
UNIVERSITY OF TARTU
Institute of Computer Science

Cyber Security Curriculum

Ahmed Elazazy

HoneyProxy Implementation in Cloud
Environment with Docker Container

HoneyFarm

Master’s Thesis (30 ECTS)

Supervisor: Anton Vedeshin, MSc

Supervisor: Truls Tuxen Ringkjob, MSc

Supervisor: Raimundas Matulevicius, PhD

Tartu 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HoneyProxy Implementation in Cloud Environment with Docker Hon-
eyFarm

Abstract:
Cloud hosting services is a common trend nowadays for small startups, medium sized
business and even for large big cooperations, that is helping the agility and scaling
of resources and spare the overhead of controlling, managing and administrating the
data-centers. The fast growing technology raised security questions of how to control the
access to the services hosted on the cloud, and whether the performance and the latency
of the solutions offered to address these questions are within the bearable limits. This
research is introducing the honeypots to the cloud in a revolutionary way that exposes
and applies what is called a HoneyProxy to work as a honeynet gateway for a reverse
proxy that is controlling the incoming and outgoing flow to the back-end services. This
HoneyProxy is connected to a HoneyFarm that is hosted on the same machine (cloud
server) each honeypot is serviced in a docker container dedicated for every unique IP, so
that each attack session can be isolated within one container with the ability to switch
between different types of containers that can fool the attacker without suspecting the
existence of a honeypot. This defending mechanism can detect and log attackers behavior
which can reveal new attack techniques and even zero day exploits. The contribution
of this work is introducing the framework to implement the HoneyProxy on the cloud
services using Docker containers.

Keywords:
honeynet , honeyproxy, dockers, malicious threats

CERCS: P170, Computer science, numerical analysis, systems, control

HoneyProxy implementeerimine pilvekeskkonnas Docker konteine-
ritel põhineva HoneyFarm lahendusega
Lühikokkuvõte:
Pilveteenustel põhinev infotehnoloogia süsteemide taristu on saamas tavapäraseks nii
idufirmades, keskmise suurusega ettevõtetes kui ka suurtes korporatsioonides, toetades
agiilsemat tarkvara arendust ning lihtsustades andmekeskuste haldamist, kontrollimist
ja administreerimist. See kiirelt arenev tehnoloogiavaldkond tõstatas palju turvalisu-
sega seotud küsimusi seoses pilves hoitavate teenuste ligipääsetavuse kontrollimisega
ning sellega, kas pakutud lahenduste jõudlus ning viiteaeg (latentsus) jäävad aktsep-
teeritavatesse piiridesse. Käesolev teadustöö tutvustab honeypot peibutusmehhanismi
pilves revolutsioonilisel viisil, mis rakendab HoneyProxy lahendust honeynet lüüsina
pöördproksile, mis kontrollib sissetulevaid ja väljaminevaid päringuid back-end teenus-
tesse. Vastav HoneyProxy on ühendatud HoneyFarm lahendusega, mida käitatakse samal
masinal (pilveserveril). Iga honeypot jookseb eraldi Docker’i konteineris ning omab
unikaalset IP-d, mistõttu on võimalik igat ründesessiooni isoleerida ühte konteinerisse

2

võimalusega vahetada erinevate konteineritüüpide vahel, ajades ründaja segadusse ho-
neypot’i kasutust paljastamata. See kaitsemehhanism suudab tuvastada ja logida ründaja
tegevusi, mis võivad omakorda paljastada uusi ründetehnikaid ning isegi “nullpäeva”
(zero-day) haavatavusi. Käesoleva töö fookus on tutvustada raamistikku HoneyProxy
implementeerimiseks pilveteenustel Docker’i konteinereid kasutades.

Võtmesõnad:
honeynet , honeyproxy, dockers, pahatahtlik ohud

CERCS:P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtim-
isteooria)

3

Contents
1 Introduction 7

1.1 Problem Statement . 8
1.2 Research Questions . 9
1.3 Research Scope . 9
1.4 Legal Aspects . 10

2 Background 12
2.1 Examples of Reverse Proxy Implementation 12
2.2 Honeynet Architecture and Structure 13
2.3 Honeypot as a Docker Container . 19
2.4 Summary . 22

3 Practical Work 25
3.1 Introduction . 25
3.2 Building the Honeypot Farm . 27
3.3 Using Docker Containers . 27
3.4 Building Reverse Proxy . 29
3.5 Controlling Containers Sessions . 31
3.6 Work Challenges . 35
3.7 Summary . 35

4 Results 36
4.1 Insights . 36
4.2 Outcomes . 36
4.3 Testing Scenarios . 37

4.3.1 SSH Scenario . 37
4.3.2 HTTP Scenario . 40
4.3.3 Opencanary alerting Scenario 41

4.4 Summary . 43

5 Conclusion 44

6 Future Work 46
6.1 Hosting the Model on a Cloud Environment 46
6.2 Naxsi Implementation . 47

References 48

4

Appendix 50
I. Cron Job to Delete Idle or Exited Containers 50
II. Licence . 51

5

List of Figures
1 Websites Designs . 12
2 Scheme of SWAP setup . 13
3 Gen-I honeynet architecture . 14
4 Gen-II honeynet architecture . 15
5 Honeypot Farm architecture . 16
6 Overview of traffic analysis framework 17
7 Collapsar architecture . 17
8 HoneyMix architecture . 18
9 Overview of HoneyProxy and how tagging works 19
10 HoneyProxy big leap . 19
11 HoneyProxy setup . 20
12 Docker Server working with 3 different honeypots 21
13 Container advantage against VMs . 21
14 Honeypot hosted in Container-based environment 22
15 Attack levels mapped to honeypot’s levels of interaction 23
16 Implementation outline frame. 25
17 Traffic Flowchart . 26
18 Docker container’s architecture. 28
19 Nginx Configuration. 31
20 Containers control mechanism . 32
21 Xinetd service configuration file . 34
22 Listing active containers for established connections. 34
23 SSH container established session. 37
24 Client browsing through Kippo fake file-system. 37
25 Highlighted Kippo fingerprint indicator. 38
26 Container ssh interactive logs . 39
27 Http container established session. 40
28 Client browsing through Glastopf fake web server. 40
29 Glastopf container logs. 41
30 Opencanary container established session. 42
31 Attacker browsing Opencanary fake container web page. 42
32 Opencanary container logs. 42

List of Tables
1 Example of fingerprints known in Kippo SSH honeypot 18
2 Selective chronologically ordered Honeypots with scopes and remarks . 24

6

1 Introduction
As long as time goes by, there would be no system secure enough. For this reason, the
most hardened system is still vulnerable to unknown attacks and zero-day exploits. Hon-
eypots are one of the solutions for predicting, the always evolving attacker techniques,
they started as a way to fool them into the trap of capturing their intentions.

Honeypots were presented for the past two decades as a trap point that can lure an
attacker into, making them exposed, traced and reveal their attack trial to a dedicated
system to capture their behavior, techniques and scan any malicious payloads or exploits
which can early detect and prevent a zero-day exploit or uncover a weakness point in a
production system, and could be eventually patched before it can be approached by any
attacker later on.

Many architectures for honeynets were introduced to control an attacker and capture their
traffic, these will be discussed in section 2, their efforts were moving towards building a
system with low complexity in terms of deployment and management, not to mention
centralizing the logs collected for all the sessions. Starting from the HoneyFarm [3] that
went for that cause and ending with the most recent HoneyProxy[7], which is mostly
influencing this research with it’s design.

Nevertheless the efforts toward applying a honeynet design in a cloud environment was
not well covered in a satisfying way that can work with the cloud nature of on demand
resources in a best practice to work efficiently in different aspects like performance, cost,
isolation and resources utilization.

As there were no sufficient research in this all the background papers presented were
mostly dated between 2015 till 2017 which reflects that this research is following up
an on-going researches and cover the gap point of hosting such systems in a cloud
environment.

That encouraged introducing the container-based technology into the honeynet systems
as they are customizable ready-made, easy to deploy images that can run independent
from the hosting infrastructure, scale their instances proportionally on demand with
the volume of traffic and controllably with the predefined limits, and since it’s a fast
developing technology there were no solid efforts in integrating them in a model to ease
the automation of running what the author calls a container sandbox and trap the attacker
within its borders.

