors can communicate with each other through messages. To send a message from within 

an actor it is necessary to have an Actor reference or an actorSelection object, which repre-

sents the address of the recipient of the message.  

There are two possible ways of using messages: 

1. Using the “tell” method, which will send a message asynchronously and return im-

mediately. 

2. Using the “ask” method, which deals with “futures” and handlers or callbacks when 

sending messages. 

Using the “tell” function is the most common way to use for simple messages, but when 

dealing with more complex scenarios it is better to use the “ask” method, which allows to 

aggregate different futures, meaning different messages, and combine the results so than it 

can be piped to another actor. 

It is also possible to forward messages with the “forward” method which is useful when 

using proxy actors that act as routers or replicators. 

In order to receive a message, every actor must override the method createReceive that re-

turns a Receive object. Akka provides a useful receive builder that helps to define the be-

havior of the receiving actor. This Receive object represents the behavior of the actor when 

receiving messages. It matches the types of messages it can receive and defines a handler 

per each type as follows: 

 

It is necessary to always match the type of message otherwise this could generate a failure. 

Replying to messages is done in the same way as sending. To get the actor reference of the 

sender Akka provides the method getSender. 

Actors receive messages on a mailbox. Every actor has a mailbox. Actors obtain messages 

from the mailbox one by one. This allows for the actor to perform in a single-thread manner 

with respect to message processing. The order of message arrival from one actor to another 

is guaranteed by Akka. That is to say that if messages: m1, m2 and m3 are send, in that 

particular order, from actor1 to actor2, then actor2 will receive in its mailbox m1, m2, m3, 

preserving the order. Then actor2 will start processing the messages in a FIFO order. Also 

important to mention is the fact that Akka by default offers “at most one delivery”. This 

means that a message is sent once, but no guarantees that it will be received. If this is needed, 

it can be configured to do so at expense of performance.  

@Override 

  public Receive createReceive() { 

    return receiveBuilder() 

        .match(Msg1.class, this::receiveMsg1) 

        .match(Msg2.class, this::receiveMsg2) 

        .match(Msg3.class, this::receiveMsg3) 

        .build(); 

  } 
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The above mentioned concepts are the basic ones that enable the whole Actor model on 

Akka. More detailed descriptions on the implementation of the Actor model and other con-

cepts concerning it, are defined in the official documentation [6] that is quite extensive and 

involves different aspects to consider when implementing an actor system, such as fault 

tolerance aspects or changing the behavior of actors in order to respond in different ways at 

different stages of an application. 

2.4.4 Persistence 

It is common to deal with stateful actors that maintain and change its state through its lifecy-

cle. For this reason, Akka provides the concept of persistent actors. This is another library 

extension that comes with some default plugins, such as memory-based journals and local 

snapshot-store. In order to make use of this persistent capabilities, the stateful actor should 

extend the AbstractPersistentActor abstract class or the more specialized abstract class Ab-

stractPersistentActorAtLeastOnceDelivery, which offers some guarantees when delivering 

messages. 

2.4.5 Event sourcing 

Akka uses event sourcing to deal with persistence. In this scenario, a persistent actor re-

ceives commands, through messages, these commands are then validated, and once they are 

marked as valid, they generate events that represent the effect of the command. These events 

are persisted in a journal preserving its order of occurrence. A journal is the place where 

events are stored and become the source of events when a stateful actor is recovered. The 

fact that only events are stored, and not commands, guarantees that an actor recovers to a 

valid state, as only valid commands that later generated events are stored in the journal.  

Another option to handle persistence is through snapshots. This concept can be useful in 

systems that have long life or handle a numerous amount of operations. For example, a 

ticketing system, that can provide different operations such as reservations, cancellations, 

modifications, etc., where each of those operations can be performed per ticket. In case of 

recovering this type of system, it would require a lot of time to replay all the events that 

occurred since the beginning of its existence. With snapshots, it is possible to persist the 

state of an actor at a certain point in time and to bring it all back when recovering, in a single 

operation instead of going through all the events one by one. 

2.4.6 Routing 

In Akka, routing is used as a mean for passing messages efficiently between actors. The idea 

is to have an actor that serves as a router. This actor is in charge of routing received messages 

to other actors called routees, using a specific routing logic. Akka includes a set of routing 

logic strategies for routing messages, such as RoundRobinRoutingLogic or SmallestMail-

boxRoutingLogic, each with different characteristics for different possible scenarios, mak-

ing routing flexible to fit different types of applications. Figure 5 illustrates the routing 

mechanism in Akka. 

There are two main ways to define router actors: 

1. Having a normal actor, and creating a Router object inside the actor. Also creating 

the routees as normal children actors and then adding them as routees to the router 

object. 

2. Creating a self-contained router actor, with the help of some configuration so that it 

can handle itself the routees and all routing details. 
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Figure 5. Routing in Akka 

The first case is straight forward. Basically, it is necessary to specify in the code all the 

characteristics of the router and how it will handle the routees. The second case is more 

interesting as the actor itself acts as a router. The router capabilities, restrictions or limita-

tions are defined in the configuration file. Akka uses two configuration files: applica-

tion.conf and reference.conf (at the end both are merged into one configuration file). Differ-

ent configurations can be set for routing actors, such as the routing logic, number of routees, 

local or remote routees, etc. 

Routing actors are divided into two types: Pool and Group. 

A Pool router actor have the characteristic that it creates the routees itself, and have full 

control and supervision of the routees. Whereas a Group router actor does not create the 

routees, and relies on them being created externally and being passed to it for their use. 

The way to pass messages to routers is the same as with normal actors, at the end, either 

being a router itself or not, a router still works in an actor environment. The handling of the 

message, however, is somehow different. When a message is sent to a router, the router 

receives the message and forwards it to one of the routees, except in the case of a broadcast 

message, in which case all routees will receive the same message. The original sender of the 

message is preserved, meaning that when a routee sends a message with the “getSender” 

method, it will send the response back to the original sender not the router actor, even though 

it received the message from the router actor. 

2.4.7 Clustering 

The main idea behind Akka is to work in a distributed environment where all communica-

tion is handled asynchronously. From its conception, Akka was thought as a distributed tool 

taking into account the nature of distributed systems and how they differ from non-distrib-

uted systems [7]. 

In this context, one of the core concepts within Akka is the concept of Clusters. Actors live 

within systems and these systems can be distributed within a network. A Cluster is a group 

of nodes where each node represents an actor system running in a Java Virtual Machine 

(JVM). This is not a restriction, as it is possible to have multiple actor systems under the 

same JVM, but the most common practice is to use one single actor system per JVM, as 

shown in figure 6. This does not only serve to preserve the idea of nodes as single actor 

systems, in which one node is one actor system, but also helps to maintain independence 

between actor systems.  
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Figure 6. Actor System in a JVM 

The cluster works as a peer-to-peer network, in which all nodes are peers, with no concept 

of master node (although the master-slave pattern can be implemented within the cluster). 

This helps to eliminate the single point of failure problem, or single point of bottleneck.  

Akka relieves the pain of dealing with the problem of local or remote communication as it 

enforces distributed mechanism from its roots using location transparency. This is reflected 

in the way the actors communicate with each other. In this aspect, there is no difference, in 

terms of code, between a communication with a local actor or a remote actor. Actors are 

unaware if the communication is local or remote, they just send a message, using an actor 

reference of the receiver, and the rest is handled by the system. 

Terms 

The following are the main terms used when dealing with clustering: 

Node 

A logical member of a cluster. There could be multiple nodes on a physical machine. De-

fined by a hostname:port:uid tuple. 

Seed nodes 

Nodes that are used as entrypoints for new nodes to join the cluster. 

Cluster 

A set of nodes joined together through the membership service. 

Leader 

A single node in the cluster that acts as the leader. Managing cluster convergence and mem-

bership state transitions. 

2.4.8 Membership 

Clusters make use of a Gossip Protocol to allow new nodes to join a cluster. This type of 

membership is inspired by Amazon’s Dynamo system [8] and Riak database [9]. This pro-

tocol makes use of communication between the members of a cluster in the form of a “gos-

sip” between each other until all of them converge into a state where all of the member 

nodes are aware of the “gossip”. 
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2.4.9 Membership lifecycle 

The cluster membership lifecycle can be represented with the states of the nodes, as shown 

in figure 7, where “fd” stands for failure detection. There are 6 possible states. At the start, 

when a node wants to join the cluster it is in the “joining” state. At this stage, the leader has 

to make sure that the gossip of the new node entering the cluster has converged. Once this 

happens, the state of the node changes to “up”.  

 

 

Figure 7. States of a node in an Akka Cluster 

When a node leaves it is in the “leaving” state, and then once the gossip has converged with 

the leaving of the node, the leader node puts it to the “exiting” state and finally to the “re-

moved” state. Regarding the “down” state, it is possible to reach this state from all the other 

states, except for the “removed” state, as the removed node is no longer taking into account 

as part of the cluster. In order to set a node down, the node first has to be in a quasi-state 

called “unreachable” which acts as a flag indicating that it is not possible to establish com-

munication with the node. 

2.4.10 Seed nodes 

Seed nodes are defined as the entry points for a node to join the cluster. These nodes take a 

special role within the cluster, as they are the ones in charge of building up the cluster. The 

definition of which nodes are seed nodes is done in the configuration file, in the form of a 

list of remote addresses. The creation of the cluster is as follows: At the beginning of the 

cluster, when there are no members, and in fact, there is no cluster yet, the first seed node 

on the list is the one that has the responsibility of creating the cluster. Obviously it has to be 

up in order to start the cluster. Later other seed nodes and normal nodes can join the cluster 

by contacting any seed node that is reachable. Only the first seed node is capable of starting 

the cluster. This is done in order to avoid other seed nodes creating new clusters in the case 

of a network partition. Once the first seed node on the list is up, and other seed nodes have 

joined the cluster, any node trying to join the cluster can do it by contacting any seed node, 

not only the first on the list, as the cluster is already started. 

2.4.11 Cluster singleton 

This a pattern that is used on clusters when there is the necessity for a Singleton Actor across 

the cluster. Akka offers the possibility to create a singleton actor, but it also warns of some 

shortcomings of doing so, such as: Single point of failure, bottleneck, relying into its exist-

ence at all times and multiple singletons created in case a network partition occurs. 
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Nevertheless, the documentation also provides some guidance on how to circumvent these 

problems. Furthermore, there could be some useful cases in which singletons are needed, 

such as having one master node for centralizing some functionalities. Akka itself uses this 

concept when dealing with Cluster Sharding,  

2.4.12 Remoting 

Remoting is the communication module that works underneath a cluster. This module is 

what makes it possible to have a peer-to-peer communication between actor systems. Akka 

defines remoting based on the idea of symmetric communications, in the sense that both 

ends of the communication can accept and initiate connections. 

This module is now an essential part of Akka, and is no longer intended to use as a 

standalone module. Most of the concepts and configurations are already present in the clus-

ter module and it is recommended to use the cluster configuration instead of just remoting 

[10]. 

Akka offers two ways of remote interaction: Lookup and Creation. 

