

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

CLIVE TINASHE MAWOKO

 Aligning Data-Aware Declarative Process Models and Event Logs

Master’s Thesis (30 ECTS)

Supervisor(s):

Prof Fabrizio M. Maggi

Tartu 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgements

Firstly, I give honour to the Almighty God for giving me strength and the gift of life. I would like

to express my profound gratitude to the University of Tartu for giving me the opportunity to live

and study in Estonia. I have learned a whole lot more than this thesis can review and I’m grateful.

I then want to give special thanks to Professor Fabrizio Maria Maggi and Professor Marco

Comuzzi for their continued guidance and support throughout the course of this thesis. This thesis

wouldn’t have become a success without them. I would also like to thank Dr Felix Mannhardt for

his help with the implementation of the solution in this thesis. Lastly, I would like to thank my

family and friends for their continued support throughout this period. May God bless you all.

iii

Aligning Data-Aware Declarative Process Models and Event Logs

Abstract

Conformance checking, a branch of process mining, allows analysts to determine whether the

execution of a business process matches the modeled behavior. Process models can be procedural

or declarative. Procedural models dictate the exact behavior that is allowed to execute a specific

process whilst declarative models implicitly specify allowed behavior with the rules that must be

followed during execution. The execution of a business process is represented by event logs.

Conformance checking approaches check various perspectives of a process execution including

control-flow, data and resources. Approaches that checks not only the control-flow perspective,

but also data and resources are called multi-perspective or data-aware approaches. The approaches

provide more deviation information than control-flow based techniques. Alignment based

techniques of conformance checking have proved to be advantageous in both control-flow based

and data-aware approaches. While there exist several data-aware approaches for procedural

process models that are based on the principle of finding alignments, there is none so far for

declarative process models.

In this thesis, we adapt an existing technique for finding alignments of logs and data-aware

procedural models to declarative models. We implemented our approach as a plugin of the process

mining framework ProM and evaluated it using event logs with different characteristics.

Keywords: Process Mining, Declarative Process Models, Data-aware Conformance

checking, Alignment

CERCS: P170 - Computer science, numerical analysis, systems, control

iv

Andmeteadlike deklaratiivsete mudelite ja sündmuste logide

joondamine

Abstrakt

Vastavusanalüüs on haru protsessikaevanduses, mis võimaldab analüütikutel saada aru, kas

äriprotsesside sooritused järgivad mudeldatud käitumist. Protsesside mudelid võivad olla nii

protseduurilised kui ka deklaratiivsed. Kui protseduurilised mudelid kirjeldavad ära täpsed

võimalikud tegevused, siis deklaratiivsed mudelid kirjeldavad reeglid, mis peavad olema protsessi

sooritusel olema järgitud. Äriprotsesside täitmiste hoiustamiseks kasutatakse sündmuste logisid.

Vastavusanalüüsi meetodid kontrollivad erinevaid protsessi sooritusega seotud vaateid, milleks on

juhtimisvoog, andmed ja ressursid. Meetodid, mis käsitlevad endas lisaks juhtimisvoole ka

andmeid ning ressursse kutsutakse mitmevaatelisteks või andmeteadlikeks lähenemisteks.

Mitmevaatelised meetodid annavad rohkem informatsiooni kõrvalekallete kohta võrreldes

juhtimisvoogudel põhinevate meetoditega. Joondustel põhinevad vastavusanalüüsi meetodid on

olnud edukad nii juhtimisvool põhinevate kui ka andmeteadlike lähenemiste puhul. On olemas

mitmeid joondamisel põhinevaid andmeteadlikke lähenemisi protseduuriliste mudelite jaoks, kuid

deklaratiivsete mudelite jaoks need puuduvad.

Antud töös on kohandatud olemasolev meetod, mis võimaldab sooritada vastavusanalüüsi

andmeteadlike protseduuriliste mudelite puhul, kasutades logide joondustel põhinevat meetodit,

võimaldamaks kasutamist ka deklaratiivsetel mudelitel. Deklaratiivsetel mudelitel rakendatav

meetod implementeeriti moodulina protsessikaeve keskkonna ProM jaoks ja hinnati

implementatsiooni kasutades erinevaid sündmuste logisid.

Märksõnad: Protsessikaevandus, Deklaratiivsed protsessimudelid, Andmeteadlik

vastavusanalüüs, Joondamine

CERCS: P170 - Arvutiteadus, arvanalüüs, süsteemid, kontroll

v

Table of Contents

Acknowledgements ... ii

Abstract .. iii

Abstrakt .. iv

1 Introduction .. 1

2 Background of Study ... 3

2.1 Process mining and event logs .. 3

2.2 Declarative modeling .. 4

2.2.1 Declare templates ... 6

2.2.2 Declare with data .. 8

2.3 Finite State Automata .. 9

2.4 Integer Linear Programming ... 10

2.5 A* Algorithm .. 11

3 Conformance Checking Framework .. 12

3.1 Event logs .. 12

3.2 Data-aware Declare Models .. 12

3.3 Data-aware Alignment of Declare Models.. 15

3.4 A* Algorithm .. 17

3.5 Search Space Reduction .. 21

3.6 Degree of Conformance .. 22

4 Implementation and Evaluation ... 24

4.1 Implementation.. 24

4.2 Evaluation.. 25

4.2.1 Solution verification ... 26

4.2.2 Performance evaluation .. 30

vi

5 Related Work ... 33

6 Conclusion and Future Work ... 37

7 References .. 38

Appendix ... 41

I. License ... 41

vii

List of Figures

Figure 1: An example trace with events and attributes in XES format ... 3

Figure 2: A complete meta-model UML 2.0 class diagram for the XES standard 4

Figure 3: Declare model with 8 activities and 6 constraints .. 5

Figure 4: Example Declare constraint automata .. 14

Figure 5: Augmentation of a control-flow successor of an alignment prefix 20

Figure 6: A* graph for example 1 .. 21

Figure 7: Screenshot of a single trace alignment details ... 25

Figure 8: Single constraint declare model with a simple condition ... 26

Figure 9: Alignment result of a Declare model with a simple condition 26

Figure 10: A single constraint Declare model with a string condition .. 27

Figure 11: Alignment result of a model containing a string condition .. 27

Figure 12: A single constraint declare model with multiple conditions 28

Figure 13: Alignment results of a Declare model with constraint with multiple conditions 29

Figure 14: A Data Aware Declare Model with 3 constraints .. 29

Figure 15: Multiple constraint result obtained from the Data Aware Declare Replayer 30

file:///C:/Users/Clive%20T%20Mawoko/Documents/Thesis%20Write%20Up.docx%23_Toc8642699

viii

List of Tables

Table 1: List of Declare existence templates ... 6

Table 2: List of Declare relation templates .. 7

Table 3: List of Declare negative relation templates ... 8

Table 4: List of Declare choice templates .. 8

Table 5: An example ILP Problem .. 11

Table 6: Single event log trace ... 26

Table 7: Experiment results (in seconds) for a cost function with a higher control-flow cost

value .. 31

Table 8: Experiment results (in seconds) for a cost function with a higher data variable cost

value .. 31

1

1 Introduction

Business process execution in companies are usually supported by process-aware information

systems which store an event log containing every activity/event that goes through the system.

Conformance checking is a branch of process mining that verifies whether the recorded behavior

in an event log matches the modeled behavior in a process model [1]. This type of analysis is

critical in domains such as process auditing, security and risk analysis.

Business process models can either be procedural or declarative. In procedural models, the

finishing of one activity may enable the execution of other activities. They dictate the exact

behavior that is allowed to execute a specific process and examples include Petri nets and BPMN.

Procedural models are ideal for processes that are predictable. Declarative models implicitly

specify the allowed behaviors with rules that must be followed during execution [2]. Also known

as constraint-based models, in declarative models, everything is allowed unless it is specified as

forbidden. An example is Declare [3]. Declarative models are not restrictive like procedural

models but allows every behavior except those that are explicitly listed as constraints. Declarative

models are best suited for processes that are dynamic where users can use their discretion to choose

which path to follow e.g. in healthcare systems.