Thus the main contribution in this research is building a model honeynet suitable to work
on a cloud environment and take advantage of its infrastructure and efficiently utilize

7

its resources, in addition to integrating the container technology with the honeypots
deployments so that we can make each service trap scalable on demand and to make use
of the containers’ agility and isolation, and finally to control forwarding incoming and
outgoing traffics, reverse proxy will be used to decide which traffic should be proxied
to the production environment and which requests should be forwarded to the Docker
HoneyFarm system.

A dedicated container with respect to type of attacking protocol will be launched for
each attacking session with a unique IP address so that all the incoming traffic from this
source will be forwarded to the same container. A cron job will be running every fixed
interval e.g. 5 minutes to remove idle containers, or force removing them to make space
for new ones.

The flow of work starts with Introducing the problem statement, research questions and
the legal aspects in section 1, then a summary of background work of all related research
efforts in the field and their influence on the implementation in hand through section
2. Next, organized practical work steps and implementation guide with the type of the
technologies used in section 3. Section 4 shows the outcomes, insights and validation
of the work presented and how the work results was realized through. Finally Section 5
summaries the research plans and achievements and answer the research questions.

1.1 Problem Statement
Honeynet is network architecture that is meant to deceive an attacker and capture their
techniques for further analysis of the attacking session, they have been evolving through
the last two decades, but without coping with the continuously advanced adversaries
techniques. Recently a research was made by a team in Arizona State University which
came up with a new revolutionary honeynet architecture they called HoneyProxy that can
address several challenges in protecting the network through a centralized reverse proxy
module which could multicast malicious traffic to honeypots and select the response that
does not contain a fingerprint indication.

Applying extra security tools and measures to a cloud environment is highly demanded
for the sensitive resources and services with high availability that are hosted on the
cloud, with that in mind integrating a new security technique may cause a network and
performance overhead that might affect the underlined service and thus increase the
latency dramatically.

Experimenting and evaluating a recently developed honeynet architecture "HoneyProxy",
that was implemented only on physical servers, in a cloud environment and adding the
utilization of the docker containers to the honeynet network is the point to be addressed

8

in this research, in order to answer the question of the latency overhead, the isolation and
agility of the containers with high resources utilization.

1.2 Research Questions
1. How can we protect cloud-hosted services from malicious attacks using Docker

containers?

2. Would a normal honeypot be enough to protect the backend services?

3. How much deploying a Honeynet would give information about future attacks?

4. What are the benefits of deploying the honeynet’s honeypot on docker containers?

5. How to avoid honeypots fingerprints?

6. What are the advantages of using docker containers versus using virtual machines?

1.3 Research Scope
The goal for this research is to reach a fully working and optimized design model for
a honeynet defensing mechanism for a cloud hosted services, however as this thesis
is bounded by time and resources, the research scope must be focusing on the initial
objectives of that goal, as to build a working prototype and an implementation guide for
the following researches.

The work for building this model was represented only in the basic prototype that is a
starting point for many further researches, however the author explained and highlighted
all the possible and potential features that can be added or merged to the model. As a
master thesis the scope was limited with giving the best effort for the final goal more than
implementing every small detail, nevertheless, examples and solid recommendations
were provided to follow as a future work.

As for the containers, one Docker image will be used per protocol and one hosted on
a virtual machine and connected to the reverse proxy that is hosted on another virtual
machine, and will be using the host machine as a source of traffic to simulate different
type of attacks and scenarios for testing and validation.

The Validation will be working with different honeypot scenarios for a successful con-
nection, which would be using the naming convention suitable for each type of communi-
cation protocol or for the type of honeypot. However duplicating the traffic and response

9

selection process would need further time and research, which will not be included in
this work more than the future work recommendations.

1.4 Legal Aspects
Tracking and recording traffic for malicious activities seem legit as a logical concept from
the network’s owner perspective, however the law protects everyone’s privacy in general,
sometimes without even considering the intentions of the trial. The research aim to detect
the style and the technique of the attack rather than identifying the attacker’s identity, so
that potential vulnerabilities could be spotted and avoided. Legally the laws should be
flexible enough to facilitate these intentions without exposing captured identities.

According to article-2 in the Directive 95/46/EC1, ’personal data’ is defined as "any
information relating to an identified or identifiable natural person", and ’processing of
personal data’ definition includes."any operation or set of operations which is performed
upon personal data, whether or not by automatic means, such as collection, recording,
organization, storage, ...". Nowadays, when doing research in the information technology
field, it is usually hard to draw an exact rigid line between what is legal and what is not.
Every research introduces new service, technology, or platform, how can you specify an
exact law for what you do not know yet!.

The implementation of honeypots have always brought concerns about the ’privacy rights
of attackers’ and the ’trapping of spammers’. Several researches have highlighted the
obstacles that impact the lead in the research field. In his paper The Honeynet Project:
Trapping the Hackers [2] in 2003, Richard Salgado drew the attention of the need to
hire a lawyer before implementing a honeypot in th United States!. He presented the
concerns about monitoring the traffic that is not yours, and the risk that results from the
acquisition of your established honeypot by a hacker to attack others who you have been
already monitoring.

Several authors have discussed the need to consider the IP as a personal data as it can be
used with today’s technology to identify a person [13, 14]. On the other hand Directive
95/46/EC in article (6a and 6e) allows a limit usage of personal data for statistical and
scientific reasons, if the collection and processing is done for legitimate specific reason
and for known period of time. For any further processing and storage of the data, the
researcher need to securely anonymize and store it in a manner that prevents identifying
the original data subjects.

1EU Data Protection Directive

10

In their 2017’s research Honeypots and honeynets: issues of privacy, Sokol et al. sum-
marize the challenges that have restricted the researchers who use this technology, and
differentiate between the ’production honeypots’ and the ’research honeypot’ [13]. They
also brief the EU laws concerned with digital data and the accepted scope of using data
and personal data for legitimate research purpose.

Finally, it is worth to highlight that the data that has been used in this work belongs to
data subjects who have given their consent to track their traffic for the purpose of this
research. Furthermore, the data will be erased as soon as this research is published.

11

2 Background
This section presents a summarization of different research efforts, this work was built
on, from how the reverse proxy is working, through Honeypots structures and finally how
to utilize them as Docker containers, highlighting which ones this research was most
influenced with.

2.1 Examples of Reverse Proxy Implementation
Valeur et al. have used the reverse proxy back in 2006 to mitigate the impact of attacks
targeting the web-based applications [15]. The team chose to provide an alternative
design for the e-commerce application as shown in Figure 1. The main idea was to
(i) separate the back-end database that contains product information and (ii) have the
functionalities of the application replicated on different servers, A, B, and C. According
to the anomalous level of each user query, the request will be directed to server-A
(if highly anomalous), server-B (if moderately anomalous), or server-C (if confirmed
legitimate request). Queries that are directed to server-A are dropped, because server-A
does not have connection with the back-end database. Queries directed to server-B, will
have limited response. And users queries on server-C will be totally fulfilled. Figure 1
outlines the full platform.

Figure 1. Website designs. (f1,f2,f3=different web functions, DB=Database, CC=Credit
Card) [15].

In 2009, Wurzinger et al. used the reverse proxy to mitigate XSS Attacks [1]. There
product SWAP (Secure Web Application Proxy), shown in Figure 2, works on detecting
JavaScript component before the user’s request is fulfilled. Legitimate known scripts
are checked against their encoded IDs in the database. Upon detection of other script,

12

the request is dropped. Else, the proxy decodes legitimate scripts IDs and allows the
response to pass to the client.

Figure 2. Scheme of SWAP setup [1].

2.2 Honeynet Architecture and Structure
According to the honeypot mailist [16], a public forum of 5000 security professionals,
"A honeypot is an information system resource whose value lies in unauthorized or illicit
use of that resource.", ever-since then the honeypot project evolved and in 1999 started
forming the first generation ’Gen-I’ [2] of honeynet technologies that was basic in terms
of controlling the attacker and collecting encrypted activities, however it was successful
enough to capture automated attacks known back then such as autorooters2, in Figure
3 gives an overview of Gen-I honeynet, which is a contained environment with yellow
highlighted target systems.