Lookup deals with finding remote actors. In order to do so, Akka uses the concept of Ac-

torSelection, which works like an actor reference. To obtain the ActorSelection it is neces-

sary to specify the location of the actor in the following format: 

 

akka.<protocol>://<actor system name>@<hostname>:<port>/<actor path> 

 

And can be used in the following manner to obtain the ActorSelection: 

 

ActorSelection selection = context.actorSelection("akka.tcp://app@10.0.0.1:2552/user/ser-

viceA/worker"); 

 

With the selection, it is possible to send messages to the remote actor in the same way as 

with an Actor reference. It is also possible to obtain directly an actor reference from the 

actor selection. It requires an exchange of messages with the identity of the remote actor. 

The second type of remote interaction, Creation, refers to the case possibility of an actor 

system to remotely deploy actors on other (remote) system. The location of the nodes to 

deploy can be configured in code or within the configuration file. The remote creation of 

actors allows for a distributed approach when dealing with actor systems and routing, ena-

bling load balancing and other benefits that are also used when sharding a cluster. 

2.4.13 Sharding 

The next big concept in Akka is Sharding. Sharding goes hand in hand with Clustering and 

it seems like a natural progression of the concept of Clustering. Sharding consist in distrib-

uting actors of a specific type across different nodes in a cluster in order to properly distrib-

ute the use of resources of a cluster. The type of the shard acts as a label that represents the 

types of entities that are handled by a shard. In order to use sharding in a cluster, all nodes 

should create a shard region for the corresponding type. 

The Sharding concept involves the following main terms: 

 Entity: An actor with an Id in a Shard 
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 Shard: Group of entities that are managed together. A shard also has an Id. 

 Shard Region: A region within a node that holds Shards 

 Shard Coordinator: An actor in a node in charge of managing the Shard Region. 

This is a singleton actor.  

 

 
 

Figure 8. Akka Sharding within a Cluster of 3 nodes 

Cluster Sharding comes as a module, so it is necessary to import the required library in order 

to use it. The user does not have to deal with all the internal details of the sharding process. 

Akka provides a clean solution to maintain the user focus on the business logic while hiding 

the internal complexities of the sharding mechanism, which can be configured by setting 

different parameters. 

In concrete, the user should only care about creating a shard region with its corresponding 

configuration settings. At creation time, the user must define a MessageExtractor. In order 

to do so, it is necessary to create an object of this class overriding the following methods: 

 entityId 

 entityMessage 

 shardId 

The implementation of these methods can vary depending on the application requirements. 

The idea is that when a shard region receives a message, from this message is should be 

possible to: extract the id of the receiving entity with entityId method, so that it knows to 

which actor the message is destined, extract the message or payload with entityMessage 

method and identify to which shard the message should be directed to with the shardId 

method. 



22 

 

That is all the responsibility of the user, it should only care about creating the proper con-

figuration for the shards. All the setup for creating entities, routing and balancing the shards 

is handled by Akka.  

Behind the scenes, Akka uses the help of the ShardCoordinator to manage the shards, this 

coordinator is a singleton actor per type of shard. When a shard is created, the ShardCoor-

dinator will decide which shard region should manage the shard, and it will notify it. The 

shard region in response, creates the Shard actor. This actor will create the individual entities 

and will become its supervisor. 

The whole process works as follows: when an actor sends a message (directed to an entity 

of a shard), it sends it to the shard region actor instead of the entity. The shard region uses 

the MessageExtractor to extract the details of message, such as the shardId and entityId. 

Then it communicates with the shard coordinator asking for the location of the shard with 

the extracted shardId. The shard coordinator knows all the locations of the shards so it will 

reply to the shard region with the correct location of the shard. Next, the shard region re-

ceives the message and redirects, if necessary, the message to another shard region. If the 

shard is residing under the same node of the shard region, then it just passes the message to 

the corresponding shard actor. Finally, the shard actor will pass the message to the corre-

sponding entity using the entityId. 

It is also important to notice that the messages to be handled by the sharding mechanism 

must be in accord with the MessageExtractor. In case the MessageExtractor cannot extract 

the corresponding ids or the payload message from the message, the the communication will 

fail. 

The other important concept in sharding is rebalancing. This consist in the migration of a 

shard, with all its entities living under it, from one node to another. The decision of when to 

migrate can be configured by using strategies and setting some threshold values. While do-

ing the migration all messages to the shard are retained until the hand off is concluded. Once 

the sharding has being recreated the messages will be redirected to the new location of the 

shard. 

Persistence plays an important role in sharding. At least in the case where persistence is 

required. This is because, when a shard is migrated from one node to the other, all the entities 

and its states are destroyed. Later, the entities will be recreated on the new shard location, 

but its state will be lost. In this case, it is necessary to use persistence to store the state so 

that the new entities can replay the corresponding events to recover its previous state. 

2.4.14 Configuration files 

Akka makes extensive use of the configuration files(s). There are two main configuration 

files: application.conf and extension.conf. Both use the HOCON (Human-Optimized Config 

Object Notation). This is a configuration format developed by “Typesafe”, the same com-

pany behind Akka. There is no particular difference between both configuration files, and 

both can be present. The only distinction mentioned in the Akka documentation is that the 

extension.conf file should be used in case of creating Akka libraries, meant to be used by 

other Akka applications. While the application.conf file should be use in cases where the 

main goal is to build Akka applications. 

2.5 Lightweight virtualization 

It comes naturally to think that in a heterogeneous environment such as the edge, it is nec-

essary to use some kind of tool that would assist in the process of deploying services to the 



23 

 

edge, considering all the constraints and characteristics of edge resources and the complex-

ities of the network. In this context, Lightweight virtualization technologies arise as a good 

alternative to deal with this problem. 

Lightweight virtualization, applied through Containers, allows for a decoupling of hardware 

and software, allowing for software to be deployed on different types of hardware architec-

tures. This scenario seems to fit into the description of the requirements for creating edge 

services. 

There are multiple benefits of using virtualization technologies, especially in the current 

context where many specialized tools have been developed throughout the past years reach-

ing a point where they are suited to be used in production environments. A very clear ex-

ample of this is Docker, that offers a rich set of functionalities to conveniently deploy ap-

plications in distributed environments, for instance, the use of Docker Swarm. 

There are plenty of research papers that have studied the use of Containerization on IoT 

context, deploying services at edge nodes and gateways. An excellent reference in this con-

text it the paper of Roberto Morabito [11]. In this document, the author evaluated in terms 

of performance the use of lightweight virtualization, using Docker, in the context of IoT 

applications, using different Single-Board Computers (SBC), including the Raspberry Pi 2 

model B and the Raspberry Pi 3 model B. The author takes one step further, using as base 

other related works and adding other metrics such as power consumption and energy effi-

ciency. 

In particular, among several conclusions, the following conclusions are of interest: 

 Employing container-virtualization does not incur in a significant impact in terms of 

performances when compared with native solutions, this includes the scenario when 

several containers are running at the same time. 

 Raspberry Pi’s boards are highly efficient dealing with low volumes of network traf-

fic. This aspect can be useful for deploying applications at the gateway level and 

other messaging protocols such as MQTT (Message Queuing Telemetry Transport). 

It is also important to mention, that the author also makes reference to some specific points 

that were not fully considered during this research, such as the interaction between multiple 

gateways and the security using containers. 

Nevertheless, the study provides a sufficient background to assert that it is not only practical 

but also appropriate to use lightweight virtualization through containers in the context of 

developing IoT applications in the edge. 

 

 

 



24 

 

3 Implementation 

This chapter deals with the implementation of the Actor model on the network edge using 

Akka. The developed applications aim to serve as base frameworks for future applications 

on the edge, taking into consideration elements of availability, resiliency, and scalability 

among others, which are desired on the network edge. 

3.1 General considerations 

Programming language 

The official Akka toolkit provides support for Scala and Java, although in theory, any JVM 

language could be used. The implementations developed for this thesis use Java as the im-

plementation programming language. However, it is important to mention that Akka itself 

is implemented using Scala, and it uses several concepts that are more in accordance with 

the functional approach that Scala provides, such as using functions as first-class citizens. 

Build Tool 

Gradle was chosen as the build tool for the applications. Although Maven is another option, 

Gradle is a tool that is being used more often in several new platforms and applications, 

such as Android. Gradle uses Groovy as a DSL (domain specific language) to define the 

build script, which is easier to use, as Groovy itself is a programming language. 

Akka version 

Akka version 2.5 is used for the project. It is important to mention that the Akka toolkit is 

in constant development. Additional features are still being developed and others are on 

testing stages. For this reason, only the stable features are used for the projects, leaving other 

features out of scope in order to conceive stable applications. 

Devices 

A Linux machine, with enough resources, such as CPU computation power, is used as a 

representative of a more powerful device on the edge.  

2 Raspberry Pi model 3B+ are used as a representative of constrained resource devices. 

Implementations 

There are 3 different types of applications developed. The first one consist of a simple clus-

ter application. The second one adds the concept of Routing and Docker Swarm. Finally, 

the third application involves a more complex IoT scenario using Docker Swarm. These 

projects are available through public repositories123 where each project is independent of the 

others, which allows to use them independently and in accordance to the requirements of 

the applications to be built on top of them. The last implementation, which models an IoT 

scenario, uses the concepts and techniques used in previous implementations as guidelines. 

3.2 Docker Swarm setup 

The idea of a distributed system is to have a group of interconnected devices that can com-

municate and share information between each other. On the network edge, many different 

                                                 
1 http://github.com/marcelo-s/akka-cluster-basic/ 
2 http://github.com/marcelo-s/akka-cluster-swarm/ 
3 http://github.com/marcelo-s/akka-iot-wsn/ 

http://github.com/marcelo-s/akka-cluster-basic/
http://github.com/marcelo-s/akka-cluster-swarm/
http://github.com/marcelo-s/akka-iot-wsn/
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aspects must be considered, such as heterogeneity devices and network related issues. Man-

aging all these aspects can become a complex task, for which some kind of mechanism must 

be used to face this challenge. 

As previously stated, lightweight virtualization helps to address these concerns. The idea is 

to have the edge devices connected using Docker. In order to accomplish this, it is necessary 

to have Docker running on every device. For the developed applications, two Raspberry Pi 

devices were used along with a Linux machine. Each Raspberry Pi runs the Raspbian Oper-

ating System (OS), which is the default OS when installing the OS through the Raspberry 

Pi software tool NOOBS (New Out Of the Box Software). Raspbian is a light OS based on 

the Debian Linux distribution. Installation of Docker on Linux devices is quite simple fol-

lowing the instructions provided in the official Docker website. The advantage of using a 

Linux operating system is that Docker works natively when installed on Linux devices and 

takes advantage of the Linux architecture to create containers. 

Docker offers a feature called “Docker Swarm”, in which several machines running Docker, 

also called nodes, can be connected through Docker forming a cluster, as shown on figure 

9. Nodes in a swarm can be one of two types: manager nodes or worker nodes. Manager 

nodes, as the name implies, are in charge of carrying out the orchestration of the swarm, 

such as scaling and managing services among others tasks. Worker nodes are mainly con-

tainers that run tasks or services. Manager nodes can also act as worker nodes along with its 

administrative tasks, this is the default behavior, while worker nodes can also be promoted 

as manager nodes. 