Conformance checking can either be control-flow based or multi-perspective. Control-flow based

approaches only consider the ordering of activities, ignoring other perspectives such as data, time

and resource perspectives. As the name suggests, multi-perspective approaches, also known as

data-aware approaches, consider the control-flow plus data, time and resource perspectives. While

control-flow based approaches can discover deviations, more deviations can be discovered by

introducing the data, timing and resource aspects [4]. [1] also reiterates this, giving examples of

deviations related to activities that are executed by a wrong resource; such deviations cannot be

discovered using control-flow based approaches only because the order of events remains correct

until details of the resource that executed the activity are checked. Four quality dimensions can

be used in conformance checking. The most well-known is fitness which states that a log with high

fitness contains only behavior that is in line with the model. Other dimensions are precision,

simplicity and generalization. Precision describes the degree to which a model allows unlikely

behavior given the observed behavior in an event log [5]. According to [6] simplicity shows how

2

the resulting process model is readily understandable and generalization refers to the ability of a

process model to abstract from the behavior that is documented in the logs

The focus of this thesis is on data-aware or multi-perspective conformance checking of declarative

models. The majority of the data-aware conformance checking approaches for procedural models

are based on the principle of alignment. An alignment can show how an event log can be changed

to perfectly fit a process model. [4] [7] [8] [9] [10] [11] use the principle of alignment in their

approaches. The main advantage realized is that of easily providing diagnostics. Alignments show

exactly where the deviations are, and their severity. [8] points out that a log-model alignment can

be used as input of a variety of other techniques such as techniques for cleaning an event log by

removing traces that should not be used in further analysis. Another use case is conformance

checking of an event log against a process model highlighting exactly where deviations occur.

Also, alignments can be used to repair process models based on the behavior present the log.

However, to the best of our knowledge, a data-aware conformance checking approach for

declarative models based on the principle of alignment does not exist in the literature. This has

motivated us to come up with an alignment-based data-aware conformance checking

approach for declarative models. The technique takes as input, a declarative model and an event

log, and outputs for each trace in the event log, an alignment that shows how the trace can be

replayed on the model. A similar approach was presented in [8] but only considered the control-

flow perspective. We extend this approach to also consider data variables. We use the A*

algorithm to compute the alignments like in [7]. We implemented our approach as a plugin of the

open source framework ProM [12].

This thesis is structured as follows:

• Chapter 2 gives a background of the related tools and techniques used in this research.

• Chapter 3 gives the details of our conformance checking approach.

• Chapter 4 describes how the solution was implemented and presents the results of the

evaluation.

• Chapter 5 discusses the related work as presented in the literature and we conclude in

Chapter 6.

3

2 Background of Study

This chapter discusses the background elements required to understand the rest of this thesis.

These include event logs, declarative process modeling, finite state automata, integer linear

programming and the A* algorithm.

2.1 Process mining and event logs

Process mining is the extraction and/or analysis of knowledge from process execution data aimed

at discovering, monitoring and improving processes. Process execution data is also known as

event logs. Three branches of process mining include automatic process discovery, performance

analysis and conformance checking [6]. Process execution data, in the form of event logs, contain

information about process instances as a collection of traces. One trace corresponds to one process

instance. Each trace consists of a sequence of events, which are ordered according to their time of

execution. An event refers to a well-defined step in a business process, known as an activity.

Traces and events contain attributes. As key-pair values, attributes are used to store additional

information such as name of trace/event, data elements associated with an event, the executor of

an event, timestamps etc.

For uniformity, the IEEE Task Force on Process Mining promotes the usage of the eXtensible

Event Stream (XES) format [6]. XES is an XML-based standard for event logs. It is aimed at

providing a generally-acknowledged format of how event logs are stored, exchanged and analyzed

[13]. Figure 1 shows an example trace with events and attributes in XES format. The complete

metamodel of the XES standard is represented in Figure 2.

Figure 1: An example trace with events and attributes in XES format

4

2.2 Declarative modeling

Declarative models implicitly specify allowed behaviors with rules that must be followed during

execution [2]. In this thesis, we focus on a declarative language called Declare, which was

Figure 2: A complete meta-model UML 2.0 class diagram for the XES standard [24]

5

introduced in [3]. Declare is a constraint-based process modeling language. A Declare model

consists of a set of activities and a set of constraints defined on the activities. Any activity can be

executed in a Declare model if it does not violate any of the set constraints. The example in Figure

3, taken from [8], shows how a process can be modeled using the Declare language. The process

is executed a travel agency that handles health insurance claims. Activities are shown as rectangles

and constraints are the connectors between the activities.

Figure 3: Declare model with 8 activities and 6 constraints [8]

The model in Figure 3 indicates that Low Insurance Check and High Insurance Check cannot

coexist in the same process instance as depicted by the not co-existence constraint. The co-

existence constraint indicates that Low Insurance Check and Low Medical History always occur

together in any order. High Medical History can only be executed together with High Insurance

Check, in any order. This is what the responded existence constraint entails. The not succession

constraint depicts that Contact Hospital cannot be followed by High Insurance Check in the same

process instance. The response constraint entails that Create Questionnaire is followed eventually

by Send Questionnaire. The questionnaire can be filled and received (Receive Questionnaire

Response) if it was sent before in the precedence constraint.

The Declare language specifies a set of standard templates that are used in creating constraints.

That is, constraints are concrete instantiations of templates [14]. The use of templates makes the

model comprehension independent of its formal implementation. This approach helps analysts to

work with the graphical representation without the knowledge of the underlying formulas.

6

2.2.1 Declare templates

Declare templates can be divided into four major groups: existence, relation, negative relation and

choice.

1. Existence templates

This is a set of unary templates. Unary templates are only applicable to a single activity. Table 1

shows the list of existence templates including init, end, atmostone, participation and absence.

Template Name Description Graphical

Representation

Init(A) The process instance must start with activity

A

End(A) The process instance must end with activity A

Participation(A) Activity A must be executed at least once in a

process instance

AtMostOne(A) Activity A must not be executed more than

once in a process instance

Absence(A) Activity A should not be executed in a process

instance

Table 1: List of Declare existence templates

2. Relation templates

These are rules affecting two activities and their relationship. The occurrence of one determines

the occurrence of the other. They are either ordered or unordered. In ordered relation templates,

the activities should occur in a specifies sequence while in unordered templates, activities can

occur in any order. Table 2 shows a list of the relation templates.

7

Template Name Description Graphical

Representation

Responded existence(A,B) If A occurs at least once, B must occur

at least once either before or after A

Co-existence(A,B) If either A or B occurs, the other

activity has to occur as well

Response(A,B) If A occurs, B must eventually occur

Precedence(A,B) A must occur before B

Alternate response(A,B) A stricter version of response which

enforces that no other A should occur

between the execution of A and B

eventually following.

Alternate precedence(A,B) A stricter version of precedence which

enforces that no other B must occur

between B being preceded by A (e.g.

ABB is not allowed).

Chain response(A,B) If A occurs, then B must occur

immediately after A

Chain precedence(A,B) If B occurs, then A must have

occurred immediately before B

Table 2: List of Declare relation templates

3. Negative Relation templates

This group describes the negated versions of the relation templates. Like relation templates, they

can also be ordered or unordered. Table 3 shows the list of negative relation templates.

8

Template Name Description Graphical Representation

Not RespondedExistence(A,B)

Not Co-Existence(A,B)

Either A or B can be executed

but not both

Not response(A,B)

Not precedence(A,B)

Not succession(A,B)

Before the execution of B

there cannot be A. After the

execution of A, B cannot

occur

Not chain response(A,B)

Not chain precedence(A,B)

Not chain succession(A,B)

A and B should never follow

each other directly

Table 3: List of Declare negative relation templates

4. Choice templates

In choice templates, one must choose to execute an activity from a set of given activities. Table 4

below shows a list of the choice templates.

Template Name Description Graphical Representation

Choice(A,B) At least A or B must be executed

Exclusive Choice(A,B) At least A or B must occur but not

both

Table 4: List of Declare choice templates

The above lists of Declare constraint templates are not exhaustive. Further details can be found in

[15].

2.2.2 Declare with data

As stated in section 2.1, an activity is associated with attributes that store additional information

related to the execution of that activity. This information can include the data variables written by

the activity, the time event was executed and the resource that executed that activity etc. This

information is also known as the payload of an activity. The Declare constraints discussed so far

only focus on the ordering and execution of activities (control-flow) ignoring the data aspects. To

include data, the Declare constraints are extended by adding three conditions on the payload of the

9

activity namely, activation, correlation and temporal condition. These are added in the following

format:

Constraint_name(activity_A, activity_B)[activation condition][correlation condition][temporal condition]

• The activation condition specifies a condition on data that must hold true when the

constraint is activated. This means that the constraint should not be activated when this

condition is false. This condition is only on data of the activation payload.

• The correlation condition is related to the occurrence of the target activity. Target is said

to have occurred only if this condition is fulfilled. This condition can include data from

both activation and target payloads.

