
UNIVERSITY OF TARTU

Institute of Computer Science

Computer Science Curriculum

Janar Jõgi

Function Computation in Networks

Bachelor's Thesis (9 ECTS)

Supervisor: Vitaly Skachek, PhD

Tartu 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/237084539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Funktsiooni arvutus võrkudes

Lühikokkuvõte: Ruutimine, mis kasutab ainuüht parimat teekonda sõnumite
edastamiseks, on praegusel hetkel peamine meetod informatsiooni edastamiseks
võrgus. Väljapakutud alternatiiviks on võrgukodeerimine, mis lubab kogu võrgul
osaleda informatsiooni edastamises, saates kodeeritud infot läbi mitme teekonna
ja taastades algse sõnumi vastuvõtjas. Mõningate rakenduste korral on algsete
sõnumite taastamise asemel vaja funktsiooni üle nende sõnumite. Nimetame seda
funktsiooni arvutuseks võrgus. Selline lähenemine lubab arvutusi teha teekonna
jooksul, mil sõnum liigub allikatest saajateni. See töötab hästi näiteks võrkudes,
kus ühendatud on palju piiratud arvutusvõimsusega väikseid seadmeid. Situat-
sioon, mis IoT esiletõusuga ilmneb aina tihedamini. Kuna funktsiooni arvutus
võrkudes on suhteliselt uus mõiste, ei ole veel täiesti suudetud mõista võrgu funkt-
sionaalarvutuse rakendatavust ja teoreetilise jõudlikkuse piire. Käesolev töö kesk-
endub kindlale sihtfunktsioonide perekonnale ja tuvastab võrgu omadusi, et funk-
tsionaalarvutus oleks edukas. See töö esitab kodeerimislahendusi, mis lubavad
edukalt võrgus funktsionaalarvutusi läbi viia, kus sõnumiteks on üksikud süm-
bolid. Tulemused on seejärel laiendatud suvalise sümbolite arvuga sõnumitele,
kasutades sarnast kodeerimislahendust.

Võtmesõnad: Funktsionaalarvutus võrgus, kodeerimine võrgus, andmevõrgud,
sensorvõrgud, ruutimine

CERCS: P175

Function Computation in Networks

Abstract: Routing, that uses a single best path in the network, is currently the
primary method for information transfer in networks. A proposed alternative to
routing is called network coding that allows for the whole network to participate
in the transmission of information by sending the coded data using multiple paths
and then reconstructing the original message at the receiver. In some applications
instead of reconstructing the original messages a function of those messages needs
to be obtained. The corresponding problem is called a problem of function com-
putation in the network. This approach allows for e�cient en-route computing
that works especially well with many small connected devices with limited compu-
tational capacities, a situation that appears often with the rise of the IoT. Since
network function computation is a relatively new concept, the applicability and

2

theoretical performance limits of this approach are not yet fully understood. The
current work focuses on a certain family of target functions and identi�es prop-
erties a network must have for function computation to be feasible. We propose
encoding solutions that allow for successful network function computation. The
results are then extended to packets with arbitrary number of symbols using a
similar encoding scheme.

Keywords: Network function computation, network coding, data networks, sen-
sor networks, routing

CERCS: P175

3

Contents

1 Introduction 6

2 Related works 8

3 Model and de�nitions 10

3.1 Basics of network �ow . 10
3.2 Flow network model . 11
3.3 Computation in networks . 11

4 Computability in one-symbol networks 15

5 Computability in k-symbol networks 21

6 Software for visualization 25

7 Conclusions 26

4

1 Introduction

Current dominating strategy in networking is breaking the source messages apart
into packets, and then forwarding packets using routing, which �nds the single
best path per packet. Network coding provides an alternative to this by �nding a
way to encode source messages into packets and send them along multiple paths in
the network. The data is processed in the nodes, but the entire network is used in
information transmission and fewer transmissions are required to transmit data.
This way one can better utilize the network and achieve optimal transmission rate
especially near maximum tra�c volume, called network capacity.

s1

x

i1

x

s2

y

y

t1

x+y

Figure 1: An example of network compu-
tation at vertex i1 with two sources s1 and
s2, one sink t1 and a target sum function.

The problem studied in this work is related to network coding. It is called
network computation. Network coding can be viewed as a special case of network
computation where the function to be computed is the identity function. In func-
tion computation it is not needed to replicate the source messages at the receivers,
instead a function of those messages needs to be computed. For example, given a
wireless sensor network in a greenhouse, we may want to �nd a general function
of the source messages such as �nding the average temperature. We may want
to �nd a function of the messages from the sources (wireless sensors) to �nd the
average temperature in the greenhouse. Clearly this problem can be solved with
routing by simply sending sensor data directly to the computing node and pro-
cessing the data there. However, making use of the wireless sensor network and
their computing power we can instead let the network compute the function and
achieve the same result, saving the communication bandwidth.

As it is shown on Figure 1, in case of routing, two separate transmissions are
needed for the sink node t1 to �rst receive the inputs and then compute the target

5

function of x1 and x2, assuming the edges can only carry one packet at a time.
Network function computing can improve this by computing the function at i1 and
forwarding the result to the sink node. In the end we have only required a single
transmission to compute the target function instead of two.

