
UNIVERSITY OF TARTU

Institute of Computer Science
Cyber Security Curriculum

Deivis Treier

Research and Proof of Concept of
Selected ISKE Highest Level Integrity

Requirements

Masters’s Thesis (30 ECTS)

Supervisor: Raimundas Matulevičius, PhD

Tartu 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Research and Proof of Concept of Selected ISKE Highest Level In-
tegrity Requirements

Abstract: Information security becomes more and more important in today’s society,
where more processes and operations will be digitised and data moves from paper to bits
and bytes and receives digital form. In Estonia state and public institutions are collecting
and processing information for providing high level services, fulfilling state needs on
constitutional tasks or international contracts. The public sector in Estonia must apply
information security standard IT Baseline Security System ISKE requirements in three
factors: availability, integrity and confidentiality of processed data.

This thesis takes integrity domain under detail research to meet ISKE requirements
and security objectives demanded for data with highest integrity needs. By analysing
the integrity domain of ISKE and providing versatile proof of concept about solution
for implementing security controls, it is possible to increase awareness of software de-
velopers and ISKE implementation participants to achieve better information security.

Keywords: ISKE, information integrity, applied cryptography, data tampering detec-
tion, NoSQL, DBMS, Information Security Risk Management, ISSRM, software devel-
opment, requirements validation

CERCS: P170

2

Valitud ISKE kõrgeima terviklikkuse nõuete teostuse uurimus ja kont-
septsiooni tõestamise projekt

Lühikokkuvõte: Informatsiooni turvalisus on saamas üha olulisemaks tänapäeva ühis-
konnas, kus üha rohkem protsesse ja tegevusi digitaliseeritakse ja andmed liiguvad pa-
berilt bittideks ja baitideks digitaalsele kujule. Eesti riigi- ja avalikud asutused koguvad
ja töötlevad informatsiooni, et tagada kõrgetasemelisi teenuseid, täita põhiseaduse ko-
hustusi või rahvusvahelisi lepinguid. Avalik sektor Eestis peab täitma andmete käitle-
misel informatsiooni turvalisuse standardi infosüsteemide turvameetmete süsteem ISKE
nõudjeid kolmes teguris: käideldavus, terviklus ja konfidentsiaalsus.

Magistritöö võtab tervikluse valdkonna detailsema uurimise alla, et saavutada ISKE
meetmete ja turvaeesmärkide täitmine, mis on nõutud kõrgeima terviklusega andmete-
le. Analüüsides ISKE tervikluse valdkonda ja luues mitmekülgse kontseptsiooni teos-
tuse tõestamise projekti turvanõuete realiseerimise meetmetele on võimalik suurendada
arendajate ja ISKE rakendamise partnerite teadlikkust saavutamaks parem informat-
siooni turvalisus.

Võtmesõnad: ISKE, informatsiooni terviklus, rakenduslik krüptograafia, andmete oma-
volilise muutmise avastamine, NoSQL, DMBS, informatsiooni turvalisuse riski halda-
mine, ISSRM, tarkvara arendus, nõuete valideerimine

CERCS: P170

3

Acknowledgments

This thesis project was the most dedicated research I have carried trough. The focus of
this research paper was one of the reasons I started in the Cyber Security curriculum.

I would like to thank the following people and institutions for helping me during my
research project. I would like to thank my supervisor Raimundas Matulevičius, PhD
(University of Tartu) for giving me comprehensive guidance and motivating me in this
long journey.

Special thanks to my ex-colleagues in the IT and Development Centre, Ministry of the
Interior for meaningful discussions in the beginning of the research project.

For testing and validating the solution I used a hardware cryptographic tool and a test
certificate for qualified digital signature (e-seal) provided by SK ID Solutions AS. I
thank Tiia Tampere (SK ID Solutions AS) and Eneli Kirme (SK ID Solutions AS) for
providing me comprehensive support in the topic of hardware secure module topic.

For language review I would like to thank Karolin Lillemäe.

Finally I would like to thank you - the reader of this thesis.

4

Contents
1 Introduction 7

1.1 Background . 7
1.2 Motivation . 7
1.3 Problem Statement . 8
1.4 Methodology and Scope . 10
1.5 Outline . 11

2 Elicitation of Security and Functional Requirements 12
2.1 Organisational Context, Assets Identification and Defining Security Ob-

jectives . 12
2.1.1 Organisational Context . 12
2.1.2 Assets and Security Objectives Related Context 13

2.2 Security Risk Related Concepts . 14
2.2.1 Background . 14
2.2.2 Description of Collected Risks 15
2.2.3 G 4.13 Stored data loss . 16
2.2.4 G 4.28 Database data loss . 17
2.2.5 G 4.30 Loss of database integrity and compatibility 17
2.2.6 G 5.64 Manipulation of data or software in database systems . . 17

2.3 Risk Treatment and Security Requirements 17
2.3.1 Risk Treatment-related Concepts 18
2.3.2 Security Requirements-related Concepts 18
2.3.3 HT.10 Database records cryptographic linking 19
2.3.4 HT.34 Usage of digital signature 19
2.3.5 HT.52 Additional requirements to cryptographic tools 20

2.4 Requirement Elicitation and Specification For Solution 21
2.4.1 Security Requirements For a Solution 21
2.4.2 Functional Requirements Of a Solution 22
2.4.3 Limitations and Effects That Accompany With Implementing

Security Requirements . 23
2.5 Summary . 24

3 Proof of Concept for ISKE selected Integrity Requirements 25
3.1 The Solution Architecture and Components 25
3.2 Information Application System . 26

3.2.1 Information Application System API description 27
3.2.2 Data Format For Main Data Storing 27
3.2.3 Digital Signature Implementation 28

3.3 Database Management System . 30

5

3.3.1 Data Storage Strategy . 31
3.3.2 Database Main Table Structure 31
3.3.3 Implementing Cryptographic Link 32

3.4 The Audit Application System . 34
3.4.1 Cryptographic Link Information Exchange Background 34
3.4.2 Implementating the Cryptographic Link Information Exchange . 34

3.5 Database Tampering Detection Management Software 36
3.5.1 Working Principles of a Database Tampering Detection Man-

agement Software . 37
3.5.2 The Audit Application System Database Structure 38
3.5.3 Database Tampering Detection Management Software API De-

scription . 39
3.5.4 Database Tampering Detection Process 40

3.6 External Third Party Trustee . 41
3.7 Summary . 41

4 Proof of Concept Validation 42
4.1 Method . 42
4.2 Defining Acceptance Criteria . 43
4.3 Scenarios For Validation . 45
4.4 Performance Characteristics of Data Tampering Detection 46
4.5 Validation Results . 48
4.6 Summary . 48

5 Application Guidlines 49
5.1 Background Discussion . 49
5.2 Necessary Software Components for Solution 49

6 Conclusion 51
6.1 Answers to Research Questions . 51
6.2 Limitations . 52
6.3 Concluding Remarks . 52
6.4 Future Work . 53

References 54

Appendix 59
I. Cryptographic hash chain generation source code 59
I. Validation scenarios . 62
II. Solution application instruction details 76
IV. Licence . 80

6

1 Introduction
In this section we provide an introduction to the thesis and the motivation behind this
research work. It gives an overview of Estonia’s IT Baseline Security System ISKE, the
scope of the research work and finally we give the outline of this thesis.

1.1 Background
Estonia’s IT Baseline Security System hereinafter ISKE [1] is an information security
standard developed for the Estonian public sector. It can also be understood as a frame-
work for the security of information assets. For state and local government organisations
who process public data, it is obligatory to follow rules specified by ISKE [2]. ISKE’s
application process has been drawn up on the basis of long-term practice of security
analysis and management of typical information assets [2][3].

ISKE is based on the German information security manual BSI - IT Baseline Pro-
tection Manual (IT-Grundschutz), what was adapted to Estonian circumstances [2].

ISKE is instructed by its Reference Guide [3] what contains a guide and tools to
determine the security level of information assets according to safety class. Depending
on the degree of security requested, security measures, requirements and controls are
specified in the Requirements Catalogue [4]. Risks are determined in the Threats Cata-
logue [5]. ISKE offers three security levels: low, medium and high. Every level has its
own set of security measures. To achieve the required level of security, all required mea-
sures must be applied, described by the type and security objectives of the information
assets. The centric position of ISKE is the confidentiality, integrity and availability of
information what can be divided into three security levels (low, medium and high) [3].

1.2 Motivation
During the authors professional carrier at state institutions in the domain of information
technology management and software development we have had real situations where
higher information security requirement were needed. Compared to the private sector,
state institutions are collecting and processing information for providing high level ser-
vices, filling state needs or even fulfilling international contracts. Information security
becomes more and more crucial in the world where more everyday life and operations
depend on information technology and digital information. Moreover, we have par-
ticipated in IT system developments, what should be addressed for information with
medium or high (two highest) security levels and thus had to implement most security
measures described by ISKE.

In most of those cases the (a) system must have data tampering detection, (b) data
must be accessed rapidly, (c) data changes must be tracked for later supervision or
analyse, (d) data might have to carry digital signatures, (e) data objects can have several

7

entity versions, (f) systems must be flexible and simply maintainable and finally (g) data
must be easily portable for future developments or migrations.

According to our professional understanding and informed awareness, the problem
is that the author has not seen an info technology system that fully meets all informa-
tion integrity requirements specified in ISKE and listed above. In Estonia there are
currently different custom made systems for state registers and those implement some
of the listed properties, but according to the authors professional awareness most solu-
tions have some deep problems with one or another above listed characteristics. There
is also a lack of publicly available discussion, resources and examples of implementing
security controls in question.

The author of this thesis has maintained or taken part in projects where new infor-
mation technology system for the state processed information developed or old systems
rewritten. The above listed requirements and ISKE requirements are mentioned in the
task, but none of the systems tat are developed by a third party partner, not fulfil all
the security objectives of information assets. One cause can be the lack of references,
experience or know-how in this specific domain.

For the security of information systems and reputation of institutions, this thesis will
not mention any real cases or names. We only focus on possible comprehensive solution
by positive examples.

1.3 Problem Statement
By analysis of the subject domain, providing theoretical solution design and implement-
ing proof of concept, it is possible to help institutions and info technology developers to
obtain system that meets security requirements required by ISKE. By publishing thesis
and potential solutions as proof of concept, it can rise the awareness of ISKE applica-
tion.

Main issues addressed in this thesis are:

• The lack of public and systematic approach to the subject domain including the
lack of academic research;

• The lack of understanding about selected security requirements for data with high
integrity needs according to ISKE;

• The lack of publicly available discussion and sample implementations for apply-
ing ISKE measures to info-system handling data with highest integrity needs;

• The lack of understanding what will accompany by the implementation of ISKE
measures in integrity domain;

• The lack of understanding the data tampering detection process.

8

Research questions and corresponding research’s sub-questions of this thesis are the
following:

RQ1. - How should the proof of concept be designed to obtain security objectives of
data with highest integrity need demanded by ISKE?

RSQ 1.1. What is the organisational context and the assets of possible system and
proof of concept implemented in this thesis?

RSQ 1.2. What are the security risks to data with highest integrity need according
to ISKE?

RSQ 1.3. What is the risk treatment decision for reference information system and
developed proof of concept presented in this thesis?

RSQ 1.4. What are the security requirements for implementing solution and proof
of concept to obtain security objective of data with highest integrity need
demanded by ISKE?

RSQ 1.5. What are the functional requirements for implementing solution and proof
of concept.

RSQ 1.6. What are the possible limitations and effects that accompany the imple-
mentation of requirements for data with highest integrity need demanded
by ISKE?

RQ2. - How should the proof of concept and the system implemented to obtain security
objectives of data with highest integrity need demanded by ISKE?

RSQ 2.1. What is the possible architecture and system design of solution and proof
of concept to obtain security objectives of data with highest integrity
need demanded by ISKE?

RSQ 2.2. What is the possible database structure for solution and proof of con-
cept to implement requirements for data with highest integrity need de-
manded by ISKE?

RSQ 2.3. What activities should possible database tampering detection processes
involve.

RQ3. - How should the solution validation be performed to ensure the fulfilment of
security requirements?

RSQ 3.1. What method should be used to perform validation of implemented so-
lution?

RSQ 3.2. What are the implemented proof of concept performance characteristics?
RSQ 3.3. Does the proof of concept fulfil the security and functional requirements

demanded by this research?

9

1.4 Methodology and Scope
This section describes the methodology, that has been used during the research of this
thesis and research work. Overall processes and methodology steps are shown on the
figure (see Figure 1).

Figure 1: Research methodology process

Research starts with specifying the research area what is described as background in
section 1.1, motivation of thesis in section 1.2 and problem statement in section 1.3.
The research continues with working on the research questions and problem statements,
discussions, security analysis and development of proof of concept. Also the solution
are validated and the process ends with drawing conclusions.

In this section we also describe the scope of the research project. We define that
in this thesis and during the research work conjunction with ISKE we focus only on
the information integrity aspect of the highest security level of IKSE integrity subclass
"T3". On the other hand we wish to develop a solution which won’t only fulfil ISKE’s

10

measures in integrity domain, but will also help to answer all research questions listed
in section 1.3.

Security analysis are done using Information System Security Risk Management
(ISSRM) [6] methodology conjunction with ISKE Reference Guide [3] and ISKE Mea-
sures Catalogue [4].

The subject of the security analyse and proof of concept solution is based on a fic-
tional state registry what in many ways mimics possible real state information inventory,
including the integrity.

1.5 Outline
The thesis is structured as follows:

• Section 1: This section presents the Estonian security standard ISKE, the descrip-
tion of this thesis, problem statement, research questions, methodology and the
scope of the research.

• Section 2: This section presents the security analysis according to the methodol-
ogy of this research and scope of this thesis conjunction with ISKE.

• Section 3: This section presents a detailed architecture, discussion about the de-
sign and implementation of solution components.

• Section 4: This section presents the validation results of the developed proof of
concept.

• Section 5: This section discusses about how to apply the solution.

• Section 6: This section summarises the results of the research.

11

2 Elicitation of Security and Functional Requirements
This section focuses on answering the research question RQ1. The sub-questions will
be answered in te following subsections. The security analysis is bases on Information
System Security Risk Management (ISSRM) [6] methodology and the input data is
collected form ISKE. According to [7] the ISSRM process consists of six steps:

1. a study of the organisations context and the identification of its assets;

2. determination of security objectives;

3. risk analysis, that elicits which risks are harming assets and threatening security
objectives;

4. risk treatment decision;

5. determination of a security solution (security requirements) to mitigate the risks;

6. security controls instantiation.

This section describes organisational context, its assets study and determination of se-
curity objectives in section 2.1, risk analysis in section 2.2, functional requirements in
section 2.4.2, security requirements in section 2.4.1, possible limitations and effects of
applying requirements in section 2.4.3. Security controls are discussed in section 3.
In this section we have different diagrams visualising the concepts we describe in the
subsections. Those diagrams are depicted as Graphical Misuse Cases diagrams [8].