• The temporal condition is used to specify time distances between activities.

The technique presented in this thesis is only focused on constraints with activation

conditions.

To specify the payload in a constraint, the dot operator can be used. In particular, we indicate with

A.x, the data attribute x attached to activity A. The above example can be written as follows:

Co-existence(LowInsuranceCheck, HighInsuranceCheck)[LowInsuranceCheck.amount<300][][]

NB: The other condition brackets are empty because they are not being considered.

2.3 Finite State Automata

A finite state automaton (FSA) is a mathematical model of computation based on a labelled

transition system. The transition system can be defined as A = (Σ, Ψ, ψ0, δ, F) where

• Σ is the finite input alphabet

• Ψ is a finite, non-empty set of states

• ψ0 ∈ Ψ is an initial state

• δ ∈ Ψ × Σ → Ψ is the state transition function

• F ⊆ Ψ is the non-empty set of final or accepting states (F ≠ ∅)

A state transition function is a function, such that, given a state and a character (input), returns a

new state, the target state (if defined). The FSA can be used to evaluate a set of inputs, one at a

time, using the state transition functions. A finite path 𝜋 of length 𝑛 over A is a sequence 𝜋 = 𝜋1,

… ,𝜋𝑛 of tuples 𝜋i = 𝑠𝑖−1, a𝑖,𝑠𝑖 ∈ δ, where a is an input character, for which the following

condition hold true:

10

i. 𝜋1 , the first tuple, is such that 𝑠0 = ψ0 (it starts from the initial state), and

ii. the starting state of 𝜋𝑖 is the target state of 𝜋𝑖−1 : 𝜋 = (s0, a1 , s1)(s1, a2 , s2), … , (sn-1, an ,

sn)

A sequence of characters of length n is said to be accepted by the automaton A if 𝜋n = 𝑠n−1, an,𝑠n

s.t sn ∈ F [14]

2.4 Integer Linear Programming

Integer linear programming (ILP) is an approach for achieving optimization in a mathematical

model given a linear objective function and a set of linear constraints. ILP solves the problem of

either maximizing or minimizing a linear function with respect to given conditions or constraints

[16]. The goal is to find optimal variable values that solve the given ILP problem. It is called an

integer problem when all the variables are integers. When some but not all are none integer, such

as strings, it is called a mixed integer problem. Consider the example in Table 5 taken from [17].

The aim is to find a real number x, given certain conditions. The initial step defines the minimum

and maximum possible values of x. This means that x is a number between m and M, i.e., m < x

< M. The first condition states that x should be less than 10. This changes the solution for x to be

m < x < 10. The next condition states that x should be more than 5. This changes the lower limit

for x and the solution becomes 5 < x < 10. If we continue adding conditions to x, we reduce to

range of possible values for x thereby moving closer to the actual value. It is important to note,

however, that not all new conditions necessarily change the range for x. All previous conditions

must remain true. That is, if a new condition intends to change either the lower limit or upper

limit, the range only changes if the previous values remain true otherwise it remains the same or

the value is lost (no solution is found). An example is the condition in step 4 which states that the

value of x should be less than 100. In this case, an upper limit of 100 violates a previous conditions

stating an upper limit of 10. However, since setting the upper limit to 10 fulfils both conditions,

the range remains 5 < x < 10. Other conditions can fix the value to a constant. By adding condition

5, x = 9, we set both the minimum and maximum at 9. If a new condition violates any of the

previous conditions, it means a solution cannot be found. An example is the condition in step 6

which changes the upper value of x to 8 when a previous condition set it to 9. Both conditions

cannot coexist and hence there will be no solution.

11

Step Condition Range Has Solution

0 init m < x < M true

1 x < 10 m < x < 10 true

2 x > 0 0 < x < 10 true

3 x > 5 5 < x < 10 true

4 x < 100 5 < x < 10 true

5 x = 9 x = 9 true

6 x < 8 no solutions false

Table 5: An example ILP Problem [17]

2.5 A* Algorithm

A* algorithm is a search algorithm intended to find the path with the lowest overall cost between

two nodes in a direct graph with costs associated to nodes. Given a graph, V, and a node v0 ∈ V

as the start node, A* explores adjacent nodes until reaching any node of the given target set. There

is a cost associated with every node v determined by the evaluation function f(v) = g(v) + h(v)

where g(v) is a function that returns the smallest path from v0 to v and h(v) is a heuristic function

that estimates the path cost from v to its preferred target node. Function h(v) should underestimate

the distance of a path from one node to its preferred target node. If so, A* is guaranteed to find a

path with the lowest overall cost. The algorithm keeps a priority queue of nodes to be visited and

high priority is given to nodes with the lowest costs so as to visit those first. The algorithm works

iteratively; at each step, a node v with the highest priority is drawn from the queue. If it belongs

to the target set, then the algorithm terminates returning that node. Otherwise, v is expanded and

every successor is added to the priority queue with a cost f(v′).

12

3 Conformance Checking Framework

This section discusses the main focus of this thesis, i.e. the framework for computing alignments

between a data-aware declare model and an event log. We illustrate the framework using examples

about how different scenarios can be handled. In general, the approach takes as input an event log

and a data-aware Declare model. It then produces for each trace in the event log, an alignment

that best describes how the trace can be replayed on the model without violating any constraint.

The alignment shows how the trace conforms to the model and to quantify conformance, we

calculate fitness.

3.1 Event logs

Let AL be a set of log activities and XL be the set of log variables defined over a universe U of

values. An event is pair e = a, V where a ∈ AL is the activity to which e refers and V : XL ↛ U is

a function that associates variables x ∈ X to a value V(x). Denote with E = (AL × (XL ↛ U) the set

of possible events. An event log ℒ is a multiset of traces, where each trace is a sequence of events

in E.

Example 1: Let us assume a log with the following trace:

σ = (B, {x=3;y=”Sam”}), (A, {x=5;y=”Philip”}), (C, {x=5}), (D, {x=1;y=”Philip”})

3.2 Data-aware Declare Models

A data-aware Declare model consists of a set of Declare constraints each of which can be

represented through a final-state automaton with conditions attached to transitions. Declare

constraints are defined over a set A of activities and a set X of variables. Without any loss of

generality, we assume that A ⊆ AL and X ⊆ XL where, as discussed above, AL and XL indicate the

set of log activities and variables, respectively.

Potential deviations of an event log from a reference data-aware Declare model can be identified

by a mapping between events in the log and execution traces admissible by the model. Declare

allows for the execution of any activity, even those that are not in the model. The set of activities

in the event log but not specified by the process model, denoted AL∖ A, do not need to be

distinguished for conformance checking. This enables us to reduce the space of the allowed

13

behaviors. However, we cannot completely abstract from such activities because some constraints

use LTL's next operator (e.g., the chain response and chain precedence constraints). Therefore, in

the remainder, any activity in AL∖ A is mapped onto the special tick activity .

Example 1 (cont): Assuming we have a Declare model with the following constraints

Response(A,B)[A.x>3][][]

Absence(D)[D.x>3&&D.y==“Sam”][][]

Because only A, B and D are specified in the model, activity C is converted into . The above log

trace, σ, is converted to 𝜎 as follows:

𝜎 = (B, {x=3;y=”Sam”}), (A, {x=5;y=”Philip”}), (, {x=5}), (D, {x=1;y=”Philip”})

We now formally introduce the concepts of data-aware Declare constraints and models. A Data-

Aware Declare model is a set of declare constraints along with the definition of the set of variables,

the potential values taken on by those variables and the definition of writing operations that

indicate the set of variables which the different activities are prescribed to assign/update the value

of.

Definition 1 (Data-Aware Declare model). A data-aware Declare model D = (A; X; U; Val; I;

Write; 𝛱) consists of:

• a set A of activities;

• set X of variable names (process data);

• a (potentially infinite) set U of variable values;

• a function I : X → U that assigns the variable's initial values

• a function Val : X → 2U defining the admissible values for each variable x∈X, i.e., val(x)

is the (potentially infinite) domain of variable x;

• a function Write : A → 2X that define the variables that are written by each activity a ∈ A.

• a set 𝛱 of data-aware declare constraints over A and V

We extend the finite state automata discussed in section 2 to include the concept of guards. A

guard is a data condition that is assigned to a transition, such that, the transition will only fire if

the condition is true.