In this work, we consider several problems related to function computation in
the network. The �rst problem is �nding a set of conditions when a target function,
in any network with unit-capacities and individual symbols as messages, will be
computable regardless of the number of sources and receivers. This builds upon
the work done in [1] that limited itself to the sum function. The authors managed
to show that for two sinks and n receivers or n receivers and two sinks, as long as
the max-�ow between the receivers and sources is more than or equal to one, then
the function is computable. It is also shown in [1] that for three sources and three
sinks scenarios, the previous does not apply. Our research will determine what
missing property of the target function causes it to fail and �nd conditions for a
function to be computable in any network regardless of the number of sources of
receivers.

We build upon the existing works, such as [2], that derives a simple upper bound
for computing capacity for function computation in networks and then �nds a
variety of lower bounds for multiple classes of functions like divisible, symmetric, λ-
exponential and λ-bounded functions. Previous work limits itself to networks with
many sources but just one sink. While previous works have adopted a information
theoretical approach then this work adopts a more algebraic, encoding oriented
approach.

We start by explaining the basics of network �ow followed by the explanation
of the network model under consideration. Afterwards we de�ne more speci�c con-
cepts related to encoding, the act of computation in networks with unit messages
or messages with a speci�ed integer length. Our �rst goal is to specify a set of
properties that a function and a network must have in order for a function to be
computable assuming unit capacities and individual symbols as messages. Then
we �nd similar conditions for a case when vectors of symbols instead of individual
symbols are used.

6

2 Related works

R. Koetter and M. Médard [3] provide an algebraic framework for network coding.
They �nd both necessary and su�cient conditions for determining whether a set
of connections is feasible for a general network coding problem.

A book by S. Even [4, p. 85-108] provides the basics of network �ow and
provides some de�nitions and groundwork used in this work.

This thesis continues the line of work started by R. Appuswamy et al [2].
The authors de�ne the notion of computational capacity, the maximal information
rate which allows for computation of the given function of the receiver node inputs.
Given multiple sources of data, a single sink node and a target function, the authors
derive upper and lower bounds for computational capacity under these conditions.
First they �nd a simple upper bound for the computational capacity for any target
function. Then they consider 4 di�erent classes of target functions: divisible,
symmetric, λ-exponential and λ-bounded functions and �nd lower bounds for all
of them. They conclude that with the identity function the bounds are tight yet
with arbitrary functions the bounds may not be tight. While our work does not
involve �nding computational capacities, the classi�cation of functions and the
analysis of the e�ects their properties have on network coding, is a major part of
this work.

This work is closely related to the work done by A. Ramamoorthy and M.
Langberg in [1] which deals with simpler cases where the sum of source symbols
is computed over a network. The edges have unit capacity and carry only one
symbol. Authors limit themselves to two sources and n sinks, n sources and two
sinks and three sources and three sinks scenarios. They derive necessary and
su�cient conditions for feasibility of connections when the sum is computed in a
network with two sources or two sinks. They also show the insu�ciency of these
previous conditions when the network has three sources and three sinks which
exempli�es the complexity of network function computation. We look deeper into
the reasons why computations in networks can fail and seek to further analyse
various networks that allow for successful computation of certain classes of target
functions.

The work [6] analyses the prospects of function computation in reverse butter�y
networks. The authors �nd various computing and routing capacities for network
computation in those speci�c types of networks.

Another paper related to sum networks is [7] where the authors construct a
large family of sum networks for which computational capacity can be determined.
Their work follows from [8] and generalizes their results and answers a�rmatively
that smaller sum networks with certain speci�ed capacity can exists.

The notion of network computation has been associated with the rise of IoT
as seen from [9]. As the number of small connected devices increases so does the

7

need for more e�cient �ow of information in networks that does not overwhelm
existing network infrastructure. The authors proposed an architecture that uses
network function computation to perform en-route data proccessing using existing
communication infrastructure instead of simply transmitting it to a central hub
such as a cloud, for processing.

8

3 Model and de�nitions

3.1 Basics of network �ow

We �rst de�ne a directed graph G(V,E) as a structure that consists of a set of
vertices V and a set of edges E. We assume that both V and E are �nite. Edges or
directed edges are an ordered pair of vertices denoted as (v1, v2) or v1 → v2, where
the �rst and the second component of the pair denote the starting and ending
point of the edge respectively.

We now de�ne the notion of network �ow. The following de�nition is taken
from S. Even [4, p. 86-87]: Consider a directed graph G(V,E) with no self-loops
or parallel edges with two vertices s and t called source and sink, respectively. Let
εi(v) and εo(v), ∀v ∈ V , denote the set of in-edges and out-edges originating from
vertex v, respectively. We are given a capacity function, c : E → R+. A positive
real number c(e) is called the capacity of edge e. A �ow function f : E → R is the
assignment of a real number f(e) to every edge e such that the following holds:

∀e ∈ E 0 ≤ f(e) ≤ c(e) (1)

∀v ∈ V/{s, t}
∑

e∈εi(v)

f(e) =
∑

e∈εo(v)

f(e). (2)

A total �ow between s and t is de�ned as F =
∑

e∈εi(t) f(e)−
∑

e∈εo(t) f(e). Take

two sets S ⊂ V and S̄ = V \ S where s ∈ S and t ∈ S̄. May (S, S̄) denote a set of
edges that are directed from a vertex in S to a vertex in S̄, called a forward cut and
similarly we denote (S̄, S) as a backwards cut. A cut is de�ned as (S, S̄) ∪ (S̄, S).
Capacity of the cut is c(S) which is de�ned as follows:

c(S) =
∑

e∈(S,S̄)

c(e) (3)

The relationship between a cut and the total �ow between a sink and a source
node gives rise to the following theorem presented in [4, p. 87, Corollary 5.1].