2.1 Organisational Context, Assets Identification and Defining Se-
curity Objectives

In this section we will answer research sub-question RSQ 1.1.

2.1.1 Organisational Context

In this thesis we consider the system to be a hypothetical Estonian state registry for per-
sonal identity management, hereinafter Estonian Identity Registry what is established
by the state act. This registry is created for fulfilling state needs and operating public
processes. It is one of the most critical data inventories, cause other state processes rely
on this registry. It is the base of the state guarantee of a persons virtual identity. This
registry’s data is stored permanently. All data collected into this inventory is specified
by its Statute For Maintenance Of Inventory. In this hypothetical act, there is a specified
security level "H" (High) according to rules specified in the act [1]. Security compo-
nents class for integrity is specified as "T3" (highest). From the fact that this registry

12

has quite a high usage load the availability component "T" is also important, as well
as confidentiality component "S", but in this thesis we do not focus on the availability
and confidentiality aspects. Because the overall security level is already driven by the
highest value from integrity component. Information collected into the Estonian Iden-
tity Registry does not have restrictions corresponding to state secret. Estonian Identity
Registry has a chief and authorised processor, what is a state institution compiled of a
officials (business and IT-technical).

2.1.2 Assets and Security Objectives Related Context

One of the security aspects that ISSRM specifies are Assets [6]. Assets are divided into
Business assets and Information System assets. For the system in question to this thesis
we specified assets be the following:

Business Assets :

• personal identification data.

Information System assets :

• server (any kind) for storing or processing personal identification data,
• network for interchanging personal identification data;
• Database Management System to store identification data,
• institutions personnel including data managers, IT-administrators, chief of secu-

rity, etc;
• third party state institution;
• subjects of personal identification data.

ISSRM also specifies the aspect of security objectives of information system by defin-
ing security criterion [6] on business assets. In our case for the system Estonian Identity
Registry, the security objective is the integrity of personal identification data. Organ-
isational, asset and security objective related concepts are shown on the figure below
(see Figure 2). UML use-case actors represent participants who are interchanging or
might interchange with system. UML use-cases represents the set of actions performed
by a system. UML use-case painted in green and with stereotype "security criterion"
represents he security objective.

13

Figure 2: Misuse case model about assets concept

2.2 Security Risk Related Concepts
In this section we will answer research sub-question RSQ 1.2. The detailed answer is
provided in the following subsections.

2.2.1 Background

ISKE describes several risks and threats in ISKE Threats Catalogue [4]. Threats are
divided into five categories:

1. G1: Force majeure;

2. G2: Organisational deficiencies;

3. G3: Human errors;

4. G4: Technical malfunctions and defects;

14

5. G5: Attacks.

If we look at those threats listed in ISKE Threats Catalogue in ISSRM context, then
in detail those are not directly threats, but can be understood as a collection of stan-
dard risks. The name of threat in ISKE Threats catalogue represents potential impact
in ISSRM context. Threats detailed description represents a set of collected theoretical
aspects of: impact, vulnerability, threat, threat agent and attack method defined by IS-
SRM. To fully follow methodology of ISSRM we need to extract info from each risk
topic.

We analysed the catalogue to find appropriate risks that suits in technical term the
data integrity domain in software or database technical term. We did not took of any
records from category G1, G2 and G3. Also threats that fall info configuration domain,
because for example Database Management System configuration issues are not the
scope of this thesis. Threats that ISKE defines to be hazarding for data integrity and one
that considered important for this thesis are the following:

1. G4.13 Stored data loss (see section 2.2.3);

2. G4.28 Database data loss (see section 2.2.4);

3. G4.30 Loss of database integrity and compatibility (see section 2.2.5);

4. G5.64 Manipulation of data or software in database systems (see section 2.2.6).

2.2.2 Description of Collected Risks

On figure 3 we show Graphical Misuse Cases diagram [8] about risk related concepts.
The diagram is based on ISKE risk descriptions, and is discussed in more detail in
the following subsections. UML use-case actors painted with black represent malicious
actors or threat agents according to ISSRM. In our case for example technical errors, hu-
man errors, human attacker, etc. UML use-cases painted in black represents malicious
activity and links between theirs relationships. According to ISSRM those activities
combine event, threat and attack method which are used by threat agent. UML use-cases
painted in grey and with stereotype "vulnerability" represent possible vulnerability our
reference system Estonian Identity Registry might have. UML use-cases painted in grey
and with stereotype "impact" represent a possible impact what might harm the Estonian
Identity Registry information system assets and therefore negates security objective "In-
tegrity of personal Identification data" presented in section 2.1.2. UML use-cases with
regular representation symbolise activities defined also in asset concepts in section and
present the normal usage of the reference system. Links between UML use-cases rep-
resent relationships between concepts described in research [9].

15

Figure 3: Misuse case model about risk concepts

2.2.3 G 4.13 Stored data loss

According to the description of the threat [10], loss of data or forgery could suppress or
even stop the management or operation processes of authorities. It can harm trustwor-
thiness of the institutions or management operations. Private companies or people can
loose money or reliability. Destruction of data can disrupt every institutions every day
operations or even stop them totally. Threat description provides several possibilities of
data destruction. The most important of witch suit the context of thesis are listed below:

1. Data can be deleted or overwritten unintentionally;

2. Technical defects can occur in storage systems for example head crashes on hard
drives;

3. Stored data can be added, changed or deliberately deleted by person or by mal-
ware.

16

2.2.4 G 4.28 Database data loss

According to the description of the threat [11] data losses can happen because of dif-
ferent reasons. For example data can be manipulated unintentionally and can be can be
disappear caused by database errors or by a premeditated attack. Data loss can occur
because of memory leakages in database management programs or in server and can be
caused by a denial of service scenarios. But for whatever reason he data is lost, acces-
sibility and integrity will suffer because of that. Problems like this can lead to similar
consequences as discussed by "G 4.30 Loss of database integrity and compatibility" in
section 2.2.5.

2.2.5 G 4.30 Loss of database integrity and compatibility

According to the description of the threat [12] loss of database integrity and compat-
ibility is a situation where a database exists but there are errors. That is a situation
where, data can not be accessed or processed correctly. Compatibility loss can occur in
many ways beginning from unintended change and faulty synchronisation operations to
premeditated attacks. It can lead to the following consequences:

1. Applications that need correct data in operations are influenced or won’t work at
all [12];

2. Available data reflects fake reality [12];

3. Database and its data integrity assessment and recovery takes much effort [12].

It can be impossible or hard to restore data or to identify reasons of loss of integrity and
compatibility if measures have not contributed.

2.2.6 G 5.64 Manipulation of data or software in database systems

According to the description of the threat [13] manipulation of data or software is a
situation where data or software is amended to be false or unsuitable for use. Possible
consequences are the same as described by "G 4.28 Database data loss" in section 2.2.4
and by "G 4.30 Loss of database integrity and compatibility" discussed in section 2.2.5.

2.3 Risk Treatment and Security Requirements
This section describes risk treatment-related and requirements-related concepts of ISKE
and and analysis about those requirements. Research sub-question RSQ 1.3. and RSQ
1.4 will be answered.

Analyse is done according to ISSRM methodology on risk treatment-related con-
cepts [6]. For illustrating those concepts we have used misuse case modelling technique
specified in research [9].

17

2.3.1 Risk Treatment-related Concepts

In ISSRM risk treatment is known as the decision of how to treat the identified risks [6].
This decision can lead to security requirements. According to ISSRM [6] risk treatment
decisions fall into the following categories:

• risk avoidance decision - actions will be taken to fully avoid the risk;

• risk reduction decision - this includes actions to reduce the probability or negative
consequences or both connected to the risk;

• risk transfer decision - a third party is involved in the process of having the burden
of loss from a risk;

• risk retention decision - is accepting the risk and its consequences.

ISKE also has a concept of risk treatment. ISKE Reference Guide [3] and in Measures
Catalogue [4] guides how decisions must be made in different conditions. Different
risks can be treated differently.

In the case of our reference system Estonian Identity Registry we have the secu-
rity objective integrity of personal identification data as presented in section 2.1.2.
According to the organisational context description in section 2.1.1 our risk treatment
decision can be risk avoidance or risk reduction [6]. According to a widely known
fact, there is no such thing as full security and thus there is probably no way to fully
avoid data integrity loss. Even if data is written on paper it’s possible to tamper it, data
can get loss in accidents or etc. If managing is done in an off-line info system there will
be no benefit from that for the general public. Even cutting info system out of a public
network there can be malicious insider who tampers data. According to our concept we
consider risk treatment decision to be a risk reduction decision [6].

2.3.2 Security Requirements-related Concepts

ISSRM defines security requirement as "a condition over the phenomena of the envi-
ronment that we wish to make true by installing the IS, in order to mitigate risks" [6].
Security requirements specify actions that need to be taken, to reach the situation defined
by the security objective. ISSRM also defines security controls as "a designed means to
improve security, specified by a security requirement and implemented to comply with
it" [6]. Controls are derived from security requirements and implementation description
of controls are discussed in next main section 3.

In this thesis security requirements are collected from ISKE Measures Catalogue [4]
items, hereinafter measures. The selection is made from the section what applies to
security component sub class for integrity "T3" specified by organisational context in

18

section 2.1.1. In our point of view, the particular catalogue consists of a confusing mix-
ture of requirements and possible security controls. In some cases the description even
states the required implementation or product to use. Our arguments are based on [14]
where the specification of good requirements are specified. Nonetheless, in following
subsections, a description of particular measures are given to provide background and a
better understanding about the means of particular measure.

The measures are considered as key measures in this thesis are:

1. "HT.10 Database records cryptographic linking" [15] (see section 2.3.3);

2. "HT.34 Usage of digital signature" [16] (see section 2.3.4);

3. "HT.52 Additional requirements to cryptographic tools" [17] (see section 2.3.5).

2.3.3 HT.10 Database records cryptographic linking

According to this measure description [15], this security measure requires to use a cryp-
tographical linking method taking into account the following principles:

1. Entries of the database must be linked in chronological order with the crypto-
graphic chain (local time stamp) and cryptographic hash digest preimage resis-
tance property must be used;

2. Used chaining technique must prevent unnoticeable data deletion;

3. Used cryptography tools must comply with measure HT.52 described in sec-
tion 2.3.5;

4. The defined employee must be committed to a periodical cryptographical link
inspection. This requirement must be documented in a persons contract of em-
ployment, job description or notes.

2.3.4 HT.34 Usage of digital signature

According to this measure description [16], this security measure includes rules and
guidelines for digital signature usage:

1. With digital signature and/or with digital seal what meets the requirements pro-
vided in the Estonian Digital Signatures Act is allowed to equip both databases,
records, fields, or entire database tables, or entire databases, etc. Every author-
ity must attaches itself to assess the evidential value of its own data and, con-
sequently, must evaluate whether to use the personal digital signature or digital
seal.

19

2. Data and documents with security sub-class T3 is prohibited to use digital sig-
nature mechanisms, which do not meet (especially in infrastructure issues) the
Estonian Digital Signatures Act requirements (that are classified, such as PGP
and GnuPG signatures).

3. Technical and supportive data can be left digitally unsigned. If a database or info
system main data is wanted to be left digitally unsigned, then several security
zones in mean of ISKE must be created and the unsigned data most be taken into
a lower zone.

NB! ISKE measure text is older that the Estonian Parliament decree, that Digital Sig-
natures Act is repealed and substituted by new act "Electronic Identification and Trust
Services for Electronic Transactions Act" [18]. It substantially changes the scope of
allowed digital signature types and formats compared to the Digital Signatures Act.

2.3.5 HT.52 Additional requirements to cryptographic tools

According to this measure description [17], this security measure includes following
guidelines:

1. Hash functions MD2, MD4, and MD5 usage is (without exception) prohibited,
regardless of their place of use, uses and usage;

2. Cryptographical and/or -protocol must be disclosed or made available at least two
years ago for cryptoanalysts to ensure it’s security. Closed crypto-tool must be
passed through security audit where unbreakability is convinced. In that case,
head of the security authority must ensure reliability of such security audit and
accept it.

3. If the cryptographic digest used for proof of value (integrity) has to ensure more
than ten years, hash function with output (hash length) at least 256 bits must be
used. Then the usage of the hash function RIPEMD160 and SHA1 are forbidden.
It is advisable to use the SHA2 family hash functions or with longer hash values
RIPEMD variants.

4. If the Crypto algorithm with a public key is used in conjunction with a digital
signature, that must ensure proof of value more than then years, then the RSA key
length must be at least 1536 bits. Using 1024 bit RSA usage is prohibited in those
cases.

5. If the Crypto algorithm with a pubic key is used in conjunction with a digital
signature, that must ensure proof of value more than fifteen years, then the RSA
key length must be at least 4096 bits.

20

2.4 Requirement Elicitation and Specification For Solution
In this section we will answer research sub-questions RSQ 1.4., RSQ 1.5. and RSQ 1.6.
We provide our interpretation of security requirements based on data collected from
ISKE security measure descriptions mentioned in previous subsections. The interpreta-
tion of requirements and formulation is based on the understanding and convictions of
the author and techniques presented in [14]. In addition we provide additional functional
requirements what proof of concept must fulfil, to act as information system.

2.4.1 Security Requirements For a Solution

Security requirements for solution are the following:

SECREQ.1 The solution must support main data signing with a digital signature.

SECREQ.2 A digital signature must be in format, that complies with the Elec-
tronic Identification and Trust Services for Electronic Transactions
Act.

SECREQ.3 A digital signature must be based on a public key cryptography.

SECREQ.4 A digital signatures public RSA key length must be at least 1536 bits.

SECREQ.5 The solutions database main data table records must be cryptographi-
cally linked.

SECREQ.6 The solutions database main data table records must be linked in chrono-
logical order.

SECREQ.7 The solutions database main data table cryptographical link must use
hash digest preimage resistance property.

SECREQ.8 A cryptographical links hash digest must be at least 256 bits.

SECREQ.9 The solution must support the databases main data tables full tamper-
ing detection.

SECREQ.10 The solution must support databases main data tables partial tamper-
ing detection.

SECREQ.11 The solution must support databases main data tables partial tamper-
ing detection with tampered database record detection.

SECREQ.12 The cryptographical link meta data needed for data tampering detec-
tion must be stored separately form secured data. (Derived from the
need discussed in section 2.4.3)

21

In figure 4 we used Graphical Misuse Cases diagram [8] to visualise security require-
ments related to our reference system Estonian Identity Registry and developed proof
of concept. UML use-case cases with stereotype "security requirement" represent the
security requirements (security use case) presented in current section, which mitigates
the identified threats covered in the section 2.2 drawn as misuse cases (painted in black).