 

 

Figure 9. Docker Swarm nodes 

There are several things to consider regarding a cluster swarm, such as the correct number 

of managers and load balancing. According to the characteristics of the network edge, these 

settings can be customized in order to best fit the requirements. For the swarm application, 

the Linux machine acts as a swarm manager and the Raspberry Pi devices act as workers, 

as illustrated on figure 10. Correspondingly, this scenario can be easily scaled-out using 

more devices as long as they can run Docker in swarm mode. 
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Figure 10. Docker Swarm setup 

The benefits of using Docker are put on evidence when trying to add more devices to a 

system. Whether it is a more powerful device or a resource constraint device, any device, as 

long as it is capable of running Docker in swarm mode, can join a swarm and become reach-

able within the network established for the swarm. This facilitates the deployment of appli-

cations on multi-node scenarios, where multiple nodes can join or leave the swarm. 

3.2.1 Overlay network 

Docker swarm creates an overlay network by default sitting on top of the host network. An 

overlay network helps to bind together the nodes of the swarm creating an internal network 

for the containers participating on the swarm. All the nodes in the swarm are connected to 

this network and they communicate using this network, even though externally they both 

may be in different networks, namely the respective networks of the hosts. Figure 11 illus-

trates how the overlay network sets a direct communication among nodes inside a swarm, 

having each one a specific IP address on the overlay network. 

 

 

Figure 11. Docker Swarm nodes 
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To further isolate and keep control of the network, it is better not to use the default overlay 

network called “ingress”. Instead, it is better to create an overlay network exclusively for 

the swarm. This can be done externally, meaning creating the network independently and 

then assigning it to the swarm, or automatically along the definition of the services using a 

docker-compose file. 

3.2.2 Docker compose file 

The docker-compose file is a YAML4 file that defines all the services, networks and volumes 

that are going to be used and deployed to the swarm. This file is similar to a dockerfile in its 

syntax, but instead of using it to build an image, the docker-compose file is used to bootstrap 

the swarm. 

The following is an extract of the docker-compose file used for the second application, 

which makes use of Docker swarm: 

The docker-compose file defines the configuration settings for each of the services to deploy 

on the swarm. In this case, there is a service called seed1. The configuration settings for this 

service are: 

image: This service will use a custom image created for the swarm, which will be discussed 

later. This image contains the application to be run on this node. The image must be availa-

ble on docker hub so that remote nodes can pull the image.  

ports: The ports are defined in congruence with the application ports that are defined in the 

application.conf file on the Akka application. 

                                                 
4 https://yaml.org/ 

version: '3' 

services: 

 seed1: 

   image: marcelodock/akkaswarmarm32v7 

   ports: 

     - "2550:2550" 

   environment: 

     CLUSTER_IP: seed1 

     CLUSTER_PORT: 2550 

     SEED1_TCP_ADDR: seed1 

     SEED2_TCP_ADDR: seed2 

     ROLE: backend 

   networks: 

     - akka-cluster 

   deploy: 

     replicas: 1 

     placement: 

       constraints: [node.role == manager] 

   command: gradle run 

  

networks: 

 Akka-cluster: 

 

https://yaml.org/
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environment: These are the environment variables that are set for the application. These 

variables and their values are accessible to the container running the application, therefore, 

they can be used by Akka for its configuration. All the variables defined are in accordance 

to what is needed in the Akka configuration for the specific node. In this case, the seeds IP 

addresses and ports are defined along with the role of the node. 

networks: As mentioned before, a specific network is defined for the swarm called: akka-

cluster. All the services that should join this network should define the name of the network 

in order to join. The creation of the network is done at the end of the file with the top-level 

option networks, 

deploy: Defines options for the deployment of the service. In this case, only one replica is 

defined with the constraint that it should be deployed on a manager node. 

3.2.3 Docker images 

Different types of images were created for the different projects; this was required as for the 

specific characteristics of each of the projects. Giving that Raspberry Pi devices have a dif-

ferent architecture, namely Advanced RISC Machine (ARM), all software associated with 

the service to be deployed on a Raspberry Pi device must be compatible with ARM hard-

ware. For example, to use Gradle, an ARM compatible image has to be used for the Rasp-

berri Pi devices, while the Linux machine uses the “normal” Gradle version.  

3.3 Akka modules 

Akka offers a large set of tools to build distributed systems. The selection of which capabil-

ities to use varies depending on the requirements of the applications to build. The network 

edge faces different challenges in different aspects such as latency, availability and connec-

tivity. In order to provide a suitable application environment, taking into account these char-

acteristics, the following modules were considered for the projects: 

 Routing: To increase the throughput of the system. 

 Persistence: To persist data used by the system. 

 Remoting: To enable the communication of actors on different nodes. 

 Cluster: To build up a cluster, composed of the different edge nodes. 

 Cluster Sharding: To load-balance actor across the swarm. 

Despite being a simple concept on the surface, the Akka implementation of the Actor Model 

involves different kinds of concepts to provide a solid and robust distributed framework, 

such as CQRS (Command Query Responsibility Segregation) and Reactive Programming.  

In this sense, Akka provides multiple modules and libraries that can be used alongside each 

other. The toolkit is large and its use depends on the specific requirements of an application. 

For the projects developed for this thesis, the previously mentioned modules were selected 

as they address directly the aforementioned problems regarding the network edge. 

3.3.1 Akka application architecture on a Docker Swarm 

Following the Swarm architecture provided by Docker, the network edge devices can be 

mapped to Akka cluster nodes (figure 12) in the following manner: 

Manager nodes as Seed nodes or Persistence nodes: Manager nodes are the ones in charge 

of managing the swarm. These nodes are not simple workers, as they already have special 

responsibilities within the swarm. Manager nodes can be defined to be special nodes in the 

swarm. This could mean that these nodes may have better capabilities such as resource-rich 
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servers and that they could be located and deployed in such form that they are easily main-

tainable and accessible, and less susceptible to failures or outages. Given this context, these 

nodes can be a good fit for seed nodes within the Akka cluster. Another good use for these 

nodes could be for persistence of data of the cluster, for instance, to create a distributed 

Cassandra cluster. 

Moreover, depending on the architecture of the system, micro data centers could be estab-

lished where all, or most of the servers, would act as manager nodes given the special char-

acteristics of these devices. 

Worker nodes as normal Akka nodes: Worker nodes are given tasks or jobs to perform. 

These nodes can be very heterogeneous, ranging from very resource constrained devices to 

more resource-rich nodes. These nodes could be set up as normal Akka nodes that perform 

different types of computations. Depending on the specific requirements of these computa-

tions, it is possible to set these nodes to handle only specific types of computations. This 

can be accomplished by using routers within the Akka cluster. 

 

 

Figure 12. Mapping of Docker Swarm nodes to Akka Cluster nodes 

Because of the nature of Akka, based on a peer-to-peer communication, the nodes on the 

cluster do not need to be different. In fact, a cluster of only Raspberry Pi devices can be 

established, where any node can act as a seed node, persistent node or a normal node. How-

ever, the different the limitations and restrictions of some of the devices on the edge must 

be considered as some of them are better suited for different roles in an Akka cluster, in-

creasing the availability and scalability of the system among other benefits. 

3.4 A simple Akka cluster 

The network edge is composed of different interconnected devices. These devices can be 

grouped in cluster(s), where each node represents a device on the network edge. The deci-

sion of how to group nodes could be done in different ways. One of the most obvious ways 

to group would be to do it by proximity of the nodes. This would be a better fit in cases 

where low latency is required as less hops would be required for passing data through the 

network. Another case could be to group nodes by services they provide, in order to have 

clusters of services. The decision of how to cluster nodes should consider the requirements 

of the application and taking into account the physical and logical distribution of the devices 

on the network edge. 
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The Cluster module of Akka make use of the Remoting module. This is no surprise, as the 

idea of having a cluster is to group nodes that are on remote machines. The following is a 

description of the configuration to have a basic cluster running with Akka. 

The configuration file application.conf is where the application configuration is defined. 

The configuration file uses the HOCON (Human-Optimized Config Object Notation) for-

mat. The format works similar to JSON, as it is a superset of it. All the Akka configuration 

is defined under the top level key “Akka”. For enabling the cluster mode, the following 

configuration is required: 

For the configuration of the communication protocol and IP, the following configuration 

options needs to be set: 

The important part is the definition of the TCP protocol, where the hostname and port is 

defined. If running the cluster locally, the hostname can be set to localhost. If running re-

motely the IP address of the machine should be used instead. The port is also defined. If set 

to 0 a random port is assigned. 

Another important part of the configuration is the definition of nodes for the cluster: 

These variables can be referenced on other places of the configuration. For the application, 

the cluster name, seed addresses and ports are defined. As mentioned before, this configu-

ration changes when used with remote nodes which will be explained later in more advanced 

scenarios. 

To illustrate how the communication can be done in a cluster two types of actors were de-

signed: 

Frontend: These type of actors act as interface between the cluster and the outside, gather-

ing request for jobs and assigning these jobs to the Backend. The cluster application pro-

vides the service through these actors. 

actor { 

    provider = "cluster" 

  } 

 

remote { 

    log-remote-lifecycle-events = off 

    netty.tcp { 

      hostname = "127.0.0.1" 

      port = 0 

    } 

  } 

 

clustering { 

  cluster.name = ClusterSystem 

  seed1-ip = "127.0.0.1" 

  seed1-port = 2550 

  seed2-ip = "127.0.0.1" 

  seed2-port = 2560 

} 
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Backend: These actors are the worker actors in the cluster. They perform some kind of 

computation, based on the jobs received by the frontend. These actors are the ones that ac-

tually do the processing. 

This simple application structure, shown in figure 13, has 2 Frontend actor systems, and 3 

Backend actor systems. The frontend simulates receiving jobs with a scheduler that creates 

a new job every second. As there are 2 frontend actor systems, there are 2 jobs created every 

second. 

 

 

Figure 13. Cluster using Frontend and Backend actors 

The sequence of actions in the cluster proceed in the following manner: 

1. Frontend receives a job to be done. 

2. Frontend checks if there are backend nodes available to assign the job. 

3. If no backend node is available, Frontend responds with a message that the service 

is not available. 

4. If there is a node available, Frontend delegates the job to an available backend node. 

5. Backend node receives the job, process it, and returns the result 

6. Frontend receives the result of the job 

There are three types of messages on this application: 

 JobMessage, which carries the job to be done. 

 ResultMessage, message that carries the result of the computation 

 FailedMessage, message that carries information about the failing computation 

All the messages are grouped together in an interface called AppMessages. This is done in 

order to have one specific place to look for the messages that are used in the application, 

instead of having them dispersed on different classes. This kind of pattern is called “Mes-

saging Protocol”, and can be useful when dealing with complex scenarios with multiples 

types of messages. 

The main idea of the basic cluster is to have different actor systems and connect them to 

form a cluster. The frontend nodes serve as a base to which other applications can be built 

on top of it. For instance, in the case of a Raspberry Pi, a sensor can be installed on it, and 
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send the readings of this sensor to the Backend systems for processing and later, when re-

sults of the processing are received, act based on the results. 