Max-�ow min-cut theorem. For every �ow function f , with total �ow F , and
∀s ∈ S ⊂ (V \ {t}), if F = c(S) then F is maximum and the capacity of cut S is
minimum.

The maximum �ow between a source and a sink node has an integer value.
It can be shown that in the network with integer edge capacities, there exists a
maximum �ow with integer �ow in each edge. The previous theorem allows us to
then assume the existence of at least one path in the network with the speci�ed
capacity between a source and a sink node.

9

3.2 Flow network model

We de�ne a k-symbol �ow network N(G,S, P) as a connected directed acyclic
graph G = G(V,E) which contains a set of source nodes S = {s1, ..., sn} ⊂ V and
a set of sink nodes P = {p1, ..., pm} ⊂ V . We assume that S

⋂
P = ∅ and that

the source nodes have no in-edges. In addition, all intermediate vertices with no
in-edges, are omitted from the network. All edges in the network have a capacity
of one. For all e ∈ E, let tail(e) denote the starting vertex and head(e) the ending
vertex for the directed edge e, vi → vj.

We call N ′(G′(V ′, E ′), S, P) a subnetwork of N(G(V,E), S, P) if V ′ ⊆ V and
E ′ ⊆ E and G′(V ′, E ′) is a graph.

De�nition 3.1 (Tree network). We de�ne a tree network as a �ow network where
between any source and sink node pair (si, tj), a single directed path must exist
starting from si and ending in tj.

3.3 Computation in networks

We de�ne the length of a vector as the number of its components. Each source node
has a vector of length k, composed of symbols from the alphabet A, associated
with it. Let Xk = {xs1 , ...,xsn} denote the set of vector inputs in source nodes
s1, ..., sn ∈ S. These inputs are also called message vectors. Let xi denote the
i-th component of the vector x. If the source node inputs are vectors with one
component then we refer to them by their component symbols with subscript
denoting the source node they originate from X = {xs1 , ..., xsl}.

We assume that one edge can carry one vector of length k. We de�ne an
encoding function h(e) whose image is the k-length vector over alphabet A, being
carried by an edge e, ∀e ∈ E, v = tail(e):

h(e) :

{∏
e′∈εi(v)A

k → Ak v /∈ S
Ak → Ak v ∈ S

An important concept used in this thesis is maximum �ow from source nodes
to the sink nodes. May max-�ow(si � tj) denote the maximum-�ow between all
source and sink node pairs (si, tj). Since we made the assumption that all edges
have capacity of one and can carry one vector then max-�ow(si � tj) ≥ 1 would
imply the existence of a minimum cut with capacity greater than or equal to one,
between any source and sink node. This implies we have at least one edge-disjoint
path between all of the source and sink node pairs.

We de�ne a family of target functions as f̄r: A
r → A for each r ≥ 1. For

notational clarity we no longer specify r and infer it from the number of arguments.

10

For further notational convenience, we de�ne a function gf̄ :
∏

k A
k → Ak that

is applied to a sequence of n k-length vectors x1,x2, ...,xn, such that:

gf̄ (x1, ...,xn) = (f̄(x1
1, ..., x

n
1), f̄(x1

2, ..., x
n
2), ..., f̄(x1

k, ..., x
n
k)). (4)

This mapping allows us to apply the target function to appropriate components of
vectors and makes dealing with message vectors in k-vector networks much easier.

We say that a target function f̄ in a network N(G,S, P) is computable at
the vertex u if u can compute a vector gf̄ (xs1 , ...,xsn), xs1 , ...,xsn ∈ X from the
messages it obtains. In the case of unit capacity networks the previous simpli�es
to u receiving f̄(xs1 , ..., xsn).

We say that a target function f̄ is computable in the network N(G,S, P) if it
is computable at all the sink nodes.

De�nition 3.1 (Binary divisibility). Let f̄ : An → A be a family of target functions
with arguments x1, ..., xn ∈ A where n ≥ 2. Let S = {i1, ..., ik} ⊂ {1, 2, ..., n} be a
subset where i1 ≤ i2 ≤ ... ≤ ik. Let xS denote a vector (xi1 , ..., xik). We say that
the target function f̄ is binary divisible to a function f if for |S| ≥ 2 there exists
a two argument function called binary function f : A × A → A, that for some
partition S = S1 ∪ S2, S1 ∩ S2 = ∅

f̄(xS) = f(f̄1(xS1), f̄2(xS2)) (5)

where f̄1, f̄2 belong to a family f̄ and f̄j(xSj
) is binary divisible to f or |xSj

| = 1.

De�nition 3.2 (Associativity). A binary function f : A × A → A is associative
when f(x, f(y, z)) = f(f(x, y), z), ∀x, y, z ∈ A.

De�nition 3.3 (Commutativity). A binary function f : A×A→ A is commuta-
tive when f(x, y) = f(y, x),∀x, y, z ∈ A.

De�nition 3.4 (Idempotence). A binary function f : A × A → A is idempotent
when, ∀x ∈ A, f(x, x) = x.