Definition 2 (Data-aware constraint automaton). Let A be a set of activities and let X be a set

of variables. Let Guard(X) be the set of all possible guards defined over the set X of variables. The

14

constraint automaton 𝒜A;X = (Σ, Ψ, ψ0, δ, G, F) over a set A of activities and a set X of variables

is a final-state automaton which accepts precisely those traces that satisfy a Declare constraint,

where:

• Σ = A ∪{}is the input alphabet;

• Ψ is a finite, non-empty set of states;

• ψ0 is an initial state;

• δ∈ Ψ × Σ → Ψ is the state-transition function

• G ∈ Ψ × Σ → Guard(X) is a guard function that assigns a guard to a transition.

• F ⊆ Ψ is the set of final states.

Example 1 (cont): The response constraint mentioned above can be represented as follows:

• Σ = {A;B;D;}

• Ψ = {S0;S1}

• ψ0 = {S0}

• δ = { S0 × {A} → S1; S0 × {Σ ∖A} → S0; S1 × {Σ ∖B} → S1; S1 × {B} → S0; }

• G = { (S0 × {A} → 𝑆1) ⟵(x>3), (S0 × {A} → 𝑆0) ⟵ !(x>3)}

• F = { S0}

The absence constraint can be represented as follows:

• Σ = {;;;D}

• Ψ = {S0}

• ψ0 = {S0}

• δ = { S0 × {Σ ∖D} → S0}

• G = { (S0 × {D} → S0) ⟵!((x>3)&&(y==“Sam”))}

• F = { S0}

The constraint automata can be depicted using finite-state machines as shown in Figure 4

Figure 4: Example Declare constraint automata

15

In order to define the replay semantics of a declare model, it is necessary to introduce the concept

of state of a data-aware process that is modelled through a data-aware Declare model, hereafter

shortened as state of a data-aware Declare model:

Definition 3 (State of a data-aware Declare model). The state of a data-aware Declare model D

= (A; X; U; Val; I; Write; 𝛱) is a pair (V; S) consisting of

• the (current) assignments V : X → U of values to variables;

• the current state S of each automaton in 𝛱, namely, for each constraint automaton 𝒜A;X =

(Σi, Ψi, ψ0i, δi, Gi, Fi) ∈ 𝛱, S(𝒜A,X) ∈Ψi.

The following definition introduces the concept of legitimate execution of steps, activities or ticks,

of a data-aware Declare model with certain write operations:

Definition 4 (Legal step executions). Let (V; S) be the state of a data-aware Declare model D =

(A;X;U; Val; I; Write; 𝛱). It is possible to execute an activity or a tick t ∈ A ∪{} with a set of

write operations as defined in a function v: X →U iff

• The domain of v coincides with Write(t);

• For each x ∈ Write(t), v(x) ∈ Val(x);

• For each Ai = (Σi, Ψi, ψ0i, δi, Gi, Fi) ∈ 𝛱, δi(Ai; t) is defined, Gi(Ai; t) holds wrt. variable

assignment in V

• This yields to a new state (V′; S′) such that, for all Ai = (Σi, Ψi, ψ0i, δi, Gi, Fi) ∈ 𝛱, S′(Ai) =

δi(Ai; t). Function V′ is constructed from V as follows: for each x ∈ X, if x ∈ Write(t) V′(x)

= v(x), otherwise V′(x) = V(x). This is denoted as (V; S) (V′; S′).

Definition 5 (Sets of execution traces of a data-aware model). Let D = (A; X; U; Val; I;

Write; 𝛱) be a data-aware Declare model. Let (V0; S0) be the initial state, namely V0 = I and,

for all Ai = (Σi, Ψi, ψ0i, δi, Gi, Fi) ∈ 𝛱, S0(Ai) = ψ0i . A trace σ =(t1; v1); … ; (tn; vn) is an execution

trace of D iff (V0; S0) (V1; S1) … (Vn; Sn) and, for all Ai = (Σi, Ψi,

ψ0i, δi, Gi, Fi) ∈ 𝛱, Sn(Ai) ∈ Fi

3.3 Data-aware Alignment of Declare Models

To find an alignment between an event log to a model, moves in the log are related to moves in

the model. Some moves in the log may not be mimicked by the model resulting in a ‘no move’ in

(t,v)

(t1,v1)

(V0; S0)
(t2,v2) (tn,vn)

16

the model. Other moves in the model cannot be reproduced in the log resulting in a ‘no move’ in

the log. We explicitly denote such “no moves” by ≫.

Definition 6 (Alignments). Let D = (A,X,U, Val, I, Write, 𝛱) be a data-aware Declare model. Let

ÃX = A ∪{}. Let MD = (Ã × (X →U)) ∪ {≫}. An alignment move is represented by a pair (SL,

SM) ∈ (MD×MD) ∖ {(≫,≫)} such that:

• (SL, SM) is a move in log if SL ∈ (MD ∖ {≫}) and SM = ≫,

• (SL, SM) is a move in model if SM ∈ (MD ∖ {≫}) and SL = ≫,

• (SL, SM) is a correct synchronous move if SL = SM.

• (SL, SM) is an incorrect synchronous move if SL, SM ∈ (MD ∖ {≫}) and, denoted SL = (aL,

vL) and SM = (aM, vM), aL = aM and vL ≠ vM.

A complete alignment between D and a log trace σ ∈ (Ã × (X → U))* is a sequence of legal

alignment moves (s1
L; s1

M); …; (sn
L; sn

M) such that, ignoring every ≫, s1
L; … ; sn

L is equal to

σ, and s1
M; … ; sn

M is an execution trace of D.

 Example 1 (cont): Given a Declare model with the constraints depicted in Figure 1, and a log

trace 𝜎 = (B, {x=3;y=”Sam”}), (A, {x=5;y=”Philip”}), (, {x=5}), (D, {x=1;y=”Philip”}). The

following are valid complete alignments:

𝛾1=

𝛾2=

Note that the aim is to find an alignment with the least deviation cost. This is called an optimal

alignment. A cost function on legal moves is first introduced, and then generalized to alignments

in order to define the severity of a deviation. The definition below was taken from [7].

Definition 7 (Cost Function & Optimal Alignment). Let D = (A, X, U, Val, I, Write, 𝛱) be a

data-aware Declare model. Let σ ∈ (Ã × (X → U))* be a log trace. Let ÃX = A ∪{}. Let MD be

SL B{x=3;y=”Sam”} A{x=5;y=”Philip”} ≫ {x=5} D{x=1;y=”Philip”}

SM B{x=3;y=”Sam”} A{x=5;y=”Philip”} B{} {x=5} D{x=1;y=”Philip”}

SL B{x=3;y=”Sam”} A{x=5;y=”Philip”} {x=5} D{x=1;y=”Philip”}

SM B{x=3;y=”Sam”} A{x=3;y=”Philip”} {x=5} D{x=1;y=”Philip”}

17

the set of all legal alignment moves. Let 𝜅 be a cost function that assigns a non-negative cost value

to each legal move: 𝜅: MD → ℝ0
+. The cost of an alignment 𝛾 between σ and D is the sum of the

costs of all constituent moves: 𝛫(𝛾) = 𝛴𝑚∈𝛾𝜅(m). Alignment 𝛾 is an optimal alignment if, for any

alignment 𝛾′ of D and σ, 𝛫(𝛾) ≤ K(𝛾′).

The process domain and the specific process model determines the cost of each legal move. The

cost function 𝜅 needs to be defined for each specific setting because it can be used to influence

one type of explanation of deviations over the others. Note that an optimal alignment does not need

to be unique, i.e. multiple complete alignments with the same minimal cost may exist.

Example 1 (cont): Assuming a cost function such that (SL,≫) = (≫, SM) = 10 and incorrect

synchronous move attracts a penalty of 1 for each mismatching variable. No cost is assigned to a

correct synchronous move. The complete alignments, 𝛾1 and 𝛾2 would have the following costs:

𝛫(𝛾1)= 10, 𝛫(𝛾2)= 1. Therefore according to the cost function, 𝛾2 is the optimal alignment

because it has the least cost.

In the example above, the cost for an incorrect synchronous move is assigned per each

mismatching variable. This means that, if an activity writes 2 variables and the alignment process

assigns different values for both variables from the ones observed in the log trace, a penalty is

assigned for each variable individually. If the cost is 1 for each variable, then the cost of this move

would be 2.