3.4.1 HTTP Management 

Akka offers another module to manage the cluster through an HTTP API. This module is 

useful to see the state of a cluster using a web browser. Among other things, the API allows 

to: 

 List all nodes on the cluster 

 Join a node to the cluster 

 Put down a node from the cluster 

 See the state of a specific node  

This module can be useful to develop web applications to query the state of a cluster using 

the API. This would allow to have a bit of control of the cluster without using terminals or 

having deep knowledge of the inner workings of the cluster. The HTTP management module 

is used in this simple cluster application. It is started on one of the backend nodes that act 

as a seed node of the cluster. 

3.5 Cluster-aware routers with Docker 

The previous setup was used to illustrate the basic configuration of an application using 

Akka. The next step is to use Docker to run the application. A new concept is introduced in 

this next version of the application: Cluster-aware routers. 

With cluster-aware routers it is possible to deploy routees in other nodes of the cluster, as 

shown in figure 14. This increases the availability and scalability of the application. There 

are different ways of deploying the routees. For this application, a pool router actor is used, 

so that it can handle itself the creation of its routees.  

 

Figure 14. Cluster-aware routing with remote deployed routees 

To explain how this application works a brief description of the components and their inner 

workings are described. 
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Frontend node receives jobs and send them to the router. The router is in a different node as 

shown in figure 14. The Backend node containing the router actor receives the task, but does 

not perform the computation itself. With the help of Akka, the router has deployed “routees” 

to other nodes. The router actor sends the task to one of the routees. There are several options 

and parameters to configure the process of routing the messages to the routees, defining 

specific routing logics. For the application, the “RoundRobinRoutingLogic” is used. Akka 

takes care of the deployment of the routees. 

The routees are the ones of doing all the processing. Routees are created as simple actors on 

the remote nodes under the “remote” path of the actor system, indicating that these nodes 

have a remote supervisor, which is the router actor residing on a remote node. Routees reply 

directly to the Frontend instead of the router, but will set themselves as senders. However, 

it is also possible to hide the fact that routees are used by setting the router as the sender of 

reply messages. In this case the Frontend only sees the Router actor as the one doing all the 

job. 

The cluster awareness come from the fact that it is possible to configure a router so that it 

automatically deploys routees to new nodes joining the cluster. This concept also takes into 

account the scenario where a node containing routees may exit the cluster or when a node 

in the cluster may become unreachable, in which case the routees of that node are no longer 

reachable and are removed from the router automatically, so that the router will no longer 

route to those routees. 

Using this model, it is possible to perform several computations on different nodes. It can 

be used to implement a master-workers pattern kind of application, where a complex prob-

lem can be divided in small sub-problems and these can be processed independently and in 

parallel.  

This application runs locally using Docker. The docker-compose file is defined with three 

services: 

 seed 

 backend1 

 frontend 

The seed node has also a backend role, so in total there are: 1 frontend and 2 backend nodes. 

The local deployment is done with only one command: docker-compose up. This simplicity 

of defining different services through one file, demonstrates the benefits of using Docker 

for managing the deployment of an application. 

3.6 Akka cluster in a Docker Swarm 

With the services defined and all the configuration of the application in order, it is easy to 

take the next step and deploy the application on a Docker swarm. 

Docker needs to be running in swarm mode in all the nodes that are going to be part of the 

swarm, and eventually part of the Akka cluster. Initially, a node is chosen as the first man-

ager of the swarm. After the swarm is created, other nodes can join as worker nodes, and if 

desired, some worker nodes can be promoted to managers. 

With a swarm environment created, it is possible to deploy the Akka application using the 

swarm environment created (figure 15), in which all the services of the application can be 

distributed to the different nodes of the application. 
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Figure 15. Edge devices forming an Akka Cluster in a Docker Swarm 

All the components that are part of the application, such as the frontend and backend sys-

tems, must be defined in the docker-compose file as services (each system is a service). All 

the parameters that each system needs in order to initialize the system must be defined in 

the docker-compose file as environmental variables. Later, these variables can be accessed 

on the specific configuration files of the application, such as the application.conf file, or any 

custom configuration file. There are no further changes on the code. This is achieved thanks 

to the location transparency of Akka, which always assumes that the application lives in a 

distributed environment. 

One of the major benefits of using Docker to create the swarm environment is that the net-

work connection details are handled automatically by Docker. For instance, on the docker-

compose file, it is no longer necessary to know the specific IP addresses of the devices and 

statically bind them to the services, although this is possible as well. This allows for edge 

devices to form a cluster with no necessity of setting up complex networks configurations. 

With this robust environment it is possible to do more complex things in Akka such as Clus-

ter Sharding. 

3.7 Cluster Sharding and persistence with Akka 

Further down the path of distributed systems is the concept of Sharding. This concept is 

usually associated with databases, in order to separate data in shards and distributing these 

shards of data across different nodes. Akka takes this idea and applies it to the Actor model 

distributing live actors across the nodes of a cluster. 

This scenario changes the way applications are conceived. First of all, all the nodes on the 

cluster must create a ShardRegion actor. This actor is the one in charge of all the sharding 

activities on the actor system where it is created. All the messages directed to an actor on a 

shard, called entity actors when defined on shards, must go through the ShardRegion ac-

tor.  Second of all, there is no need to create the actors “manually” in the shard. At the 

moment of creating the ShardRegion, a props object is passed so that it can create entity 

actors of that class. The creation of actors by the ShardRegion is on demand. When a mes-

sage is send to an entity on the shard, the ShardRegion will determine if it already exists, if 

not, a new entity actor will be created. 

Another important aspect that goes along with the concept of Sharding is the persistence of 

the entity actor’s state. This is because of the ability of rebalancing and migrations of the 

shards. These processes include the termination of actors in one shard, of one node, and 
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migrating them to another shard on another node. This implies that if an entity had some 

kind of state, this state will be lost, as the entity will be recreated as a new entity in the new 

shard location.  

Akka has a specific persistence module that allows to keep the state of an actor. This module 

enables to preserve the state of an actor using journals. Akka make use of the CQRS (Com-

mand Query Responsibility Segregation), which makes a distinction of what is saved. Akka 

journals do not store commands, as they can be invalid. Only valid commands are persisted 

on a journal in the form of events, that are defined as actions that have occurred. These 

events allowed the actor to go from one state into another. Once the journal has persisted all 

the events for an actor, they can be replayed in case the actor needs to start from zero. Fur-

thermore, the concept of persistence is not only attached to Sharding, and can be used in any 

type of scenario where it is required to keep state of an actor. 

The persistence module is used on the IoT application in next chapter in order to persist the 

state of the Master Cluster. The sharding module is also used in the same application, but in 

a different cluster. In this case, the sharding mechanism is used in order to distribute actors 

across the Worker Cluster. The details of this implementation and other important consid-

erations are presented in detail in the next chapter. 

3.8 Summary 

Two different applications were presented on this chapter. Different Akka modules were 

used in these applications in order to demonstrate how it is possible to construct basic edge 

applications using Akka. On the next chapter, a more complex application is developed, 

using an IoT scenario where an edge architecture is proposed to handle the processing of 

data as opposed of a cloud-centric approach.  
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4 IoT System scenario 

In order to apply the different concepts discussed on chapter 3, an Internet of Things sce-

nario that relies on cloud computing is used as a base architecture, so that later it can be 

modified so as to work on the network edge with the help of Akka’s toolkit and using the 

Actor model as an application model. 

4.1 Cloud and edge architectures 

The base cloud architecture was taken from a self-managed architecture for Wireless Sensor 

Networks (WSN) proposed by G. M. Dias et al. [17]. This architecture considers the hard-

ware limitations of wireless sensors as well as the communication of the WSN with other 

components in the architecture. Moreover, the proposed architecture defines specific com-

ponents to perform real-time data analysis, using data collected from the sensors, so that 

later the processed data can be used by the WSN to self-manage, and also provide access to 

this information to interested parties over the internet. 

The architecture of this scenario consists of the following main components: 

 Cluster of wireless sensor nodes: cluster that contains a group of sensors that com-

municate with the outside via a Gateway. 

 Gateways: mediators between the WSN and the cloud. They forward the data col-

lected from the sensors to the outside and also receive instructions and new data 

targeted to the sensors. 

 DAS-dashboard: This is the main component of the architecture, in charge of col-

lecting, storing and publishing data transmitted by the WSN. It serves as a provider 

of raw data for interested parties, such as the WSN owners, or to other services such 

as the processing component. 

 Data Analytics Server (DAS): Component in charge of the real-time data pro-

cessing. It acquires the data from the WSN through the DAS-dashboard and can 

communicate with other services on the internet to gather more data for its pro-

cessing. 

The main limitation of this model is that it relies on cloud services for real-time data pro-

cessing. The DAS and the DAS-dashboard are considered as cloud services that may be 

located in distant locations which most likely increase the round-trip time, which can be 

crucial for real-time applications. Moreover, it does not consider the computation power on 

the proximity of the data, namely edge devices, that can process the data without using the 

distant cloud. 

Assuming that Gateways on the edge are powerful enough to carry out the processing of the 

data, and that there are enough of them, the whole process, or at least the most critical pro-

cessing, can be performed on the network edge. This transformation can be done efficiently 

using Akka to build an application that work across the multiple gateways on the edge, as 

illustrated on figure 16. 

The proposed Akka architecture consist of the following components: 

 IoT Cluster: basically the same as the base architecture. This cluster has a manager 

or Cluster Head, in charge of receiving all the data from the sensors and passing it 

to the master cluster.  
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 Master Cluster: a cluster that acts as a main controller of the whole application. 

This cluster replaces the DAS-dashboard. Among its main functions are to receive 

the data from the IoT cluster and send it to the Worker cluster for processing, and to 

send the results of processing back to the IoT manager. It also maintains a record of 

all the events in a distributed journal as well as any other relevant data that can be 

accessed or queried by interested parties. 

 Worker Cluster: a cluster in charge of the real-time data processing. This compo-

nent replaces the DAS. This cluster distributes all the workload of processing the 

sensor data among all the nodes in the cluster. 

 A distributed persistence journal: A cluster that acts as a data storage, which is 

implemented using a multi-node Cassandra on a data center. This cluster can be im-

plemented using the gateways on the edge or other external data centers.  

 

 
 

Figure 16. Cloud and edge IoT architectures 

The Master and Worker clusters are composed of gateways on the network edge, while the 

IoT cluster consist mainly of sensors. The clustering of edge devices can be done based on 

location proximity, capacity of the corresponding gateways, or any other suitable criteria 

that can leverage the architecture. Communication between the clusters is done via Akka’s 

Cluster Client mechanism, which allows for actors of different systems and external clusters 

to communicate with each other. In the proposed architecture, the IoT cluster and Worker 

cluster are defined as cluster clients whereas the Master cluster is defined as a cluster re-

ceptionist. A more detailed view of the proposed Akka architecture is shown on figure 17. 
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Figure 17. Akka IoT system architecture 

4.2 IoT Cluster 

Different research on the field of IoT, focus on the problem of how to deploy and distribute 

sensors on the network [18] in order to deal with different challenges such as low energy 

consumption and efficient communication between the devices. Most of the research on the 

topic propose schemas and algorithms based on a clustering topology to face these chal-

lenges.  Taking this into account, it results of no surprise that Akka uses the concept of 

clustering at its core to provide a reliable architecture to build distributed applications. 