Figure 4: A misuse case model about risk treatment concepts and security requirements

2.4.2 Functional Requirements Of a Solution

Functional requirements of a solution are the following:

FUNREQ.1 A solution must provide a standardised application programming in-
terface (API);

22

FUNREQ.2 A solution API must support the main data input operation.

FUNREQ.3 A solution API must support the main data output operation.

FUNREQ.4 A solution must support validating digital signatures of signed main
data during data output operations.

FUNREQ.5 A solution must support the main data storing to relational database.

FUNREQ.6 A solution API must support database tampering detection executing
operations.

FUNREQ.7 A solution API must support database tampering detection result out-
put operations.

FUNREQ.8 A solution must support database tampering detection result storing
into a database.

2.4.3 Limitations and Effects That Accompany With Implementing Security Re-
quirements

In this section we discuss possible limitations and effects of security requirements to
practical implementation.

Based on ISKE measures and elicited requirements specified in sections above we
conclude following aspect and effects.

Firstly we suggest that if an info-system asset database server or database manage-
ment system software is threatened, then all artefacts in the system are threatened. In
that case chronologically ordered cryptographic hash link, the backbone of this security
solution, is also threatened equally with the data that’s security we try to achieve. In this
case, the protection of the last cryptographic hash function digest is very important. If
the last database row cryptographic link digest is not carefully protected, then attacker
can change data, manipulate with hash values by generating a new link or add data to the
last database record without notice. Last database records can be changed or deleted by
new records without being able to identify the fact that tampering has been comited. We
state that for later data tampering detection, it is important to deposit a cryptographic
link record and other important meta-info about database entry to another system. This
system must be under control of a different department or personnel of an operation
institution. In this case, last digest of cryptographic link is also deposited out of the
database and the link validity check will fail if hashes from the period under validation
won’t mach. System where hashes will be deposited should be very dedicated to this
function, carefully configured, maintained and operated.

The second important limitation of chronologically ordered cryptographic link is
that it is not possible to normally change database records without recalculation of its

23

hash digest and the following link. Such calculations can be time consuming and grow-
ing volume of database records will also grow the time for calculations. Parallel calcu-
lation is also not possible, so every change will depend on the previous and must wait
until the link recalculation of the last record change is done. In case of aappend-only
database technique as described in the thesis [19] and in proceeding [20] can be con-
sidered as a practical implementation pattern and a logical change and deletion of data
object can be possible. This approach on the other hand can be effective by means of
data history, because otherwise a database model should be designed to allow historical
view of changed data objects.

Thirdly what need to be pointed out is associated with usage of digital signature
required by security requirement. Security requirements SECREQ.1, SECREQ.2 and
SECREQ.3 listed in section 2.4.1 can be practically implemented in Estonia by using
services provided by the Certification authority (legal name SK ID Solutions AS) [21]
and a toolkit provided by the Information System Authority Estonia. There is no other
option at the moment in Estonia to achieve mentioned requirements.

2.5 Summary
In this section we answered the research question RQ1 and its sub-questions. Through
analyse steps we researched and discussed aspects of organisational context, assets and
security objectives of the reference system and developed solution. We analysed and
presented collected security risks based on ISKE threats collection and proposed the
risk treatment concept and security requirements elicited according to research on ISKE
security measures. Finally we proposed solutions for functional requirements and dis-
cussed limitations and effects of implementing of security requirements.

24

3 Proof of Concept for ISKE selected Integrity Require-
ments

This section describes the solutions technical architecture and its components. The solu-
tions proof of concept is built to show hot to meet security and functional requirements.
The solution applies security requirement by implementing security controls. In this
section we will answer research question RQ2 stated in section 1.3 and by research
sub-questions in subsections.

3.1 The Solution Architecture and Components
In this section we will answer research sub-question RSQ 2.1. The basic architecture of
solution we provide is shown below (see Figure 5). The solution architecture is divided
into subsystems (painted with green colour on drawing). Each subsystem is discussed in
subsections. Additionally, there is a third party component (painted with yellow colour
on drawing), what is not developed during the research of this thesis, but is used by proof
of concept and a solution to help implement security controls. We will briefly describe
role of this counterpart. In each subsystem, there are hosted a number of applications
and artefacts that all together form a working solution and proof of concept.

Figure 5: The basic architecture of a solution

Overall the architecture consists of elements listed below:

1. Information Application System (see section 3.2);

2. Database Management System (see section 3.3);

3. Audit Application System (see section 3.4);

25

4. External third party trustee (see section 3.6).

Each subsystem plays a role in implementing one or more security or functional re-
quirements. A more detailed architecture is described on solutions UML deployment
diagram (see Figure 6). This diagram describes the detailed physical deployment of a
solution including servers, execution environments, artefacts, communication paths and
protocols between subsystems.

Figure 6: Solution deployment diagram

3.2 Information Application System
The role of the Information Application System is to act as the main data manager. It is
main switch between possible client applications using REST API, external participants
web services and the Database Management System (DBMS) where all data is stored.
The information Application System is developed in Java programming technology us-
ing Spring Boot Framework [22]. The role of the Information Application System is
to:

1. Provide RESTfull services to clients for creating and accessing data - fulfils func-
tional requirement FUNREQ.1, FUNREQ.2 and FUNREQ.3;

26

2. Manage data signing with digital signatures - fulfils security requirement SE-
CREQ.1, SECREQ.2 and SECREQ.3;

3. Evaluate correctness and validity of digital signatures - fulfils functional require-
ment FUNREQ.4;

4. Communicating with Database Management System for data storing - fulfils func-
tional requirement FUNREQ.5.

3.2.1 Information Application System API description

As described in the best practices document [23] RESTfull services are services imple-
mented using REST (Representational State Transfer) architectural style [24]. Informa-
tion Application System application programming interface (API) consists of one REST
Controller with following endpoints:

• /getIdentity - HTTP GET request for getting specific Identity data object accord-
ing to its UUID (universally unique identifier).

• /postIdentity - HTTP POST request to add new Identity data object.

GET and POST requests returns data formatted in JSON. For visualising, describing
and documenting provided API we integrated REST API framework Swagger [25] into
Information Application System. It automatically generates documentation and basic
user interface for services provided by the application.

3.2.2 Data Format For Main Data Storing

For storing main data we considered XML or JSON. Those formats are compared in
articles [26] and [27]. According to mentioned studies JSON has better performance
characteristics than XML. Although, cited articles both acknowledge the fact that both
formats might provide unique strengths and both have properties that demonstrate the
strengths and weaknesses relative to each format. But rather important is how it is
possible to natively integrate those data formats into Database Management System. To
look at the most serious and wide spread Database Management Systems created for
example by Microsoft [28], Oracle [29], IBM [30], PostgreSQL Global Development
Group [31] [32], those all have both XML and JSON native support in some form.
But according to cited references we understand that the use of JSON is extensively
spreading and became the most popular data format in many use cases. Also we can see
that JSON support have more proactively be developed in those systems in the future
than XML. Therefore in our solution, we propose to use JSON data format for storing
data as machine readable format in the database system. On figure 7 the sample data
object, what consists of personal identity data, is presented.

27

Figure 7: Identity data object formatted in JSON

3.2.3 Digital Signature Implementation

The management of digital signatures is a crucial to this solution. By digitally signing
data and documents it is possible to gain a long term data integrity guarantee. Estonian
digital signature solution came into effect on 7th October 2002 when the first official
digital signatures was given using the "DigiDoc Client" [33] program. So digital signa-
ture framework has been already utilised for 14 years in Estonia. In October 2016 a new
act "Electronic Identification and Trust Services for Electronic Transactions Act" [18]
came into force, what made a major change into our digital signatures field by repeal-
ing the old Estonian centric digital signature policy and taking into effect the European
Union regulation about Trust Services and Electronic identification. With that, unified
digital signature types and signature containers formats where introduced what are com-
pliant all over Europe.

We implemented a digital signature management using "Digidoc4j library" [34] pro-
vided by the Estonian Information System Authority. This library wraps different func-
tionalityes connected to digital signatures creation on validation. Common signature
container formats [35] available for creation using the library are the following:

• BDoc format - Obsolete Estonian digital signatures with OSCP confirmation
without time stamp or time mark;

• BDoc 2.1 format or ASiC-E LT-TM - Signatures with OCSP confirmation and
time mark;

• ASIC-E LT format - Signatures with OCSP confirmation and time stamp for
long time integrity guarantee.

In our solution, we use digital signature containers with ASIC-E format and digi-
tal signatures with LT signature profile. This container format has file mime-type
vnd.etsi.asic-e+zip and extension .asice.

28

Figure 8: Data encapsulation in digital signature container

On figure 8 we present how we encapsulate data into a digital signature container. After
data is received by RESTfull services and processed, it is put into file. Additionally,
there can be a secondary form of data for visualising data in human readable format
for example as HTML file. Such data can be for example application or decision about
application what need to be the processed by applicant or an officer of a state institution.
In our solution we only implemented proof of concept with a machine readable file.
After the data file generation is completed, is passed into signature module. In that
module the signature container file will be formed, data files will be located in this
container. After signing the digital signature container content, the signatures meta-
info will be placed into the container and as well raw JSON data will be passed to the
database.

On figure 9 we visualise flow of JSON data from source to Database Management
System.

Figure 9: Flow of data from client to database including digital signing

29

If the client requests the data from RESTfull service, raw data and container with signed
data will be requested from the Database Management System. After receive of the
artefacts, the container will be passed into signature module that validates signatures
using Certification Authority services. After signature validation, JSON data file will
be extracted from container and retrieved to client.

On figure 10 we visualise flow of digitally signed data validation and retrieve to
client.

Figure 10: Flow of data validation during output data to the client

This part of application will fulfil security requirements SECREQ.1, SECREQ.2, SE-
CREQ.3 and SECREQ.4.

3.3 Database Management System
In this section we will answer research sub-question RSQ 2.2. In our solution the
Database Management System carries the central data storage role. It provides interface
for storing and accessing data and organises cryptographic linking required by security
requirements. In our solution we use the "PostgreSQL" [36] version 9.6.2 as DBMS.
The Database Management System role is to:

1. Manage data storing and retrieving - fulfils functional requirement FUNREQ.5;

2. Organise cryptographic linking of database table entries - fulfils security require-
ment SECREQ.5-8;

3. Depositing cryptographic hash info to Audit Application System - fulfils func-
tional security requirement SECREQ.9-11.

4. Calculating cryptographic links for correctness evaluation - fulfils functional se-
curity requirement SECREQ.9-11.

30

3.3.1 Data Storage Strategy

As a key technical decision for implementing solution was to use JSON data format for
storing data we can classify our system as a document-oriented database [31]. For that
type of storing solution NoSQL [37] has become a synonym. As refered before, docu-
ment store using the JSON data format is classified as an NoSQL database. The NoSQL
can be "No to SQL" but also as "Not Only SQL" [38]. According to the mentioned re-
search there are many database management systems developed that aim to be NoSQL
databases. Traditional Relational Database Management Systems are less mentioned in
categories of NoSQL databases, but the last-mentioned systems benefiting more from
NoSQLs ideology.

In our solution "PostreSQL" database management system has the ability to store
JSON data format [32],[39] and used in conjunction with benefits of a relational database
model. In PostgreSQL there are two possibilities to store JSON data a) using JSON
data type, where data is stored as a string in the database and b) using JSONB data type,
where data is stored in binary form in the database system. Since JSONB data type has
been introduced in PostgreSQL the performance has been rapidly increased using GIN
indexes [40]. By utilising this feature of PostgreSQL we managed to develop a highly
performing solution without using the traditional approach of the Relational Database
Management System.

3.3.2 Database Main Table Structure

For our proof of concept we developed a simplistic database structure with one database
table. The database table named main_data stores data about persons identity for our
reference system. The database table structure for main_data is described below:

• id (bigint) - PostgreSQL big integer type column for the primary key, indexed
with b-tree index;

• id_uuid (uuid) - PostgreSQL UUID type column for an externally usable unique
identificator, indexed with b-tree;

• history_id_uuid (uuid) - PostgreSQL UUID type column, identificator for ver-
sioning purposes, indexed with b-tree;

• main_data (jsonb) - PostgreSQL JSONB type column for data search, indexed
with GIN index;

• file (text) - PostgreSQL text type column for storing digitaly signed data;
• hashchain (character varying(255)) - PostgreSQL varchar type column 255

characters long for cryptographic linking purposes.

Column file, that is a text column type will store a BASE64 encoded digital signature
container specified in section 3.2.3, what consist of digitally signed data files and a
signatures meta-info.

31

The following database query example demonstrates how to select data from the
database table designed by us containing a JSONB data filed that has a GIN index:

SELECT * FROM main_data WHERE main_data ->>
’personal_code’ = ’37810015070’;

In this sample we query the database for records in table "main_data" with a JSON key
personal_code having value 37810015070 present in its structure.

3.3.3 Implementing Cryptographic Link

In this section we describe how we implemented security requirements SECREQ.5,
SECREQ.6, SECREQ.7, and SECREQ.8. We give a brief overview about the database
table row cryptographical linking.

In our solution, cryptographic linking is applied to database table rows using Post-
greSQL DMBS database triggers and specially developed C-Language Functions [41].
If we insert a row into database table described in section 3.3.2, database trigger will be
executed before inserting the new record. This trigger uses the function from the shared
object library file developed using the C programming language. The prototype of those
functions are described by the author in the thesis [42]. During the research part of our
thesis project we have obtained and improved a source code of cryptographic operations
discussed in the mentioned thesis.

The flow of data from the Information Application System to the database and the
cryptographic link meta-data deposition to Audit Application System is graphically pre-
sented on figure 11.

Figure 11: Process of cryptographic linking and link meta-data depositing

The process of cryptographic linking is described below and graphically presented on
figure 12:

32

1. The database receives data to insert into a secured table;

2. The database executes trigger for the INSERT statement;

3. The database trigger executes a C-language function in the shared object library
for linking procedure;

4. The function in the shared object library makes SELECT query to the same table
to get hash from the last inserted row;

5. The function generates a SHA-256 [43] hash from the output of the last operation
and the data need to be inserted into table;

6. The function saves data and the corresponding hash generated in the last operation
into table;

7. The function outputs the newly generated hash and a row meta-data to the system
logging software described in section 3.4.2.

Figure 12: Detailed view of cryptographic linking flow

The source code of the mentioned discussed process is provided in appendix I. The
cryptographic hash chain generation source code.
In Database Management System, "Sylog-ng" daemon is configured so that it sends all
Syslog log messages to the remote Syslog-ng" log collector server what is deployed in
the Audit Application System 3.4. Then we will send record meta-data and hash value
for later tampering detection purposes. Mode information about selected "Syslog-ng"
software is provided in section 3.4.2.