3.4 A* Algorithm

The process of finding an optimal alignment of a log trace σ and a Data-aware Declare model D

can be complicated. Especially when dealing with declarative models, the search space can be

very large despite the introduction of the events. The A* algorithm provides a solution to finding

the least expensive path in a directed graph with nodes and edges. We adopt the use of the A*

algorithm the same way it is adopted in [7] but adapting it to declarative models. Just like in [7],

an opportune search space needs to be defined. Each node of the search space is associated to a

different alignment which is a prefix of some complete alignment between σ and D. As a directed

graph, the edges connecting the nodes are weighted based on the predefined cost structure.

18

Instead of building the search space at once, the search space is built incrementally. Starting with

the source node 𝛾0=, an empty alignment, successors are obtained by adding one move to it until

the target node is reached. The target node is a set of all the complete alignments of σ and D. An

alignment is complete when the log projection (i.e. log activities excluding ≫ activities) is equal

to the initial trace and the process projection is a valid prefix of the process model (i.e. all automata

in their final state). Each successor/node, 𝛾, in the search space is associated with a cost based on

the evaluation function f(𝛾) = g(𝛾) + h(𝛾). g(𝛾) is the cost of the alignment from 𝛾0 and is obtained

using the following function:

g(𝛾) = Kmin.|𝛾| + K(𝛾) where,

• Kmin is the smallest value of cost K, added to guarantee termination.

• |𝛾| is the size of the current alignment’s log projection, that is counting the number of log

activities considered so far excluding ≫

• K(𝛾) is the cost of the alignment according to the predefined cost structure.

All moves leading to an alignment, contribute to be final cost of that alignment. This means that

the value of g(𝛾) strictly increases as moves are added to alignment prefixes. That is g(𝛾″) >

g(𝛾′) since g(𝛾″) = g(𝛾′) + Kmin.|𝛾″| + K(𝛾″).

h(𝛾) estimates the path cost from 𝛾 to the target node (a complete alignment) and is denoted by

the following function

h(𝛾) = Kmin.(|σ|-|𝛾|), where,

• |σ| is the size of the log trace

• |𝛾| is the size of the current alignment’s log projection

A* algorithm works with a priority queue, Q, with the node with the least cost at the top of the

queue. Since we build our graph incrementally, a node is picked from the top of the queue.

Initially, this is an empty alignment, 𝛾0. Control flow successors, ctrl_succσ,D (𝛾), between the log

trace σ and D are sought. These are found by adding exactly one legal move, (SL,SM), to the

current prefix based on the current position in the log trace and the states of the automata. The

move only considers the control flow perspective, ignoring all the write operations. Control flow

successors cannot make proper search space nodes since they do not include the data perspective.

19

Data operations need to be added to each control flow successor, 𝛾C, before it is committed to the

queue. This is the augmentation stage, augment(𝛾C), as described by in Algorithm 1. Data values

need to be chosen such that the costs are kept at a minimum and no guard is violated. To this aim

we use Integer Linear Programming (ILP) to solve the problem of data assignments. The data

values returned by the ILP solver is the data to be used in the alignments. If no solution is found

by the ILP solver, as denoted by ℾ, the successor is discarded otherwise the alignment cost, f(𝛾),

is computed and the alignment is added to the queue.

After the augmentation of all the successors, a new node is picked from the top of the queue for a

new round of the A* algorithm. If the node corresponds to a complete alignment, then the search

stops, and optimal alignment is found. If it is not a complete alignment, control flow successors

are also sought and augmented, then added to the queue where necessary. The process continues

until a complete alignment is picked from the queue. A* algorithm guarantees that the first

complete alignment found is optimal.

Algorithm 1

Input: Data-aware Declare Model D = (A, X, U, Val, I, Write, Π), a log trace σ = e0, …,

en and a cost structure K

Result: An optimal Alignment γ

γ ← γ0 =

Cost-ordered queue Q ←

foreach 𝒜A,X = (Σ, Ψ, ψ0, δ, G, F) ∈ Π do

 S0(𝒜A,X) ← (Σ, Ψ, ψ0, δ, G, F)

end

while logProjection(γ) ≠ σ ∧ ∀𝒜A,X=(Σ, Ψ, ψ0, δ, G, F) ∈ Π. S(𝒜A,X) ∉ F do

 foreach 𝛾′C in ctrl_succσ,D (𝛾) do

 𝛾′ ← augment(𝛾C)

 if 𝛾′ ≠ ℾ then

 f(𝛾′) ← g(𝛾′) + h(𝛾′)

 addToQueue(Q, 𝛾′, f(𝛾′))

 end

end

𝛾 ← pickAndRemoveLowestCost (Q)

end

To illustrate how the algorithm works, we finish off example 1 with the graph of the search for the

optimal alignment shown in Figure 6. Each circle is a node representing a prefix of some complete

20

alignment and is labeled with the cost of that alignment. The edges are labeled with the move in

the form of (SL,SM). The shaded nodes are the nodes picked from the top of the queue at each

iteration and they are numbered in the order they are picked. The node that represent the optimal

alignment is shown by a double line. To simplify the graph, the variable assignments are not

shown.

Example 1 (cont): Figure 5 shows how Multiple Integer Linear Programming (MILP) is employed

to assign values to one of the control flow successors. Figure 5a shows a control flow successor,

that is, with no write operations. In order to assign data values to the specified variables, each

variable is given a placeholder with a number showing the ith time the variable is being written as

shown in 5b e.g. x1, y1, x2 and y2. The values need to be chosen such that no guard is violated.

Also, the aim is to minimize the deviation between the log trace values and the process values. The

placeholder variables become the MILP variables. Two sets of constraints can be observed in

figure 5c. The first set involves the guards associated with the model against the MILP variables.

The second set of constraints involves a boolean variable, for each MILP variable, that shows

whether the MILP variable is assigned the same value as the one observed in the log trace. For

instance, x̂1 is given the value 0 iff x1 is given the same value as the log trace, that is, x1=3 ⇔ x̂1=0.

The objective function is the total cost of deviations as determined by the sum of the boolean

variables.

Figure 5: Augmentation of a control-flow successor of an alignment prefix

21

Figure 6: A* graph for example 1

Please note, the activities A- and D- represent the negated versions of the activation activity. That

is, the activities associated with the negative guard in the automata. To understand the figures

above, the augmentation of the control-flow successor illustrated in Figure 5 is only for the node

#2 successor in Figure 6. Node #7 in the Figure 6 graph represents the path with the optimal

alignment i.e. the path with the nodes #0, #1, #5, #6 and #7.

3.5 Search Space Reduction

The A* algorithm search space for declarative models can be too large causing the algorithm to

perform poorly in terms of speed. This is because declarative models are more flexible and allows

more behavior than procedural models. In order to improve on performance, many of the search

space nodes can be pruned because they are equivalent to one another.

Definition 8 (Alignment Equivalence). Let D = (A, X, U, Val, I, Write, 𝛱) be a data-aware

Declare model. Let σL ∈ (Ã × (X → U))* be a log trace. Let ÃX = A ∪{}. Let 𝒜π = (Σπ, Ψπ, ψ0π,

δπ, Gπ, F) be the constraint automaton for π ∈ 𝛱. Let 𝛾′ and 𝛾″ be alignments of σ′L and σ′M, and

of σ″L and σ″M where σ′L and σ″L are prefixes of σL and σ′M and σ″M are prefixes of model traces

22

in PD. Let ψ′π = δ∗
π(ψ0π, σ′M) and ψ″π = δ∗

π(ψ0π, σ″M) be the states reached by 𝒜π when replaying

σ′M and σ″M on it. Alignments 𝛾′ and 𝛾″ are equivalent with respect to D, if σ′L = σ″L and, for all π

∈ Π, ψ′π = ψ″π. We denote this with 𝛾′ ∼D 𝛾″.

If two partial alignments γ′ and γ″ are equivalent, they can be extended by the same sequence of

moves. Also, the least expensive path to the target node, h(γ′) and h(γ″), from the two alignments

is the same. It is however necessary to only visit one of them, i.e. the one with the lowest g cost.

3.6 Degree of Conformance

In order to calculate the degree of conformance, we limit this thesis to the calculation of fitness for

each trace. Fitness is calculated the same way as described in [8]. The cost of the optimal

alignment is divided by the cost of the reference alignment. The reference alignment is the

alignment with only moves in the model and moves in the log as follows:

 γ(σL,σM)
ref =

We use the reference alignment because it has the maximum cost possible. The following

definition was taken from [8].