In order to have more advanced techniques to control the attackers and monitor their
activities, in 2002, the second generation ’Gen-II’ of honeynet was developed to making
honeynets simpler to deploy and allowing more space for the attacker to go far without
detecting the honeynet presence, thus decrease the possibilities of compromising other
networks by controlling outbound connections, Figure 4 shows the honeynet sensor work-
ing as an isolator bridge for layer-2, however, attackers could still detect the honeynets
from their fingerprints.

2Symantec: Introduction to Autorooters

13

https://www.symantec.com/connect/articles/introduction-autorooters-crackers-working-smarter-not-harder

Figure 3. Gen-I honeynet architecture [2].

Further improvements were done on the same architecture from deployment and man-
agement perspectives to introduce ’Gen-III’ honeynets with Sebek server3 built in the
gateway, it utilizes 3 interfaces two of them are for connecting external network to the
internal honeypot, leaving the third interface for management configurations.

Later-on several techniques were introduced to simplify and cover different needs to
monitor, control and capture the data.

Honeypot Farm [3], is about deploying honeypots in large networks were the need to
deploy a honeypot in each network is substituted with deploying a consolidated honeypot,
so whenever an attack trial is performed on any of the networks, it gets redirected to
the consolidated honeypot farm (Figure 5) without the attacker knowing, however this
techniques is vulnerable to internal propogation of malware.
Honeybird 4, is a hybrid honeynet network that combines between low and high interac-
tion honeypots, it’s made of four main components[17], 1) Decision engine that is used
for filtering incoming attacks, 2) Redirection engine, decides if the traffic needs to be
redirected for further analysis, 3) Control engine, block the compromised honeypot’s

3Symantec: Tracking the attackers
4Honeybrid

14

https://www.symantec.com/connect/articles/sebek-3-tracking-attackers-part-one
http://honeybrid.sourceforge.net/

Figure 4. Gen-II honeynet architecture[2].

outgoing traffic, 4) Log engine, store all the processed traffic. The overall framework of
different software represented in Figure 6.

Through this design, it was observed that the initial scanning attacks are handled by low-
interaction honeypot, however, during most of the connection only the high-interaction
honeypot are active.

Collapsar [5], was introduced in 2006 to realize the idea of a honeyFarm with "decen-

15

Figure 5. Honeypot Farm architecture [3].

tralized presence and centralized management." of honeypots, where they are created
as virtual machines distributed logically multiple networks, but physically they exist in
dedicated local network. the team has also incroduced reverse-HoneyFarm which is based
on a client-side honeypots that crawl the Internet with server requests, to the server they
appear to be from different domains. Figure 7a and 7b shows how the traffic connection
flow for Collapsar HoneyFarm and Collapsar reverse HoneyFarm respectively.
HoneyMix [6], introduced, in 2016, SDN(Software Defined Networking)-based intel-
ligent honeynet that leverages the programmable nature of SDN to enable the four
controller modules that works as mechanism for attacker detection, these modules are
the main components of the HoneyMix: 1) Response Scrubber, avoid exposing the hon-
eypot to be detected by scrubbing the fingerprinted responses. 2) Forwarding Desicion
Engine, "Service map", decides the nature of the request and to which network should
the traffic be redirected to. 3) Connection Selection Engine, maintains a connection with
the attacker to the SDN while establish multiple connections the honeypots and pipe
only the selected and filtered response fit for the type of attack. 4) Behavior Learner, put
weights for connections between SDN switch and the honeypots dependant on different
parameters like modifications and active connections. In Figure 8 summarizes HoneyMix

16

Figure 6. Overview of traffic analysis framework[4].

(a) HoneyFarm server-side honeypots. (b) Reverse HoneyFarm client-side honeypots.

Figure 7. Collapsar architecture [5].

architecture with traffic steps in the network.

HoneyProxy [7], was a very recent design introduced in 2017 that was greatly influ-
enced by HoneyMix, it is SDN-based as well that supports a very dynamic method of
transitions between honeypots, and control captured data against fingerprinting attacks
by multicasting the traffic to relevant honeypots and choose the response that had least
fingerprinting indicators, in Table 1, an example of popular honeypot SSH Kippo5 and
its known fingerprints that are easy to detect.
The HoneyProxy SDN controller depend mainly on a tagging technique in the traffic

5Kippo honeypot

17

https://www.honeynet.org/project/Kippo

Figure 8. HoneyMix architecture [6].

Table 1. Example of fingerprints known in Kippo SSH honeypot [7].

header using the reverse proxy, then the SDN rules check the tags to redirect the traffic
through the SDN switches to the relevant honeypots as seen in Figure9.

The HoneyProxy made a big leap in the honeynet architecture, instead of running multi-
ple honeypots and being limited to maintain one connection with the attacker without
switching dynamically, and not to mention configuring the honeypots manually, it made
the honeynet work as a big entity that has different vulnerabilities integrated together
as one connection from the attacker perspective, Figure 10a and 10b shows how the
HoneyProxy converted the honeynet to work as big entity.

18

Figure 9. Overview of HoneyProxy and how tagging works [7].

(a) Normal honeypots run separately behind
HoneyWall

(b) Vulnerabilities are combined from different
honeypots as one entity.

Figure 10. HoneyProxy big leap[7].

The HoneyProxy team tested their design on a two physical servers and tested out their
honeynet architecture using 4 types of honeypots as shown in Figure 11, it achieved a
line rate throughput 8.23 Gbps on a 10 Gbps link and a negligble latency overhead of
(0.5 - 1.2) milliseconds.

2.3 Honeypot as a Docker Container
Several researchers discussed the containers as new revolutionary technology that can be
utilized in an efficient manner to help scientific research and production environments

19

Figure 11. HoneyProxy setup [7].

with aspects of agility, performance advantages and the maintenance overhead compared
to different technologies like normal virtual machines.

In 2017, Majithia [8] used the model of running three type honeypots on a Docker server,
shown in Figure 12 with a logging management mechanism that is built on top of ELK
framework6 and discussed issues and security concerns associated with each honeypot.
The honeypots used were HoneySMB7, HoneyWEB-SQLi, an http protocol honeypot
that includes SQL injection vulnerability and HoneyDB, a honeypot built for mysql
databases vulnerabilities, the work displayed analysis of the attacks using unique IPs and
the distribution among the honeypots.

In 2015 Adufu et al. [9] investigated and compared running molecular modeling simula-
tion software ,autodock38, on a container-based virtualization technology systems and
hypervisor-based virtualization technology systems, and concluded that the Container-
based systems are managing the memory resources in an efficient manner even when
memory allocated to instances are higher than physical resources, not to mention that the
amount of execution times were reduced for multiple containers running in parallel as
shown in the graphs in Figure 13.
Meanwhile in the same year EFTIMIE et al. [10] highlighted the advantages of using
containers in their usage as a base for honeypot systems and how they can help overcom-
ing issues of complexity in management and deployment, and eventually host them on a
cloud environment.

6ELK framework
7HoneySMB
8Autodock

20

https://qbox.io/blog/welcome-to-the-elk-stack-elasticsearch-logstash-kibana
https://github.com/nishitm/HoneySMB
http://autodock.scripps.edu/

Figure 12. Docker Server working with 3 different honeypots [8]

(a) Memory comparison.
(b) Execution times comparison.

Figure 13. Container advantage against VMs [9].

The authors have also summarized the benefits of using the light containers to solve
different overhead with much flexibility in these points, 1) They require no dependencies
leaving no complications in interfacing with platform services, 2) They are interdepen-
dent from the cloud provider as the application built on containers can be running on
different environments, 3) They can work portably and in an automated form to ease
the deployment at any given time, 4) They are isolated and can be governed through the
platform outside the container’s level which reduce the complexity tremendously.

They built their Docker container host with a group of low interaction honeypots presented
in Figure 14 to distribute the web services and give the them the right firewall rules to

21

forward the incoming and outgoing traffic, to have the container accept the malicious
requests and assemble the connection with automating the iptables rule for the established
connection.

Figure 14. Honeypot hosted in Container-based environment as an on demand service
[10].