33

3.4 The Audit Application System
The third main subsystem of our solution is an Audit Application System. It is im-
plemented to fulfil security requirements SECREQ.9-11 and functional requirements
FUNREQ.6-8. This system collects cryptographic link hashes, meta-info about secured
data and conducts database tampering detection activities. Audit Application System’s
role is to:

1. Collect cryptographic link information;

2. Store cryptographic link information;

3. Perform database tampering detection;

4. Store database tampering detection results.

As we discussed in section 2.4.3, to take advantage of a cryptographic link to data tam-
pering detection, it is important to deposit the links info from the Database Management
System to a more highly secured and trusted system what is controlled by a different or-
ganisational unit and person than Database Management System. In following sections
we will describe the implementation details of a hash link data deposition and describe
the proposed process for detecting database tampering.

3.4.1 Cryptographic Link Information Exchange Background

During the research part of this thesis we wanted to reuse available software, frame-
works and solutions as much as possible. We did not want to develop new communica-
tion protocols or software that could increase the complexity of the solution and there-
fore the risk of failure. For depositing cryptographic link meta-data from the Database
Management System to the Audit Application System we used Syslog [44] to collecting
cryptographic link information. It is known fact that Syslog is widely used in network-
ing and computing overall and in the software field there is lot of options to relay on.
Also we decided to store link data in a light weight database file, what can simply be
integrated to the Srping Boot framework. Options for this database file are for example
Sqlite3, H2 or HSQL databases.

3.4.2 Implementating the Cryptographic Link Information Exchange

We researched softwares "Rsyslog" [45] and the "Syslog-ng" [46]. Overall it turned
out, that possible fulfilling objectives using "Rsyslog" was not possible in a reasonable
time. During the research of this thesis we deeply investigated different possibilities
to transport and mediate Syslog messages using the abve mentioned software. By de-
fault a "Rsyslog" saves messages to text file. There is also "Rsyslog" module called

34

"Omprog" [47] what enables to forward messages to a specially developed program
written programs in programming languages Java or Python. Therefore those programs
can offer custom implementation forwarding a message. There is also module "Om-
libdbi" [48] what is SQL database integration module, to forward messages to several
databases. We developed programs in both Java and Python but unfortunately we were
not able to integrate "Rsyslog" reliable working integration with those programs. Doc-
umentation seamed to be outdated and the integration with developed programs was not
flexible enough. Also we were not able to make the "Omlibdbi" module working with
"Sqlite3" database that was an option mentioned before. It turned out that it was not
possible due to the lack of library support or conflicting library versions on the system
level, what could turn out to be problematic in the future, if it as put into real use.

Secondly we investigated the "Syslog-ng" software that seemed promising and more
actively supported by developers than "Rsyslog". This software also supports a similar
approach to "Rsyslog", that the Java or Python development language can use to ex-
pand functionality provided by "Syslog-ng". First problems raised just after installing
"Syslog-ng". We realised that the mentioned approach was not activated by default. We
needed to compile a "Syslog-ng" to support expansion programs in Java and Python.
We faced different problems including errors during the base software installation and
aspects not clearly documented in the documentation. We concluded that using the pro-
gram implemented in Python was not possible at this time due to unclear errors. But we
were able to activate and use the program implemented in Java. We converted the same
program implemented during the test with "Rsyslog" to the Java module program sup-
ported by "Syslog-ng". Alternatively we were able to save messages into the "Sqlite3"
database, that could be used as a second option for storing hash chain log messages.

For conclude to implement security requirement SECREQ.9 and SECREQ.10, SE-
CREQ.11 and SECREQ.12 we used the "Syslog-ng" software. The Database Manage-
ment System, there is "Syslog-ng" installed in client and in server mode located in the
Audit Application System. In the Audit Application System "Syslog-ng" is configured
to save cryptographic link information to the "H2" database using Java module program
implemented during this research project. The "H2" database structure is described in
section 3.5.2. The llow of log message is described on figure (See figure 13) and are the
following:

1. "Syslog-n"g server configures the database Java module program;

2. The module connects to the "H2" database file.

3. When the "Syslog-ng" client on the Database Management System receives a
Syslog message, it forwards the message to "Syslog-ng" server;

4. "Syslog-ng" server delegates the message to Java module program;

35

5. The database module program inserts message data with the SQL query to the
"H2" database;

Figure 13: Process of cryptographic linking and link meta-data depositing

The cryptographic link log message format is specified as follows:

YYYY-MM-DDTHH:MM:SS+HH:MM server_name program_name:
<message text>

Message text consists of:

audit:<table_name>,<id>,<id_uuid>,<last_hash>,<new_hash>

Message transport assurance is an important feature in the cryptographic link exchange.
It is important to guarantee of transport of every single log message transported from the
Database Management System to Audit Application System. To lower the risk of loos-
ing messages it is possible to use the Reliable Log Transfer Protocol [49] in the message
transport. "The RLTPTM protocol works on top of TCP, and can use STARTTLS for en-
cryption. RLTPTM supports IPv4 and IPv6 addresses. Inside the RLTPTM message, the
message can use any format, for example, RFC3164 (BSD-syslog) or RFC5424 (IETF-
syslog)." [49]. This protocol is only available in "Syslog-ng Premium Edition" what is
not available for free, so during the research project we did not implement transportation
using the above mentioned protocol.

3.5 Database Tampering Detection Management Software
The role of the Database Tampering Detection Management Software is to manage,
initiate and perform the validation of a cryptographic link in the Database Management

36

System described in section 3.3. This component is developed in the Java programming
technology using Spring Boot Framework and can be run as server process.

Role of Database tampering detection management system in details are listed as
follows:

1. to provide RESTfull services to clients for managing, executing and viewing re-
sults of the database tampering detection process - fulfils functional requirement
FUNREQ.6 and FUNREQ.7;

2. to perform database tampering detection process steps - fulfils security require-
ment SECREQ.9, SECREQ.10, SECREQ.11, SECREQ.12 and functional re-
quirements FUNREQ.6-8.

3.5.1 Working Principles of a Database Tampering Detection Management Soft-
ware

A Database Tampering Detection Software is developed so it can be run on a system as
an independent process. It connects to shared "H2" database file where cryptographic
link meta-info is stored by the "Syslog-ng" module program and saves the database tam-
pering detection process’s results into the same database file. To perform the database
tampering detection it can connect to the Database Management System where real data
is stored. In Database Management System, there is located database procedures, that
were developed during the research part of this thesis. Those procedures include func-
tions to recalculate the database tables cryptographic link and retrieve resulting hash to
management software. After the software receives the results, it compares the results
with the information in the own database and stores validation result.

In the solutions proof of concept we implemented three different database tampering
detection process flows. The first flow helps to validate the whole database table from
the first to the last record based on the initial hash given by the system. The second flow
helps to validate the section of the database table based on the initial hash, particular
start and end row information. The third flow helps to give feedback about a possible
tampered region in the database. Those flows are described in section 3.5.4. and on
figure (See figure 14) and as follows:

1. When the system starts, it connects to the Audit Application System "H2" database,
where cryptographic link information is collected;

2. When the system gets a request from the API or system scheduler it asks the
corresponding cryptographic hash link info from the "H2" database to perform
database tapering detection.

3. The system queries the Database Management Systems stored procedure for the
cryptographic link hash regenerated by a specially developed database module.

37

Figure 14: Detailed flow of the work of the Database Tampering Detection Management
Software

4. The system performs a comparison of hashes stored in the "H2" database and
retrieved from the Database Management System.

5. The system stores database tampering detection results into the "H2" database.

During the research of this thesis we did not developed a special user interface for
the Database Tampering Detection Software, but the system can be controlled using
REST API Framework "Swagger" [25] witch provides an automatically generated basic
user interface to make REST requests that executes data tampering detection actions or
presents tampering detection results from the database.

3.5.2 The Audit Application System Database Structure

The Audit Application System has one central database. We use the "H2" database for
implementing data store needs. Firstly the database is shared between the "Syslog-ng"
Java module program (see 3.4.2) for storing received cryptographic link information
and has its own schema auditdata. Secondly the "H2" database is used by the database
tampering detection management software with its own schema audit. Graphical rep-
resentation of Audit Application System database structure is presented on figrue 15.

The database table MAIN_DATA consists of the received cryptographic link informa-
tion. This information is parsed from the Syslog message discussed in section 3.4.2.

38

Figure 15: Database structure of Audit Application System

The "Syslog-ng" Java module program writes the data and the Database Tampering
Detection Management Software reads from this table. For all auditable tables in the
Database Management System a separate table must be created.

The database table AUDITABLE_TABLES contains info about auditable tables
and the initial hashes of those tables. This table is used by Database Tampering Detec-
tion Management Software if the performing tampering detection of full table.

The database table VALIDATION_RESULT contains the results of the database
tampering detection process. After every validation the Database Tampering Detection
Management Software saves new validation report to this table.

3.5.3 Database Tampering Detection Management Software API Description

As described in section 3.2.1 we also use RESTfull API to provide ability for controlling
application. API consists of one REST controller with the following endpoints:

• /result/listByTableName - HTTP GET request to get the list of the data tamper-
ing detection results by table name.

• /validation/full - HTTP GET request to execute the database table full tampering
detection by table name.

• /validation/partial - HTTP GET request to execute the database table partial tam-
pering detection by table name.

• /validation/errorDetection - HTTP GET request to execute the database table
partial tampering detection with error detetion.

39

3.5.4 Database Tampering Detection Process

In this section we will discuss the database tampering detection more precisely to pro-
vide an explanation for security requirements SECREQ.9, SECREQ.10, SECREQ.11
and SECREQ.12 described in section 2.4.1. We provide three different database tam-
pering detection flows, that are also implemented in the solutions proof of concept. With
this section we will answer to research sub question RSQ 2.3.

From the database management perspective there can be different objectives and
strategies to detect the possible tampering of secured data. All research work and dis-
cussions until now handle preparations to be able to detect possible database tamper.
Nevertheless an important feature of this solution should be an understanding of how
tampered data can be found using the provided solution.

To discover the fact of tamper or tampered elements from the database, we came up
with the following database tampering detection process flows:

Tables full validation - This flow recalculates the database table cryptographic link
hash based on the input hash from the first row until the last row. The input hash
will be given to the database procedure and then the procedure delegates the input
to the C language function what row by row takes data from the database table
and calculates the hashes from data. At the end the C language function retrieves
data to procedure what retrieves output to caller program.

input: The table initial hash - stored into the audit information system during
table generation in DMBS.

output: The hash of the last row generated by the procedure.

Tables partial validation - This flow recalculates the database table cryptographic link
hash based on the input hash the first table row and the last table row. The Input
hash will be given to the database procedure and procedure delegates the input
to the C language function that calculates hash link between two database rows
based on input hash.

input: hash value
input 2: value of beginning record id
input 3: value of ending record id
output: hash of last record generated by procedure

Tables partial validation with tampered region detection - This flow recalculates the
database table cryptographic link hash based on the input hash, the first table row
and the last table row. It also validates at the same time, if the recalculated hash
corresponds to the hash in the database tables corresponding column. If the hash
does not match to hash on this particular record it retrieves the calculated hash
and particular row information or nothing if the link is correct.

40

input: hash value
input 2: value of beginning record id
input 3: value of ending record id
input 2: value of beginning record id
input 3: value of ending record id
output: hash of last record generated by procedure

3.6 External Third Party Trustee
As we specified in section 3.1, an important component of our solution is the integra-
tion of an external third party trustee. During the research part of this thesis project
we did not implement this counterpart, but during the development of the Information
Application System we integrated a connection to the certification authority. For imple-
menting security requirements SECREQ.1 to SECREQ.4 there is practically only one
solution in Estonia to use third party certificate authority to generate digital signatures.
In section 3.2.3 we described the implementation of the digital signature mechanism.
To implement a digital signature, what would be valid according to the act described
beforehand we need to use services from SK ID Solutions AS (previously named AS
Sertifitseerimiskeskus). This company is a state accredited certificate and time stamp
service provider. [21].

In a more practical manner, the digital signature creation and validation software
library "Digidoc4j" that was discussed in section 3.2.3 is configured to communicate
with services provided by SK ID Solutions AS. By conjunction with the security hard-
ware controlled by the above mentioned library digital signature and time stamps are
provided by the certification authority. For testing the proof of concept of this solution
of this thesis project we received QSCD classified signature token "SafeNet 7300" from
SK ID Solutions AS and a test certificate provided specially for our project to sign data
with the test digital signatures.

It is also important to note, that every digital signature creation in production envi-
ronment cost some money. This consumption must be planed into budget.

3.7 Summary
In this section we answered the research question RQ2 and sub-questions. Trough im-
plementation steps and discussions of architectural components we provided the imple-
mentation of security and functional requirements. We gave background to technical
design decisions and described in detail how the solution components interact with each
other or what artefacts they provide. During the research of this section we developed
a proof of concept solution to showcase and prove theories discussed and to fulfil the
security objectives declared in section 2.

41

4 Proof of Concept Validation
The following section will provide a discussion and results of the validation of the so-
lution against requirements produced in section 2. We will answer research question
RQ3 and its sub questions. We will start our validation research with decoding the term
"validation" and continue with a step-by-step process to ensure the solution implements
requirements stated in the analyse phase.

4.1 Method
In this section we will answer research sub question RSQ 3.1. Validation is "The pro-
cess of evaluating software at the end of the software development process to ensure
compliance with software requirements" [50].

In this thesis we only focus on validating requirements and not the verification of
each software component developed during the research. This is due to fact that we
did not specifi any software specific requirements to follow during the development
phase. But nonetheless during the development phase we applied several commonly
known techniques and best practices, for example a code static analyse and inspections
provided by software development environment tools.

For performing a solution validation, several operations can be taken including code,
log files, data or database investigation, solution performance or behavioural investiga-
tion etc. A detailed list of used operations will be listed in the validation scenarios
discussed in the following sections. The validation protocol steps for this research are
the following:

1. For each requirement specified in section 2.4.1 and 2.4.2 acceptance criteria will
be specified;

2. Validation scenarios will be specified that consist of several validation steps;

3. Validation scenarios will be conducted;

4. Validation scenario results will be presented.

On diagram 16 we present a set of artefacts and connections between them to perform a
validation and make conclusions. Based on requirements and the solution we developed
acceptance criterias for every requirement. Also we developed validation scenarios that
consist of several validation steps that use input data and correspond to the acceptance
criteria via expected output. If the scenario’s steps do not have particular acceptance
criterias, but it is needed for the next steps, we only define the expected output. Each
scenario step produces an output and a scenario step result can be concluded from it and
from the validation criteria. Scenarios results confirm that the requirements have been
fulfilled.

42

Figure 16: Validation artefacts and connections with requirements

The following sections will provide a detailed discussion about the validation steps
listed above.