Lemma 3.5. If we assume that f̄ is binary divisible and f is associative then from
(5)

f̄(x1, ..., xn) = f(f(...f(f(x1, x2), x3)...), xn) =

= f(f(...f(x1, f(x2, x3))...), xn) = ... = f(x1, f(...f(xn−2, f(xn−1, xn)))) (6)

In fact since for associative functions order of computation is irrelevant then it
is easy to see that this can be generalized as follows:

11

Lemma 3.6. If f̄ is binary divisible to f that is associative then

f̄(x1, ..., xi, f̄(y1, ..., ym), xi+1, ..., xn) = f̄(x1, ..., xi, y1, ..., ym, xi+1, ..., xn) (7)

The proof of this lemma is straightforward. We can freely choose the order
of computation of f and still compute the same function. For example, we can
de�ne an arithmetic sum function as a binary function f(x1, x2) = x1 + x2, and
since sum is associative, we can de�ne a n-argument function as f̄(x1, ..., xn) =
f(f((...f(f(x1, x2), x3)...), xn−1), xn). If in addition we assume that f is commu-
tative then we can change the order of the arguments as well. A familiar property
in network computation known as symmetry:

Lemma 3.7. If f̄ is binary divisible to f that is associative and commutative then

f̄(x1, ..., xi, xj, ..., xn) = f̄(x1, ..., xj, xi, ..., xn) (8)

Therefore, if our target function is divisible into an associative and commutative
binary function then the target function is symmetric.

It is straightforward to verify that the following derives from (7) and (8).

Lemma 3.8. If f̄ is binary divisible to f that is associative, commutative and
idempotent then if xi = xj

f̄(x1, ..., xi, ..., xj, ..., xn) = f̄(x1, ..., xi, ..., xn) = f̄(x1, ..., xj, ..., xn) (9)

The following lemmas are useful when dealing with k-length vector messages.
For �xed k-length vectors x1, ...,xn ∈ Ak and y1, ...,ym ∈ Ak.

Lemma 3.9. If f̄ is binary divisible to f that is associative then

gf̄ (x1, ...,xi, gf̄ (y1, ...,ym),xi+1...,xn)

= gf̄ (x1, ..., xi,y1, ...,ym, xi+1...,xn) (10)

Proof :

gf̄ (x1, ...,xi, gf̄ (y1, ...,ym),xi+1...,xn)

(4)
= gf̄ (x1, ...,xi, (f̄(y1

1, ..., y
m
1), ..., f̄(y1

k, ..., y
m
k)),xi+1...,xn)

(4)
= (f̄(x1

1, ..., x
i
1, f̄(y1

1, ..., y
m
1), xi+1

1 , ..., xn1),

f̄(x1
2, ..., x

i
2, f̄(y1

2, ..., y
m
2), xi+1

2 , ..., xn2), ...

, f̄(x1
k, ..., x

i
k, f̄(y1

k, ..., y
m
k), xi+1

k , ..., xnk))

(7)
= (f̄(x1

1, ..., x
i
1, y

1
1, ..., y

m
1 , x

i+1
1 , ..., xn1),

f̄(x1
2, ..., x

i
2, y

1
2, ..., y

m
2 , x

i+1
2 , ..., xn2), ...

, f̄(x1
k, ..., x

i
k, y

1
k, ..., y

m
k , x

i+1
k , ..., xnk))

(4)
= gf̄ (x1, ...,xi,y1, ...,ym,xi+1...,xn) 2

12

Lemma 3.10. If f̄ is binary divisible to f that is associative and commutative
then

gf̄ (x1, ...,xi,xj, ...,xn) = gf̄ (x1, ...,xj,xi, ...,xn) (11)

Proof :

gf̄ (x1, ...,xi,xj...,xn)
(4)
= (f̄(x1

1, ..., x
i
1, x

j
1, ..., x

n
1), ..., f̄(x1

k, ..., x
i
k, x

j
k, ..., x

n
k))

(8)
= (f̄(x1

1, ..., x
j
1, x

i
1, ..., x

n
1), ..., f̄(x1

k, ..., x
j
k, x

i
k, ..., x

n
k))

(8)
= gf̄ (x1, ...,xj,xi...,xn) 2

Once again the following corollary follows from the two previous lemmas.

Corollary 3.11. If f̄ is binary divisible to f that is associative, commutative and
idempotent then if xi = xj

gf̄ (x1, ...,xi, ...,xj...,xn) = gf̄ (x1, ...,xi...,xn) = gf̄ (x1, ...,xj...,xn) (12)

13

4 Computability in one-symbol networks

In this section we assume that all source vector inputs are individual symbols
from the alphabet A. The �rst theorem seeks to �nd a collection of properties
neccessary for a function in order to be computable in any network regardless of
the number of sources and sinks.

Figure 2: An example of the greedy en-
coding being applied in a network with two
sources s1, s2 and three sinks t1, t2, t3.

De�nition 4.1 (Greedy encoding). Given an alphabet A and a series of inputs
from source nodes xs1 , ..., xsn ∈ X ⊆ A. ∀e ∈ E, let the encoding function h(e)
denote the symbol result of the computation at node v = tail(e) being carried by an
edge e from node v with respect to a target function f̄ for a network N(G,S, P):

h(e) =

h(e1) e1 ∈ εi(v)) v /∈ S and |εi(v)| = 1

f̄(h(e1), h(e2), ..., h(ek))

e1, ..., ek ∈ εi(v)
v /∈ S and |εi(v)| > 1

f̄(xv) v ∈ S

(13)

Every node in the network will encode over its inputs and forward the resulting
code to neighboring nodes through all of its outgoing edges. The sink node will
do processing of its inputs regardless of whether it has any outgoing edges or not.
More formally, a sink node t returns a function of its inputs f̄(h(e1), h(e2), ..., h(ek))

14

e1, ..., ek ∈ εi(t). The computation in the node and the resulting code on the
edges is determined by the greedy encoding procedure. To summarize the above
de�nition, if the parent node of the edge is not a source node but has only one in-
edge then we forward the information from the previous node. If the parent node
of the edge is not a source node but has more than one in-edge then we forward
the target function of the parent node inputs. If the parent node is a source node
then we simply forward the target function of the symbol itself. Figure 2 shows the
application of greedy encoding to a network with all the three previously mention
cases included. It should be noted that the max-�ow condition is not satis�ed for
this network between all of the source and sink node pairs and therefore, only one
sink node can compute the target function successfully.