Definition 9 (Fitness). Let D = (A, X, U, Val, I, Write, 𝛱) be a data-aware Declare model. Let

σL be a log trace. Let γ ∈ 𝛴𝐴
∗ be an optimal alignment of σL and D. Let σM γ#M be the aligned

model trace. Let γ(σL,σM)
ref = 𝛴𝐴

∗ be the reference alignment of σL and D. The fitness score of σL

with respect to D is defined as follows:

 𝐹𝑖̇𝑡𝑛𝑒𝑠𝑠(𝜎𝐿 , 𝐷) = 1 −
𝐾(𝛾𝜎𝐿

)

𝐾(𝛾
(𝜎𝐿,𝜎𝑀)

𝑟𝑒𝑓
)

Therefore 𝐹𝑖̇𝑡𝑛𝑒𝑠𝑠(𝜎𝐿 , 𝐷) = 1 if the optimal alignment only have moves in both, i.e. no deviations.

The fitness is 0 if the optimal alignment is equal to the reference alignment. Please note, the fitness

returned is always a positive fraction, that is a value between 0 and 1.

L 𝜎1
𝐿 … 𝜎𝑛

𝐿 ≪ ≪ ≪

M ≪ ≪ ≪ 𝜎1
𝑀 𝜎1

𝑀 𝜎1
𝑀

23

Example 1 (cont): Using the cost function, such that (SL,≫) = (≫, SM) = 10, incorrect

synchronous move attracts a penalty of 1 for each mismatching variable and 0 penalty for a correct

synchronous move. The optimal alignment, γ1 below has a cost of 1, whereas the cost of reference

alignment, γref, is 60. Therefore, the fitness = 1-1/60 = 0.983.

γ1 =

γref =

SL B{x=3;y=”Sam”} A{x=5;y=”Philip”} {x=5} D{x=1;y=”Philip”}

SM B{x=3;y=”Sam”} A{x=3;y=”Philip”} {x=5} D{x=1;y=”Philip”}

SL B A D ≪ ≪

SM ≪ ≪ ≪ ≪ A B

24

4 Implementation and Evaluation

This section details how the solution was implemented and evaluation.

4.1 Implementation

Two ProM plugins are used in the implementation of our solution. ProM is a Java based open

source framework that provides a platform for developers to easily develop and/or extend process

mining algorithms. We implemented the conformance checking framework, as described in

chapter 3, in a ProM plugin called Data Aware Declare Replayer. The plugin takes as input a

Data-Aware Declare model and an event log and outputs alignments, for each log trace. For

visualization, we implemented another plugin called Data Aware Alignment Result Visualizer. It

takes the output of our Data Aware Declare Replayer plugin as input and provides a clean way to

visualize alignments for each trace as well as showing the fitness and related statistics. Figure 7

shows a screenshot of the details of trace alignments in the Data Aware Alignment Result

Visualizer. The left panel shows the list of traces labelled with the trace name as well as its fitness.

Upon clicking one of the traces, the middle part is filled with the details of that trace showing the

following information:

• The top part shows quick statistics such as the fitness of the trace, number of moves in both

log and model (correct synchronous moves), number of moves in both log and model but

with different data (incorrect synchronous moves), number of moves in log only and

number of moves in model only.

• Each event is represented by a colored rectangular box labeled with event name or “TICK”.

Each color represent the move type of each event i.e. green represents a correct

synchronous move, white represents an incorrect synchronous move, yellow represents a

log move and pink represents a model move.

• On hover on each event, more details is displayed showing the data values associated with

the event.

• Traces can also be sorted by trace names and there is also a filtering functionality by trace

name.

25

Figure 7: Screenshot of a single trace alignment details

Since this was an extension of the work presented in [8], a lot of code from the Declare Replayer1

plugin implementation was reused in the implementation of our Data Aware Declare Replayer

plugin. As mentioned earlier, the LP Solver library [18] was used for solving ILP problems. We

deal with strings by mapping them to integers.

The source code of our plugins together with direction of use can be downloaded from

https://github.com/Clyvv/DataAwareDeclareReplayer.

4.2 Evaluation

We provide 2 ways of evaluating our solution. Firstly, we look at the correctness of the results of

our solution. Then we look at solution feasibility in terms of performance. In all the experiments,

the Data Aware Declare models were created and or edited using ProM plugins, Simple Declare

Designer and Simple Declare Editor. The generation of synthetic logs was necessitated by a tool

called MP-Declare Log Generator described in [19].

1 https://svn.win.tue.nl/repos/prom/Packages/DeclareChecker/

https://github.com/Clyvv/DataAwareDeclareReplayer

26

4.2.1 Solution verification

Verification of a single Data Aware Declare constraint with a simple condition

We start with a simple example with only one constraint and a simple logical condition as shown

in Figure 8. This was tested against the synthetic event log trace shown in Table 6.

Figure 8: Single constraint declare model with a simple condition

Activity B A C D

Data variables x == 3

y == “Sam”

x == 5

y == “Philip”

x == 5 x == 1

y == “Philip”

Table 6: Single event log trace

The trace shows that event A activates the constraint because the value of x is greater than 3. If

that happens, it means the trace is in violation of the response constraint because event B is not

eventually followed by a B. The result is of course influenced by the cost function. If the cost

function assigns more cost for control flow deviations over data writing costs the result might

change. The results from our solution is in Figure 9.

Figure 9: Alignment result of a Declare model with a simple condition

27

Figure 9a shows the result where the cost function assigns more cost to data deviation whilst Figure

9b is showing the result where the cost assigned to control flow deviation is more that data

deviation cost. In Figure 10b, the x value of event A is changed from 5 to 3 and hence the constraint

is not activated. Events C and D are shown as TICK events because as discussed earlier, events

not specified in the model but appearing in the log trace are represented in replaying as tick events

to reduce the search space of the A* algorithm. Both results are correct according to their

respective cost function.

Verification of a Data Aware Declare constraint with a string condition

This test will demonstrate that our solution can handle conditions that require string values. We

use the same event log trace in Table 6 and the following Data Aware Declare model.

Figure 10: A single constraint Declare model with a string condition

The condition states that A must be followed by B if the value of y is equal to Philip. That is the

constraint is only activated if A is executed with value of y == “Philip”.

Figure 11: Alignment result of a model containing a string condition

28

2 different optimal alignments were output by our solution. Figure 11a was run with a cost function

that assigns more cost to deviations associated with data writing costs. The response condition is

activated because the value of y is equal to Philip. But because there is no execution of event B

after A, the constraint is violated and hence the introduction of a move in model of event B. The

result shown in 11b was run using a cost function that assigns more cost value to control flow

deviations. In this case, it is less costly to change the value of the y variable and not activate the

constraint. Hence, the incorrect synchronous move on activity A. Note that ILP managed to assign

a value to y that is not equal to Philip.

Verification of a Data Aware declare constraint with multiple conditions

In this test we show how our solution deals with constraints with multiple conditions that is,

conditions combined by && and/or ||. To demonstrate, we use the Data Aware Declare model in

Figure 12, and the event log trace in Table 6.

Figure 12: A single constraint declare model with multiple conditions

The model shows an Absence condition that dictates that event D must not be executed if x > 0

and y == “Philip”. The log trace shows that event D has values x == 1 and y == “Philip”. The

values fulfils the given condition and hence D cannot be executed and hence the trace is in

violation.

29

Figure 13: Alignment results of a Declare model with constraint with multiple conditions

Our solution rightfully detected this misconformances and provided the 2 optimal alignments in

Figure 13. Figure 13a was run with a cost function that assigns more cost value to the deviations

associated with write operations while in Figure 13b the cost function assigned more cost value to

control flow deviations. In Figure 13a, a move in log is introduced to avoid activating/violating

the constraint. In 13b, an incorrect asynchronous move is introduced because it is less costly to

change 1 variable value than removing the whole activity hence the value of Philip was changed.

Verification of multiple Data Aware Declare constraints

In this section we see whether our solution can correctly align more complex Declare models, i.e.

with multiple constraints of different types. We use the same event log trace in Table 6 and the

data aware Declare model depicted in Figure 14.

Figure 14: A Data Aware Declare Model with 3 constraints

The model in Figure 14 have the following rules:

1. If activity A is executed, with x > 3 and y == “Sam”, activity B should also be executed

either before or after A is executed.

30

2. An execution of activity B with x==3 must be followed by activity C

3. Activity C should not be executed if it has an x value greater than 3.

Figure 15: Multiple constraint result obtained from the Data Aware Declare Replayer

The 2 results show slightly different optimal alignments with different fitness values. Figure 15a

shows the result where the cost function assigns a higher cost to deviations associated to control

flow over deviations associated to data write operations. Figure 15b shows the result where the

cost function assigns a higher cost to deviations associated to data write operations over control

flow. In 15a, the alignment introduces a move in log for event B and C to avoid breaking the set

rules. That is, a move in log for event B avoids activating the response constraint which must be

fulfilled by an execution of event C. Event C should not be executed and hence the introduction

of the move in log on event C. In 15b, instead of introducing log moves, the system introduced

incorrect asynchronous moves for the same activities for the same reasons. Both results do not

violate any of the 3 rules and hence the correctness of our solution.