4.2 Defining Acceptance Criteria
For every requirement, an acceptance criteria is developed. If an acceptance criteria is
conditionally me we can state that requirement is fulfilled. The acceptance criterias will
have label of AC-SEC.NUMBER, where SEC stands for security requirement and the
number corresponding requirement number. Acceptance criteria for security require-
ments are the following:

AC-SEC.1 A digital signature container retrieved from API data output operation
has a digital signature container that can be opened by the Estonian dig-
ital signature software tool "digidoc-tool".

AC-SEC.2 A digital signature that accompanies the digital signature container, is
in format that is presented with "BES/time-stamp" by Estonian digital
signature software program "digidoc-tool".

43

AC-SEC.3 A digital signature must be based on public key cryptography. - with a
digital signature container, consisting of certificates recognised by soft-
ware "DigiDoc3 client" as valid certificates.

AC-SEC.4 A digital signature that accompanies with the digital signature container
consists of a Signers Certificate that the software "Digidoc3 Client" presents
with a Public key with at least RSA (1536).

AC-SEC.5 By investigating the source code, that is used to run the solution, there is
a construction that ensures, that each following database record consist
of the information that is cryptographically interpreted from the database
record data and previous recor cryptographic information.

AC-SEC.6 By investigating the source code, that is used to run the solution, there is a
construction that during the cryptographic linking of the database records
for generating a hash digest to each following database record, the last
database records hash is used alongside with the current databases record
data to form a current record hash digest.

AC-SEC.7 By investigating the source code, that is used to run the solution, there
is a construction that uses the SHA256 hash function to generate hash
value from the databases record data.

AC-SEC.8 By investigating the Database Management Systems main data table record
field "hashchain", the value is at least the length of 256 bits (it is equiva-
lent to 32 bytes, or 64 bytes in an hexadecimal string format).

AC-SEC.9 By performing a database main data table full tampering detection with
the solutions database tampering detection application, the Database Man-
agement Systems system log file a contains log row about performing
this action and the tampering detection result is presented as an activity
output.

AC-SEC.10 By performing the database main data table partial tampering detection
with the solutions database tampering detection application, the Database
Management Systems system log file contains a log row about perform-
ing this action and the tampering detection result is presented as an ac-
tivity output.

AC-SEC.11 By performing the databases main data table partial tampering detection
with error reporting with the solution databases tampering detection ap-
plication, the Database Management System system log file contains log
row about performing this action and the tampering detection result is
presented as an activity output.

44

AC-SEC.12 By investigating the database records of the Audit Application System,
there are records that indicate a direct connection with main data records
in the Database Management System.

Acceptance criterias for functional requirements will have the label of AC-FUN.NUMBER,
where FUN stands for functional requirement and the number corresponds to the re-
quirement number. Acceptance criteria for functional requirements are the following:

AC-FUN.1 After executing API operations, a response is available.

AC-FUN.2 After executing API operations for main data input procedures, data is
stored in the Database Management System.

AC-FUN.3 After executing API operations for data output procedures, system out-
puts requested the main data.

AC-FUN.4 By executing API operations for the output main data, the signature val-
idation result is presented as part of the output data.

AC-FUN.5 By connecting to the Database Management System database with "Post-
greSQL" client software, a table with the name "main_data" is found.

AC-FUN.6 By calling the system module API operations, it is possible to initiate a
database table’s full detection, partial detection and partial detection with
tampered record detection execution.

AC-FUN.7 By calling system module API operations it returns the database tamper-
ing detection results in JSON formatted data.

AC-FUN.8 By calling solution API operations and executing database queries in the
"H2" database table "results", tampering detection results are presented.

4.3 Scenarios For Validation
In this section we describe a set of scenarios to validate that the requirements are ful-
filled. Stakeholder can use the step-by-step flow to ensure that requirements are fulfilled.
In each scenario section we will provide brief background information to understand the
scenario’s context. Detailed scenarios with sample input data, expected output what is
derived from the acceptance criteria and implementation specifics are provided in ap-
pendix II. Validation scenarios. For the scenario to be accomplished with a positive
result, all the scenario steps must succeed.

SCEN1 - Scenario for validating data insertion and cryptographic hash chain cre-
ation

45

This scenario is designed and developed to validate requirements connected to the main
data input operations and main data digital signing in the Application Information Sys-
tem The creation of a cryptographic link of main data records in the Database Appli-
cation System and deposition of cryptographic link meta data to the Audit Application
System. In this scenario we use the HTTP client tool, "PostgreSQL" and "H2" database
client tool and the Estonian digital signature software "DigiDoc3 Client".

The scenario validates the following requirements: SECREQ.8, SECREQ.12, FUN-
REQ.1, FUNREQ.2, FUNREQ.5.

SCEN2 - Scenario for validating data output to client, file content and digital sig-
nature features
This scenario is designed and developed to validate requirements connected to the main
data output operations from the Information Application System and the main data pro-
tecting digital signature’s verification. In this scenario we use the HTTP client tool and
the Estonian digital signature software "digidoc-tool" and "DigiDoc3 Client".

The scenario validates the following requirements: SECREQ.1, SECREQ.2, SECREQ.3,
SECREQ.4, FUNREQ.3, FUNREQ.4.

SCEN3 - Scenario for validating data tampering detection
This scenario is designed and developed to validate requirements connected to data
tampering detection execution in the Audit Application System and the data tampering
detection process by the Database Tampering Detection Management Software and the
Database Management Software. In this Scenario we use the HTTP client tool and
"PostgreSQL" database client tool.

The scenario validates the following requirements: SECREQ.9, SECREQ.10, SECREQ.11,
FUNREQ.6, FUNREQ.7, FUNREQ.8.

SCEN4 - Scenario for validating cryptographic link generation
This scenario is designed and developed to validate requirements connected to the cryp-
tographic link generation in the Database Management Software. Scenario is based on
the source code inspection and does not consist of any steps that is doing execution of
the software implemented in this thesis project, because it will not cover any functional
requirements.

Scenario validates following requirements: SECREQ.5, SECREQ.6, SECREQ.7.

4.4 Performance Characteristics of Data Tampering Detection
In this section we will answer research sub question RSQ 3.2. At the end of the val-
idation process we performed several tests to get the performance characteristics of

46

database tampering detection process. We particularly measured the time of perform-
ing tampering detection on records for ten times in test. Regardless of the fact, that in
this thesis we offered three database tampering processes, the tests we only performed
on the "Table partial validation" process. Both of the other process are similar to the
one algorithm. Only "Table partial validation with tamper region detection" process has
some additional operations inside the algorithm, that could make it slightly slower. For
a test environment we used a Virtualized Linux server running "PostgreSQL" version
9.6.2. This virtual server has a 64 bit processor Intel Core i7-2640M at 2.80GHz with
4 cores and 4000MB of RAM. In the databases main table we had 1 million records
cryptographically linked. We performed tests using database function "getPartialTable-
HashFunctionPublic" with SQL query:

select * from getPartialTableHashFunctionPublic(?,?,?,?);

with parameters:
1st = number 1
2nd = id of record to perform tampering detection

(for example 1000, 10000, 100000, 1000000)
3rd = text of initial hash from cryptographic link

generation shared object library
4th = text ’main_data’

In table 1 we provide the average test time in seconds. On figure 17 graphical represen-
tation of the test results are shown.

Table 1: Average time consumption for performing tampering detection
Number of records in process Time for process in seconds
1000 0.011
10000 0.116
50000 2
100000 8
200000 31
300000 71
400000 128
500000 197
600000 283
700000 378
800000 487
900000 610
1000000 754

47

Figure 17: Performance test results average time diagram

According to the given data we can state that the more records are involved in one
detection process the more it time takes to finish the detection process. For a large
number of records tamper detection can last for hours fro full table detection, so we
conclude that full database tampering process can be inefficient. But this can be avoided
if more powerful processor is used. It is also possible to divide database table to regions
of interest and run the detection based on the mentioned regions in parallel.

4.5 Validation Results
In this section we will answer research sub-question RSQ 3.3. During the validation
process we improved the software developed during the thesis project. Validation sce-
narios and the overall validation process helped to improve the quality of developed
software. Also during validation, we ensured that the developed software meets all the
security and functional requirements stated in section 2. We conclude, that after thew
validation process is performed the solution meets above-mentioned requirements and
the solution can be used in real life.

4.6 Summary
In this section we discussed the validation of the solution provided by this thesis re-
search project and answered the research question RQ3 and sub-questions. We pro-
vided method for ensuring that the requirements specified in section 2 are correctly
implemented. The method we provided acceptance criteria for every requirement and
developed validation scenarios to cover the validation of requirements. We also pro-
vided performance characteristics of time consumption for the data tampering detection
process. At the end of this section we provided the results of the validation process.

48

5 Application Guidlines
In this section we provide a discussion and instructions applying the solution what was
developed in this thesis research. In appendix III. Solution application instruction details
we provide details for configuring critical parts of our solution, building instructions to
the developed software and running instructions to solutions subsystems. A sample
configuration for the applications are included in the source code of this solution and
not added in the appendixes.

5.1 Background Discussion
Every proof of concept without additional improvements is not possible to apply to the
provided solution. Our solution covers the digital signature concept, database hash link
generation, cryptographic link meta data deposition and database tampering detection.
Subjects that we did not cover were database internal structure and data object structure.
In section 3.3.1 we discussed how we store data in the Database Management System,
but it is also important to have versioning of data sets, that is not covered in this thesis.
To apply improvements must be made to the main data table to allow full versioning
support for the database objects. According to database main table changes, the database
cryptographic hash chain source code must be changed and compiled.

Also some organisational changes are needed to apply this solution. We propose,
that Audit Application System of this solution should be deployed in different admin-
istrative and network zones than the Database Management System. There should be
different administrators and access roles for administering the Database Management
System and the Audit Application System components. If same person has access to
the Audit Application System and the Database Management System, there is risk that
the cryptographic link meta data saved into Audit Application System by administrator
is manipulated.

5.2 Necessary Software Components for Solution
In the following section we list the software needed to install the solution. We do not
provide a detailed step-by-step command list for installing the whole solution, because
this can wary based on the operating system used. Build instructions for developed
software is presented in appendix III. Solution application instruction details.

Information Application System

• Linux operating system. In this research project we used 64bit Ubuntu 16.04.2
LTS

49

• "Java 8 SE Runtime Environment". In the research project we used version
1.8.0_131-b11

• pkcs11 device integration client. In this research project we used "SafenetAuthenticationClient-
core" version 9.1.7.

• Main application (ais), that developed during this research project.

Database Management System

• Linux operating system. In this research project we used 64bit Ubuntu 16.04.2
LTS

• "PostgreSQL" version 9.5 or later. In this research project we used "PostgreSQL"
version 9.6.2.

• "Syslog-ng2" version 3.5 or later. In this research project we used "Syslog-ng"
version 3.5.6.

• Database cryptographic linking and data tampering detection shared object library
"hashchain.so", that was developed during this research project.

Audit Application System

• Linux operating system. In this research project we used 64bit Ubuntu 16.10

• "Syslog-ng" version 3.9 or later with mod-java and mod-java-common compiled.
In research project we used "Syslog-ng" version 3.9.1.

• "Java 8 SE Runtime Environment". In this research project we used version
1.8.0_131-b11.

• Database tampering detection management software "audit", that was developed
during this research project.

• "Syslog-ng" Java module "H2Writer", that was developed during this research
project.

50

6 Conclusion
In this thesis project we analysed, developed and validated solution to provide proof
of concept how to implement selected ISKE highest level integrity requirements. It is
crucial that mentioned security requirements understood in early design and the devel-
opment phase. Later modifications of the system and software almost equals developing
of new system. This research work will give an understanding about the background
of the selected ISKE integrity measures that have effect to system in the early design
and software development phase. Research provide a validation method to ensure how
elicited requirements are fulfilled. During the research project of this thesis we devel-
oped a software that after improvements can be applied as an info technology system to
securely store data that has ISKE integrity subclass "T3".

6.1 Answers to Research Questions
Using experience and data collected during this research project we can conclude the
following:

RQ1. - How should the proof of concept be designed to obtain security objectives
of data with highest integrity need demanded by ISKE? - During every development
phase of the information system, it is required to have a detailed analyse of following as-
pects: organisational context and assets, security risks, risk treatment decision, security
and functional requirements and what are the possible limitations of the requirements.
In our thesis project, we created a fictional state registry that describes a real world ex-
ample as closely as possible. We researched over the listed aspects and collected set of
requirements for this fictional system based on the selected ISKE highest level integrity
security measures. During this process we used the Information System Security Risk
Management (ISSRM) methodology in conjunction with ISKE Reference Guide.

RQ2. - How should the proof of concept and the system implemented to obtain
security objectives of data with highest integrity need demanded by ISKE? - Dur-
ing the research we implemented a proof of concept solution to demonstrate how to
achieve objectives stated in research question RQ1. We divided the solution into three
subsystems that have dependencies and all together fulfil the security requirements and
help to achieve the security objectives. There is a sub system that deals with user re-
quests for data input and output operations and is responsible for data signing with a
digital signature. Secondly, there is a database system that stores data given by the first
subsystem. Thirdly, there is a subsystem that manages data tampering detection and
collects deposited cryptographic link data. All three systems can be given under dif-
ferent administrative zones to ensure administration separation. In order to still have
flexibility in the database level we provided a database table structure using JSON and

51

"PostgreSQL" Database Management System capable of allowing dynamic organisa-
tion of stored data objects. This approach is called NoSQL and is a representation of
a not-traditional database strategy. To ensure long term integrity and legal aspects we
provided a solution to encapsulate data into digital signature containers specified with
EU regulation on electronic identification and trust services for electronic transactions
in the internal market.

RQ3. - How should the solution validation be performed to ensure the fulfilment of
security requirements? - We provided a validation method to ensure that the security
and functional requirements are fulfilled by the implemented solution. We developed ac-
ceptance criteria for each requirement and validation scenarios including several steps
with input data and expected output. We performed the validation steps and during
this process improved the softwares quality. We also researched performance charac-
teristics of the database tempering detection process. Overall we concluded that the
implemented solution fulfils requirements decalred in the research project.

6.2 Limitations
By applying the provided solution it is needed take into consideration that limitations
and effects come with the declared security requirements. Using this solution drastically
decreases the flexibility of the database structure and the ability to make changes on
table structure. As ISKE introduces term chronologically ordered hash link of database
records, it means that any intended changes to the database records are not possible.
There can be only insert-only database, where changes in the database objects have
to be organised logically and therefore a versioning of records is needed. This aspect
means, that database can grow very large in count of records depending on business
processes and the fundamental life cycle of the data object.

In the database tampering detection performance test we concluded, that the full
database tampering detection process can be inefficient. One solution to overcome this
is to paralelize tampering detection by dividing a larger area of interest into smaller
regions and running detection on different threads.