As a survey of the existing honeypots introduced, in addition to highlighting their strength
and weakness points, Nawrocki et al. presented in 2016 an overview of honeypot software
and analysis techniques for the data collected by them. The team defined the evolution
of attacking techniques, patterns and propagation, giving a comparison between differ-
ent honeypot projects and the efforts that were contributed through them to this field,
moreover they presented a general list of different honeypots, their services, type of
interaction and design details shown selectively in Table 2.

In the same year, Fan et al. [11] presented a novel program based on security and decoy
model and illustrated how their design and how the constraint in the features work in
Figure 15 according to the three levels of cyber attack. The research gave some beneficial
insights of honeypots application for future systems.

2.4 Summary
The work presented showed different architectures and models for honeynet and how
new technologies affected these designs. However there was not too many researches
contributing to this approach as it was not covered thoroughly.

22

Figure 15. Attack levels mapped to honeypot’s levels of interaction [11]

23

Table 2. Selective chronologically ordered Honeypots with scopes and remarks [12]

Software First Last Free Services / Applications Design / Details
DTK 1997 1999 X SMB, SSH, DNS, FTP, Netstat(++) implement many known vulnerabilities
BOF 1998 1999 X Back Orifice, Telnet, SMTP(+) waste intruders time, easy deployment

NetFacade 1998 2002* 7 not specified class C network emulation
CyberCop String 1999 1999 7 Telnet, FTP, SendMail, SNMP emulating different network devices

Specter 1999 2005 X SMTP, FTP, HTTP and Telnet(+) commercial deployment, decoy files
Sandtrap 2002* 2002* 7 dialup modem war dialing trapping

single-honeypot 2002 2002 X all ports, but no emulation mere logging, KISS architecture
HoneyWeb 2002 2003 X HTTP various web server header emulation

SMTPot 2002 2003 X SMTP spam accumulation, KISS
Jackpot 2002 2004 X SMTP delay spam, utilizing spam databases
FakeAP 2002 2005 X 802.11b AP beacons p.o.c wireless honeypots

HoneyBot 2002* 2007* X SSH, SMTP, FTP, HTML(++) windows vulnerabilities and GUI
Spampot 2003 2003 X SMTP platform independence

HoneyPerl 2003 2003 X HTTP, FTP, SMTP, Telnet(+) extensibility by modules
HoneyD 2003 2008 X HTTP, POP3, SMTP, FTP(+) emulating heterogeneous networks
SpamD 2003 2015* X SMTP tarpit against spam
Kojoney 2005 2006 X SSH (shell activity) first dedicated SSH honeypot

Mwcollect 2005 2009 X compare Nepenthes, Honeytrap merging Nepenthes and Honeytrap
Nepenthes 2005 2009 X FTP, HTTP, TFTP, MSSQL(++) capture worm payload

GHH 2005 2013 X HHTP-Apache, PHP, MSSQL crawler and search engines
Honeytrap 2005 2015 X HTML, FTP(+), dyn. emulation attacks via unknown protocols

HoneyPoint 2006 2014 7 not specified ICS/Scada, back tracking intruders
Dionaea 2009 2013 X SMB, FTP, SIP, MYSQL(++) nepenthes successor, capture payload
Kippo 2009 2014 X SSH (shell activity) emulate entire shell interaction

Artemisa 2010 2011 X VoIP, SIP Bluetooth Malware
bluepot 2010 2015 X Bluetooth Bluetooth Malware

HoneySink 2011 2011 X DNS, HTTP, FTP, IRC bot sink holing
HoneyDroid 2011 2014* X compare Kippo, HoneyTrap p.o.c Android OS honeypot

Glastopf 2011 2015 X HTML, PHP, SQL web applications, vulnerability types
Kojoney2 2012 2015 X SSH (shell activity) applying Kojoneys lessons learned
Conpots 2013 2015 X kamstrup, BACnet, mosbus ICS and SCADA architectures
IoTPOT 2014* 2015 X telnet IoT (ARM, MIPS, and PPC)

honeypot-camera 2014 2015 X HTTP Tornado Web, Webcam Server
Shockpot 2014 2015 X Apache, Bash Shellshock vulnerability
Cowrie 2014 2015 X SSH (shell activity) Kippos successor

Canarytokens 2015 2016 X URLs, bitcoin, PDF honeypot tokens
elastichoney 2015 2015 X elasticsearch elasticsearch RCEs

Sebek 2003 2011 X Win32 and Linux systems attackers OS activities, state-based
Honeywall 2005 2009 X compare Sebek, CentOS live bootable CD
HoneyBow 2006 2007 X Win32 Systems extraction of malware, state-based

Argos 2006 2014 X Linux, Windows XP-7 0-day exploits identification, tainting
HIHAT 2007 2007 X php-BB,-Nuke,-Shell,-Myadmin PHP framework extension, state-based
HoneyC 2004 2007 X HTTP identify malicious servers with snort

Monkey-Spider 2007 2009 X HTTP, JavaScript threat database creation, several AV
PhoneyC 2007 2011 X HTML, JavaScript, PDF, ActiveX(+) browser identities, dyn. analysis

Thug] 2011 2015 X HTML, JavaScript, PDF, Flash(+) complete emulation, stat/dyn. analysis
YALIH 2014 2015 X HTML, JavaScript, (IMAP) precise by combining analysis methods

HoneyClient 2004 2010 X Windows (Firefox, IE) proof of concept, state-based
Capture-HPC 2004 2009 X Linux, Windows (Firefox, Office (+)) efficiency, scalability, state-based

UW-Spycrawler 2005 2006* X Windows (IE) spyware detection, state-based
HoneyMonkey 2005 2007* 7 Windows (IE) IE vulnerabilities, state-based

WEF 2006 2007 X Windows (IE) drive-by download attacks, state-based
HoneyIM 2007 2007* X compare Capture-HPC instant messaging
SHELIA 2008 2009 X Windows (IMAP, POP) email malware, call-tracing
Trigona 2010 2010 X Windows (Browsers) high throughput, —

HoneySpider 2011 2015 X Capture-HPC, THUG hybrid client honeypot framework

24

3 Practical Work

3.1 Introduction
The initial quest for the implementation was following a network topology that would
realize the main goal of the research which is to build a flexible HoneyProxy on a
Cloud environment that is able to handle all unauthorized access or untrusted sources
of connection and open for that a dedicated docker container per attacker remote IP
session, Figure 16 describes how the main plan for the implementation would work. The
author have tested two types of containers in this design (SSH and HTTP), the SNORT
honeypot container was added as an example of the different types of honeypots that can
be utilized in the model.

Figure 16. Implementation outline frame.

The traffic flow, summarized in the Flowchart below (Figure 17), would be starting from
the Internet targeting NGINX the reverse proxy with an HTTP or SSH request to the web
server, the NGINX would have a white-list of allowed IP ranges to access the production
web server, other than that the traffic will be forwarded to the Honeypot Farm that will

25

launch two containers for each request matching the corresponding protocol.

Figure 17. Traffic Flowchart

For study reasons the traffic would be duplicated and sent to both containers, but only
one of them will be primary and would respond to the remote attacker, while the other
honeypot response will be dropped, yet logged for later stages tuning and comparison for
the least fingerprinted response.
The containers will stay running as long as the session is active, as there will be a clean-up
cron job running every 5 minutes to clear and remove the old containers, thus better
utilization for the server resources.

In order to start building the correct or optimum configuration for the above network
architecture, two phases are made for this work to establish the connection and make a
model for the final phase which the evaluation of this thesis research will be based on.

The first phase would be running locally on my personal laptop using VirtualBox that

26

would run two virtual machines, first for the reverse proxy and back-end services, and
second for the Docker honeypots farm. As a future work, the solution would be running
on a public cloud environment (preferably AWS) and apply the final configuration pro-
duced from the first phase with the final evaluation and observations.

Two virtual machines will be used for running Ubuntu Server 16.04 for both the honeypot
farm and the reverse proxy with the back-end services. Virtual host-only network card
was used for the VirtualBox with a DHCP service to connect the machines to my Host
machine and to make them communicate with each other as well, also in this setup, the
host machine was used as a source of traffic to simulate normal connection requests and
attack trials.