Theorem 4.2. In an acyclic one-symbol network N(G,S, P) with alphabet A where
|S| = n, |P | = k, ∀i ∈ {1, ..., n}, max-�ow(si � tj) ≥ 1 where the target function
f̄ binary divisible into an associative, commutative and idempotent binary function
f , the target function is computable in the network.

Proof : If there is only one source xs and sink node tj then according to the
encoding: if they are adjacent then source node simply forwards the function of
its symbol, if not then the intermediary symbols simply relay this information
from the source node. In either case the sink node receives f̄(xs) and function is
computable. Now assume we have more than one source node. Let xs1 , ..., xsn ∈ X
denote the source symbols. Since there must be more than one edge-disjoint path
to this sink node the result of the computation at the receiving node tj according
to the encoding (13) must be:

f̄(h(e1), h(e2), ..., h(ek)), e1, ..., ek ∈ εi(tj).

At any node other than a source node, we have an arbitrary number of incoming
edges and for any of those edges, one of the following must apply:

1. it is an out-edge of a source node;

2. it is an out-edge of a node with one in-edge;

3. is it an out-edge of a node with many in-edges.

The output of the application of the encoding function on an edge will depend
on which of the three aforementioned cases applies for that edge. We begin by
proving transitions for all three di�erent outputs of the encoding function:

1. Assume that edge ei is the out-edge of a source node sj:

f̄(h(e1), ..., h(ei), ..., h(ek))
(13)
= f̄(h(e1), ..., f̄(xsj), ..., h(ek))

(7)
=

f̄(h(e1), ..., xsj , ..., h(ek)) (14)

15

2. Assume that edge ei is the out-edge of a node that has one in-edge e′:

f̄(h(e1), ..., h(ei), ..., h(ek))
(13)
= f̄(h(e1), ..., h(e′), ..., h(ek)) (15)

3. Finally assume that edge ei is the out-edge of a node that has q in-edges
e′1, ..., e

′
q:

f̄(h(e1), ..., h(ei), ..., h(ek))

(13)
= f̄(h(e1), ..., f̄(h(e′1), ..., h(e′q)), ..., h(ek))

(7)
=

f̄(h(e1), ..., h(e′1), ..., h(e′q), ..., h(ek)) (16)

For every in-edge e1, ..., ek ∈ εi(tj) we evaluate its encoding function and use one
of the three previously proven transitions. Let us assume that tj has d in-edges
originating from source nodes, u in-edges originating from a node with one in-edge
and an arbitrary amount of in-edges originating from nodes with many in-edges
with each node having h1, ..., hb in-edges respectively. The expression will take the
following form:

f̄(h(e1), ..., h(ek)) =

f̄(r1, ..., rd, h(e′1), ..., h(e′u), h(e′′1), ..., h(e′′h1
), h(e′′′1), ..., h(e′′′h2

),

..., h(e′′′′1), ..., h(e′′′′hb
))

Since the only nodes without in-edges are source nodes then we continue to evaluate
the encoding functions for edges and apply the appropriate transition until our
expression contains only source input symbols. Because our network graph is
�nite and acyclic then the procedure must terminate by obtaining a function with
a collection of source symbols as arguments:

f̄(h(e1), ..., h(ek))

= f̄(r1, ..., rd, h(e′1), ..., h(e′u), h(e′′1), ..., h(e′′h1
), h(e′′′1), ..., h(e′′′h2

),

..., h(e′′′′1), ..., h(e′′′′hb
)) = ... = f̄(r1, r2, ..., rl), r1, r2, ..., rl ∈ X

By using associativity and commutativity of f we can rearrange the arguments
in such a way that duplicate elements are removed by using that f is idempo-
tent. By using properties (7) and (8), if ri = rj then f̄(r1, r2, ..., ri, ..., rj, ..., rl) =
f̄(ri, rj, r1, r2, ..., rl) = f̄(ri, r1, r2, ..., rl). Therefore,

f̄(r1, r2, ..., rl) = f̄(xs1 , ...xsn)

and because sink tj was arbitrary the proof is complete. 2

16

s2

y

i1

y

s3

z

z

s1

x

x

i2

x max(x,y,z)

t1

max(x,x,y,z) = max(x,y,z)

Figure 3: An example of comput-
ing a maximum function in a net-
work with three sources and one
sink.

s1

x1

i1

t2

s2

x2

i2

s3

x3

t1

i4i3

i5

f(x1 , x2)f(x2 , x3)

t3

Figure 4: Graph similar to the one pre-
sented by A. Ramamoorthy and M. Lang-
berg [1] to show the incomputability of the
sum function even with max-�ow condition
satis�ed.

An example of a target function that is binary divisible to an associative, com-
mutative and idempotent binary function is the maximum function. Computing
the maximum function in a network using greedy encoding is shown on Figure 3.
As seen on the graph, source s1 sends its message two times causing duplication.
However, since maximum function is idempotent, the duplicate inputs will not
interfere with the computation.