6.3 Concluding Remarks
Work on this thesis project was started in September of 2015. By the time of publication
this work, there is already a state information system that is partly implements using
hints and suggestions provided by the author of this thesis. By providing analysis about
the subject domain, theoretical solution design and implementation of proof of concept,
we hope it is possible to help institutions and info technology developers to obtain a
system that meets security requirements required by ISKE. By publishing this thesis

52

and potential solution as proof of concept, it can enlarge ISKEs application participants
awareness in the subject domain concepts.

6.4 Future Work
According to the understating of the author, proof of concept is 20% of product that is
created with 80% of time or vice versa. During research we get different new ideas and
questions that should be considered as follow-up research and discussion. Those aspects
can be considered as research questions or point of improvement for future work:

• Are there other mechanisms that can be used to determine unintentional changes
in databases for example blockchain technology?

• Is there a possibility to improve ISKE to allow usage of above mentioned possible
technologies?

• How the provided database tampering detection process can be optimised to in-
crease the speed of tampering detection of a very large quantity of records?

• What is the possible process of database recovery when database tampering is
detected?

• Improve the Database Tampering Detection Management Software to be more
flexible for profile scenarios based detection;

• Improve the Database Tampering Detection Management Software to automati-
cally perform profiles based detection including notification about detected viola-
tions.

53

References
[1] Estonian Parliament. Infosüsteemide turvameetmete süsteem, 2008. [On-

line]. Available: https://www.riigiteataja.ee/akt/13125331.
[Accessed: 01-Dec-2016].

[2] Information System Authority Estonia. Three-level it baseline security
system iske, 2012. [Online]. Available: https://www.ria.ee/en/
iske-introduction.html. [Accessed: 01-Dec-2016].

[3] Information System Authority Estonia. Infosüsteemide kolmeastmeline
etalonturbe süsteem iske rakendusjuhend, 2016. [Online]. Available:
https://iske.ria.ee/8_01/?action=AttachFile&do=get&
target=ISKE_rakendusjuhend_8.00.pdf. [Accessed: 01-Dec-2016].

[4] Information System Authority Estonia. Infosüsteemide kolmeastmeline etalon-
turbe süsteem iske kataloogid, 2016. [Online]. Available: https://iske.
ria.ee/8_01/ISKE_kataloogid. [Accessed: 01-Dec-2016].

[5] Information System Authority Estonia. Infosüsteemide kolmeastmeline etalon-
turbe süsteem iske ohud, 2016. [Online]. Available: https://iske.ria.
ee/8_01/ISKE_ohtude_kataloog. [Accessed: 01-Dec-2016].

[6] É. Dubois, P. Heymans, N. Mayer, and R. Matulevičius. A systematic approach
to define the domain of information system security risk management. page pp.
289306, Springer, 2010.

[7] R. Matulevičius, N. Mayer, H. Mouratidis, P. Heymans, and E. Dubois. Syntactic
and semantic extensions to secure tropos to support security risk management.
pages 18(6):816–844, 2012.

[8] G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases.
page 10(1):34–44, 2005.

[9] R. Matulevicius, N. Mayer, and P. Heymans. Alignment of misuse cases with
security risk management. In Availability, Reliability and Security, 2008.

[10] Information System Authority Estonia. G 4.13 salvestatud andmete
hävimine. [Online]. Available: https://iske.ria.ee/8_01/ISKE_
ohtude_kataloog/G4/G_4.13. [Accessed: 01-Dec-2016].

[11] Information System Authority Estonia. G 4.28 andmebaasi andmekadu,
2016. [Online]. Available: https://iske.ria.ee/8_01/ISKE_
ohtude_kataloog/G4/G_4.28. [Accessed: 01-Dec-2016].

54

https://www.riigiteataja.ee/akt/13125331
https://www.ria.ee/en/iske-introduction.html
https://www.ria.ee/en/iske-introduction.html
https://iske.ria.ee/8_01/?action=AttachFile&do=get&target=ISKE_rakendusjuhend_8.00.pdf
https://iske.ria.ee/8_01/?action=AttachFile&do=get&target=ISKE_rakendusjuhend_8.00.pdf
https://iske.ria.ee/8_01/ISKE_kataloogid
https://iske.ria.ee/8_01/ISKE_kataloogid
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G4/G_4.13
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G4/G_4.13
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G4/G_4.28
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G4/G_4.28

[12] Information System Authority Estonia. G 4.30 andmebaasi tervikluse ja vastavuse
kadu, 2016. [Online]. Available: https://iske.ria.ee/8_01/ISKE_
ohtude_kataloog/G4/G_4.30. [Accessed: 01-Dec-2016].

[13] Information System Authority Estonia. G 5.64 andmete või tarkvara manipuleer-
imine andmebaasisüsteemides, 2016. [Online]. Available: https://iske.
ria.ee/8_01/ISKE_ohtude_kataloog/G5/G_5.64. [Accessed: 01-
Dec-2016].

[14] D. Firesmith. Specifying good requirements. 2:77–87, 2003.

[15] Information System Authority Estonia. Ht.10 andmebaasi kannete krüptoahel-
damine, 2016. [Online]. Available: https://iske.ria.ee/8_01/ISKE_
kataloogid/8_Kataloog_H/HT/HT.10. [Accessed: 01-Dec-2016].

[16] Information System Authority Estonia. Ht.34 digiallkirja kasutamine, 2016. [On-
line]. Available: https://iske.ria.ee/8_01/ISKE_kataloogid/8_
Kataloog_H/HT/HT.34. [Accessed: 01-Dec-2016].

[17] Information System Authority Estonia. Ht.52 lisanõuded krüptovahen-
ditele, 2016. [Online]. Available: https://iske.ria.ee/8_01/ISKE_
kataloogid/8_Kataloog_H/HT/HT.52. [Accessed: 01-Dec-2016].

[18] Estonian Parliament. Electronic identification and trust services for electronic
transactions act, 2016. [Online]. Available: https://www.riigiteataja.
ee/akt/125102016001. [Accessed: 01-Dec-2016].

[19] M. J. Malmgren. An infrastructure for database tempering detection and forensic
analysis. Bathelor thesis, The Univeristy of Arizona, 2007.

[20] R. Snodgrass, S. S. Yao, and C. Collberg. Tamper detection in audit logs. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30, VLDB ’04, pages 504–515. VLDB Endowment, 2004.

[21] AS Sertifitseerimiskeskus. Services, 2017. [Online]. Available: https://www.
sk.ee/en/services/. [Accessed: 01-Dec-2016].

[22] F. Gutierrez. Introducing Spring Framework. 2014.

[23] T. Fredrich. RESTful Service Best Practices, 2012.

[24] R. T. Fielding. Architectural styles and the design of network-based software
architectures. Technical report, UNIVERSITY OF CALIFORNIA, University of
California, Irvine, 2000.

55

https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G4/G_4.30
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G4/G_4.30
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G5/G_5.64
https://iske.ria.ee/8_01/ISKE_ohtude_kataloog/G5/G_5.64
https://iske.ria.ee/8_01/ISKE_kataloogid/8_Kataloog_H/HT/HT.10
https://iske.ria.ee/8_01/ISKE_kataloogid/8_Kataloog_H/HT/HT.10
https://iske.ria.ee/8_01/ISKE_kataloogid/8_Kataloog_H/HT/HT.34
https://iske.ria.ee/8_01/ISKE_kataloogid/8_Kataloog_H/HT/HT.34
https://iske.ria.ee/8_01/ISKE_kataloogid/8_Kataloog_H/HT/HT.52
https://iske.ria.ee/8_01/ISKE_kataloogid/8_Kataloog_H/HT/HT.52
https://www.riigiteataja.ee/akt/125102016001
https://www.riigiteataja.ee/akt/125102016001
https://www.sk.ee/en/services/
https://www.sk.ee/en/services/

[25] Swagger development community. Documenting an Existing API with Swag-
ger, 2017. http://swaggerhub.com/wp-content/uploads/2017/
02/Documenting-An-Existing-API-with-Swagger-2.pdf.

[26] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta. Comparison of json and
xml data interchange formats: A case study, department of computer science mon-
tana state university – bozeman. 2009.

[27] Z. U. Haq, G. F. Khan, and T. Hussain. A comprehensive analysis of xml and json
web technologies. 2015.

[28] J. Popovic. Storing json in sql server, 2015. [Online]. Available: https:
//blogs.msdn.microsoft.com/sqlserverstorageengine/
2015/11/23/storing-json-in-sql-server/. [Accessed: 01-Dec-
2016].

[29] Oracle Corporation. Schemaless Application Development with Oracle Database
12c, 2015.

[30] C. Bienko, M. Greenstein, S. E. Holt, R. T. Phillips, and IBM International Tech-
nical Support Organization. IBM Cloudant: Database as a Service Fundamen-
tals. 2015. http://www.ibm.com/developerworks/data/library/
techarticle/dm-1306nosqlforjson1/.

[31] C. Chasseur, Y. Li, and J. M. Patel. Enabling json document stores in relational
systems. 2013.

[32] The PostgreSQL Global Development Group. Json types, 2016. [Online].
Available: https://www.postgresql.org/docs/current/static/
datatype-json.html. [Accessed: 01-Dec-2016].

[33] AS Sertifitseerimiskeskus. The estonian id card and digital signature con-
cept, 2003. [Online]. Available: http://www.id.ee/public/The_
Estonian_ID_Card_and_Digital_Signature_Concept.pdf. [Ac-
cessed: 01-Dec-2016].

[34] Estonian Information System Authority. Digidoc4j api description, 2016.
[Online]. Available: http://open-eid.github.io/digidoc4j/. [Ac-
cessed: 01-Dec-2016].

[35] Information System Authority Estonia. Digital signature formats, 2016. [On-
line]. Available: http://www.id.ee/index.php?id=36108. [Accessed:
01-Dec-2016].

56

http://swaggerhub.com/wp-content/uploads/2017/02/Documenting-An-Existing-API-with-Swagger-2.pdf
http://swaggerhub.com/wp-content/uploads/2017/02/Documenting-An-Existing-API-with-Swagger-2.pdf
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2015/11/23/storing-json-in-sql-server/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2015/11/23/storing-json-in-sql-server/
https://blogs.msdn.microsoft.com/sqlserverstorageengine/2015/11/23/storing-json-in-sql-server/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/
https://www.postgresql.org/docs/current/static/datatype-json.html
https://www.postgresql.org/docs/current/static/datatype-json.html
http://www.id.ee/public/The_Estonian_ID_Card_and_Digital_Signature_Concept.pdf
http://www.id.ee/public/The_Estonian_ID_Card_and_Digital_Signature_Concept.pdf
http://open-eid.github.io/digidoc4j/
http://www.id.ee/index.php?id=36108

[36] The PostgreSQL Global Development Group. Postgresql, 2016. [Online]. Avail-
able: https://www.postgresql.org/. [Accessed: 01-Dec-2016].

[37] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter. Nosql databases: a survey
and decision guidance. Research paper, University of Hamburg, Germany, 2016.

[38] C. Strauch. Nosql databases. resreport, Stuttgart Media University, 2011.

[39] G. Litt, S. Thompson, and J. Whittaker. Improving performance of schemaless
document storage in postgresql using bson. Research paper, Yale University, 2013.

[40] M. Nenciarini. Jsonb type performance in postgresql 9.4,
2015. [Online]. Available: http://blog.2ndquadrant.com/
jsonb-type-performance-postgresql-9-4/. [Accessed: 01-
Dec-2016].

[41] The PostgreSQL Global Development Group. C-language functions, 2016.
[Online]. Available: https://www.postgresql.org/docs/current/
static/xfunc-c.html. [Accessed: 01-Dec-2016].

[42] K. Kapp. Kõrge terviklusega andmeid talletava andmebaasilahenduse prototüüp.
Associates thesis, Tallinn Polytechnic Shool, 2016.

[43] D. Eastlake. Us secure hash algorithms (sha and hmac-sha), 2006. [Online].
Available: https://tools.ietf.org/html/rfc4634. [Accessed: 01-
Dec-2016].

[44] The syslog protocol, 2009. https://tools.ietf.org/html/rfc5424.

[45] Adiscon GmbH. Rsyslog, 2016. [Online]. Available: http://www.rsyslog.
com. [Accessed: 01-Dec-2016].

[46] Balabit SA. syslog-ng - open source log management solution, 2017. [Online].
Available: https://syslog-ng.org/. [Accessed: 01-Feb-2017].

[47] R. Gerhards. omprog: Program integration output module, 2016. [On-
line]. Available: http://www.rsyslog.com/doc/v8-stable/
configuration/modules/omprog.html. [Accessed: 01-Dec-2016].

[48] R. Gerhards. omlibdbi: Generic database output module, 2016. [On-
line]. Available: http://www.rsyslog.com/doc/v8-stable/
configuration/modules/omlibdbi.html. [Accessed: 01-Dec-2016].

57

https://www.postgresql.org/
http://blog.2ndquadrant.com/jsonb-type-performance-postgresql-9-4/
http://blog.2ndquadrant.com/jsonb-type-performance-postgresql-9-4/
https://www.postgresql.org/docs/current/static/xfunc-c.html
https://www.postgresql.org/docs/current/static/xfunc-c.html
https://tools.ietf.org/html/rfc4634
https://tools.ietf.org/html/rfc5424
http://www.rsyslog.com
http://www.rsyslog.com
https://syslog-ng.org/
http://www.rsyslog.com/doc/v8-stable/configuration/modules/omprog.html
http://www.rsyslog.com/doc/v8-stable/configuration/modules/omprog.html
http://www.rsyslog.com/doc/v8-stable/configuration/modules/omlibdbi.html
http://www.rsyslog.com/doc/v8-stable/configuration/modules/omlibdbi.html

[49] Balabit SA. Reliable log transfer protocolTM, 2017. [Online]. Available: https:
//www.balabit.com/documents/syslog-ng-pe-5.0-guides/
en/syslog-ng-pe-guide-admin/html/concepts-rltp.html.
[Accessed: 01-Feb-2017].

[50] B. W. Boehm. Verifying and validating software requirements and design specifi-
cations. IEEE Softw., 1(1):75–88, January 1984.

58

https://www.balabit.com/documents/syslog-ng-pe-5.0-guides/en/syslog-ng-pe-guide-admin/html/concepts-rltp.html
https://www.balabit.com/documents/syslog-ng-pe-5.0-guides/en/syslog-ng-pe-guide-admin/html/concepts-rltp.html
https://www.balabit.com/documents/syslog-ng-pe-5.0-guides/en/syslog-ng-pe-guide-admin/html/concepts-rltp.html

Appendix

I. The cryptographic hash chain generation source code

#include <string.h>
#include <syslog.h>
#include <openssl/sha.h>
#include <postgres.h>
#include <executor/spi.h>
#include <utils/rel.h>
#include <utils/builtins.h>
#include "hashchain.h"

static const char hexdigits[16] = "0123456789abcdef";
static const char hashchainFieldName[] = "hashchain";

/**
* loads & returns hash of previous row in the relation

* than once per table per server startup.