Having said that, the proposed Akka solution for the IoT cluster is modeled using this con-

cept as well, grouping all the sensors of the system under a cluster, or possibly multiple 
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clusters if desired. The sensors are modelled as any type of sensor that is capable of gener-

ating some data, i.e. temperature, humidity, pressure, and also capable of modifying its 

state/settings according to data that are received through the manager of the cluster. The IoT 

manager in the cluster works as a Cluster Head [18] [19], which serves as a gateway between 

the cluster and the external world, gathering data to and from the sensors on the WSN. The 

sensors are represented as actors within the IoT cluster. 

The sensor data consist of unique information of the sensor, such as the sensor Id, and the 

readings from the sensor which is represented as an array of values. This sensor data is 

published using the MQTT (Message Queuing Telemetry Transport) protocol, which is a 

lightweight messaging protocol that works well in resource constrained devices. This pro-

tocol uses a publish-subscribe model that allows for communication between multiple de-

vices. In the cluster, the sensors publish the generated data to a specific topic, to which the 

IoT manager is subscribed. Figure 18 illustrates this process. Once a message is received by 

the manager, it is sent to the Master cluster for further processing. In order for the pub-

lish/subscribe model to work, a MQTT broker has to be set in order to handle all the recep-

tion and delivery of messages. The open source broker server Mosquitto is one of the most 

common brokers in use for the MQTT protocol, and it is used as the message broker for the 

application. 

 

Figure 18. Publish-subscribe with MQTT broker on the IoT Cluster 

4.3 Master Cluster 

The Master cluster receives all the sensor’s data coming from the IoT manager. The logic 

of how this data is going to be processed is handled by the Workers on the Worker cluster. 

The Master cluster has a persistent state, with the sensor’s data received from the IoT man-

ager. This state is persisted on a distributed journal so that it can keep track of all the sensor 

data that it handles.  

The journal to store the state of the Master uses an Apache Cassandra database. The Cas-

sandra database can be modelled as a multi-node datacenter in almost the same fashion as 

an Akka cluster. The resemblance of the configuration and concepts behind the creation of 

a Cassandra cluster, makes it ideal to use it in the context of a distributed application, as it 

follows the same philosophy of working in a distributed environment.  
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The persisted state can include different data. For instance, specific data about the sensors 

and their readings can be persisted, so that later this information can be send to the cloud 

for further analysis. In this sense, the Master cluster acts as a gateway of the whole applica-

tion, in case it needs to communicate with other applications, systems or other interested 

parties. The simplified model of how the sensor data is handled by the Master cluster is 

shown figure 19. 

Figure 19. Sensor data handling process by the Master cluster  

The whole process starts when the Master cluster receives a sensor data form the IoT cluster. 

The reception of the data is confirmed with an acknowledgement and the data acceptance is 

persisted on the state of the cluster. The handling of the state is described with more detail 

later on this section.  

Next, the data is sent to an available/reachable Worker node on the Worker cluster. When a 

sensor data is sent to the Worker cluster, the Master cluster sets a timeout for the reception 

of the data by the Worker cluster. This is done in order to guarantee the processing of the 

data. In case no acknowledge is received, the data is sent again. Once the processing of the 

data is completed by the Worker cluster, the result of the processing is sent back to the 

Master cluster, and then the Master cluster forwards the result back to the IoT cluster.  

Throughout this handling of the sensor data, the singleton actor of the Master cluster keeps 

its state in a state object called SensorDataState, which is persisted in the distributed journal, 

namely the Cassandra cluster. There are five types of events that are persisted:  

 DataAccepted: When a sensor’s data has reached the Master cluster. 

 DataSentForProcess: When the data has been sent to the Worker cluster. 

 DataReceivedByWorker: When the data has been received by the Worker cluster. 

 DataProcessed: When a work result is received from the Worker cluster. 

 DataTimeoutExpired: When no acknowledgement of the reception of the sensor’s 

data by the Worker cluster is received in a determined amount of time.  

These events are persisted when the singleton actor receives a message corresponding to the 

mentioned actions, either from the IoT cluster or from the Worker cluster. A special case is 
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the timeout event. For this event to happen, there is no response from the Worker cluster, 

that is to say, no message needs to be received for the event to happen. To handle timeouts 

of sent data, a specific map is maintained, with the data identifier and the timeout for each 

data message. A special task is scheduled to go through this map over a certain period of 

time to make sure that the data has not overdue its timeout. If it has, it will persist the event 

DataTimeoutExpired and will proceed to send the data again to a new available worker. 

In order for the SensorDataState to keep track of all the data, it makes use of different col-

lections: sensorDataReceived, pendingSensorData, inProgressSensorData, accepted-

SensorData, completedSensorData and workerReceptionTimeouts. These collections are 

self-descriptive. The data state is updated whenever an event has happened. These events 

are persisted so that they can be replayed in case of recover of the master singleton in the 

Master cluster.  

A simple case of how the update process works is explained: when a particular sensor data 

has been accepted it is registered in the sensorDataReceived, acceptedSensorData and pend-

ingSensorData collections. Then later, when the work has been started, it is removed from 

pendingSensorData and added to inProgressSensorData collection. Finally, when the pro-

cessing of the data is completed, it is removed from the inProgressSensorData and added 

to the completedSensorData collection. The sensorDataReceived collection stores all the 

sensor data received by the Master cluster. This collection serves as historical data and can 

be used as source of information for further analysis. The other collections are used as con-

trol mechanisms for data handling. 

The master cluster uses a Cluster Singleton, which is a mechanism provided by Akka that 

enables to have only one specific instance of an actor among all the nodes of the cluster. 

This is done in order to have only one source of truth in respect to the handling of the mes-

sages. In this sense, multiple nodes can be added to the master cluster in order to increase 

the availability of the singleton actor. For instance, in the case where the node where the 

singleton actor lives is taken down, the singleton actor will migrate to another available node 

in the cluster. With the persistence facility enabled with the Cassandra cluster, the state of 

the singleton actor can be recovered by replaying all the stored events or using snapshots, 

which will bring back the new singleton actor’s state to its previous state before the failing 

of the original one. 

4.4 Worker Cluster 

The Worker cluster is the processing cluster. It receives sensor data from the Master cluster, 

process it, and then returns the result back to the Master cluster. The Worker cluster has one 

specific duty which is to process sensor data received from the Master cluster. This separa-

tion of concerns, in terms of clusters, can be useful on the edge, where a group of powerful 

edge devices can be grouped to form a processing cluster, capable of processing information 

as fast as possible. 

Worker nodes in the cluster are registered to the Master cluster so that the Master can send 

the sensor’s data to the workers. The Worker cluster is configured as a Cluster Client in the 

same way as the IoT cluster, so that it can send messages to the external Master cluster. 

The Worker cluster is modelled using the concept of Cluster Sharding. The idea is to dis-

tribute the work processing evenly among all the nodes in the cluster. In order to accomplish 

this, all the worker nodes have a worker region, which is the shard region to which all the 

work messages must go through before arriving to the corresponding work entity actor that 

lives within a specific shard (actors within a shard are also called entities). The series of 

steps of how sensor data is handled are shown in figure 20. Some communication details 
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such as acknowledgment of workers and shard communications are omitted for the purpose 

of maintaining the simplicity of the diagram. 

 

Figure 20. Handling process of sensor data between Master cluster and Worker cluster  

On the first step, when a worker node is started, it sends a message to the Master cluster 

with an actor reference of the Worker system that lives in the node. The Master cluster keeps 

a list of Worker systems so that it can later send works to them. On the second step, once a 

Worker system is registered, the Master cluster, through its cluster singleton instance, sends 

sensor data to a registered Worker system. The third step deals with the distribution of the 

work between the Worker nodes, this aspect is handled by the Akka sharding mechanism, 

with the help of a message extractor, which is described with more detail later. On the fourth 

step, a Worker entity receives the sensor data and perform the required computation with a 

WorkProcessor that uses the Routing mechanism to distribute the processing among all 

nodes of the cluster. The final step is carried out once the work is done processing by the 

Worker, in which case it sends the result back to the Master cluster. It is also important to 

mention that mechanisms to handle failures are also implemented using a supervision strat-

egy on the child WorkProcessor routees.  

A worker message extractor is defined in order to extract the messages as well as the entities 

and shard ids. The entityId corresponds to the sensorId of the data that is going to be pro-

cessed. This means that an entity within the shard will correspond or represent a sensor from 

the IoT cluster. The shardId is determined based on the hash code of the entityId with the 

modulo operation. This is done in order to properly distribute work among the shards. Using 

the hash modulo operation is a safe bet in general cases and it is recommended by Akka. As 

per the message, it is just passed as it is. Messages going through the shard regions carry the 

sensor data, so no further change is required. On a side note, Akka documentation remarks 

how difficult and challenging can be to define a good sharding algorithm, hence, using the 

best practices is the best way to go for general cases. 

As mentioned before, the Worker actor uses the Akka’s Routing mechanism to distribute 

the processing of the data, which consist of different forecasting tasks. In order to do so, a 

Router actor is created in each Worker node. This Router actor, called WorkProcessor, is a 

self-contained router that contains the logic to do the forecasting task. The WorkProcessor 

is created as a child of the ShardRegion actor. Having the ShardRegion actor as a parent 

allows to handle exceptions produced during the processing of a work through a supervision 

strategy. 
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The processing task is to compute a forecast model using the ARIMA (Autoregressive In-

tegrate Moving Average) method, which is a commonly used technique for generating fore-

casts on the WSN [20] [21] [22]. The idea is to have good forecast models to reduce the 

frequency of readings and transmission by the sensors in order to reduce the energy con-

sumption of the devices and prolong its lifetime. In the application, the WorkProcessor uses 

the java library “java-timeseries”5, which can compute ARIMA models using sensor’s data 

as input. Several models are computed in order to choose the one that fits the best for each 

sensor data. The computation of these models can be done in parallel as they only depend 

on the initial sensor data. Later, when all models are computed, they can be compared using 

different indicators such as the AIC (Akaike Information Critera).  

Given than this process can be computed in parallel, the application uses Akka’s routing 

mechanism to split the processing work into tasks, where each task corresponds to the com-

putation of one specific ARIMA model.  

Once the processing of the data is completed, the result is sent back to the Master cluster 

using the cluster client mechanism. Results reception is also handled. The Master cluster 

must send an acknowledgment that the result is received. In the case that the acknowledge-

ment is not received in a given period of time, a new message with the result is send to the 

master until it acknowledges the reception of the result. 

4.5 Application workflow 

With all the components properly described it is possible to explain how the whole process 

works within the application. A simple case, for the processing of one sensor data, is de-

scribed in detail in this section. The graphical workflow is shown on figure 21. 

1. A sensor actor in the IoT Cluster generates data readings to be processed. These 

readings consist of an array of values. This array of values is put in a “envelope” 

called SensorData, which includes other relevant information with respect to the 

data readings, such as the sensorId. 

2. The sensor publishes the SensorData to the corresponding MQTT topic on the IoT 

Cluster. 

3. The IoT manager, which is subscribed to this topic, receives the SensorData and 

proceeds to send the SensorData to the Master Cluster. 