The previous proof well exempli�es the primary hurdles with function com-
putation in networks. The relevance of the order of function computations can
greatly limit the number of computable functions in a network, requiring very
speci�c networks in order to work so that computations are done in a certain or-
der. The associativity property eliminates the need for these highly specialized
networks. Commutativity enables us to include all possible sequences of source
messages. In addition, we may have to deal with multiples of the same symbol in
the network if it gets sent out of multiple edges from a node which can interfere
with our function computation. This interference is also represented in a counter-
example for 3 source and 3 sink scenario by A. Ramamoorthy and M. Langberg [1].
A scenario loosely represented on Figure 4. The target function in this case is the
sum and while the authors do not explicitly mention duplication as the root cause
of incomputability, it is clear from the graph that it is indeed the case, since i3
receives a duplicated message from s2 through i1 and i2 which results in an incor-
rect computation. To eliminate this we need both associativity and commutativity

17

in order to make use of the idempotence property or the possibility of messages
multiplying in the network must be removed by some other method.

In the next theorem we state a su�cient condition for a target function to be
computable without demanding idempotence. It will require a tree network which
is a familiar concept for normal routing in networks, where spanning trees are
desired to avoid duplication of packets. As we are about to show, such network
graph structures can be useful in network function computation as well.

Theorem 4.3. In a one-symbol tree network N(G,S, P) with alphabet A, |S| =
n, |P | = k, ∀i ∈ {1, ..., n}, max-�ow(si � tj) = 1 where the target function f̄ is
binary divisible to an associative and commutative function f , the target function
is computable in the network.

Proof : Let xs1 , ..., xsn ∈ X ⊆ A denote the source input symbols. The symbol
computed at the sink node tj according to the encoding (13) can be expressed as:

f̄(h(e1), h(e2), ..., h(ek)), e1, ..., ek ∈ εi(tj)

Similarly to the proof of Theorem 4.2 we will use the encoding scheme and the
binary divisibility of our target function to an associative binary function to go
recursively upwards from the sink, making use of transitions (14), (15) and (16).
After fully evaluating the expression, the computation at the sink node tj will be
a target function with source symbols as arguments:

f̄(h(e1), h(e2), ..., h(ek)) = f̄(r1, r2, ..., rl), l ≥ k, r1, ..., rl ∈ X

We observe that the arguments must contain no multiples of source symbols. We
do this by using our assumption that the network is a tree network meaning be-
tween any source and sink node pair, a single directed path must exist. The
assumption was necessary since no indempotence is assumed in this theorem. Lets
assume that we have a duplicate input in the function ri = rj = xsb . Then
there must exist a vertex a, upstream from or equivalent to tj, that encoded
these duplicates originally (which cannot be a source node). Node a will encode
h(e) = f̄(l1, ..., ri, ..., rj, ..., lq)), q = |εi(a)| e ∈ εo(a). Since this is the node that
originally encoded these duplicates there must be two distinct in-edges e′ and e′′

to node a that carry h(e′) = f̄(..., ri, ...) and h(e′′) = f̄(..., rj, ...) respectively.
Since ri = rj = xsb then they must have originated from the same source node sb.
Therefore there must exist a path from sb to tail(e

′) and a path to tail(e′′). Now
it's clear that there exists two di�erent paths between nodes a and sb once using
the edge e′ and second using the edge e′′. Since a was upstream from tj, meaning
theres a path from a to tj, then it causes a contradiction with the assumption that
our network is a tree network. It is clear now that f̄(r1, r2, ..., rl) = f̄(xs1 , ...xsn)
cannot contain multiples of the same source inputs and because sink tj was arbi-
trary the proof is complete. 2

18

Corollary 4.4. The results of Theorem 4.3 hold even if the network contains a
subnetwork that is a tree network, in this case we can ignore the edges not contained
in the tree network.

Figure 5: An example of computing a tar-
get sum function in a tree network with three
sources s1, s2, s3 with input symbols x, y, z
and one sink t1

An example of a successful network computation scenario is visualized on Fig-
ure 5 with the target function being the arithmetic sum which is binary divisible to
an associative and commutative but not idempotent binary function. The struc-
ture of the graph prevents duplication of inputs x, y and z by eliminating multiple
paths to the sink node t1 instead of restricting the choice of a target function.

In the proof of Theorem 4.3 we do not explicitly use the commutativity prop-
erty. Without the property, Theorem 4.3 would only apply to a speci�c sequence
of source nodes, analysis of which fell outside the scope of this thesis.

As it is clear from the previous theorems, we must choose between two rather
signi�cant restrictions either for the target function or for the network, to ensure
a successful network computation.

19

5 Computability in k-symbol networks

We now consider the case where sources carry vectors of symbols called message
vectors. We show how the approach in Section 4 is extendable from single symbols
to vectors. This case facilitates the requirement of a slightly di�erent encoding
scheme.