3.2 Building the Honeypot Farm
Honeypots in general are designed either to emulate a production service or file storage
which can fool the adversaries with capturing details about their tools and attacks, or at
least send alerts of an attack trial or mis-usage of resources.
There are different level of interactions for honeypots that can categorize them into two
types, 1) Low interaction; that allow only limited interaction for an attacker or a malware,
which make them not vulnerable themselves and cannot be infected by exploit attempt,
however, the rigid behavior makes it easy to be detected and avoided. 2) High interaction;
that involves real operating systems and applications, since nothing is emulated and
everything is real, it can provide more details of an attack or an intrusion, thus help
in identifying unknown vulnerabilities, however, this nature exposes the honeypot and
increase the risk of an attacker using it to compromise production systems

In this research we are not after how strong and robust the honeypots can be more than
building a model for best utilization of such monitoring and defensive techniques, thus
we are using a standard honeypot made into containers available through Docker Hub9.

3.3 Using Docker Containers
Docker10 defines the container as "an abstraction at the app layer that packages code
and dependencies together. Multiple containers can run on the same machine and share
the OS kernel with other containers, each running as isolated processes in user space.
Containers take up less space than VMs (container images are typically tens of MBs
in size), and start almost instantly." (Fig.18) versus the virtual machines that has a

9Docker hub
10Docker

27

https://hub.docker.com
https://www.docker.com/what-docker

full operating systems, taking more space and takes much time to boot, which makes
containers more portable, agile and efficient.

Figure 18. Docker container’s architecture.11

Using Ubuntu Server 16.04.3 LTS 12, the latest stable and long supported version of
Ubuntu Server as a base for the honeypot farm, on the top of that Docker Community
Edition CE that is ideal for experimenting container based applications was used 13.

The first objective of the honeypot containers was to address certain types of requests
which any attacker may try to take an advantage of. by exposing container’s chosen
ports, usually default ones to make the trap more reliable, it would attract curious and
dangerous attackers to hit old known vulnerabilities, or try a new fresh zero-day exploit.
In each case it would be really important to capture and log the attack traces to be familiar
with the type of attacks and tools that were commonly used, moreover it would be very
beneficial to early detect, analyze and mitigate unknown techniques in live production
environment.

12Ubuntu
13Docker Community

28

https://www.ubuntu.com/server
https://www.docker.com/community-edition

Keeping that in mind, for this research, it was decided to make the targeted requests for
the containers to be SSH and HTTP, in order to have a variety of attacks possibilities and
build a model for different type of traffic forwarding techniques, in addition to using an
alerting honeypot upon malicious behaviors can be crucial to have the edge of tracing
any potential attacks before they might spread in harmful technique. For these reasons
the following types of honeypots were chosen as a testing subject for my model:

• HTTP: Glastopf

• SSH: Kippo

• Alerting: OpenCanary

Glastopf, 14 is web server emulator written in python, it collects information about web
application based attacks such as local file inclusion15 and SQL injection16.
I have created a docker image for this honeypot17 to make it ready to launch a container
anytime a http request arrives and keeps the session open until it becomes inactive or
cleaned up later on.

Kippo, hrefhttps://www.honeynet.org/project/KippoKippo honeypot is a medium
interaction SSH honeypot that is widely used and there are many applications or other
tools are built based on it whether to add a functionality or integrate with some other
applications.

OpenCanary, 18 is another option that is using a centralized logging honeypot which
can track abusive acts and generate alerts that can be sent to different sources like emails,
syslogs or other running daemons.

3.4 Building Reverse Proxy
Using NGINX19 reverse proxy functionality, as it is easy to setup and configure, not to
mention that it could be integrated to the open-source NAXSI20, with it to work as anti
XSS and SQL injection attacks.

14Glastopf honeypot
15Local file inclusion
16SQL injection
17Glastopf Image
18OpenCanary
19Nginx
20Naxsi

29

https://www.honeynet.org/project/Kippo
https://www.honeynet.org/node/429
https://www.netsparker.com/blog/web-security/local-file-inclusion-vulnerability/
https://www.netsparker.com/blog/web-security/sql-injection-vulnerability/
https://www.dinotools.de/en/2015/02/18/glastopf-inside-a-docker-container/
https://opencanary.readthedocs.io/en/latest/
https://www.nginx.com/resources/wiki/
https://www.nbs-system.com/en/blog/naxsi-web-application-firewall-for-nginx/

In his book ’Nginx HTTP Server’ in 2010, Clément Nedelcu has covered the usage of
Nginx as an HTTP server, from the basic download instructions to different modules
configurations and testings [18].

The configurations created for the proxy is meant to allow white-listed domains’ requests
to pass to the production environment’s web server while any non-permitted traffic are
proxied to the Docker HoneyFarm, instead of dropping the requests like normal firewalls,
attackers would be fooled that they are communicating with real servers and perform
different attacks.

All the malicious traffic would be forwarded to a dedicated container (preferably high-
interaction type) as it has its own operating system and environment. The containers
running for each IP connection are isolated from each other which prevents any malware
propagation trial, moreover there would be two layers of protection against outbound
traffic meant to harm other external servers through the Iptables on the host machine and
the Nginx reverse proxy rules as well.

In Figure 19 displays a chunk of how the reverse proxy Nginx is configured to forward
the traffic to the container HoneyFarm and keeping the original client IP forwarded in
request header.

30

Nginx Configuration

| h t t p {
| s e r v e r {
| l i s t e n 1 9 2 . 1 6 8 . 5 6 . 1 0 1 : 8 0 ;
| s e rve r_name 1 9 2 . 1 6 8 . 5 6 . 1 0 1 ;
| r e a l _ i p _ h e a d e r X Real IP
| r e a l ip r e c u r s i v e on ;
| l o c a t i o n / {
| p r o x y _ s e t _ h e a d e r X Real IP $ r e m o t e _ a d d r ;
| p r o x y _ s e t _ h e a d e r X Forwarded For $ r e m o t e _ a d d r ;
| p r o x y _ s e t _ h e a d e r Host $ h o s t ;
| p r o x y _ p a s s h t t p : / / 1 9 2 . 1 6 8 . 5 6 . 1 0 2 : 8 0 ;
| }
| }
| }
| s t r e a m {
| u p s t r e a m backend {
| s e r v e r 1 9 2 . 1 6 8 . 5 6 . 1 0 2 : 2 2 ;
| }
| s e r v e r {
| l i s t e n 2 2 ;
| p r o x y _ p a s s backend ;
| p o x y _ t i m e o u t 30 s ;
| }
| }

Figure 19. Nginx Configuration.

3.5 Controlling Containers Sessions
In order to control how the containers are launched, some scripts introduced by itlnsight21

will be customized, that is depending on xinetd on run a new container for any new
connection along with creating Iptables’ rules to forward this attacker’s traffic to the just
created container and create firewall rules to isolate the containers from each other, if
a new attacker with a different IP establish a connection then a new container will be
created with dedicated rules as well. Eventually using a cron script the containers will be
removed after specific time, Figure 20 below describes how the process works.
I had to customize the code given by the itinsight team to match the requirements for the
final purpose of launching a kippo container for each attacker as shown in code below I
was able to make a listening service for xinetd on port 22 to accept all incoming SSH
requests and work with the code that checks for existing containers for the incoming IP

21itinsight
22itInsight: Creating honeypots using Docker

31

https://www.itinsight.hu/en/
https://www.itinsight.hu/blog/posts/2015-05-04-creating-honeypots-using-docker.html

Figure 20. Containers control mechanism22.

request and act accordingly in case there wasn’t any then create a new one, add the IP
as suffix to the container name for better distinguishing later, create Iptables’ rules to
forward the traffic to the private container IP, and in case the honeypot container exists
with a matching suffix the redirection rules only gets created.