4. The Master Cluster, through its singleton actor, upon reception of the SensorData 

adds the SensorData to a queue of sensor data waiting to be send to the Worker 

Cluster. 

5. The Singleton actor takes the SensorData from the queue (assuming it was the only 

element in the queue, otherwise it would wait accordingly), and sends it to an avail-

able Worker node in the Cluster Worker. 

6. The Worker node, through its ShardRegion actor, receives the SensorData and ex-

tracts the entityId, shardId and message from the SensorData using the MessageEx-

tractor. 

7. The ShardRegion actor, with the help of the information of the entityId and shardId, 

proceeds to forward the SensorData to the corresponding Shard. The Shard contains 

all entity actors that correspond to each sensor. In this case, the corresponding sensor 

entity actor, called Worker, receives the SensorData. The location of the entity actor 

can be in the same node that received the message or in another node in the cluster. 

The owner of this information is the ShardCoordinator of the cluster which resolves 

these concerns. 

                                                 
5 https://github.com/signaflo/java-timeseries 

https://github.com/signaflo/java-timeseries
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8. The Worker entity receives the SensorData and starts the handling of the forecasting 

tasks. First, it creates an Aggregator actor to aggregate the results of the forecasting 

tasks. Then, it starts sending all the forecasting tasks, one by one, to the 

WorkerRouter actor. The WorkerRouter routes each forecasting task to one of the 

deployed routees of the router, distributing all the computing tasks of the SensorData 

among all cluster nodes. 

9. The WorkerRouter route receives the SensorData and proceeds to do the correspond-

ing computation task. Once it is done with the processing, it sends the results to the 

Aggregator actor. 

10. The Aggregator actor, receives one by one the results of the forecasting tasks. Once 

the last one is received, it sends the final result back to the Worker entity actor. 

11. The Worker entity, upon receiving the final result, sends the result back to the Master 

Cluster. 

12. The Master Cluster, through the singleton actor of the cluster, receives the result and 

publish it to a specific topic using a mediator actor that handles the publish-subscribe 

mechanism in the cluster. 

13. A ResultProcessor actor, that is subscribed to publish-subscribe topic, receives the 

result and sends it back to the IoT manager. 

14. The IoT manager receives the results and send it back to the appropriate Sensor that 

created the data. 

15. Finally, the Sensor receives the results of the processing.  

 

 
 

Figure 21. Workflow of the Akka application 

The workflow of the application is relatively complex, as evidenced in the series of steps 

mentioned above, as many aspects are handled by the application using different Akka mod-

ules to achieve high throughput in delivering and processing messages, and to optimize the 

available processing power of all the nodes.  
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4.6 Deployment of the application with Docker 

The deployment process is relatively simple when using Docker in a Docker Swarm envi-

ronment. With the Akka application developed and properly configured, it is only necessary 

to define a Dockerfile that will take the application code and copy it to a location in the 

container, and finally execute the corresponding command on the container. The following 

is the Dockerfile used for the Raspberry Pi: 

The base image will change depending on the underlying architecture of the device. In this 

case an ARM compatible Gradle base image is necessary, given the characteristics of the 

Raspberry Pi. The COPY command changes the user of the file to copy to gradle and copy 

the application into a specific location in the container. Finally, the working directory is 

changed to that location in order for the application to be executed directly from this loca-

tion. The Dockerfile allows to easily create images according to the hardware architecture 

of the device, changing only a few values, so that later it could be used to deploy multiple 

services with it. 

Once the Dockerfile is properly configures, it is necessary to build the images and publish 

them in Docker Hub, so that the images can be available to remote nodes. 

Finally, in order to deploy the whole Application Stack to the Docker Swarm, it is only 

necessary to use the following command: 

 

This will deploy the full stack, defined in the docker-compose file, to the Docker Swarm.  

The series of steps to deploy the Application Stack can be summarized as follows: 

1. Install Docker on all devices. 

2. Initialize a Docker Swarm, creating the first the manager node, and then adding one 

by one each of the worker nodes. 

3. Build the corresponding Docker images. These images vary depending on the hard-

ware architecture of the devices. 

4. Publish the Docker images to Docker Hub. 

5. Configure the docker-compose file according to the required configuration of the 

application. For example, for the Worker cluster, each worker must be defined as a 

service, using different environmental variables to set the addresses, ports, and other 

configuration details used by Akka to form the cluster. 

6. Deploy the application using the docker stack deploy command 

Figure 22 summarizes the whole deployment process using Docker, starting from an 

“empty” Docker Swarm and ending with the Application Stack deployed on the Swarm.  

FROM arm32v7/gradle 

COPY --chown=gradle . /akka/cluster/app 

WORKDIR /akka/cluster/app 

$ docker stack deploy –compose-file docker-compose.yml akkaclusterswarm 
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Figure 22. Deployment process 

After the Application Stack is deployed, all the services will be allocated to the correspond-

ing Swarm nodes as defined in the docker-compose file. All the nodes will start their corre-

sponding Akka systems. This process could take some time, especially in resource constraint 

devices. This is because Docker first needs to download the image from the public reposi-

tory, then, once the image is downloaded, start the container with the image, and finally start 

the Akka application on that container. 

As each node starts their corresponding Akka system, they will start forming the correspond-

ing Akka clusters and start providing the corresponding functionality. This process can be-

come cumbersome as some nodes can start faster than others generating bottlenecks or other 

cluster related issues. Thankfully, Akka provides a configuration mechanism to start an actor 

system only after the cluster has reached a certain size. This is done defining the minimum 

number of members of the cluster, which delays the initialization of the actor system on 

each of the nodes of the cluster, until a specific number of members have joined the cluster.  

Using Docker to create and manage the Swarm environment, allows to use several distinct 

actions on the Swarm, such as restarting services, adding nodes, scaling specific services, 

etc. What is more, with Docker handling the deployment of the Application Stack, there is 

no need to deploy and start each system individually, which can be troublesome on the edge 

giving the amount of devices and their characteristics.   

4.7 Summary 

On this chapter, an IoT Edge architecture was proposed, as opposed of a cloud-centric ap-

proach [17], using the previous applications as guidelines to model a more complex and 

robust distributed application that can be deployed on the network edge, maximizing the use 

of the available computation power of the different edge nodes. Docker was used as the 

main tool for creating and managing the connectivity between the nodes, as well as for de-

ploying the Application Stack to the network edge. 
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5 Evaluation 

Based on the IoT scenario proposed in the previous chapter, the application is evaluated 

according to the research goals defined for this thesis. 

5.1 Feasibility of the Actor model on the edge 

First is the aspect of using the Actor model on the edge. Applications on the edge require 

working in a distributed environment, with all its implications, i.e. network failures, latency, 

etc., where multiple devices need to be connected, constantly sending and receiving data 

between each other. 

These types of requirements can be quite challenging, especially considering the actual 

models used to conceive applications, which generally use object oriented programming or 

other types of paradigms. The Actor model, on the other hand, works naturally in this type 

of environment, where multiple actors, distributed in nature, can interact with each other. 

Actors are by nature independent units of computation. Actors do not share their state and 

work in a single-threaded “illusion” which facilitates the idea of working concurrently with 

multiple actors processing information at the same time with no necessity of synchronization 

or locks. Working with these conditions, or perhaps restrictions, help to visualize how dis-

tributed applications can work and be maintained. 

For instance, In the proposed scenario, the Worker cluster is conceived as a multi-node clus-

ter where each node can hold multiple actors, distributed using cluster sharding. Each 

worker actor on each shard can process work messages independently and concurrently. In 

this context, it is easier to think about scaling the cluster, adding new worker nodes, without 

modifying the underlying architecture or even the code behind these actors. Thinking about 

these requirements from the beginning not only help to avoid future problems but also al-

lows to define more robust architectures from early stages of a project. 

Furthermore, the idea of working in a peer to peer network using the Actor model, goes 

hand in hand with the architecture on the edge, where multiple devices need to interact with 

each other.  

All things considered, the Actor model fits well in the schema of the network edge, espe-

cially comparing with other programming models that are not conceived in this distributed 

model of computation. 

5.2 Suitability for applications 

Akka provides an implementation of the Actor model with multiple modules, addressing 

different types of requirements for different types of applications. Thanks to its rich platform 

it is possible to develop almost any type of application where having a distributed system 

plays a central role. Akka has a small footprint, which allows to create an application envi-

ronment with multiple actors and high performance when it comes to passing messages be-

tween actors. Aspect that is required on the edge, working with resource constrained de-

vices. There are different benefits that can be accomplished using Akka, and these will be 

discussed in the following sections. 

5.2.1 Distributed computing 

One of the most useful characteristics of Akka, is the possibility of using it as a tool for 

distributing computation, which can be very useful in domains such as edge computing, 
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where trying to use all the available computing power in all the nodes is a must. Akka ena-

bles to distribute processing basically on any step of the process chain. Whether it is splitting 

domain entities, with Akka Sharding or diving work with Akka Routing. 

The proposed Akka application, handles the distribution of tasks in different parts using 

different mechanisms. First of all, is the representation of the sensors for processing their 

data. It is important to notice that the system can grow larger over time, considering that the 

number of sensors can be large and so is the data they generate. This situation could even-

tually become a bottleneck if only one or a restricted set of nodes would be in charge of 

processing all the information for all the sensors. Even more daunting, could be the task of 

managing and distributing the processing among these nodes. 

In the proposed architecture, Cluster Sharding is used to distribute the work among the 

Worker cluster, as shown in figure 23. This Akka mechanism, allows to easily manage large 

amount of actors. In this case, an entity actor on a shard represents a sensor. Using the shar-

ding mechanism, Akka handles the distribution process, maintaining a load-balance in the 

cluster without any further intervention. Moreover, the fact that every actor represents a 

sensor, along with its data readings, can be used to store state for each sensor, which can be 

useful for caching or used as a source of information for further analysis 

.  

Figure 23. Distribution of sensor data in the Worker Cluster 

Furthermore, the proposed architecture makes use of all the computing power of the cluster 

by splitting the work itself among the nodes on the cluster. This is done using the cluster 

aware routing mechanism of Akka, as shown in figure 24. 

The idea is to distributed all the different computations that need to be carried out for the 

sensor data. In this case, for any given sensor data, which contains the reading of a sensor 

represented as a set of numeric values, different forecast models must be constructed and 

then compared against each other in order to determine which one fits better the data. The 

computation process of a forecast model, using the ARIMA technique, can require a signif-

icant amount of computation power [17], and if performed by only one node, namely an 
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actor in a shard region, can lead to delays and poor use of the computing power of the whole 

cluster, as other nodes may be idle while one is doing all the heavy work.  

 

 

Figure 24. Distribution of computation tasks of a sensor entity in the Worker cluster 

In this case in particular, each forecast model can be computed independently of others, so 

this process can be distributed among all worker nodes. The whole process begins when an 

entity actor, representing a sensor, receives data to process, the work in this case is to create 

different ARIMA forecast models. Then it forwards one by one all the forecasting tasks to 

the Work Processor, which is a Router actor. This Router actor delegates each forecasting 

task to all the deployed routees in the cluster using a specific routing logic. Each task mes-

sage contains a reference to an aggregator actor.  