4.2.2 Performance evaluation

We evaluate the performance of our solution in terms of execution times under different scenarios.

We aim to see the feasibility of our solution under different stress levels. To do so, we ran a couple

of experiments with different parameters and recorded the execution times. The experiments had

the following objectives:

31

• How does the solution perform given different log sizes and probabilities of violating all

constraints within an event log?

• How does the solution perform given different model sizes, i.e. with different number of

constraints?

• How does the solution perform given different cost functions?

2 sets of experiments that cover the above objectives were conducted. In the first set, we ran

several experiments using one Declare model with 5 constraints. For each experiment, event logs

with the same probability of violations but different sizes were generated. The probabilities chosen

were 0.25, 0.5, 0.75 and 1. The event log sizes chosen were 250, 500 and 750. All traces were

generated with the same length of 20 events. Each experiment was run 2(one with a higher control

flow cost and one with a higher data write operations cost) x 5 times. The experiments were run

5 times and their averages execution times were recorded in seconds.

Probability of
violation

25% 50% 75% 100%
Traces

250 293.44 667.43 749.58 1089.61

500 678.5 1224.75 1555.98 2338.1

750 948.26 1621.27 2340.96 3037.5

Table 7: Experiment results (in seconds) for a cost function with a higher control-flow cost value

Probability of
violation

25% 50%

75%

100%
 Traces

250 484.086 705.92 1026.65 1122.22

500 1126.21 1521.03 1605.42 2532.62

750 1336.21 1724.53 2934.17 2916.69

Table 8: Experiment results (in seconds) for a cost function with a higher data variable cost value

From the above results, it is clear that event log size, probability of violation and cost function do

influence the performance of our solution. Table 6 shows the results of the experiments carried

out with a cost function that assigns more cost value to control-flow deviations. The numbers

32

show significant increases in execution times as the probability of violation increases and also as

the log size increases. The same is true with the results shown in Table 7 where experiments were

carried out using a cost function that assigns a higher value to data variable violations. Comparing

the tables, looking at corresponding cells, it shows that all values in Table 7 are much higher than

the values in Table 6. This shows that assigning a higher cost to deviations associated with data

variables invites higher execution times.

A second set of experiments which was intended to show that an increase in in the number of

constraints also increases the execution times was carried out. With the knowledge of the above

conclusions, we generated an event log for a Declare model with 10 constraints, 25% probability

of violation and 250 log traces. The result was slightly above 3600 seconds and it clearly showed

that adding constraints also influence the performance of our solution.

33

5 Related Work

An alignment can show how an event log can be replayed on a process model and how to change

the log to perfectly fit the model. The principle of alignment in conformance checking of multi-

perspective process models has been successfully implemented in procedural models. [1]

implemented an approach that aligns a BPMN model and an event log to show deviations and the

degree of conformance. To find an alignment between an event log and a model, moves in the log

are related to moves in the model. Each move represents an execution step which consists of an

executed activity/event and an assignment to the related data attributes. A cost function is

introduced for legal moves which depends on the specific model and process domain. A trace and

a model can yield multiple alignments. The goal of the approach is to find an optimal alignment,

that is an alignment with the lowest cost. The authors in [1] employed the use of the A* algorithm

to find the optimal alignment. The A* algorithm finds the path with the least cost between two

nodes in a direct graph with costs associated to nodes. To apply the A* algorithm, an opportune

search space needs to be defined. Every node of the search space is associated to a different

alignment which is a prefix of some complete alignment between an event log trace and the model.

The source node is an empty set and the target nodes set includes every complete alignment.

The search for an optimal alignment while considering multiple perspectives require more

computational time and memory. In order to minimize computational time, [4] proposed a divide

and conquer approach of the same technique in [1]. The process model is split into smaller model

fragments and for each fragment a sublog projecting the initial event log onto the activities used

in the fragment is created and hence aligned separately. For a valid decomposition of a Petri net

with data, Single Entry Single Exit (SESE) based strategy is used in this paper. In [11] the same

A* algorithm is used to find the optimal alignment. The search space is built using only control

flow perspective of all possible moves. A* finds the shortest by queueing and visiting nodes with

the smallest cost from the start node as well as the one that has the shortest distance to the target

(an underestimation function). A poor underestimation function will cause so many nodes to be

visited thereby using too much time and memory. [10] introduced an underestimation function

based on the marking equation of the Petri net. This improves the efficiency of the A* algorithm

by avoiding nodes that makes the final state no longer reachable as detected by the marking

equation. In [11], the optimal alignment is found by formulating and solving an Integer Linear

34

Programming (ILP) problem. That is, using the control flow result of the A* algorithm, the

solution of the ILP problem will then assign values to the variables of the control flow alignment.

[7] discovered a problem with the approach in [11] of returning non-optimal alignments thereby

giving misleading explanations to deviations. Instead of checking the different perspectives in

sequence, i.e. control-flow perspective first then using data variables on the result, the authors

introduced an approach aimed at balancing all the perspectives at once. [7] formulates the problem

of finding an optimal alignment as a search problem in a directed graph and employ the A*

algorithm to find the least expensive path in the graph. Instead of building the directed graph

beforehand, the search space is built incrementally. Starting with an empty node, a set of control-

flow successors is built by considering only the control-flow perspective. The control-flow

successors are not part of the search space. They are then augmented with the variable’s write

operations (data perspective). The augmentation process is defined as a multi integer linear

problem (MILP) because the values of the variables need to be chosen that do not violate any

condition and the aim is to minimize the cost of the deviations. If no solution is found for the

MILP, no alignment is created, and the successor is discarded. If a solution is found for the MILP,

i.e if an augmentation exists, a valid alignment is created, the cost is computed, and the alignment

is added to the priority queue. When all successors have been identified, an alignment associated

with the lowest cost is picked from the head of the queue. If the alignment is a complete alignment,

then it is returned as the optimal alignment. Otherwise the node is expanded, and successors are

added to the queue. A complete alignment is an alignment such that ignoring all ‘no move’

symbols should give back the original log and model before alignment. This approach however

has a drawback of higher computational costs, that is it needs more computational power, but the

efficiency brought by balancing the multiple perspectives when checking for conformance is of

utmost importance.

As mentioned earlier, the above approaches work well for procedural models, e.g. Petri nets and

BPMN. With declarative models, the constraints need to be encoded into another format that is

easier to check for violations. Finite state machines are used in [20]. The conformance checking

approach is based on the formalization of business constraints as first-order linear temporal logic

(FOLTL) rules which are translated into finite state machines for dynamically reasoning on

35

partial, evolving traces. In order to monitor FOLTL, FO automata are built with transactions

labeled with first order formulas while the states contain data structures to smartly keep track of

data. The approach is used for evolving traces to quickly detect deviations at runtime. Instead of

just stating whether a trace is good or bad, the authors needed to determine whether an evolving

state has already been violated permanently or temporarily or is temporarily or permanently

successful. That is for each transition, if it is the last activity and the current state is a final state

or if it’s not the last activity but, the current state is final and there is no transition reaching a non-

final state from the current state then it is labeled as permanently successful. If the transition is

the last activity and the current state is non-final or if is not the last activity, the current state is

non-final and there exists no transition to a final state from the current state, then the trace is labeled

as permanently violated. If the trace has not reached the last activity, the current state is final and

there exist a transition from the current state to a non-final state then the trace is labeled as

temporarily successful. If the trace has not reached the last activity, the current state is non-final

and there exist a transition to a final state then the trace is labeled as temporarily violated. This

approach was not used in the context of aligning data-aware declare models. At attempt at using

finite state machines in the alignment of declarative models is found in [8]. Just like in the above-

mentioned approaches for aligning procedural languages, [8] proposed an alignment-based

conformance checking approach for declarative models. The approach also tries to replay

activities in an event log against a Declare model by labeling moves in log where the move is only

recognized by the log or move in model where a move is only recognized by the model and move

in both. To determine the transitions, the Declare model is represented as final state automata for

each constraint. Also, legal moves are associated with costs and the A* algorithm is employed to

find the optimal alignment. However, this approach only recognizes the control flow perspective

ignoring data, time and resources.