! / b i n / bash

EXT_IFACE= enp3s8
MEM_LIMIT=128M
SERVICE=22

QUOTA_IN=5242880
QUOTA_OUT=1310720

{
CNM=" honeypot−${REMOTE_HOST} "
HOSTNAME=$ (/ b i n / hos tname)

check i f t h e c o n t a i n e r e x i s t s
i f ! / u s r / b i n / d o ck e r i n s p e c t " ${CNM} " &> / dev / n u l l ; t h e n

c r e a t e new c o n t a i n e r
CID=$ (/ u s r / b i n / d oc ke r run −−name ${CNM} −h ${HOSTNAME} −e "

REMOTE_HOST=${REMOTE_HOST} " −m ${MEM_LIMIT} −d − i honeypo t /
s b i n / i n i t)

CIP=$ (/ u s r / b i n / do ck e r i n s p e c t −−f o r m a t ' { { . N e t w o r k S e t t i n g s .
IPAddre s s } } ' ${CID })

PID=$ (/ u s r / b i n / d o ck e r i n s p e c t −−f o r m a t ' { { . S t a t e . P id } } ' ${CID })

32

drop a l l inbound and outbound t r a f f i c by d e f a u l t
/ u s r / b i n / n s e n t e r −− t a r g e t ${PID} −n / s b i n / i p t a b l e s −P INPUT DROP
/ u s r / b i n / n s e n t e r −− t a r g e t ${PID} −n / s b i n / i p t a b l e s −P OUTPUT DROP

a l l o w a c c e s s t o t h e s e r v i c e r e g a r d l e s s o f t h e q u o t a
/ u s r / b i n / n s e n t e r −− t a r g e t ${PID} −n / s b i n / i p t a b l e s −A INPUT −p t c p

−m t c p −−d p o r t ${SERVICE} − j ACCEPT
/ u s r / b i n / n s e n t e r −− t a r g e t ${PID} −n / s b i n / i p t a b l e s −A INPUT −m

q u o t a −−q u o t a ${QUOTA_IN} − j ACCEPT

a l l o w r e l a t e d outbound a c c e s s l i m i t e d by t h e q u o t a
/ u s r / b i n / n s e n t e r −− t a r g e t ${PID} −n / s b i n / i p t a b l e s −A OUTPUT −p

t c p −−s p o r t ${SERVICE} −m s t a t e −− s t a t e ESTABLISHED , RELATED −m
q u o t a −−q u o t a ${QUOTA_OUT} − j ACCEPT

e n a b l e t h e h o s t t o c o n n e c t t o r s y s l o g on t h e h o s t
/ u s r / b i n / n s e n t e r −− t a r g e t ${PID} −n / s b i n / i p t a b l e s −A OUTPUT −p

t c p −m t c p −−d s t 1 7 2 . 1 7 . 4 2 . 1 −−d p o r t 514 − j ACCEPT

add i p t a b l e s r e d i r e c t i o n r u l e
/ u s r / b i n / i p t a b l e s − t n a t −A PREROUTING − i ${EXT_IFACE} −s ${

$REMOTE_HOST} ! −−d p o r t ${SERVICE} − j DNAT −−to−d e s t i n a t i o n ${
CIP}

/ u s r / b i n / i p t a b l e s − t n a t −A POSTROUTING − j MASQUERADE
e l s e

s t a r t c o n t a i n e r i f e x i t e d and g rab t h e c i d
/ u s r / b i n / do ck e r s t a r t " ${CNM} " &> / dev / n u l l
CID=$ (/ u s r / b i n / d oc ke r i n s p e c t −−f o r m a t ' { { . Id } } ' " ${CNM} ")
CIP=$ (/ u s r / b i n / do ck e r i n s p e c t −−f o r m a t ' { { . N e t w o r k S e t t i n g s .

IPAddre s s } } ' ${CID })

add i p t a b l e s r e d i r e c t i o n r u l e
/ u s r / b i n / i p t a b l e s − t n a t −A PREROUTING − i ${EXT_IFACE} −s ${

$REMOTE_HOST} ! −−d p o r t ${SERVICE} − j DNAT −−to−d e s t i n a t i o n ${
CIP}

/ u s r / b i n / i p t a b l e s − t n a t −A POSTROUTING − j MASQUERADE
f i

} &> / dev / n u l l

f o r w a r d t r a f f i c t o t h e c o n t a i n e r
exec / u s r / b i n / s o c a t s t d i n t c p : ${CIP } : 2 2 2 2 , r e t r y =60

Code Customization
The code used by the service can be customized and utilized to match different services,
that are working on different ports by cloning it and changing the service port, the

33

interface required for communication, the network quote assigned to it, the Iptables rules
protocols if needed and the port exposed by the container to accept the traffic by default.

The service was added as bin command in the default path "/use/bin/honeypot" and a
configuration file was added to xinetd service in order to make this script respond to any
port 22 requests presented in Figure 21.

Figure 21. Xinetd service configuration file 23.

The service worked as expected and with every SSH request trial from a non-trusted
IP a new container was created with different name and traffic from that specific IP
was forwarded to the corresponding container, and can also be listed using the docker
command ’sudo docker ps -a' to list all the current active sessions that and check
their details and what is their current status as shown below in Figure 22.

Figure 22. Listing active containers for established connections.

The next step was applying a methodology to duplicate the traffic to two honeypots in
23Dockerpot

34

https://github.com/mrschyte/dockerpot

order to expose the captured traffic to more than one honeypot working for the same pro-
tocol and purpose so that we can have a better response for any incoming fingerprinting
attack that can decrease the risk of the attacker recognizing that he is communicating
with a honeypot instead of a real production system.

For this reason the tools out there are limited so I chose to highlight teeproxy24 that is
used mainly for duplicating the http traffic, I will be using it for testing the applicability
of duplicating the traffic, however building a complete functional system for duplication
will be considered as a future work for this scope.

3.6 Work Challenges
• Make Nginx handle and redirect SSH requests with forwarding the remote IP

trying to establish the session. This was overcame using the stream and proxy
modules in Nginx configuration, however the solution couldn’t help with sending
the original remote IP with to honeynet.

• Make the honeynet automatically run corresponding docker containers for each
session. That was bypassed with service running on xinetd listening on needed
port and running the script for automation.

• Duplicate incoming traffic to multiple honeypots containers. This was considered
as a future work, and the author recommends teeproxy for duplicating the traffic
with customization for selection.

3.7 Summary
This section deeply illustrates how each node was built and the tools used as a base for
the implementation. It also emphasizes the connection between the main nodes with the
configurations introduced for the reverse proxy and the customization of the services
code to accept and control multiple connections.

24Teeproxy

35

https://github.com/chrislusf/teeproxy

4 Results
This section summarizes the insights that were inspired through the implementation
phase, along with the outcomes of the model, and end with the testing scenarios which
work as a proof for the validity of the model and the design and how much it could
achieve its purpose.

4.1 Insights
Through the work of research, planning, implementation and ending with outcomes,
there were a couple or more of learnt lessons and insights that would be interesting to list
here briefly:

• Even though Nginx is an easy to deploy and control reverse proxy that has many
different features, it was still a bit challenging to understand how it handle for-
warding different protocols as it mainly works for HTTP requests giving that it can
communicate through a RESTful API25, however handling other traffic coming
through different ports can be forwarded too, but they might not have the same
modules as such for http proxy that can ease controlling the traffic.

• To make a convincing trap, it might not be a good idea to open several ports for
attacks at the same time, for many reasons such as 1) Fooling the attacker with a
realistic trap to try his best moves when he thinks he has caught the golden fish in
a wide secured ocean. 2) If the attacker realized the existence of the honeypots, he
might try intentionally to attack the all the honeypots with brute force which might
interrupt the service for a while.

4.2 Outcomes
The outcomes of the model was satisfying as a first step for implementing a Container-
based HoneyFarm with a reverse proxy in a cloud environment. The malicious traffic
were successfully detected by the reverse proxy, forwarded to the honeynet system,
captured and controlled inside the dedicated container border with two levels of control
over the outgoing traffic, first the docker host with Iptables’ rules and second from
the reverse proxy rules. The performance of the implementation were observed to be
accepted with no suspicious overhead latency that can be detected by the attacker as a
sign of a honeypot existence.

25RESTFUL API

36

https://restfulapi.net/

4.3 Testing Scenarios
To verify the functionality of the model, the author applied three test case scenarios:

4.3.1 SSH Scenario

Created an ssh connection from an considerate simulated attacker and observed the
following:

• An instance of the Kippo container was created and the traffic was forwarded to it
as shown in Figure 23.