De�nition 5.1 (Greedy vector encoding). Given an alphabet A and a series of
inputs from source nodes xs1 , ...,xsn ∈ Xk, X ⊆ A. ∀e ∈ E, let the encoding
function h(e) denote the vector result of the computation at node v = tail(e) being
carried by an edge e with respect to a target function f̄ for a network N(G,S, P):

h(e) =

h(e1), e1 ∈ εi(v) v /∈ S and |εi(v)| = 1

gf̄ (h(e1), ..., h(el))

e1, ..., el ∈ εi(v)
v /∈ S and |εi(v)| > 1

gf̄ (xv) v ∈ S

(17)

Once again the sink node will do processing of its inputs regardless of whether
it has any outgoing edges or not. A sink node t returns a function of its inputs
gf̄ (h(e1), ..., h(el)), e1, ..., el ∈ εi(t). The new encoding solution functions similarly
to the previous case (Section 4) but instead of individual symbols the edges now
carry �xed k-length vectors. During the encoding process the target function
will be greedily applied to to the i-th component of each incoming vector until a
new k-length vector has been composed of the results and will be passed to the
neighboring vertices. We can now extend Theorems 4.2 and 4.3 to deal with vector
messages in the same manner as unit messages.

Theorem 5.2. In an acyclic k-symbol network N(G,S,P) with alphabet A where
|S| = n, |P | = m, ∀i ∈ {1, ..., n}, max-�ow(si � tj) ≥ 1 and the target function f̄
binary divisible into an associative, commutative and idempotent binary function
f then the target function is computable in the network.

Proof : Let us assume the existence of a single source s1 and an arbitrary sink
node tj then according to the encoding (17) and the max-�ow condition: if they
are adjacent then s1 will encode and forward gf̄ (xs1) = (f̄(xs1), f̄(xs12), ..., f̄(xsk))
otherwise the intermediary symbols simply relay this information to the sink from
the source node. In either case the sink node receives gf̄ (xs1) hence the target
function is computable.

Now lets assume we have more than one source node. Let xs1 , ...xsn ∈ X denote
the source message vectors. Since there must be at least one edge-disjoint path
to this sink node and because our network is �nite and acyclic, then the greedy

20

encoding procedure must terminate. Vector computed at the receiving node tj
according to the encoding must be gf̄ (h(e1), ..., h(el)), e1, ..., el ∈ εi(tj). We now
show that this is indeed equivalent to gf̄ (xs1 , ...,xsn).

Again we assume that at any node other than a source node, we have an
arbitrary number of incoming edges and for any of those edges, one of the following
must apply:

1. it is an out-edge of a source node;

2. it is an out-edge of a node with one in-edge;

3. is it an out-edge of a node with many in-edges.

The output of the application of the encoding function on an edge will depend
on which of the three aforementioned cases applies for that edge. We begin by
proving transitions for all three di�erent outputs of the encoding function:

1. Assume that edge ei is the out-edge of a source node sj:

gf̄ (h(e1), ..., h(ei), ..., h(el))
(17)
= gf̄ (h(e1), ..., gf̄ (xsj), ..., h(el))

(10)
=

gf̄ (h(e1), ...,xsj , ..., h(el)) (18)

2. Assume that edge ei is the out-edge of a node that has one in-edge e′:

gf̄ (h(e1), ..., h(ei), ..., h(el))
(17)
= gf̄ (h(e1), ..., h(e′), ..., h(el)) (19)

3. Finally assume that edge ei is the out-edge of a node that has r in-edges
e′1, ..., e

′
r:

gf̄ (h(e1), ..., h(ei), ..., h(el))

(17)
= gf̄ (h(e1), ..., gf̄ (h(e′1), ..., h(e′r)), ..., h(el))

(10)
=

gf̄ (h(e1), ..., h(e′1), ..., h(e′r), ..., h(el)) (20)

For every in-edge e1, ..., el we evaluate its encoding function and use one of the
three previously proven transitions. Lets assume tj has d in-edges originating from
source nodes, u in-edges originating from a node with one in-edge and an arbitrary
amount of in-edges originating from nodes with many in-edges with each node
having h1, ..., hb in-edges respectively. The new expression will take the following
form:

gf̄ (h(e1), ..., h(el)) =

gf̄ (r1, ..., rd, h(e′1), ..., h(e′u), h(e′′1), ..., h(e′′h1
), h(e′′′1), ..., h(e′′′h2

),

..., h(e′′′′1), ..., h(e′′′′hb
))

21

Since the only nodes without in-edges are source nodes then we continue to evaluate
the encoding functions for edges and apply the appropriate transition until our
expression contains only source vector inputs:

gf̄ (h(e1), ..., h(el)) = ... = gf̄ (r1, ..., rq), r1, ..., rq ∈ Xk

Since multiple paths between any two nodes are possible then the expression may
contain multiples of the same source input vector. However, since our target
function is binary divisible to an associative, commutative and idempotent binary
function then from Corollary 3.11:

gf̄ (r1, ..., rq) = gf̄ (xs1 , ...,xsn)

and because sink tj is arbitrary, the proof is complete. 2

Theorem 5.3. In a k-symbol tree network N(G,S, P) with alphabet A where |S| =
n, |P | = k, ∀i ∈ {1, ..., n}, max-�ow(si � pj) = 1 and our target function f̄ is
binary divisible to an associative and commutative function then f̄ is computable
in the network.