* @param relationName name of relation/table

* @returns hashchain value of last row of the relation

* @note returned pointer points to statically allocated memory

*/
const char* loadHash(const char relationName[NAMEDATALEN])
{

static const char prevHashQueryTemplate[] = "SELECT hashchain FROM
\"%s\" ORDER BY id DESC LIMIT 1";

static const char initialHash[] = "160488245
c65a2f36685f107e1f499caac7f37dc6afb65a4ed9cc9f300b30f05";

static char retHash[SHA256_DIGEST_LENGTH * 2 + 1] = "";
static char query[NAMEDATALEN + sizeof(prevHashQueryTemplate)] = ""

;

openlog("hash_chain", LOG_NDELAY, LOG_SYSLOG);
syslog(LOG_DEBUG, "Trying to load hash from table \"%s\"",

relationName);
snprintf(query, sizeof(query), prevHashQueryTemplate, relationName)

;
if(SPI_connect() == SPI_ERROR_CONNECT) {

syslog(LOG_ERR, "Failed to load hash from \"%s\": SPI_connect()
== SPI_ERROR_CONNECT", relationName);

return NULL;
}
int r = SPI_execute(query, true, 0);
if(r != SPI_OK_SELECT) {

syslog(LOG_ERR, "Failed to load hash from \"%s\": r !=
SPI_OK_SELECT", relationName);

59

SPI_finish(); // ignore SPI_ERROR_UNCONNECTED error
return NULL;

}
if(SPI_processed != 1) {

SPI_finish(); // ignore SPI_ERROR_UNCONNECTED error
syslog(LOG_ERR, "No rows returned from \"%s\", using initial

hash: %s", relationName, initialHash);
return initialHash;

}
HeapTuple row = SPI_tuptable->vals[0];
TupleDesc desc = SPI_tuptable->tupdesc;
char* hash = SPI_getvalue(row, desc, 1);
memcpy(retHash, hash, SHA256_DIGEST_LENGTH * 2 + 1);
pfree(hash);
SPI_finish();
syslog(LOG_DEBUG, "Hash loaded from \"%s\": %s", relationName,

retHash);
return retHash;

}

/**
* @param rel relation (table)

* @param row row to be inserted

* @returns row with hashchain field filled

* @note Postgre server takes care of freeing allocated memory

* @note elog statements seem to have significant performance impact

*/
HeapTuple hashchain(const Relation rel, const HeapTuple row)
{

const char* tableName = SPI_getrelname(rel); // table name
int hashchainFieldNumber = SPI_fnumber(rel->rd_att,

hashchainFieldName); // hashchain field index
int idFieldNumber = SPI_fnumber(rel->rd_att, "id"); // id field

index
int idUuidFieldNumber = SPI_fnumber(rel->rd_att, "id_uuid"); //

id_uuid index

openlog("hash_chain", LOG_NDELAY, LOG_SYSLOG);

if(hashchainFieldNumber <= 0) {
elog(INFO, "hashchain triggered on table without hashchain field

(%s)", tableName);
return NULL; // not hashchain’ed, no-op

}
const char* prevHash = loadHash(tableName);
if(prevHash == NULL) {

elog(ERROR, "Couldn’t get last hash (see system log)");
return NULL;

}

60

/* initialize sha256 context */
SHA256_CTX sha256;
SHA256_Init(&sha256);
SHA256_Update(&sha256, prevHash, SHA256_DIGEST_LENGTH * 2);

/* add all fields to digest */
int i;
for(i = 1; i <= rel->rd_att->natts; i++)

{
if(i == hashchainFieldNumber) continue; // except hashchain field
char* fieldValue = SPI_getvalue(row, rel->rd_att, i);

if ((fieldValue != NULL && fieldValue[0] != ’\0’)) {
SHA256_Update(&sha256, fieldValue, strlen(fieldValue));

}
}

/* first 32 bytes of output will be binary representation of digest

*/
unsigned char hash[SHA256_DIGEST_LENGTH * 2 + 1];
SHA256_Final(hash, &sha256);

/* convert binary representation to string */
for(i = SHA256_DIGEST_LENGTH - 1; i >= 0; i--) {

hash[i * 2 + 1] = hexdigits[hash[i] & 0x0f];
hash[i * 2] = hexdigits[(hash[i] & 0xf0) >> 4];

}
hash[SHA256_DIGEST_LENGTH * 2] = ’\0’; // string terminator

/* send hash & metadata to log server */
char* rowId = SPI_getvalue(row, rel->rd_att, idFieldNumber);
char* rowUuid = SPI_getvalue(row, rel->rd_att, idUuidFieldNumber);

syslog(LOG_NOTICE, "hashChainAudit:%s,%s,%s,%s,%s", tableName,
rowId, rowUuid, prevHash, hash);

/* create new tuple with hash field filled */
int columns[1] = { hashchainFieldNumber };
Datum values[1] = { CStringGetTextDatum(hash) };
HeapTuple modifiedTuple = SPI_modifytuple(rel, row, 1, columns,

values, NULL);

if(SPI_result == SPI_ERROR_NOATTRIBUTE) {
elog(ERROR, "SPI_result == SPI_ERROR_NOATTRIBUTE");
return 0;

}
closelog();
return modifiedTuple;

}

61

II. Validation scenarios

SCEN1 - Scenario for validating data insertion and cryptographic
hash chain creation
Scenario validates following requirements: SECREQ.8, SECREQ.12, FUNREQ.1,
FUNREQ.2, FUNREQ.5.

1. By using REST client or Swagger UI provided by solution make HTTP POST request
with JSON data set to Information Application System API endpoint /postIdentity.

Requirement: FUNREQ.1
Input:

curl -X POST --header ’Content-Type: application/json’ \
--header ’Accept: */*’ \
-d ’{"firstName": "John", "lastName": "Smith", "age":

25}’ \
’http://localhost:8080/postIdentity’

Acceptance criteria: AC-FUN.1
Expected output: JSON formated data containing elements idUuid, historyIdUuid,
mainData.
Output:

{ "idUuid": "6c7d30f6-269c-407e-a942-9855f7818386",
"historyIdUuid": null,
"mainData": "{\n \"firstName\": \"John\",\n \"lastName\":

\"Smith\",\n \"age\": 25\n}",
"file": "UEsDBAoAAAgAADeTiU..." }

Scenario step result: Successful

2. By using PostgreSQL database client tool make SQL select query to Database Man-
agement System database containing table named "main_data".

Requirement: FUNREQ.5
Input:

SELECT id FROM main_data LIMIT 1;

Acceptance criteria: AC-FUN.5
Expected output: SQL result set contains one row with element "id" and data.

62

Output: "id" with data.
Scenario step result: Successful

3. By using PostgreSQL database client tool make SQL select query to Database Man-
agement System database containing table named "main_data". From SQL select
result set, extract data from field named "file" and convert with BASE64 decode tool
to file with file name "scenario1.asice".

Requirement: no requirement
Input:

SELECT file FROM public.main_data
WHERE id_uuid=’6c7d30f6-269c-407e-a942-9855f7818386’;

Acceptance criteria: no criteria
Expected output: file with name "scenario1.asice"
Output: file with name "scenario1.asice"
Scenario step result: Successful

4. Open file "scenario1.asice" with Estonian digital signature software "Digidoc3 client"
and save file "data.json" to file system. Compare input data in step 1 with data in file
"data.json".

Requirement: FUNREQ.2
Input:

data posted in scenario SCEN1 step 1:
{

"firstName": "John",
"lastName": "Smith",
"age": 25

}

content of file "data.json" in digital signature container
with name "scenario1.asice":
{

"firstName": "John",
"lastName": "Smith",
"age": 25

}

Acceptance criteria: AC-FUN.2
Expected output: data posted in step 1 is equal to content of file "data.json"

63

Output: Both, main data of input operation matched with data contained in database.
Scenario step result: Successful

5. By using PostgreSQL database client tool make SQL select query to Database Man-
agement System database containing table named "main_data" to get result set with
inserted main data.

Requirement: FUNREQ.2
Input:

SELECT main_data FROM public.main_data
WHERE id_uuid=’6c7d30f6-269c-407e-a942-9855f7818386’;

data posted in scenario SCEN1 step 1:
{

"firstName": "John",
"lastName": "Smith",
"age": 25

}

Acceptance criteria: AC-FUN.2
Expected output: SQL result set with field "main_data" and data posted in API
input operation is equal.
Output: Both, main data of input operation matched with data contained in database.
Scenario step result: Successful

6. By using PostgreSQL database client tool make SQL select query to Database Man-
agement System database containing table named "main_data". From SQL select
result set, extract data from field "hashchain" and count characters of data extracted
for field "hashchain".

Requirement: SEQREQ.8
Input:

SELECT hashchain FROM public.main_data
WHERE id_uuid=’6c7d30f6-269c-407e-a942-9855f7818386’;

Acceptance criteria: AC-SEQ.8
Expected output: String of 64 characters.
Output:

4cf35543507a382d3694a1c5ffd236e5046cda91f29e902f74bdb14276335eec

Scenario step result: Successful

64

7. By using PostgreSQL database client tool make SQL select query to Database Man-
agement System database containing table named "main_data". And by using H2
database client tool make SQL select query to Audit Application System H2 database
containing table named "MAIN_DATA".

Requirement: SECREQ.12
Input:

Database Management System SQL query:
SELECT id, id_uuid, hashchain, file

FROM public.main_data
ORDER BY id DESC
LIMIT 2;

H2 database SQL query:
SELECT id_uuid, db_id, last_hash, new_hash

FROM main_data
ORDER BY id DESC
LIMIT 1;

Acceptance criteria: AC-SEC.12
Expected output: In result set of H2 database SQL query field "db_id" is equal to
Database Management System SQL query result set first row field "id", H2 database
SQL query result set field "id_uuid" is equal to Database Management System SQL
query result set first row field "id_uuid", H2 database SQL query result set field
"last_hash" is equal to Database Management System SQL query result set second
row field "hahschain", H2 database SQL query result set field "new_hash" is equal to
Database Management System SQL query result set first row field "hashchain".
Output:

Result of H2 database SQL query:
id_uuid=6c7d30f6-269c-407e-a942-9855f7818386
db_id=1012
last_hash=
5d07171cbfc747786055517004b6ce24d20d90ec8d5a680af14a784e6ef05f6e
new_hash=
4cf35543507a382d3694a1c5ffd236e5046cda91f29e902f74bdb14276335eec

Result of Database Management System SQL query:
first row:
id=1012
id_uuid=6c7d30f6-269c-407e-a942-9855f7818386

65

hashchain=
4cf35543507a382d3694a1c5ffd236e5046cda91f29e902f74bdb14276335eec
file=UEsDBAoAAAgAADeTiUqKIflFHwAAAB........
second row:
id=1011
id_uuid=fa45192d-61a0-4257-8e47-d40779be6971
hashchain=
5d07171cbfc747786055517004b6ce24d20d90ec8d5a680af14a784e6ef05f6e
file=UEsDBAoAAAgAABWLiUqKIflFHwAAAB........

Scenario step result: Successful

SCEN2 - Scenario for validating data output to client, file content
and digital signature features

1. By using REST client or Swagger UI provided by solution make HTTP POST
request with JSON data set to Information Application System API endpoint /ge-
tIdentity.

Requirement: FUNREQ.3, FUNREQ.4

Input:

curl -X GET --header ’Accept: application/json’ \
’http://localhost:8080/getidentity?identity_uuid=6c7d30f6-269c-407e-a942-9855f7818386’

Acceptance criteria: AC-FUN.3, AC-FUN.4

Expected output: JSON formatted data containing elements "idUuid", "histo-
ryIdUuid", "mainData", "file", "result", "addedTime", "resultType", "mesage".

Output:

{ "identity": {
"idUuid": "6c7d30f6-269c-407e-a942-9855f7818386",
"historyIdUuid": null,
"mainData": {
"lastName": "Smith",
"firstName": "John",
"age": 25

},
"file": "UEsDBAoAAAgAADeTiUq..." },

66

"result": {
"addedTime": "2017-04-09T15:27:03.361+0000",
"resultType": "VALID",
"message": "Signature is valid"}

}

Scenario step result: Successful

2. From step 1 output JSON data set extract field named "file" and convert with
BASE64 decode tool to file named "scenario2.asice".

Requirement: No requirement specified

Input:

BASE-64 encoded data from field "file":
UEsDBAoAAAgAADeTiUqKIflFHwAAAB8AAAAIAAA.....

Acceptance criteria: No acceptance criteria specified

Expected output:
Scenario step result: Successful

3. Open file "scenario2.asice" with Estonian digital signature tool "digidoc-tool" and
check output.

Requirement: SECREQ.1, SECREQ.2

Input:

digidoc-tool open --tslurl=https://demo.sk.ee/TSL/EE_T.xml
--tslcert=trusted-test-tsl.crt scenario2.asice

Acceptance criteria: AC-SEC.1, AC-SEC2

Expected output: file with name "scenario2.asice"

Output:

Version
digidoc-tool version: 3.12.3.1341
libdigidocpp version: 3.12.3.1341_ddoc

Container file: scenario2.asice
Container type: application/vnd.etsi.asic-e+zip

67

Documents (1):
Document (application/json): data.json (61 bytes)

Signatures (1):
Signature 0 (BES/time-stamp):

Validation: OK
EPES policy:
SPUri:
Signature method: http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
Signing time: 2017-04-09T15:25:42Z
Signing cert: Institute of Computer Science: Deivis

Treier thesis (TEST)
Produced At: 2017-04-09T15:25:46Z
OCSP Responder: TEST of SK OCSP RESPONDER 2011 (TEST)
OCSP Nonce (20): 42 B4 21 45 CA 94 5F 95 9C 15 75 42

8B 1C 86 93 5F 45 FC E5
TS: DEMO of SK TSA 2014
TS time: 2017-04-09T15:25:45Z
TSA:
TSA time:

Scenario step result: Successful

4. By opening file "scenario2.asice" in Estonian digital signature program "Digi-
doc3.client" check Signer’s Certificate under digital signature details view.

Requirement: SECREQ.3, SECREQ.4

Input: Input data is shown on figure 18

Figure 18: Validation artefacts and connections with requirements

Acceptance criteria: AC-SEC.3, AC-SEC.4

68

Expected output: Field "issuer" contains Certificate type and issuer name "AS
Sertifitseerimiskeskus" and Filed Public key contains at least RSA (1536)

Output: Field "Issuer" contains EE, TEST of KLASS3-SK 2010 what is part of
Estonian Public Key certification infrastrucutre. Field "Public key" contains RSA
(2048), what is more than minimum requirement.

Scenario step result: Successful

SCEN3 - Scenario for validating data tampering detection
1. By using REST client or Swagger UI provided by solution make HTTP GET re-

quest with data to Information Application System API endpoint /validation/full.
(Positive flow when database table has correct hash link.)