• The attacker was able to navigate through the Kippo interactive terminal with fake
file-system observed in Figure 24.

• A fingerprinting attack easily detected a well known fingerprint indicator for Kippo
honeypot using the command ’vi’, see Figure 25.

• Kippo honeypot container logs was saved and forwarded to syslog to record all the
interactive communiation with the attacking session ilustrated in Figure 26a and
26b.

Figure 23. SSH container established session.

Figure 24. Client browsing through Kippo fake file-system.

37

Figure 25. Highlighted Kippo fingerprint indicator.

SSH scenario summary

Through this Scenario the traffic was detected by the Nginx server and forwarded as
expected to the HoneyFarm, then an SSH Kippo container was created to handle the
traffic, however the real attacker IP couldn’t be forwarded from the stream module in
Nginx, thus the naming convention will not work as expected in case of multiple attacks
at the same time, in order to cover this flaw, we would need to cover two weakness points
in the scenario:

1. We would need to consolidate the logs from Nginx and the container in order to
match the source of attacking and the actions made on the honeypot.

2. Multiple attacks at the same time would be hard to separate as the HoneyFarm
respond to them as the same source, the timeout or the container cleaning up can
be adjusted to control this flaw and have constant timeout intervals so that it can
decrease the possibility of two attackers connecting to the same container at a time.

A final observation that a fingerprint attack could detect the honeypot environment, and at
this point we would need to duplicate the traffic and run a check against the responses to
bypass this attack and choose to send the response with the least fingerprinted indicators.

38

(a)

(b)

Figure 26. Container ssh interactive logs

39

4.3.2 HTTP Scenario

Creating an http request to the reverse proxy address, would result into the following:

• Create an http honeypot using Glastopf docker image with the specified naming
convention shown in Figure.27.

• Attacker browsing a fake web server page where he can apply different attacks
trying to authenticate shown in Figure 28.

• Container logs where collected and sent to syslog highlighting the source IP of the
original attacker see Figure 29.

Figure 27. Http container established session.

Figure 28. Client browsing through Glastopf fake web server.

40

Figure 29. Glastopf container logs.

HTTP scenario summary

The HoneyFarm behavior was as expected creating a container per attacking session
(unique IP) with the naming convention of having the image name associated with the IP
of the originated source of attack to make it exclusive for this session. The attacker was
directed to a fake website to apply different attacks that are recorded and limited inside
the dedicated Glastopf container.

4.3.3 Opencanary alerting Scenario

Another alternative for an http, ftp or telnet traffic capture was using Opencanary honey-
pot to record the malicious requests and send a notification to specified destination:

• The session was container was created normally with the same flow with uniques
naming convention as well seen in Figure 30.

• A fake web page was sent to the attacker as a response for his trial waiting for him
to perform authorization trials and attacking techniques like the dictionary attack
to have it recorded as shown in Firgure 31.

• The logs for the container demonstrated the attacking session source IP, platform
and the browser used to establish the communication Figure 32.

41

Figure 30. Opencanary container established session.

Figure 31. Attacker browsing Opencanary fake container web page.

Figure 32. Opencanary container logs.

Alerting scenario summary

The same expected behavior was performed by the model, the HoneyFarm created a
dedicated container for each session, with the same naming convention, however with this
type of image it can be utilized for various protocols not just HTTP. For the testing session
another fake web server page was presented to the attacker to perform the different types
of attacks, and these actions will be recorded and alert whoever responsible for the system.

42

4.4 Summary
This section covered the testing phase of work, how the model realized the implemen-
tation of different honeypot containers, what were the obstacles faced in each scenario
applied, the general outcomes of the design, and how the work can inspire future work
and give hints and recommendations to follow this effort.

43

5 Conclusion
The target of this thesis was achieved through building a model for a honeynet archi-
tecture using a proxy to determine the sanity of the traffic before forwarding it to the
right destination, moreover utilizing the Docker container on demand for each malicious
request or unauthorized access trial in a dedicated container in order to capture and con-
trol the attacker behavior and record his intentions to early detect and prevent potential
attacks on uncovered vulnerabilities.

The implementation was made with the help of Nginx reverse proxy features to set
the appropriate rules for traffic forwarding, and with Docker images of the testing hon-
eypots that can be customized for the required purpose. The malicious requests were
successfully forwarded to the right containers with accepted overhead latency, not to
mention that instead of sending the request to one container only the traffic were dupli-
cated to two different containers with the same addressed protocol in order to study the
responses from different honeypots and prioritize the least fingerprinted ones in the future.

The main contribution of the thesis lies in utilizing the rapid rising technology of the
container-based virtualized systems in the HoneyFarm that add valuable advantages
with its portability, agility, low resource consumption nature in addition to the ability
to customize it easily and have low startup time required compared to normal virtual
machine.

The design inherited the previous work of HoneyProxy, HoneyMix and HoneyFarm
architecture and built on the top of that a system usable in cloud environments and
physical ones as well, not to mention that the ability to customize the honeypots easily
with committing any changes to the image which is ready to be deployed and launched
as soon as any malicious traffic comes in.

And finally to address the research questions:

1. Services hosted on the cloud can be protected by applying a HoneyFarm defensive
mechanism that is built with Docker images for easy deployment, scalability and a
technology that matches the cloud on demand nature.

2. A normal honeypot is not enough to protect the backend services, as the risk of
attacker detecting honeypot existence is dependent on the type of honeypot and its
interactivity.

3. Honeynet with a flexible and dynamic transition between honeypots can reveal
some of the future and potential attacks for a production environment, through
allowing attacker hit a fake system with the same potential vulnerabilities.

44

4. Applying a honeypot using a Docker image to start a container makes the honeypot
work like an on demand service, not consume much resources on standby mode
and a good performance against virtual machine it terms of dependencies needed
and startup time.

5. Fingerprints can be avoided by duplicating the malicious traffic and send it to
more than one honeypot container, compare the responses and eventually send the
response with the least fingerprinted indicators.

6. Container-based systems proved that they can be efficiently portable with less
dependencies need to run, low startup time against virtual machine based systems,
that can make them portable and easy to control and isolate for instances running
the same service.

45

6 Future Work
The research was bounded by time, and here are some of the ideas that continue the work
on this research. As a start, the duplication process for the incoming malicious traffic is
performed in such way that the primary connection will get the response from one of the
connected container let us call it the primary one, while the second connection response
will be dropped without comparison to choose the least fingerprinted response, this can
be mitigated through building a database for each honeypot fingerprints indicator and
make a regex check against both responses to choose the ideal one for the request in hand.

6.1 Hosting the Model on a Cloud Environment
The work in this research defined a design and a model for a honeynet architecture hosted
on a cloud environment, and built a testing prototype on a testing lab virtual machines
environment as first stage before experimenting integrating it to a live production envi-
ronment for testing purposes. The options for the extended efforts to continue the work
started by this thesis is limitless and can eventually, when it become mature enough,
change the way honeypots are used in cloud environments.

There are many cloud providers out there to test our model on and evaluate the perfor-
mance and flexibility to deploy and maintain, and here are the main four providers in the
market 26:

• Amazon web services AWS 27, is the biggest cloud provider with the largest market
share of 30% that makes it trusted by most of the cloud enthusiast and specially
startup owners.

• Microsoft Azure 28, is the second player in the game with with 10% of the market
share with a good leaps every year.

• IBM Bluemix 29, is the third in line with around 8% of the share and a stable foot
of trust in the big name.

• Google Cloud Platform 30, the giant that started offering their cloud services 6
years ago but yet expanding rapidly to reach nearly 5% of the market share and to
be famous of their constant innovative ideas.

26TechCrunch: AWS market share
27AWS
28Azure
29Bluemix
30Google

46

https://techcrunch.com/2017/07/28/aws-wont-be-ceding-its-massive-market-share-lead-anytime-soon/
https://aws.amazon.com/
https://azure.microsoft.com/
https://www.ibm.com/cloud/
https://cloud.google.com/

There are several methods for Cloud migration that are discussed in many researches
[19], [20] that can be beneficial while migrating an infrastructure stack built on physical
environment to cloud environment and how the container-based HoneyFarm can be
employed appropriately during the migration planning process.