Once processing is done by each routee, the result is sent to the aggregator actor. Finally, 

when all computations are received by the aggregator, it will return the final result to the 

entity actor that initiated the whole process. The use of the aforementioned mechanisms 

guarantees that at any point in time, if there is a work, then all the nodes in the Worker 

cluster are processing a part of that work, provided there is sufficient work for all nodes. 

Not only the processing of the work is distributed but also the handling of the results can be 

distributed as well. In this case, the Distributed publish-subscribe mechanism of Akka was 

used to accomplish this task. The singleton actor on the Master cluster is the publisher and 

the result processors actors are the subscribers. Each node on the Master cluster has one 

result processor actor that is created when it is initialized. Upon the reception of the pro-

cessing results, the singleton actor publishes the results to a specific results topic. Using 

Akka’s configuration, each result message is received by only one subscriber, who will fi-

nally send the results back to the IoT cluster. Figure 25 illustrates how this distribution of 

results works. 

The distribution of the results handling can help to increase the response time, as multiple 

results can be send back in parallel, making use of all the available nodes in the Master 
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cluster. 

 

Figure 25. Distribution of results using Distributed pub-sub mechanism 

 

Considering all the components of the architecture and all different things going on at the 

same time, the whole process can become complex and difficult to handle. Nevertheless, 

Akka offers the adequate mechanisms to ease the pain of handling all this logic manually, 

allowing to focus on the optimization of the process, such as the distribution of the compu-

tation among the nodes of a cluster.  

5.2.2 Experimental results 

The application has been tested using synthetic data. The synthetic data corresponds to 

measurements from the sensors. The specific characteristics of the experiment were the fol-

lowing: 

 Synthetic data: Using normal distribution with mean 25 and standard deviation 3 

 3 Edge nodes: 1 Linux Machine, 2 Raspberry Pi devices 

 Number of simulated sensors:  10 

 Number of routees per node: 10 

 Number of data input for models: 80000 

 Number of ARIMA models to compute per sensor data: 4 

 Frequency of data generation: 10 to 30 seconds per sensor data 

 Number of Worker nodes: 1 for the non-distributed case and 2 for the distributed 

case. Both running on the Raspberry Pi devices. 

 

The non-distributed case uses only one worker node. Whereas the distributed case scenario 

uses 2 worker nodes, using Cluster Sharding and Routing for distributing the computation 

among these nodes.  
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Indicators 

Processing time: From the moment the data was sent for processing, from the Master clus-

ter, until the moment the processing result was received, by the Master cluster. 

System load average: The system load average taken every 20 seconds using the Akka met-

rics extension. 

Heap memory usage: The application heap usage on the JVM taken every 20 seconds using 

the Akka metrics extension. 

Processing Time 

In order to measure the time, the java.time.Instant class was used, that is available since 

Java 8. This class uses a specific time-scale which is more precise than using other methods 

such as the common currentTimeMillis. 

The results of the tests are shown in figure 26, where 25 requests of sensor data were pro-

cessed. The time was measured in milliseconds. The results show how the time of using one 

worker tends to grow linearly with more data. Whereas having 2 workers produces a vari-

ance of time within a certain range. In order to understand these results, it is important to 

consider how the processing of forecasting models works. 

 

Figure 26. Time taken to process a sensor data 

Each sensor data needs to compute 4 ARIMA models. With 10 devices there are 40 models 

to compute at a certain point in time. As time passes, the sensors keep sending sensor data 

to process, in the range of 10 to 30 seconds. In the cloud non-distributed case, as there is 

only one worker, that worker keeps accumulating the forecasting tasks in its mailbox queue, 

waiting to be processed, hence, taking more time to process. 

With 2 workers, the processing can be distributed, not only thanks to the sharding mecha-

nism, but also using the routing of the modeling tasks. The result shows that the time does 

not grow as with the 1 worker scenario, but it ranges between certain values. These results 

also depend on the number of routees. With more routees available, there are more actors 

capable of processing, however, this can overload the whole capacity of the system at some 

point creating other problems. 
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System load average 

In regards to the system load, the Akka metrics extension was used. The measurements were 

taken every 20 seconds. The results are shown on figure 27.  

 

Figure 27. System load average of SensorData processing 

It is evident that adding another worker reduces the system load. Nevertheless, the differ-

ence is not very significant, especially as time passes. This can be explained with the amount 

of task to compute. As more time passes, more computing tasks arrive and these are distrib-

uted between the two workers, making them use more CPU resources. 

Heap memory usage 

The same analysis can be applied to the heap memory usage. Figure 28 shows the results. 

Initially, when there are still no incoming messages, the usage is low. The difference in 

respect with the system load is that, in the case of the system load average, the system re-

quires to initialize the cluster and perform initial internal tasks of the whole Akka system, 

which requires CPU resources. In the case of the heap memory, at the beginning only the 

basic actors are created. As times passes, sensor data arrives to the Worker cluster, and more 

actors are created as entity actors in the Shards.  

One important aspect to notice, is how the 2 workers scenario uses more memory. This can 

be explained with the amount of routees that need to be created when a new node joins a 

cluster. For example, node1 is the seed node and creates the cluster. Later, node2 joins the 

cluster. Node1 notices this fact, and it deploys routees do node2. Node2 does the same, as 

soon as it enters the cluster and realizes that there is another node in the cluster, it deploys 

routees on node1. This mechanism is done automatically with the cluster-aware routers con-

figuration. 
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Figure 28. Heap memory usage with respect to time 

Trying to find a perfect balance requires a trial and error approach. Changing some param-

eters, such as the number of routees, or even the configuration of pool routees vs group 

routees can cause significant changes in all metrics. As Akka documentation mentions and 

also different literature on the topic, there is no simple solution for all cases. The appropriate 

set of configuration settings and application structure, will depend much on the requirements 

of the application. 

For the purpose of giving insights for analysis, the scenario proposed was enough to illus-

trate the benefits of using a distributed scenario. From this experiment, it follows that adding 

more nodes and distributing the computation process, as with the Worker cluster, processing 

times can be reduced, which may very well be the most important metric when dealing with 

real-time data processing. 

5.2.3 Programmability for applications 

Regarding programmability, Akka’s toolkit forces to think in terms of actors and messages 

for creating applications. All the modules and libraries that Akka provides, enforce the con-

cept of the Actor model of working with actors and messages. This approach seems appro-

priate in order to develop more robust and consistent applications. 

Application code tends to be more succinct, and the concept of using actors help to encap-

sulate or define more clearly domain concepts. For instance, in the Work Cluster, an entity 

actor on the shard represents a Sensor. This helps to model the whole application using the 

same abstraction level used on the domain design. Furthermore, every actor clearly defines 

its message protocol of what types of messages it sends and receives, placing the corre-

sponding response logic, or computation tasks, behind each type of receiving message in a 

specific manner. 

Another important fact, is that Akka establishes the same code structure for any type of 

actors. This means that despite two actors belonging to different and possibly completely 

unrelated concepts, the code structure for both actors, can be read and understood in the 

same manner. This facilitates the maintenance of the application, looking for possible issues 

within the code, and also makes it easier to update the behavior of an actor, having specific 

places where to define the new logic and handling of messages for an actor. 
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5.2.4 Location transparency 

Another benefit of Akka is location transparency. This means, in programming terms, that 

the code does not change if the system is working locally or remotely. As mentioned previ-

ously, the whole concept of using actors, is to have these actors working in a distributed 

environment. This aspect benefits the programmer in the sense that it is easier to build an 

application that works locally, as done in the first implementation, and then with the help of 

some configuration settings, as shown in the IoT implementation, an application can 

properly work in a remote and distributed environment. This aspect can be of special interest 

to easily develop edge applications, where no major change is needed to deploy a fully func-

tional local single-node application, to a multi-node scenario in the edge, provided all the 

application requirements, in terms of resources or others, are met by the edge devices. 

5.2.5 Difficulty and challenges using Akka 

Despite all these benefits, using the Akka toolkit can result challenging. First of all, it can 

take a long period of time before being able to create relatively complex applications. For 

instance, the proposed Akka architecture for the IoT scenario, involves several different 

concepts, such as clustering, routing and sharding. Trying to develop an application with 

these characteristics all at once can be really challenging. The best approach is to start with 

basic applications, handling one module or concept at a time, such approach was used in 

this thesis. This will allow for better understanding of how Akka uses these concepts and 

how it implements them, so that later, it would be easier to use the corresponding modules 

that Akka offers.  

Second of all, documentation is quite extensive, and it requires lots of time to read it through. 

Some topics are more complex than others, and most of them are related in some way or 

another, which implies that multiple concepts must be considered when trying to learn a 

single one. While most of the concepts are provided with small examples, most of them 

work without modification only in Scala. The examples provided for Java need some kind 

of modification, which can be cumbersome when trying to learn and use complex concepts 

such as Cluster Sharding. 

Additionally, special care must be taken regarding configuration settings and other program-

ming details to avoid breaking the actor encapsulation or the single threaded logic. Luckily, 

Akka documentation provides special recommendations and best practices to avoid these 

pitfalls. 

From a programming perspective, working with Akka applications requires a certain 

knowledge of the toolkit and its modules to understand how an application works. In this 

sense, it is hard to explain to other programmers the semantics of the code and how the 

different modules work together do build an application. Different to what happens with 

other frameworks or tools, an Akka application cannot be explained only with code. Essen-

tially, any programmer trying to understand an Akka application, must first have a basic 

understanding of how the Actor model works and how Akka implements it. 

5.3 Deployment of the Application Stack 

The Application Stack refers to the set of software subsystems or components required to 

have a fully functional application. In the case of the proposed Akka solution, the Applica-

tion Stack is composed of the following components: 

 IoT cluster 

 Master cluster 
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 Cassandra cluster 

 Worker cluster 

Each of these clusters can be composed of one or more nodes where each node represents 

an actor system, or a service provider, such is the case of the Cassandra cluster, where the 

set of nodes in the cluster provide the persistence service, through the distributed database. 

All the clusters, except for the Cassandra cluster, have the same code for running the Akka 

application. Depending on their roles defined in the docker-compose file, they will be de-

ployed and assigned to a specific device on the Docker swarm. This is very convenient as it 

possible to easily define which types of devices can hold which part of the application. 

The Cassandra cluster can be deployed independently as can work as a standalone database, 

or can be deployed at the same time, in the same docker-compose file of the Akka applica-

tion. As previously mentioned, given that the Cassandra cluster deals with data management 

it would be a good idea to deploy the service on more stable and powerful edge devices. 

The platform that Docker offers for application deployment allows to easily distribute the 

application components among different devices. Docker also provides a set of tools and 

services, that can help to have more control of the application as a whole. Trying to handle 

these types of tasks manually in the edge could be very challenging, considering all the 

characteristics of the devices and the complexities of a network communications. 

Relying on Docker for the underlying connectivity between the devices creates a solid plat-

form on which Akka applications can be executed. Not only this, but also the configuration 

management and tools, and small memory overhead of using Docker, makes it a very useful 

tool to use in the edge. 

Certainly, it is also possible to think about using other orchestration mechanism besides 

Docker Swarm, such as Kubernetes or Apache Mesos. However, Docker Swarm works very 

well with Docker containers and being part of the same platform helps to keep things simple. 