Proof : Let tj be an arbitrary sink node in our network. Let xs1 , ...,xsn ∈ X
denote the source message vectors. Once again we begin at the sink node pj
and identically to Theorem 5.2 we fully evaluate all the encoding functions and
transform them using our previously proven transitions (18), (19) and (20). We
obtain an expression that only includes the source vector inputs:

gf̄ (h(e1), ..., h(el)) = ... = gf̄ (r1, ..., rq), r1, ..., rq ∈ Xk

We must now verify that this expression does not contain duplicates of the same
input vectors. The proof of this is very similar to the one presented in Theo-
rem 4.3. Since the network is a tree network then between any source and sink
node pair, a single directed path must exist. Let the duplicate vectors in our
case be ri = rj = xsb . There must exist vertex a, upstream from or equiv-
alent to tj, that was the �rst to encode these duplicates. Node a will encode
h(e) = gf̄ (l1, ..., ri, ..., rj, ..., lq)), q = |εi(a)| e ∈ εo(a). Since this is the node that
originally encoded these duplicates there must be two distinct in-edges e′ and e′′

to node a that carry h(e′) = gf̄ (..., ri, ...) and h(e′′) = gf̄ (..., rj, ...) respectively.
Since ri = rj = xsb then they must have originated from the same source node sb.
Therefore there must exist a path from sb to tail(e

′) and a path to tail(e′′). Now
it is clear that there exist two di�erent paths between nodes a and sb, one of them
using the edge e′ and the other using the edge e′′, and since a was upstream from
or equivalent to tj, this is a contradiction with the assumption that the network is
a tree network. Hence, no duplicates of the same source input vector can exist. 2

22

Corollary 5.1. The results of Theorem 5.3 hold even if the network contains a
subnetwork that is a tree network, in this case we can ignore the edges not contained
in the tree network.

We have managed to take the original Theorems 4.2, 4.3 and successfully ex-
tended them to deal with messages of various length which make our results more
applicable to packet based networks used today.

23

6 Software for visualization

Software for visualization and testing of network function computation was devel-
oped in Java, using JUNG framework for creating and manipulating graphs and
JavaFX for developing the user interface. The software allows the creation of a
network with an arbitrary number of sources and sinks. Source inputs can then
be de�ned and an attempt to compute the arithmetic sum using network func-
tion computation is then made. Software provides feedback such as whether the
computation was successful or not and what are the results at each of the sink
nodes.

Figure 6: Network function computation
simulator reporting a failed computation.

After the user creates a network using the graph creation tools, the software
simulates the Greedy encoding procedure de�ned in Section 4. Software is limited
to the arithmetic sum target function, uses integers as its alphabet and only uses
individual symbols as messages instead of packets. Figure 6 shows a picture of
the program after the user has set the source inputs using "Input Manager" and
pressed "Compute" that runs the simulation of the Greedy encoding procedure.
Feedback regarding the computation is provided in the text panel. The software
was used to study the problem of computing functions in the network, to verify
the results of Theorem 4.3 and to gain intuition about network computation in
general.

24

7 Conclusions

We have proposed encoding solutions and examined the computability of binary
divisible target functions in one-, and k-symbol networks where between all of
the source and sink node pairs at least one path exists. We showed that for
one-symbol networks our encoding solution will successfully compute the required
function if the target function is binary divisible to an associative, commutative
and idempotent function. We also found that by assuming that the network is
a tree network the idempotence property will not be needed. A new encoding
solution allowed for the previous theorems to be extended to k-symbol networks
with �xed-length vector messages. While it is clear from this work that the total
number of transmissions for network computation with the presented encoding
can decrease, we did not rigorously examine the advantage the proposed encoding
solution has over ordinary routing, nor did we examine the achievable transmission
rates and as such they remain open questions.

25

References

[1] Ramamoorthy, A., & Langberg, M. (2013). Communicating the sum of sources
over a network. IEEE Journal on Selected Areas in Communications, 31(4),
655-665.

[2] Appuswamy, R., Franceschetti, M., Karamchandani, N., & Zeger, K. (2011).
Network coding for computing: Cut-set bounds. IEEE Transactions on Infor-
mation Theory, 57(2), 1015-1030.

[3] Koetter, R., & Médard, M. (2003). An algebraic approach to network coding.
IEEE/ACM Transactions on Networking, 11(5), 782-795.

[4] Even, S. (2011). Graph algorithms. Cambridge University Press.

[5] Giridhar, A., & Kumar, P. R. (2005). Computing and communicating functions
over sensor networks. IEEE Journal on Selected Areas in Communications,
23(4), 755-764.

[6] Appuswamy, R., Franceschetti, M., Karamchandani, N., & Zeger, K. (2009,
June). Network computing capacity for the reverse butter�y network. In ISIT
(pp. 259-262).

[7] Tripathy, A., & Ramamoorthy, A. (2014, September). Sum-networks from
undirected graphs: construction and capacity analysis. In Communication,
Control, and Computing (Allerton), 52nd Annual Allerton Conference on (pp.
651-658).

[8] Rai, B. K., & Das, N. (2013, October). On the capacity of sum-networks.
In Communication, Control, and Computing (Allerton), 51st Annual Allerton
Conference on (pp. 1545-1552).

[9] Vukobratovic, D., Jakovetic, D., Skachek, V., Bajovic, D., Sejdinovic, D.,
Karabulut Kurt, G., & Fischer, I. (2016). CONDENSE: A recon�gurable
knowledge acquisition architecture for future 5G IoT. IEEE Access, 4, 3360-
3378.

26

Non-exclusive licence to reproduce thesis and make thesis public

I, Janar Jõgi (date of birth: 10th of April 1994),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1 reproduce, for the purpose of preservation and making available to the public,
including for addition to the DSpace digital archives until expiry of the term of
validity of the copyright, and

1.2 make available to the public via the web environment of the University of
Tartu, including via the DSpace digital archives until expiry of the term of
validity of the copyright,

Function Computation in Networks

supervised by Vitaly Skachek

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual
property rights or rights arising from the Personal Data Protection Act.

Tartu, 05.01.2017

27