[21] introduces algorithms for conformance checking between an event log and an MP-Declare

model. Generally, the proposed approach iterates through all the traces in the input log and for

each constraint of the MP-Declare model, computes violations and fulfilments. Using a different

algorithm for every constraint type in the MP-Declare model, the idea is to iterate through each

event in the trace and for each, call operations that determines if an activation of a constraint occurs

or a fulfilment of a pending activation occurs, or a violation of a constraint occurs. A closing

36

operation is also called at the end of the trace that converts all the pending activations into

violations.

A constraint-based approach to conformance checking is proposed by [2]. It includes the modeling

of declarative models as constraint satisfaction problems (CSPs) and a set of global constraints

implemented through filtering rules is proposed. CSPs are transformed into Max-CSPs for the

diagnosis process. The approach does not only provide conformance checking based on control-

flow but also considers data. To solve the conformance checking problem through constraint

programming, it needs to be modelled as a CSP. A CSP P = (V, D, Ccsp) where V is a set of

variables, D is the domain of variables and Ccsp is a set of constraints, control and data constraints,

between variables such that each constraint represents a relation between a set of variables and

specifies the allowed combinations of values for these variables. To solve a CSP, one needs to

assign values to its variables. If the assignment of values to variables satisfies all its constraints,

then the solution is considered to be feasible. A CSP is said to be feasible if there exists at least

one related feasible solution which however is equivalent to compliancy. Therefore, the problem

of checking conformance of an event log trace against a process model is equivalent to checking

the feasibility of the CSP related to the model when instantiating its variables. If the instantiation

is feasible then the trace is compliant otherwise it is non-compliant. This approach is different

from our proposed approach because it focusses only on determining compliance without

providing more diagnostic information. The approach does not also use alignments.

37

6 Conclusion and Future Work

In this thesis we presented an alignment-based data-aware conformance checking approach for

declarative models using event logs. We used an extension of the Declare language to represent

Declare models with data and our approach is an extension of the approach in [8] by including the

data perspective. We showed how event log traces can be aligned with Declare models with data

using a combination of Finite state automata, Integer Linear Programming and the A* algorithm.

Our approach shows the degree of conformance in terms of fitness as well as exactly where in each

trace, deviations occur. With the ability to specify a cost function, analysts can specify exactly

which type of violation is more important than others. However, the choice of cost function can

have an impact on the overall performance of the approach. Number of constraints, event log sizes

and the probability of violation in each event log also influences the performance of our approach.

Our approach was implemented as a ProM plugin and evaluated using synthetic event logs.

Despite efforts to improve the efficiency of the approach, the process uses too much resources and

hence computation intensive. However, it is still feasible to use this approach with less complex

models and smaller event logs.

For future work, the following points can be addressed:

• The implementation of the approach can be streamlined to improve on performance.

• We did not consider other parts of Declare models with data. We only focused on the

activation condition. It is however possible to extend the implementation to include other

parts such as the correlation condition and time constraints.

• Other ways of improving the efficiency of the A* algorithm, such as decomposition, can

be used to improve the overall performance of the approach.

• We only showed the degree of conformance in terms of fitness, however other dimensions

such as precision and generalization can also be calculated from our solution.

38

7 References

[1] M. de Leoni, W. M. van der Aalst and B. F. van Dongen, "Data- and Resource-Aware

Conformance Checking of Business Processes," Business Information Systems, pp. 48-51,

2012.

[2] D. Borrego and I. Barba, "Conformance checking and diagnosis for declarative business

process models in data-aware scenarios," Expert Systems with Applications, pp. 5340-5352,

2014.

[3] W. M. P. van der Aalst, W. Pesic and H. Schonenberg, "Declarative workflows: Balancing

between flexibility and support," Computer Science - R&D, pp. 99-113, 2009.

[4] M. de Leoni, J. Munoz-Gama, J. Carmona and W. M. van der Aalst, "Decomposing

Alignment-Based Conformance Checking of Data-Aware Process Models," in On the Move

to Meaningful Internet Systems: OTM 2014 Conferences, 2014.

[5] A. Adriansyah, J. Munoz-Gama, J. Carmona, W. van der Aalst and B. van Dongen,

"Alignment based precision checking," Process Management Workshops 2012, Lecture

Notes in Business Proceedings of Business Information Processing, vol. 132, no. Springer

Verlag, Berlin, pp. 137-149, 2013.

[6] M. Dumas, M. La Rosa, J. Mendling and H. A. Reijers, "Process Intelligence,"

Fundamentals of Business Process Management, pp. 353-383, 2013.

[7] F. Mannhardt, M. de Leoni, H. A. Reijers and W. M. P. van der Aalst, "Balanced multi-

perspective checking of process conformance," Computing, vol. 98, no. 4, pp. 407-437,

2015.

[8] M. de Leoni, F. M. Maggi and W. M. van der Aalst, "An alignment-based framework to

check the conformance of declarative process models and to preprocess event-log data,"

Information Systems, pp. 258-277, 2015.

39

[9] W. van der Aalst, A. Adriansyah and B. van Dongen, "Replaying history on process

models for conformance checking and performance analysis," Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, pp. 182-192, 2012.

[10] A. Adriansyah, B. van Dongen and W. van der Aalst, "Memory-efficient alignment of

observed and modeled behavior," Technology report, BPMcenter.org. BPM Center Report

BPM-13-03, 2013.

[11] M. de Leoni and W. M. P. van der Aalst, "Aligning event logs and process models for

multi-perspective conformance checking: an approach based on integer linear

programming.," The 11th international conference on business process management

(BPM’13), LNCS, vol. 8094, no. Springer, pp. 113-129, 2013.

[12] "ProM website," [Online]. Available: http://www.promtools.org.

[13] H. Verbeek, J. Buijs, B. van Dongen and W. van der Aalst, "Xes, XESame, and Prom 6,"

Information Systems Evolution, vol. 72, pp. 60-75, 2011.

[14] C. Di Ciccio, M. L. Bernardi, M. Cimitile and F. M. Maggi, "Generating Event Logs

Through the Simulation of Declare Models," Lecture Notes in Business Information

Processing, pp. 20-36, 2015.

[15] F. M. Maggi, A. J. Mooij and W. M. van der Aalst, "User-guided discovery of declarative

process models," 2011 IEEE Symposium on Computational Intelligence and Data Mining

(CIDM), 2011.

[16] "Integer Programming," [Online]. Available: http://web.mit.edu/15.053/www/AMP-

Chapter-09.pdf.

[17] U. Bhat, "Runtime Monitoring of Data-Aware business rules with Integer Linear

Programming," in Masters Thesis, University of Tartu, 2016.

[18] "LP Solver," [Online]. Available: http://lpsolve.sourceforge.net/5.5/.

40

[19] V. Skydanienko, "Data-aware Synthetic Log Generation for Declarative Process Models,"

Masters thesis, University of Tartu, 2018.

[20] R. De Masellis, F. M. Maggi and M. Marco, "Monitoring data-aware business constraints

with finite state automata," Proceedings of the 2014 International Conference on Software

and System Process - ICSSP 2014, 2014.

[21] A. Burattin, F. M. Maggi and A. Sperduti, "Conformance checking based on multi-

perspective declarative process models," Expert Systems with Applications, pp. 194-211,

2016.

[22] B. Kitchenham, "Procedures for performing systematic reviews," in Keele vol. 33, UK,

Keele University, 2004, pp. 1-26.

[23] W. Song, H.-A. Jacobsen, C. Zhang and X. Ma, "Dependence-Based Data-Aware Process

Conformance Checking," IEEE Transactions on Services Computing, pp. 1-1, 2018.

[24] "XES-standard," [Online]. Available: http://www.xes-standard.org.

[25] "Declare Checker," [Online]. Available:

https://svn.win.tue.nl/repos/prom/Packages/DeclareChecker/.

41

Appendix

I. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Clive Tinashe Mawoko,

 (author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace digital archives

until the expiry of the term of copyright,

Aligning data-aware declarative process models and event logs,

 (title of thesis)

supervised by Prof. Fabrizio Maria Maggi.

 (supervisor’s name)

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to the

public via the web environment of the University of Tartu, including via the DSpace digital

archives, under the Creative Commons licence CC BY NC ND 3.0, which allows, by giving

appropriate credit to the author, to reproduce, distribute the work and communicate it to the

public, and prohibits the creation of derivative works and any commercial use of the work

until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellectual

property rights or rights arising from the personal data protection legislation.

Clive Tinashe Mawoko

21/05/2019