5.4 Fault tolerance of the system 

Responding to failures on the system is one of the challenges that edge systems need to 

address. This means that a system needs to possess the ability to self-heal, self-adapt and, in 

more general terms, self-manage. Akka acknowledges this necessity and developed the con-

cept of Supervision Strategy along with other features in order to address these require-

ments. 

5.4.1 Isolation of failures 

Using actors to construct an actor hierarchy helps to deal with failures. The idea is to isolate 

different areas or segments of the system. If there is a problem with a particular branch on 

the actor hierarchy, the problem will be handled by the parent actor of that branch while 

other branches can continue to work normally. This way of dealing with failures also puts 

emphasis on design decisions within the application. 

For example, on the Worker cluster, workers are modelled as entity actors living in shards. 

Each worker entity has a child actor which is in charge doing the aggregation of all the 

model forecasting tasks. If there is a problem with this actor, then its parent actor, the cor-

responding Worker actor, will resolve the issue using a specific supervision strategy. Other 

worker actors are not affected by this failing actor and can continue its normal processing 

as illustrated in figure 29. In a major failing scenario, where the node itself becomes un-

reachable, then the whole shard is migrated to another node in the cluster, providing high 
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availability in respect with working actors in the system. This is, by no means, the only way 

of achieving high availability, as Akka offers other types of features and modules, such as 

cluster- aware routers, used for distributing work in the Worker cluster, that not only deal 

with issues regarding the availability of the system but also can help in terms of scalability. 

It is also important to notice how the failure handling process is done without the interven-

tion of any other entities other than the system itself. This is a characteristic that is much 

appreciated on remote systems where accessibility and maintainability are hard to accom-

plish.  

 

Figure 29. Isolation of failures on a shard 

Applications on the edge, and more specifically the actors/entities of an application, need to 

be designed in a way that the actor hierarchy reflects the domain entities. Most likely, using 

bounded contexts. This could potentially help to better visualize and address particular prob-

lems in specific areas of the application. For instance, in the context of the network edge, 

an edge device can define specific actors for different services, and in the case one of those 

actors have a problem, only one service would be down while the rest of the services would 

still be available. 

5.4.2 Use of replicas to update and maintain the system 

Using replicas can help to keep the system available in different common scenarios; for 

example, when a service needs to be updated or during migration of data. To illustrate this 

idea, it is possible to think on a service deployed using Akka clusters on 5 different nodes. 

After a while, there could be a requirement for the service to change in according to some 

specific domain requirements. 

While a normal full update would require to stop the service, making it unavailable for users 

or other components using it, a partial and controlled update can be carried out without 

requiring the whole service to stop, and ultimately converge into a full system update. This 

process can be done by taking down one actor system replica at a time, or depending on the 

distribution of the service, it could be done taking multiple nodes at a time. Figure 30 shows 

this scenario. These nodes can be updated with the new application logic and all the setup 

required for the new service. Meanwhile, the service is still active during this partial update 

thanks to the remaining replicas of the service. 
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Figure 30. Service with 2 replicas down in an Akka Cluster 

From within Akka, it is possible to stop the actor system running the application on the node 

and deploy the updated actor system with the new service. In this case, the Akka system is 

down, but the node on the Docker swarm is still connected and reachable, no need to fully 

restart or take down the node itself. 

If a greater change is needed on the node, such as hardware update or maintenance is re-

quired, then apart from taking the Akka node down, it is also possible to remove the node 

from the swarm. The situation of the service is still the same, the replicas are still up and 

running making the service available during this period.  

Another possibility to apply an update would be to start another actor system on a new 

container, but on the same swarm node, with the updated service, until the old one is no 

longer needed and then taken down. Figure 31 illustrates this idea. This would mean that a 

node would be running two actor systems at the time. This is possible using Akka. In addi-

tion to this, Akka allows to run more than one actor system on the same JVM meaning that 

it would be possible to put the updated service on the same container (two actor systems on 

the same JVM). Nevertheless, it is better to keep the isolation that Docker containers offer 

and simply deploy one actor system on one container. There could be also other issues with 

this approach, such as impact on performance or other undersired results. 

 

Figure 31. Two different actor systems deployed on the same node 

Applications are constantly changing and evolving and so are the technologies on which 

these application are running. Using the combination of Akka and Docker allows for a sys-

tem to keep up with this fast change, without repercussions on the availability of a service 

by its consumers.  
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5.5 Summary 

On this chapter, the proposed IoT scenario was used to evaluate how the Actor model can 

be implemented in the network edge using Akka, responding to the research questions pro-

posed for this thesis. A detailed analysis of the different aspects considered for the applica-

tion were discussed and possible alternative scenarios were also taken into account for the 

different evaluations. 
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6 Conclusions 

The main goal of this thesis was to investigate how the Actor model can be applied in the 

network edge using Akka for building IoT applications. After going through the main con-

cepts of the Actor model and how Akka implements this concept, with its different modules 

and libraries, it was demonstrated that the Actor model complies with the different require-

ments of the network edge, in regards to working in highly distributed environment. Three 

different applications were developed.  The last one proposes an edge solution to an IoT 

Wireless Sensor Network scenario, that previously used a cloud-centric approach. Different 

considerations were taken into account to evaluate this solution in order to demonstrate the 

benefits of using the Actor model, through Akka, on the network edge. Throughout this 

process, several ideas were proposed and different scenarios were considered with respect 

to the possible types of applications/architectures that can be built using the Actor model 

concept. The result of this analysis is summarized in the following paragraphs.   

First of all, as described in this thesis, the Actor model involves a different approach to 

model applications, in which distribution or partition of an application plays a central role. 

Different literature [23] [24] try to address this specific challenge. Most of this literature 

propose to start with the perspective of using Domain Driven Design to decompose an ap-

plication into more refined parts. The concept of bounded contexts, aggregates and entities, 

are useful to start thinking in terms of actors and define their hierarchy. Having said that, 

putting these ideas into practice is not a trivial task. Decomposing a domain into actors, may 

very well be, one of the most difficult challenges trying to work with the Actor model. 

Thankfully, Akka forces to think about these concerns from the beginning of the develop-

ment process avoiding more complex problems in more advance stages of the process. This 

favors making important decisions early on, so that, if implemented correctly, can bring 

along different benefits such as high availability, fault tolerance, and scalability among oth-

ers. On the other hand, if these concerns are not carefully analyzed, additional complexity 

can be added to an application that can make working with actors a complicated venture. 

It is also important to consider the context of the domain of the applications. When dealing 

with applications in the edge, applications must include the modelling of different devices 

in a distributed environment. In this sense, the domain of edge applications is already dis-

tributed and partitioned, which makes it easier to think in terms of actors. Nevertheless, 

there are other important aspects to consider, such as the granularity of the application with 

respect to the actors.  

Another important dilemma originates at the moment of deciding which Akka features to 

use. Selecting the appropriate modules and applying them on the right components of an 

application, can improve the system’s overall performance, increasing availability and 

scalability among other desired qualities. This aspect was demonstrated in this thesis, where 

a cloud IoT scenario was modeled with an edge architecture, maximizing the use of the 

available computation power of all the devices in the edge.  

Applying the concepts available through Akka, and essentially from the Actor model, re-

quires good understanding of Akka’s Actor model implementation, plus the knowledge of 

the domain to model and creativity when it comes to ensemble all these elements together.  

In regards to the use of the Akka toolkit, first and foremost, a good basic knowledge of how 

the Actor model works is required. This can be quite challenging given it involves a different 

way of thinking about applications. But even more challenging can be applying the Actor 

model using Akka. Implementations of the Actor model, add a layer on top the model in 

order to make it more practical. Akka uses a vast amount of concepts to accomplish this. 
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Several of these concepts were mentioned and used in this thesis, such as remoting, cluster-

ing, persistence and sharding. The implementations of these concepts involve different types 

of configuration details that have to be well defined in order to use them properly. While 

some are simple, others can be quite hard to understand. The documentation of Akka is 

abundant, which can be overwhelming for new developers, trying to understand all the con-

cepts at once. 

Equally hard is the idea of creating libraries on top of Akka. As previously mentioned, this 

task would not only require to have a proper knowledge of the Actor model but also of the 

inner details of how Akka implements the model. Developing small libraries do not seem 

like a good approach either, as they would not add anything significant to the toolkit. In fact, 

Akka already handles many aspects and it could be even hard to find a new one that Akka 

does not already provide some kind of solution. Most of the libraries or frameworks built 

on top of Akka are robust frameworks that handle specific types of applications, such as the 

Play framework for web applications or the Lagom framework for microservices. Other 

small projects focus on creating drivers or connectors, such as the ones for integrating dif-

ferent types of databases to Akka. 

Selecting a programming language to work with Akka can play an important role in the 

short and long term. While there is an API for Java and different resources using Java, most 

of the official examples, projects and bibliography, use Scala as the main programming lan-

guage. This becomes a sort of disadvantage trying to learn and apply different concepts 

using Java, as there are no clear working examples to use as prototypes. Moreover, Akka 

was written in Scala, using its concepts and features. Most of these are adapted for the Java 

API. As a result, parts of the code can end up in a mix of Scala-Java code. While both 

languages are compiled to Java bytecode, and any other JVM language can be used on top 

of it for that matter, it is clear that Scala is the predefined language for implementation, and 

in case of dealing with serious long term projects, it would make sense to learn and use 

Scala. 

All in all, Akka provides a very complete set of tools for building distributed applications. 

The developers of these tools tried to consider almost every possible scenario, and are con-

tinuously improving and adding more modules in order to provide a more comprehensive 

toolkit. 

Regarding the deployment process, Docker helps with the process of managing the different 

nodes of the system. It provides a robust platform on which Akka applications can easily be 

deployed relying on all the tools and guarantees that Docker provides, as shown in the ap-

plications developed for this thesis. Docker Swarm is the orchestration mechanism that 

Docker uses to manage multiple containers, and it is useful when thinking in terms of multi-

node clusters, and how to manage them in order to deploy Akka applications. 

On another note, the distributed nature of Akka, makes it a good candidate for integration 

with other distributed applications and tools. For example, in the proposed edge architecture, 

an Apache Cassandra cluster was used as a distributed journal. Cassandra uses the same 

concepts of nodes, seeds and clusters, which makes it an excellent candidate to integrate 

with Akka. The idea of working in a distributed environment does not constraint to data-

bases. Different frameworks and technologies are being developed in terms of highly dis-

tributed systems, which facilitates the process of implementing applications on the edge. 

In summary, throughout this thesis, the Actor model was studied and used as an application 

model for developing applications on the edge. An IoT Akka system architecture was pro-

posed along with its implementation, based on a Wireless Sensor Network IoT scenario, in 
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order to show how applications can be conceived in the edge rather than relying on the 

cloud. As a result, Akka presents itself as a comprehensive set of tools that can be used to 

implement distributed applications using the Actor model as an application model, which 

can be applied on different types of domains, and it results particularly useful in the domain 

of IoT systems, and more specifically on the network edge, as it directly addresses some of 

the issues and challenges of edge computing, such as distribution of computation and self-

managing of the edge nodes.  
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