6.2 Naxsi Implementation
Naxsi 31 is called a "Positive model application firewall", it works as a web application
firewall 32 that can be used as beneficial module for Nginx with its high performance and
low rules maintenance. OWASP Open Web Application Security Project identified top
10 threats 33 that Naxsi is considered a tool to protect against them.

31Naxsi
32Owasp: Web Application Firewall
33OWASP: Focus on the OWASP TOP 10

47

https://www.nbs-system.com/en/blog/naxsi-web-application-firewall-for-nginx/
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.nbs-system.com/en/blog/naxsi-web-application-firewall-for-nginx/

References
[1] Peter Wurzinger, Christian Platzer, Christian Ludl, Engin Kirda, and Christopher

Kruegel. Swap: Mitigating xss attacks using a reverse proxy. In Proceedings of the
2009 ICSE Workshop on Software Engineering for Secure Systems, pages 33–39.
IEEE Computer Society, 2009.

[2] Lance Spitzner. The honeynet project: Trapping the hackers. IEEE Security &
Privacy, 99(2):15–23, 2003.

[3] Lance Spitzner. Honeypot Farms. https://www.symantec.com/connect/
articles/honeypot-farms.

[4] Robin G Berthier. Advanced honeypot architecture for network threats quantifica-
tion. University of Maryland, College Park, 2009.

[5] Xuxian Jiang, Dongyan Xu, and Yi-Min Wang. Collapsar: A vm-based honey-
farm and reverse honeyfarm architecture for network attack capture and detention.
Journal of Parallel and Distributed Computing, 66(9):1165–1180, 2006.

[6] Wonkyu Han, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Honeymix: toward
sdn-based intelligent honeynet. In Proceedings of the 2016 ACM International
Workshop on Security in Software Defined Networks & Network Function Virtual-
ization, pages 1–6. ACM, 2016.

[7] NTVDLS-ZZAD Sukwha Kyung, Wonkyu Han, Naveen Tiwari, Vaibhav Hemant
Dixit, Lakshmi Srinivas, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Hon-
eyproxy: Design and implementation of next-generation honeynet via sdn. In IEEE
Conference on Communications and Network Security (CNS), 2017.

[8] NISHIT MAJITHIA. Honey-System: Design, Implementation & Attack Analysis.
PhD thesis, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR, 2017.

[9] Theodora Adufu, Jieun Choi, and Yoonhee Kim. Is container-based technology
a winner for high performance scientific applications? In Network Operations
and Management Symposium (APNOMS), 2015 17th Asia-Pacific, pages 507–510.
IEEE, 2015.

[10] Sergiu Eftimie and Ciprian RĂCUCIU. Honeypot system based on software
containers. 2015.

[11] Wenjun Fan, Zhihui Du, David Fernandez, and Victor A Villagra. Enabling
an anatomic view to investigate honeypot systems: A survey. arXiv preprint
arXiv:1704.05357, 2017.

48

https://www.symantec.com/connect/articles/honeypot-farms
https://www.symantec.com/connect/articles/honeypot-farms

[12] Marcin Nawrocki, Matthias Wählisch, Thomas C Schmidt, Christian Keil, and
Jochen Schönfelder. A survey on honeypot software and data analysis. arXiv
preprint arXiv:1608.06249, 2016.

[13] Pavol Sokol, Jakub Míšek, and Martin Husák. Honeypots and honeynets: issues of
privacy. EURASIP Journal on Information Security, 2017(1):4, 2017.

[14] Joshua J McIntyre. Balancing expectations of online privacy: why internet protocol
(ip) addresses should be protected as personally identifiable information. 2010.

[15] Fredrik Valeur, Giovanni Vigna, Christopher Kruegel, and Engin Kirda. An
anomaly-driven reverse proxy for web applications. In Proceedings of the 2006
ACM symposium on Applied computing, pages 361–368. ACM, 2006.

[16] Lance Spitzner. Honeypots: Catching the insider threat. In Computer Security
Applications Conference, 2003. Proceedings. 19th Annual, pages 170–179. IEEE,
2003.

[17] Robin Berthier. combining low and high interaction honeypots. https://www.
honeynet.org/node/430.

[18] Clément Nedelcu. Nginx HTTP Server: Adopt Nginx for Your Web Applications
to Make the Most of Your Infrastructure and Serve Pages Faster Than Ever. Packt
Publishing Ltd, 2010.

[19] Martin Duggan, Jim Duggan, Enda Howley, and Enda Barrett. An autonomous
network aware vm migration strategy in cloud data centres. In Cloud and Autonomic
Computing (ICCAC), 2016 International Conference on, pages 24–32. IEEE, 2016.

[20] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud migration research: a
systematic review. IEEE Transactions on Cloud Computing, 1(2):142–157, 2013.

49

https://www.honeynet.org/node/430
https://www.honeynet.org/node/430

Appendix

I. Cron Job to Delete Idle or Exited Containers

! / b i n / bash

EXT_IFACE= e t h 0
SERVICE=22

HOSTNAME=$ (/ b i n / hos tname)
LIFETIME=$ ((3 6 0 0 * 6))

d a t e d i f f () {
d1=$ (/ b i n / d a t e −d " $1 " +%s)
d2=$ (/ b i n / d a t e −d " $2 " +%s)
echo $ ((d1 − d2))

}

f o r CID i n $ (/ u s r / b i n / d oc k e r ps −a −−no−t r u n c | g r ep " honeypot−" |
c u t −f1 −d " ") ; do
STARTED=$ (/ u s r / b i n / d oc k e r i n s p e c t −−f o r m a t ' { { . S t a t e . S t a r t e d A t

} } ' ${CID })
RUNTIME=$ (d a t e d i f f now " ${STARTED} ")

i f [[" ${RUNTIME} " −g t " ${LIFETIME} "]] ; t h e n
l o g g e r −p l o c a l 3 . i n f o " S t o p p i n g honeypo t c o n t a i n e r ${CID} "
/ u s r / b i n / do ck e r s t o p $CID

f i

RUNNING=$ (/ u s r / b i n / d oc ke r i n s p e c t −−f o r m a t ' { { . S t a t e . Running } } '
${CID })

i f [["$RUNNING" != " t r u e "]] ; t h e n
d e l e t e i p t a b l e s r u l e
CIP=$ (/ u s r / b i n / do ck e r i n s p e c t −−f o r m a t ' { { . N e t w o r k S e t t i n g s .

IPAddre s s } } ' ${CID })
REMOTE_HOST=$ (/ u s r / b i n / do ck e r i n s p e c t −−f o r m a t ' { { . Name } } ' ${CID}

| c u t −f2 −d−)
/ u s r / b i n / i p t a b l e s − t n a t −D PREROUTING − i ${EXT_IFACE} −s ${

$REMOTE_HOST} ! −−d p o r t ${SERVICE} − j DNAT −−to−d e s t i n a t i o n ${
CIP}

l o g g e r −p l o c a l 3 . i n f o " Removing honeypo t c o n t a i n e r ${CID} "
/ u s r / b i n / do ck e r rm $CID

f i
done

50

II. Licence

HoneyProxy Implementation in Cloud Environment with Docker Con-
tainer HoneyFarm
I, Ahmed Elazazy,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term
of validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

of my thesis

Type Inference for Fourth Order Logic Formulae
supervised by Anton Vedeshin, Truls Tuxen Ringkjob, & Raimundas Matulevicius

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 10.01.2018

51

	Introduction
	Problem Statement
	Research Questions
	Research Scope
	Legal Aspects

	Background
	Examples of Reverse Proxy Implementation
	Honeynet Architecture and Structure
	Honeypot as a Docker Container
	Summary

	Practical Work
	Introduction
	Building the Honeypot Farm
	Using Docker Containers
	Building Reverse Proxy
	Controlling Containers Sessions
	Work Challenges
	Summary

	Results
	Insights
	Outcomes
	Testing Scenarios
	SSH Scenario
	HTTP Scenario
	Opencanary alerting Scenario

	Summary

	Conclusion
	Future Work
	Hosting the Model on a Cloud Environment
	Naxsi Implementation

	References
	Appendix
	I. Cron Job to Delete Idle or Exited Containers
	II. Licence