Requirement: SECREQ.9, FUNREQ.6, FUNREQ.7

Input:

curl -X GET --header ’Accept: application/json’ \
’http://audit-server:8080/validation/full?table_name=main_data’

Acceptance criteria: AC-SEC.9, AC-FUN.6, AC-FUN.7

Expected output: 1) Syslog file of Database Management System contains record
about executed table full tampering detection. 2) HTTP get requests retrieves
JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
Executed table ’main_data’ full tampering detection

HTTP GET request response:
{
"addedTime" : "2017-04-14T20:31:39.995+0000",
"resultType" : "VALID",
"resultTableName" : "main_data",
"message" : "Hash link is correct"

}

Scenario step result: Successful

2. By using REST client or Swagger UI provided by solution make HTTP GET
request with data to Information Application System API endpoint /validation/-
partial. (Positive flow when database table has correct hash link.)

69

Requirement: SECREQ.10, FUNREQ.6, FUNREQ.7

Input:

curl -X GET --header ’Accept: application/json’ \
’http://localhost:8080/validation/partial?

tableName=main_data&firstId=10&lastId=1500&initialHash=
32b5458065ef3bcd96dbc7efd3eaf705fcc03b83b91ace4a41fcdc09d2c277e0’

Acceptance criteria: AC-SEC.10, AC-FUN.6, AC-FUN.7

Expected output: 1) Syslog file of Database Management System contains record
about executed table partial tampering detection. 2) HTTP get requests retrieves
JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
Executed table ’main_data’ partial tampering detection

HTTP GET request response:
{
"addedTime": "2017-04-16T10:47:49.828+0000",
"resultType": "VALID",
"resultTableName": "main_data",
"message": "Hash link is correct"

}

Scenario step result: Successful

3. By using REST client or Swagger UI provided by solution make HTTP GET
request with data to Information Application System API endpoint /validation/-
partial. (Positive flow when database table has correct hash link.)

Requirement: SECREQ.11, FUNREQ.6, FUNREQ.7

Input:

curl -X GET --header ’Accept: application/json’ \
’http://localhost:8080/validation/errorDetection
?tableName=main_data&firstId=10&lastId=1500&initialHash=
32b5458065ef3bcd96dbc7efd3eaf705fcc03b83b91ace4a41fcdc09d2c277e0’

Acceptance criteria: AC-SEC.11, AC-FUN.6, AC-FUN.7

70

Expected output: 1) Syslog file of Database Management System contains record
about executed table partial tampering detection with error reporting. 2) HTTP get
requests retrieves JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
Executed table ’main_data’ partial tampering detection with
error reporting

HTTP GET request response:
{
"addedTime": "2017-04-16T19:36:28.015+0000",
"resultType": "VALID",
"resultTableName": "main_data",
"message": "Hash link is correct"

}

Scenario step result: Successful

4. By using PostgreSQL database client tool make SQL query to Database Manage-
ment System table "main_data" to manipulate data in table record.

Requirement: No requirement specified.

Input:

UPDATE public.main_data
SET history_id_uuid=’e5bb1ba3-302d-460b-a5b2-74e52034991f’
WHERE id=1000;

Acceptance criteria: No acceptance criteria specified.

Expected output: Data is changed in table "main_data".

Output:
Scenario step result: Successful

5. By using REST client or Swagger UI provided by solution make HTTP GET re-
quest with data to Information Application System API endpoint /validation/full.
(Negative flow when database table has incorrect hash link.)

Requirement: SECREQ.9

Input:

71

curl -X GET --header ’Accept: application/json’ \
’http://audit-server:8080/validation/full?able_name=main_data’

Acceptance criteria: AC-SEC.9

Expected output: 1) Syslog file of Database Management System contains record
about executed table full tampering detection. 2) HTTP get requests retrieves
JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
------Executed table ’main_data’ full tampering detection

HTTP GET request response:
{
"addedTime": "2017-04-16T19:38:26.381+0000",
"resultType": "INVALID",
"resultTableName": "main_data",
"message": "Hash link is incorrect! Calculated: 3e6764c094110eaf01f6ce257d49743aa5ca2566647e24f68fad645454f93aff,

last known: b7799266513250ee194b8b7182ae360ae53bdc8a046cc4683775638299f1814a"
}

Scenario step result: Successful

6. By using REST client or Swagger UI provided by solution make HTTP GET
request with data to Information Application System API endpoint /validation/-
partial. (Negative flow when database table has incorrect hash link.)

Requirement: SECREQ.10

Input:

curl -X GET --header ’Accept: application/json’ \
’http://audit-server:8080/validation/full?able_name=main_data’

Acceptance criteria: AC-SEC.10

Expected output: 1) Syslog file of Database Management System contains record
about executed table partial tampering detection. 2) HTTP get requests retrieves
JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
Executed table ’main_data’ partital tampering detection

72

HTTP GET request response:
{

"addedTime": "2017-04-16T19:39:29.054+0000",
"resultType": "INVALID",
"resultTableName": "main_data",
"message": "Hash link is incorrect! Calculated: 54a9473602fa983829dad2922564089a7d85114314f6b63db2a5d334bcd58ff8,

last known: d777e9b4374e32f728afb7092fb44de0df17891ea0fbf1c067a19d93d31e00e8"
}

Scenario step result: Successful

7. By using REST client or Swagger UI provided by solution make HTTP GET
request with data to Information Application System API endpoint /validation/-
partial. (Negative flow when database table has incorrect hash link.)

Requirement: SECREQ.11

Input:

curl -X GET --header ’Accept: application/json’ \
’http://localhost:8080/validation/partial?tableName=main_data&
firstId=798&lastId=1001&initialHash=
3943393139905d38b006f75a165b6d93bfbe858a87b12c6cd68dfffd0314bc3a’

Acceptance criteria: AC-SEC.11

Expected output: 1) Syslog file of Database Management System contains record
about executed table partial tampering detection with error reporting. 2) HTTP get
requests retrieves JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
Apr 27 21:12:55 database-server hash_audit: Executed table
’main_data’ partial tampering detection

HTTP GET request response:
{
"addedTime": "2017-04-27T21:12:55.056+0200",
"resultType": "INVALID",
"resultTableName": "main_data",
"message": "Hash link is incorrect! Calculated:

73

f24aa07feb5e2787a189746d01682fb524d40a99387b8d4f1bb49c60fbcec426,
last known:

e36f38b4acbb59a8e7bf495d822b2311a546734b8ffdb0f2846ede277c9e1886"
}

Scenario step result: Successful

8. By using REST client or Swagger UI provided by solution make HTTP GET
request with data to Information Application System API endpoint /validation/er-
rorDetection. (Negative flow when database table has incorrect hash link.)

Requirement: SECREQ.11

Input:

curl -X GET --header ’Accept: application/json’ \
’http://localhost:8080/validation/errorDetection?tableName=main_data&firstId=798&lastId=1001&initialHash=
3943393139905d38b006f75a165b6d93bfbe858a87b12c6cd68dfffd0314bc3a’

Acceptance criteria: AC-SEC.11

Expected output: 1) Syslog file of Database Management System contains record
about executed table partial tampering detection with error reporting. 2) HTTP get
requests retrieves JSON formatted data with tampering detection process results.

Output:

Syslog rows added to Database Management System log file:
Apr 27 21:17:04 database-server hash_audit: Executed table
’main_data’ partial tampering detection with error reporting

HTTP GET request response:
{
"addedTime": "2017-04-27T20:17:04.435+0200",
"resultType": "INVALID",
"resultTableName": "main_data",
"message": "Hash link is incorrect!
Calculated: e5bb1ba3-302d-460b-a5b2-74e52034991f|b87957348fdca942984d273e53eeb4b675bbab5c57e7bae87e37f423609f9f25|1902d511ea0baaecc1abe8440b045d8deb916ce3853c58f26421226ce43d1c2e,

last known:
e36f38b4acbb59a8e7bf495d822b2311a546734b8ffdb0f2846ede277c9e1886"

}

Scenario step result: Successful

74

9. By using REST client or Swagger UI provided by solution make HTTP GET
request with data to Information Application System API endpoint /result/list-
ByTableName.

Requirement: FUNREQ.8

Input:

curl -X GET --header ’Accept: application/json’ \
’http://audit-server:8080/result/listByTableName?table_name=main_data’

Acceptance criteria: AC-FUN.8

Expected output: List of database tampering detection results.

Output:

[
{

"addedTime": "2017-04-14T20:30:49.994+0000",
"resultType": "VALID",
"resultTableName": "main_data",
"message": "Hash link is correct"

},
{

"addedTime": "2017-04-14T20:31:08.983+0000",
"resultType": "VALID",
"resultTableName": "main_data",
"message": "Hash link is correct"

}
]

Scenario step result: Successful

SCEN4 - Scenario for validating cryptographic link generation

1. Requirement: SECREQ.5, SECREQ.6, SECREQ.7

Input: Source code in Appendix I.

Acceptance criteria: AC-SEC.5, AC-SEC.6, AC-SEC.7

Expected output: There is algorithm structure what deals with data acquisition
from last database record

Output: Acceptance criteria is met.

Scenario step result: Successful

75

III. Solution application instruction details
Information Application System - Main application

Building - For building this component Maven is prerequisite to this task: run command
in module source directory.

$ mvn clean package -Dmaven.test.skip=true

Deployment and configuration - Java container file "ais.jar" produced in last step must
be placed into class path. Configuration file must be placed into class path directory
config/application.properties

Running application - for running application use above mentioned command or run
it inside system script.

$ sudo java -jar ais.jar \
--spring.config.location=config/application.properties

Database Management System - Cryptographic operations shared
object library

Building - in source code directory run following command

$ make

Deployment and configuration - Shared object library "hashchain.so" produced by last
step must be moved into file system directory "/usr/lib/postgresql/9.6/lib/". After that
PostgreSQL server must be reloaded (not reboot).

Database Management System - Database structure

Deployment - Database creation script is placed in file "database_create.sql" in source
code catalogue.

Database Management System - syslog-ng

Configuration - Database Management specific configuration file "10-hashlog.conf"
must be created into file system path "/etc/syslog-ng/conf.d".

76

Audit Appliatoin System host configuration
destination d_syslog_tcp_audit {

syslog("audit-server-ip" transport("tcp") port(2010));
};

Log configuration to forward into file
log {

source(s_src);
destination(d_local);

};

Log configuration to forward to Audit Application Ssystem
log {

source(s_src);
destination(d_syslog_tcp_audit);

};

Audit Application System - syslog-ng Java module

Building- For building this component Gradle is prerequisite to this task: run command
in module source directory

$ gradle fatJar

Deployment and configuration - Copy h2writer.jar into file system

Running developed application - Java module is started on syslog-ng start.

Audit Application System - syslog-ng

Building - Build according to instructions in syslog-ng manual or install syslog-ng from
package manager, but ensure, that java modules are installed.

Deployment and configuration - Sample syslog-ng Java module configuration is pro-
vided as follows. Configuration file "hash_chain.conf" must be created into file system
path "/etc/syslog-ng/conf.d".

@module mod-java

Configure listening server and port
source s_network {
tcp(ip(0.0.0.0) port(2010));

77

};

Configure to detect cryptographic meta data message
filter f_hash_chain {
message("(hashChainAudit:)" type("posix"))
};

Configure Java module "H2Writer"
destination d_h2_db{

java(class_name("H2Writer")
class_path("/module_location/h2writer.jar:
/home/deivis/syslogng_to_h2/lib/h2-1.4.194.jar")
option(

"dbConnectionUrl",
"jdbc:h2:file:/database_location/hash_messages;

AUTO_SERVER=TRUE;DB_CLOSE_ON_EXIT=FALSE")
option("dbUser", "writer")
option("dbPassword", "writer")
);

};

Log configuration
log {

source(s_network);
filter(f_hash_chain);
destination(d_h2_db);

};

Running developed application - For running syslog-ng in console use following com-
mand or application as system service..

sudo /usr/sbin/syslog-ng -Fe \
--cfgfile=/etc/syslog-ng/syslog-ng.conf

Audit Application System - Database tampering detection manage-
ment software (audit)

Building For building this component Maven is prerequisite. Run following command
in source code directory

$ mvn clean package -Dmaven.test.skip=true

78

Deployment and configuration - Java container file "audit.jar" produced in last step
must be placed into class path. Configuration file must be placed into class path direc-
tory config/application.properties

Running developed application - To start application run following command or ap-
plication as system service.

$ sudo java -jar audit.jar \
--spring.config.location=config/application.properties

79

IV. Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Deivis Treier,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the pub-
lic, including for addition to the DSpace digital archives until expiry of the
term of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Research and Proof of Concept of Selected ISKE Highest Level Integrity Re-
quirements
supervised by Raimundas Matulevičius

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 18th May 2017

80

	Introduction
	Background
	Motivation
	Problem Statement
	Methodology and Scope
	Outline

	Elicitation of Security and Functional Requirements
	Organisational Context, Assets Identification and Defining Security Objectives
	Organisational Context
	Assets and Security Objectives Related Context

	Security Risk Related Concepts
	Background
	Description of Collected Risks
	G 4.13 Stored data loss
	G 4.28 Database data loss
	G 4.30 Loss of database integrity and compatibility
	G 5.64 Manipulation of data or software in database systems

	Risk Treatment and Security Requirements
	Risk Treatment-related Concepts
	Security Requirements-related Concepts
	HT.10 Database records cryptographic linking
	HT.34 Usage of digital signature
	HT.52 Additional requirements to cryptographic tools

	Requirement Elicitation and Specification For Solution
	Security Requirements For a Solution
	Functional Requirements Of a Solution
	Limitations and Effects That Accompany With Implementing Security Requirements

	Summary

	Proof of Concept for ISKE selected Integrity Requirements
	The Solution Architecture and Components
	Information Application System
	Information Application System API description
	Data Format For Main Data Storing
	Digital Signature Implementation

	Database Management System
	Data Storage Strategy
	Database Main Table Structure
	Implementing Cryptographic Link

	The Audit Application System
	Cryptographic Link Information Exchange Background
	Implementating the Cryptographic Link Information Exchange

	Database Tampering Detection Management Software
	Working Principles of a Database Tampering Detection Management Software
	The Audit Application System Database Structure
	Database Tampering Detection Management Software API Description
	Database Tampering Detection Process

	External Third Party Trustee
	Summary

	Proof of Concept Validation
	Method
	Defining Acceptance Criteria
	Scenarios For Validation
	Performance Characteristics of Data Tampering Detection
	Validation Results
	Summary

	Application Guidlines
	Background Discussion
	Necessary Software Components for Solution

	Conclusion
	Answers to Research Questions
	Limitations
	Concluding Remarks
	Future Work

	References
	Appendix
	I. Cryptographic hash chain generation source code
	I. Validation scenarios
	II. Solution application instruction details
	IV. Licence

